

PolicyCLOUD has received funding from the European Union’s Horizon 2020 research and

innovation programme under grant agreement No 870675.

CLOUD FOR DATA-DRIVEN POLICY MANAGEMENT

Project Number: 870675 Start Date of Project: 01/01/2020 Duration: 36 months

D3.8 CLOUD INFRASTRUCTURE INCENTIVES

MANAGEMENT AND DATA GOVERNANCE SOFTWARE

PROTOTYPE 3

Dissemination Level PU

Due Date of Deliverable 31/10/2022, Month 34

Actual Submission Date 26/10/2022

Work Package WP3 Cloud Infrastructures Utilization & Data

Governance

Task T3.1, T3.3, T3.4, T3.6

Type Demonstrator

Approval Status

Version 1.0

Number of Pages p.1 – p.63

Abstract: This document is an accompanying report providing information about the demonstrator of the third

version of the Cloud Infrastructure, Incentives Management and Data Governance software prototype. It describes

the cloud gateways and APIs, the cloud provisioning mechanisms, the implemented version of the algorithms as

well as the data governance tools according to the D3.1, D3.4 and D3.7 specifications.
The information in this document reflects only the author’s views and the European Community is not liable for any use that may be made of the
information contained therein. The information in this document is provided “as is” without guarantee or warranty of any kind , express or implied,
including but not limited to the fitness of the information for a particular purpose. The user thereof uses the information at his/ her sole risk and

liability. This deliverable is licensed under a Creative Commons Attribution 4.0 International License.

 D3.8 – v. 1.0

www.policycloud.eu

2

Versioning and Contribution History

Version Date Reason Author

0.1 08/09/2022 ToC Konstantinos

Oikonomou

0.2 20/09/2022 ATOS Contributions Ana Luiza Pontual

0.3 27/09/2022 UBITECH Contributions Konstantinos

Oikonomou

0.4 29/09/2022 UPRC Contributions George Manias

0.5 29/09/2022 EGI Contributions Sebastian Luna-

Valero

0.6 30/09/2022 Contributions Integration and finalization Konstantinos

Oikonomou

0.7 24/10/2022 Internal Review Argyro

Mavrogiorgou,

Kostas Nasias

0.8 25/10/2022 Internal Review Comments Addressing Konstantinos

Oikonomou

0.9 26/10/2022 Quality Check Argyro

Mavrogiorgou

1.0 26/10/2022 Ready For Submission Konstantinos

Oikonomou,

Giannis Ledakis

Author List

Organisation Name

ATOS Maria Angeles Sanguino, Ana Luiza Pontual,

Miquel Milà, Ricard Munné

EGI Sebastian Luna-Valero

UBITECH Giannis Ledakis, Konstantinos Oikonomou

UPRC George Manias, Argyro Mavrogiorgou

 D3.8 – v. 1.0

www.policycloud.eu

3

Abbreviations and Acronyms

Abbreviation/Acronym Definition

ABAC Attribute Based Access Control

API Application Programming Interface

EC European Commission

EOSC European Open Science Cloud

GUI Graphical Unit Interface

OIDC OpenId Connect

PAP Policy Administration Point

PDP Policy Decision Point

PDT Policy Development Toolkit

PEP Policy Enforcement Point

PIP Policy Information Point

XACML eXtensible Access Control Markup Language

 D3.8 – v. 1.0

www.policycloud.eu

4

Contents

Versioning and Contribution History .. 2

Author List .. 2

Abbreviations and Acronyms ... 3

Executive Summary .. 8

1 Introduction ... 9

1.1 Structure of the document .. 9

1.2 Summary of Changes ... 9

2 Cloud Gateways & APIs for Efficient Data Utilization ..10

2.1 Updates since D3.5 ...10

2.2 Prototype Overview ..10

2.3 Main Components of the Prototype ...12

2.3.1 Microservices ...12

2.3.2 Monitoring – Metrics ..14

2.4 Interfaces ..15

2.4.1 Monitoring ..15

2.4.2 Microservices ...16

2.5 Baseline Technologies and Tools ...28

2.5.1 MoleculerJS ...28

2.5.2 Traefik..28

2.5.3 Docker ...29

2.5.4 File Parsers ...29

2.6 Source Code ...30

2.6.1 Code Overview and Availability..30

2.6.2 NPM scripts ..30

2.7 Deployment Status ...31

3 Incentives Management ..32

3.1 Updates since D3.5 ...32

3.2 Prototype Overview side..32

3.3 Main Components of the Prototype ...34

3.4 Interfaces ..36

 D3.8 – v. 1.0

www.policycloud.eu

5

3.5 Baseline Technologies and Tools ...39

3.6 Source Code ...39

Code Overview and Availability ...39

3.7 Deployment Status ...40

4 Data Governance Model and Privacy Enforcement mechanism ..41

4.1 Updates since D3.5 ...41

4.2 Prototype Overview ..41

4.3 Main Components of the Prototype ...42

4.3.1 ABAC Server ...42

4.3.2 KeyCloak ...42

4.3.3 ABAC Client Filter ..47

4.3.4 ABAC Proxy ...48

4.3.5 Test Web Client..49

4.3.6 EGI Check-In integration ..50

4.3.7 XACML Editor ...52

4.3.8 Custom Access Policies for Gateways ..53

4.4 Interfaces ..55

4.5 Baseline Technologies and Tools ...56

4.5.1 Balana ..56

4.5.2 Keycloak ..58

4.6 Source Code ...59

Code Overview and Availability ...59

4.7 Deployment Status ...60

5 Conclusions ..61

References..62

 D3.8 – v. 1.0

www.policycloud.eu

6

List of Tables
Table 1 - Keycloak Common APIs ..55

List of Figures

Figure 1 - Cloud gateways and apis architecture and integrations..11

Figure 2 – Swagger-Stats Summary UI ...15

Figure 3 – Swagger-Stats Request Page ...16

Figure 4 – MoleculerJS – Service Discovery..16

Figure 5 – MoleculerJS – Service Registry ...17

Figure 6 - OpenAPI specification page..18

Figure 7 - GTD’S Swagger OpenAPI Interface ..19

Figure 8 – Tweets Filtered-SwaggerUI ..20

Figure 9 – Twitter Streaming Process ...21

Figure 10 - Aragon swagger ui..22

Figure 11 - London Swagger UI ..23

Figure 12 – Sofia Road Swagger UI ..24

Figure 13 - Sofia Transport Swagger UI ..25

Figure 14 - Sofia Waste Swagger UI ..26

Figure 15 - Sofia Parking Swagger UI ..26

Figure 16 - Sofia Violation Of Public Order Swagger UI ..27

Figure 17 – Sofia Air Quality Swagger UI ..27

Figure 18 - Rand microservice swagger UI ..28

Figure 19 – Traefik Web UI ..29

Figure 20 - Access to Incentive Management Tool options ...34

Figure 21 - Initial page for Incentive’s option ..34

Figure 22 - Form to create a new Incentive ...35

Figure 23 - Form to create a new Action ..35

Figure 24 - Swagger for Incentive Management Back End component ..38

Figure 25 - docker-compose.yaml file ..43

Figure 26 - Keycloak Realm creation ...43

Figure 27 - Keycloak Client Creation ...44

Figure 28 - Keycloak Realm Roles ..44

Figure 29 - Keycloak Users ..45

Figure 30 - Initial Role Mappings ...45

Figure 31 – Admin Role Grant ..46

Figure 32 - Custom User Attribute ..46

Figure 33 - Client Attribute Mapper ..47

Figure 34 – ABAC proxy application.yml ..49

Figure 35 - Intercept Login ..50

Figure 36 - Successful Attributes Retrieval ..50

 D3.8 – v. 1.0

www.policycloud.eu

7

Figure 37 - Integrated EGI Check-In ..51

Figure 38 - Sample access policy in editor...52

Figure 39 - Sample access rule in editor ..53

Figure 40 - ABAC Custom Rule For Access During Shift ..54

Figure 41 - Balana PDP ..56

Figure 42 - Carbon Policy Filter ..57

Figure 43 - Carbon Attribute Finder ..58

Figure 44 - OIDC Signalling ...59

 D3.8 – v. 1.0

www.policycloud.eu

8

Executive Summary

The third and final version of the Cloud Infrastructure, Incentives Management and Data Governance

software prototype includes the cloud gateways and APIs, the cloud provisioning mechanisms, the

implemented version of the algorithms as well as the data governance tools according to the D3.1 [1],

D3.4 [2] and D3.7 [3] specifications and is built upon the first and second versions of the prototype

described in D3.2 [4] and D3.5 [5] respectively. The prototype’s cloud infrastructure is supported by

RECAS-BARI and is utilized by EGI through cloud gateways. These gateways allow the prototype to gather

data from heterogenous data sources, such as Twitter and the global terrorism database and have

integrated microservices to serve the needs of the different PolicyCLOUD pilots.

The final version of the Incentives Management tool is also provided in this deliverable. This final version

has been integrated with the Policy Development Toolkit (PDT) and has been deployed in the EGI Cloud.

This third version of the prototype also includes the latest updates of the ABAC based access control

mechanism and the Keycloak integration. This is broken down to 8 key components that have been

combined to provide fine-tuned and secure access control and authentication. Specifically, Keycloak has

been integrated with the Marketplace, the Gateways and the PDT and custom access policies have been

developed for the gateways microservices. Finally, both the introduction of a XACML editor to ease access

policies creation and the integration of EGI Check-in, an alternative way to authenticate to the prototype

with academic and social credential, enhance the user experience in the PolicyCLOUD platform

 D3.8 – v. 1.0

www.policycloud.eu

9

1 Introduction

This document is an accompanying report for the third and final iteration of “Cloud Infrastructure

Incentives Management and Data Governance: Software Prototype” and is the eighth deliverable of WP3,

covering tasks T3.1, T3.3, T3.4, and T3.6. Based on the design and the specifications provided in D3.1 [1],

D3.4 [2] and D3.7 [3], all task participants finalized their collaboration and implementation of their

corresponding outcomes that were utilized and integrated into the final stages of the platform in later

stages. In the scope of T3.1 - Cloud Provisioning of the PolicyCLOUD Infrastructure, INDIGO-DataCloud

PaaS Orchestrator continues to be the tool of choice, as reported in D3.2 [4], and thus no further mention

or update is required. In the scope of T3.3 - Cloud Gateways & APIs for Efficient Data Utilization the final

prototype of the cloud gateways with the latest updates has been described. Regarding T3.4 - Incentives

Management, development has ceased based on the reviewers’ recommendation, but integration

actions have taken place and are also reported. Finally, for T3.6 - Data Governance Model, Protection and

Privacy Enforcement the third and final prototype of the mechanism that is used for privacy enforcement

and the protection of data is described, along with all the integration effort and a new XACML Editor that

was. For all these tasks, this document provides the work performed until M34.

1.1 Structure of the document

The rest of the document is structured as follows. Section 2 presents the Cloud Gateway components of

the final prototype, while Section 3 describes the Incentives Management prototype for the efficient

utilization of citizen and policy maker data. Section 4 presents the Data Governance model and the

Privacy enforcement mechanism for the security of the prototype. Finally, Section 5 provides the

conclusion of the document.

1.2 Summary of Changes

Concerning the project’s Cloud Gateways and APIs component several core updates and changes have

occurred compared to D3.5 [5], as additional microservices and functionalities have been implemented

to cover the needs of the pilot scenarios. More specifically, two new microservices with their

corresponding APIs have been developed for the SOFIA scenario, one for the Maggioli radicalization

scenario and one for the Aragon use case. Specifications for these microservices were finalized in D6.11

[6] and details about these changes will be further analyzed in Section 2. Furthermore, the APIs

introduced in D3.2 and extended in D3.5 have been further enhanced with more API endpoints, where

each one triggers the parsing of respective datasets. Regarding the Incentives Management, both

integration with the Policy Development Toolkit (PDT) and the deployment of the Incentives Management

backend in the EGI Cloud Infrastructure have been completed. Finally, the Privacy Enforcement

mechanism has been also integrated with the PolicyCLOUD marketplace, a new XACML editor has been

developed for easier creation of access policies and custom access policies are available for the new APIs

mentioned in Section 2.

 D3.8 – v. 1.0

www.policycloud.eu

10

2 Cloud Gateways & APIs for Efficient Data Utilization

The Cloud Gateway and API component will enhance the abilities and services offered by a unified

Gateway to move streaming and batch data from data owners into PolicyCLOUD data stores layers.

Hence, it seeks to offer a unified framework for various microservices that are responsible for obtaining

data from external data sources e.g., 3rd party APIs, files, streams etc. Based on the specifications

provided in D3.4 [2] of the PolicyCLOUD project, the effort related to Cloud Gateways & APIs component

will be focused on providing a complete and “smart” entryway into PolicyCLOUD project, allowing

multiple APIs or microservices to act cohesively and thus provide a uniform, gratifying experience to each

stakeholder. To this end, single API endpoints will be provided to its stakeholder in order to access all the

data obtained from the external data sources in JSON format without having to care about complex

integrations.

2.1 Updates since D3.5

As the project progresses additional microservices and functionalities have been implemented within the

Cloud Gateways & APIs component. In this respect, two additional microservices and corresponding APIs

have been introduced with regards to the Sofia scenario and the ingestion of several datasets that have

introduced under the scopes of these scenarios. More specifically, corresponding microservice has been

implemented to serve the integration of datasets provided by two different data sources with regards to

the Scenario B (SC2) “Environment and Air quality”, as presented in the context of D6.11 [6]. The latter

enhances the analysis for the Air Quality of the city of Sofia through a concrete processing and analysis

of data derived from different datasets. The second added microservice is related with the Scenario B

(SC6) “Violation of Public Order” of Sofia pilot, as presented in the context of D6.11.Moreover, an

additional microservice has been created to support the ingestion of the RAND Database of Worldwide

Terrorism (RAND) and the related scenarios from Maggioli use case, as also introduced in the context of

D6.11. Finally, the Aragon microservice has also implemented and utilized in the context of this 3rd

Software prototype to support the scopes and objectives of the Scenario A.2 Price Evolution of the SARGA

use case, as presented in the context of D6.11.

2.2 Prototype Overview

In the context of this deliverable, the 3rd Software Prototype of the Cloud Gateways & APIs component

consists of six main microservices. The initial design of these six specific microservices, that can be used

either for fetching data from an external file or from a social media platform like Twitter, includes

complete workflows and pipelines for pushing data into the PolicyCLOUD platform. These five sub-

components base their functionality on all four different Use Cases according to D6.11[6] and are being

described into the below subsections. As also introduced in the previous deliverable all sub-components

integrate with PolicyCLOUD’s authentication mechanism, the Keycloak, which is further introduced and

analysed in Section 4 of this specific deliverable. The integration between Cloud Gateways & APIs

component and the User Authorization mechanism ensures that all the required security standards are

 D3.8 – v. 1.0

www.policycloud.eu

11

being met and controls the access to the Cloud Gateways. More specifically, by using the

KeycloakConnect npm package and a custom middleware for MoleculerJS, the integration with the

Keycloak has been established in order to access and authenticate each microservice with an access

token that should be obtained by the Keycloak service and must be used in every future request as

Authorization header. To this end, only authorized users can have access on Cloud Gateway’s resources.

Moreover, as introduced in Section 1.2 the Cloud Gateways and APIs component integrates with the

project’s Interim Repository and acts as project’s repository where each stakeholder and data provider

have the ability to upload their own datasets. This integration has a two-fold advantage. In one hand it

offers the ability of not having to set up a potentially high number of adaptors in order to fetch data from

various kinds of data sources, while on the other hand use case partners are able to upload fast and easy

their respective datasets, which are in various file formats (e.g., xlsx and csv) and which can further be

fetched from the Cloud Gateways component. Furthermore, in terms of providing an end-to-end

ingestion pipeline the Cloud Gateways component integrates directly with the PolicyCLOUD’s identified

message bus, the Kafka message broker, and the PolicyCLOUD’s identified serverless platform, the

OpenWhisk, where functions are activated on demand. In the figure below, the overall architecture of

the Cloud Gateways component as also the integrations with other project’s tools and components (e.g.,

OpenWhisk, Kafka, and Interim Repository) are being depicted.

FIGURE 1 - CLOUD GATEWAYS AND APIS ARCHITECTURE AND INTEGRATIONS

 D3.8 – v. 1.0

www.policycloud.eu

12

2.3 Main Components of the Prototype

2.3.1 Microservices

In a microservices environment the running instances of services dynamically change location inside

networks. In order for the client or services to be able to make requests to a service it must use a service-

discovery mechanism. As introduced in D3.4, the Cloud Gateways and APIs component rely on the

utilization of a unified set of microservices. To this end, MoleculerJS has been utilized as it provides a

bult-in module to handle service discovery and registry. The underlying concept of service discovery is

the exchange of heartbeats packets between the registry and the available nodes, to list the working

services. If a node fails to broadcast a heartbeat is not used to serve requests made for this particular

service.

2.3.1.1 GLOBAL TERRORISM DATABASE MICROSERVICE (GTD MICROSERVICE)

The GTD microservice provides a REST application interface following the OpenAPI specification in order

to be easier for the end user to discover the capabilities of the microservice. Furthermore, the

microservice includes an API documentation page, by using Swagger UI, so that a graphical interface for

interacting with the API can be provided. This makes it easier for the developer to explore all available

requests and responses are listed including the required parameters, without the need of setting up a

client on his own.

2.3.1.2 RAND DATABASE MICROSERVICE (GTD MICROSERVICE)

As of the GTD microservice, also the RAND microservice provides a REST application interface following

the OpenAPI specification. Furthermore, this component includes an API documentation page, by using

Swagger UI, so that a graphical interface for interacting with the API can be provided. This makes it easier

for the developer to explore all available requests and responses are listed including the required

parameters, without the need of setting up a client on his own.

2.3.1.3 ARAGON MICROSERVICE

As in the case of the two aforementioned microservices, the Aragon microservice provides a REST

application interface following the OpenAPI specification in order to be easier for the end user to discover

the capabilities of the component and to provide well-structured documentation for each of the

component’s services. The Aragon microservice integrates with the project’s Interim Repository to fetch

the needed datasets for this Wine Price monitoring scenario. What is more and in contrary to the other

microservices, this specific microservice also offers the ability to the end user to indicate the exact dataset

to be fetched by placing the name of the dataset as a parameter in the exposed endpoint. This

microservice also includes an integration mechanism with the Interim Repository, in which data providers

are responsible for uploading the files that are going to be processed by the Cloud Gateway’s

microservices, as introduced also in the Prototype Overview section.

 D3.8 – v. 1.0

www.policycloud.eu

13

2.3.1.4 TWITTER MICROSERVICE

Twitter Microservice is a component of the Cloud Gateway, providing access to Twitter data to the

Gateway’s clients without the need to directly connect to Twitter API. It has been implemented in NodeJS

utilizing the twitter-v2 npm package7. Furthermore, Twitter is launching the API v2, a new improved

version which promises to provide a better developer experience by giving access to a wide variety of

data sources and tools. Twitter assures the quality of its data by applying spam filters, access to all results

of a query and not only to a partition of results, user-friendly and simplified JSON objects, shorter URLs

and OpenAPI specification to test endpoints and watch for any change.

This specific microservice has two (2) basic functionalities:

• Searching and filtering tweets: By utilizing the Search Tweets endpoints [8] of the Twitter API v2,

Cloud Gateway’s users have access to the most recent tweets. The Twitter Connector sub-

component provides a REST application interface following the OpenAPI specification in order to

be easier for the end user to discover the capabilities of the component and to provide well-

structured documentation for each of the component’s services. The filters that can be applied

include:

o Keyword search

o The start and end time parameters to limit tweet results to a specific period

o Max number of tweets in order to limit the results returned

• Stream tweets for a specific period: By utilizing the Filtered Stream endpoints [9], Cloud Gateways

component allow users to capture tweets in real-time related to a specific topic for a pre-selected

time window. The available parameters for the endpoint are including:

o Keyword

o Duration (milliseconds): The duration parameter specifies the duration of the stream

capturing process. There is a max-duration limit, in order to ensure gateway’s users are

not abusing the service and also Twitter’s rate limits policy [10].

2.3.1.5 LONDON MICROSERVICE

The London sub-component provides a REST application interface following the OpenAPI specification in

order to be easier for the end user to discover the capabilities of the component and to provide well -

structured documentation for each of the component’s services. Furthermore, the component includes

an API documentation page, by using Swagger UI, so that a graphical interface for interacting with the

API can be provided. This makes it easier for the developer to explore all available requests and

responses are listed including the required parameters, without the need of setting up a client on his

own.

 D3.8 – v. 1.0

www.policycloud.eu

14

2.3.1.6 SOFIA MICROSERVICES

The Sofia microservice also provides a REST application interface following the OpenAPI specification in

order to be easier for the end user to discover the capabilities of the component and to provide well-

structured documentation for each of the internal services.

In contrary to the two previously introduced microservices this incorporates six sub-basic functionalities

that are being offered and its one providing a corresponding microservice for its specific scenario of the

Sofia use case.

• Roads

• Transport

• Waste

• Parking

• Public order

• Air Quality

All the aforementioned scenarios are based on datasets including signals and complaints from the

citizens of Sofia city with regards to the different topics of interest to further support the urban policy

making in key areas of the city. In the next iterations and prototype version of this component two more

functionalities will be added regarding the different scenarios of the Sofia Use Case as introduced in

D6.11 and more specifically to the Violation of Public Order and Air Quality scenarios. Both these

scenarios will use data from Sofia Municipality’s Contact Centre Call, while the Air Quality scenario will

also use data from the air quality measurement stations of the city.

2.3.2 Monitoring – Metrics

Monitoring is a very important aspect in developing microservices as it ensures that all exposed APIs are

working as expected without errors. Moreover, it also offers the ability to get metrics for API calls to

ensure that the provided infrastructures can handle the incoming traffic load or even to detect attacks.

For the Cloud Gateways monitoring the swagger-stats [11] tool have been utilized, which is a Node.js

library that collects metrics and traces API requests. Metrics are in Prometheus [12] format, so that

enables possible future integration with other widely used metrics and alerting systems like Grafana [13].

Some very interesting and important metrics that are provided include:

• CPU and memory utilization

• Error logging and latest error that occurred

• Request tracing and long request tracing with details request details like headers, parameters,

and times

• Statistics and summaries, overall payload measurement during periods of time

• Timelines to help you analyze trends of each request and peak periods

• Built-in Telemetry UI with minimum configuration and many settings that provides good user

experience

 D3.8 – v. 1.0

www.policycloud.eu

15

For utilizing swagger-stats for Cloud Gateways, the npm package @slanatech/swagger-stats was installed,

and in order to collect metrics it was configured as middleware on every request in the gateway

microservice.

2.4 Interfaces

2.4.1 Monitoring

Through the utilization of the swagger-stats REST API requests and responses in Node.js Microservices

and collects statistics per API Operation. This monitoring tool and its interface can be accessed via the

below URL http://90.147.75.215:3000/api/swagger-stats/

FIGURE 2 – SWAGGER-STATS SUMMARY UI

 D3.8 – v. 1.0

www.policycloud.eu

16

FIGURE 3 – SWAGGER-STATS REQUEST PAGE

2.4.2 Microservices

2.4.2.1 MOLECULERJS API

MoleculerJS API microservice (http://90.147.75.215:3000/api/) is responsible for load balancing, service

registry, monitoring and also serves the OpenAPI specification and any other needed page. In the Service

Directory of the MoleculersJS are being depicted the nodes that host each microservice. Moreover, this

interface offers information about the CPU utilization for each microservice as long as some other

information about the nodes that are running, such as the type of service (nodejs), the ID node and the

status of each corresponding microservice/node.

FIGURE 4 – MOLECULERJS – SERVICE DISCOVERY

Furthermore, in the “Services” tab it is being depicted the Service Registry visual graphical interface and

the full list of the running microservices along with their endpoints, the node instance that are depending

on, the exposed REST API and Status for each one of the available microservices.

 D3.8 – v. 1.0

www.policycloud.eu

17

FIGURE 5 – MOLECULERJS – SERVICE REGISTRY

2.4.2.2 OPENAPI

An OpenAPI specification page (http://90.147.75.215:3000/api/openapi/ui#) is also being provided for

describing and documenting all API endpoints. This page contains all the required parameters for the

request and gives the ability to the user to perform requests directly to the data sources and to obtain

real data in the exact data schema and format.

 D3.8 – v. 1.0

www.policycloud.eu

18

FIGURE 6 - OPENAPI SPECIFICATION PAGE

 D3.8 – v. 1.0

www.policycloud.eu

19

2.4.2.3 MAGGIOLI

For the Maggioli use case, the Global Terrorism Database (GTD) Service is utilized.

FIGURE 7 - GTD’S SWAGGER OPENAPI INTERFACE

 D3.8 – v. 1.0

www.policycloud.eu

20

2.4.2.4 ARAGON

For the Aragon use case, the Twitter API and Twitter Streaming API Services are utilized, as also the

Aragon microservice that expects as parameters the Kafka topic where the data will be populated as well

as the exact filename of the dataset to be fetched

• Utilizing Twitter API

FIGURE 8 – TWEETS FILTERED-SWAGGERUI

 D3.8 – v. 1.0

www.policycloud.eu

21

• Utilizing Twitter Streaming API

FIGURE 9 – TWITTER STREAMING PROCESS

 D3.8 – v. 1.0

www.policycloud.eu

22

• Utilizing the Aragon microservice

FIGURE 10 - ARAGON SWAGGER UI

 D3.8 – v. 1.0

www.policycloud.eu

23

2.4.2.5 LONDON

For the London use case, the Camden Service is utilized.

FIGURE 11 - LONDON SWAGGER UI

 D3.8 – v. 1.0

www.policycloud.eu

24

2.4.2.6 SOFIA

For the Sofia use case, the Roads, Transport, Waste, Parking Services, Violation of Public Order and Air

Quality are utilized.

• Roads

FIGURE 12 – SOFIA ROAD SWAGGER UI

 D3.8 – v. 1.0

www.policycloud.eu

25

• Transport

FIGURE 13 - SOFIA TRANSPORT SWAGGER UI

 D3.8 – v. 1.0

www.policycloud.eu

26

• Waste

FIGURE 14 - SOFIA WASTE SWAGGER UI

• Parking

FIGURE 15 - SOFIA PARKING SWAGGER UI

 D3.8 – v. 1.0

www.policycloud.eu

27

• Violation of Public Order

FIGURE 16 - SOFIA VIOLATION OF PUBLIC ORDER SWAGGER UI

• Air Quality

FIGURE 17 – SOFIA AIR QUALITY SWAGGER UI

 D3.8 – v. 1.0

www.policycloud.eu

28

2.4.2.7 RAND

FIGURE 18 - RAND MICROSERVICE SWAGGER UI

2.5 Baseline Technologies and Tools

2.5.1 MoleculerJS

MoleculerJS is a lightweight Node.js framework oriented in building and managing microservices. It

provides many out-of-the-box features that make the development process faster easier. Moreover, this

framework facilitated the focus on the business logic and the providing of the required data from external

sources to the PolicyCLOUD in order to be further processed and analyzed by other components. Finally,

MoleculerJS is a NodeJS framework meaning that most business logic parts can be transferred and

mitigated to other frameworks and distributed systems without major changes and time drawbacks.

2.5.2 Traefik

The Cloud Gateways component utilizes Traefik, a popular HTTP reverse proxy and a load balancer

software. The latter requires minimum effort for integration with infrastructure components like Docker

and Kubernetes. Traefik instead of requiring manual route configuration for each service component,

bundles to the registry service or orchestrator API and generates all routes automatically so this services

to be available for public and ready to use. Continuously updating its configurations can be really helpful

feature especially in a microservices environment that changes in each microservice are very common

issue and component restarts are required [54]. Traefik also provides a UI to monitor metrics and toggle

configurations.

 D3.8 – v. 1.0

www.policycloud.eu

29

FIGURE 19 – TRAEFIK WEB UI

2.5.3 Docker

Docker is a virtualization platform that that gives the ability to run applications in isolated environments

called containers. Each container contains all necessary software to run and application and a be very

size efficient. Multiple containers can be running simultaneously on the same host. Docker has been

selected in order to provide the Cloud Gateways component and its subcomponents and microservices

as docker images that can be initialized as a virtualized container inside a Kubernetes pod. To this end,

the development progress can dramatically speed up and the unified component can be deployed faster

and safer in production. One other advantage of using containers is the ability to share between

developers exactly the same developer environment, thus Cloud Gateways component can be offered to

every stakeholder in the same environment.

2.5.4 File Parsers

Parsing data from files of different format has always been a challenge for data science. Different

formats, different delimiters and compressions systems can lead add to the complexity of the task.

Another serious problem is the parsing of really large data files. In this case common parsing techniques

are not working because it is not possible to fit the entire file in the heap memory and the resources are

limited.

The Cloud Gateway provides two (2) different file reading microservices. This scenario also includes an

integration mechanism with the Interim Repository, in which data providers are responsible for

uploading the files that are going to be processed by the Cloud Gateway’s microservices.

 D3.8 – v. 1.0

www.policycloud.eu

30

2.5.4.1 CSV PAPA.PARSE

For parsing CSV file the papa.parse JS package is being utilized since it provides parsing capabilities over

huge files without loading the whole file into memory and thus causing memory leaks and timeouts in

the requests. The parsing process and the streaming to the Kafka message broker is an asynchronous

process and does not affect the performance or causes any timeout.

2.5.4.2 XLSX FILE PARSER

Along with the CSV datasets, also XLSX datasets are able to be parsed by the microservices provided in

the Cloud Gateways and APIs component. These microservices are responsible for parsing the dataset

files in XLSX format in order to extract data. Similarly, to the GTD microservice, the parsing procedure is

a scheduled job that run in the background and while parsing the data are formatted in Kafka suitable

format and sent to the Kafka’s water-topic in order to be later sent and stored in the storage component.

The service is implemented in NodeJS and for the CSV parsing the @SheetJS/sheetjs npm package is

utilized [14].

2.6 Source Code

2.6.1 Code Overview and Availability

The code and instructions to build the project locally are available at the repository located at

https://registry.grid.ece.ntua.gr/george/cloudgatewayv2. Access is restricted to members of the project

consortium.

Usage

Start the project with npm run dev command.

After starting, open the http://localhost:3000/ URL in your browser.

On the welcome page you can test the generated services via API Gateway and check the nodes &

services.

In the terminal, try the following commands:

2.6.2 NPM scripts

• npm run dev: Start development mode (load all services locally with hot-reload & REPL)

• npm run start: Start production mode (set SERVICES env variable to load certain services)

• npm run cli: Start a CLI and connect to production. Don't forget to set production namespace

with --ns argument in script

• npm run lint: Run ESLint

• npm run ci: Run continuous test mode with watching

• npm test: Run tests and generate coverage report

• npm run dc:up: Start the stack with Docker Compose

• npm run dc:down: Stop the stack with Docker Compose

 D3.8 – v. 1.0

www.policycloud.eu

31

Commands to setup VPS sudo apt update sudo apt install apt-transport-https ca-certificates curl

software-properties-common curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo apt-key

add - sudo add-apt-repository "deb [arch=amd64] https://download.docker.com/linux/ubuntu bionic

stable" sudo apt update apt-cache policy docker-ce sudo apt install docker-ce sudo systemctl status

dokcer docker sudo curl -L "https://github.com/docker/compose/releases/download/1.27.4/docker-

compose-$(uname -s)-$(uname -m)" -o /usr/local/bin/docker-compose sudo chmod +x /usr/local/bin/

docker-compose docker-compose --version sudo apt install git git clone docker-compose up

2.7 Deployment Status

Currently the Gateway has been deployed on a public VPS server in the project’s cloud infrastructure that

has been provided and is supported by RECAS-BARI and EGI. However, in the project’s Gitlab repository

are being provided detailed instructions and guidelines that facilitate the deployment of the Cloud

Gateways and APIs component and its microservices in any environment.

 D3.8 – v. 1.0

www.policycloud.eu

32

3 Incentives Management

The Incentive Management (IM) software prototype presented here is one more step towards the

realization of the final objective of the Incentive Management task, which is based, as we described in

D3.1 [1], on the idea of including citizens as participants in the policy development and management

process, having the policy maker as main actor. In this way, we present below the prototype details of

the Incentive Management Tool, that aims to help policy makers to achieve this objective.

3.1 Updates since D3.5

Τhe improvements of this component were stopped during the last period of the project, after the

recommendation of the reviewers and thus the most important updates reported in this deliverable since

D3.5 are related to the final integration of the component in the PolicyCLOUD infrastructure. This

integration involves:

• the integration of the IM Front End inside the Policy Development Toolkit (PDT) component

• and the deployment of the IM Back End into the Cloud infrastructure.

In this way, the component concludes its development phase, unless if it’s necessary to implement some

minimal variation essential for its use by the use case that possibly makes use of it.

In addition, all the development related to the Reports section, mentioned in deliverable D3.5, is

disregarded, and therefore removed from the final version of the component.

3.2 Prototype Overview side

The work started in D3.2 [4] resulted in a set of functionalities obtained from the use cases, that the

Incentive Management Tool needs to provide. The functionalities corresponding to the “Incentives

Management” capability were defined in D3.2:

• “Declaration of Incentives: The policy maker should be able to register new incentives with a set

of attributes”, where the Actions Type attribute takes special relevance.

• “Crowdsource Data Ingestion and Summary: a summary statistic from the crowdsourced data”,

where crowdsourced task reports, posted in the system, support the statistics which allow the

policy maker the evaluation of applied incentives

The Incentive Management Tool has been designed to provide these functionalities to the policy maker.

For this first prototype, the Incentive Management Tool component, focusing by now on the first

functionality, declaration of incentives, provides:

o Front End: The gateway to the component for the policy maker. The Incentive Management Front

End will be integrated into the PDT and will be accessed by policy makers through the PolcyCloud

platform, although for this first prototype, this first integration is not done yet. To make this

 D3.8 – v. 1.0

www.policycloud.eu

33

integration possible, the Front End component has been developed in Angular, to be in line with

the PDT, and is composed by:

o incentives-management-home component: This component, composed by its

“incentives-management-home.ts”, “incentives-management-home.html”, incentives-

management-home.spec.ts and incentives-management-home.css files, provides a

common “frame” for the following components.

o incentive-management.services.ts: Is responsible for the communication with the Back

End component.

o incentives component: Represents the incentives given to citizens, to get their

participation. At the Incentive Management Tool, this component is responsible for the

management of the incentives.

o motives component: Represents the motives that encourage citizens to participate. At

the Incentive Management Tool, this component is responsible for the management of

the motives.

o actions component: Represents the actions needed to launch one specific incentive. At

the Incentive Management Tool, this component is responsible for the management of

the actions.

o producerstypology component: Represents the best profile, or best group of people, to

perform a selected action. At the Incentive Management Tool, this component is

responsible for the management of the producerstypology.

As the communication between Front End and Back End is available thought the PDT integration, the

policy makers can management of Incentives, Motives, Actions and ProducersTypology (create, edit, and

delete) can be done.

o Back End: This component has been developed in Python3, it is composed by five controllers,

related to the five mains elements of the Front End:

o incentives_controller.py: This controller contains all the functions related with the

incentives management actions.

o actions_controller.py: This controller contains all the functions related with the actions

management.

o motives_controller.py: This controller contains all the functions related with the motives

management.

o producerstypology_controller.py: This controller contains all the functions related with

the producerstypology management.

 D3.8 – v. 1.0

www.policycloud.eu

34

3.3 Main Components of the Prototype

As commented in earlier sections, the main components of this first prototype are:

▪ Front End component: policy makers can access each of the Incentive Management Tool options

from the component’s initial page, or using the top left menu list:

FIGURE 20 - ACCESS TO INCENTIVE MANAGEMENT TOOL OPTIONS

Once selected one option, policy makers will access the Incentives/Motives/Actions/Producers Typology

page. As the development was stopped, the Report option has been removed. Policy makers will then

see, a list of the incentives they have created so far, if there’s any. If no incentive has been created yet ,

as in the image bellow, two buttons will appear: Add, that allows the creation of a new Incentive , and

Back, to return to the initial page:

FIGURE 21 - INITIAL PAGE FOR INCENTIVE’S OPTION

In the case of the previous figure, if there is any incentive created a list with all incentives created would

appear, with a new button at the bottom right: Remove. This new button allows to remove/delete

selected Incentives.

 D3.8 – v. 1.0

www.policycloud.eu

35

If the policy maker wants to create a new incentive, the button Add, must be pushed, and a pop-up will

appear, where the data needed for this creation will appear. For this first approach, the name of the new

incentive and if it is a suggested one, are the needed inputs. The policy maker can select a motive from

a combo box:

FIGURE 22 - FORM TO CREATE A NEW INCENTIVE

The same happens for Motives and Actions options, although for the creation of an action, the

information needed, is larger than the ones for Incentives and Motives:

FIGURE 23 - FORM TO CREATE A NEW ACTION

In all pages shown to the policy maker, except in the creation forms, it can be seen a help icon () in the

top right of the page. Clicking it, policy makers can get some information about the actions they can

 D3.8 – v. 1.0

www.policycloud.eu

36

perform at that page. Also, trying to help policy makers in the process of incentive creations, many fields

have a tooltip that gives a small definition of them.

• Back End component: Aims to give all the support to the Front End operations, including the

communication with the Storage component. The Incentive Management Back End component

is independent from the PDT and is responsible to process all the requests done by the Front

End, to store information in the storage component, and to retrieve information from the Storage

component. All these operations are done through the functions defined in previous section,

provided to the Front End as APIs that can be called.

• The storage component for the Incentive Managed component was integrated into the storage

component of the PolicyCLOUD platform.

For the Incentive Management Storage component, considers the data model detailed in D3.4 [2], and

has 6 tables: action, incentive, motive, policy, report and producertypology.

In the deliverable D3.4 already mentioned, there was also a component initially thought as “Access to

policies” component, which would “allows policy makers to see results from their policies, providing them

with insights for the creation of new incentives”. This component finally will not be developed since that

development tasks will not be continued.

3.4 Interfaces

For the Front End component, the Interface, as explained in previous sections, will be integrated in the

PDT, and the first page can be seen in Figure 20. As mentioned before, its main components are:

o incentive-management.services.ts: Composed by:

▪ getIncentivesList(creatorId:number = null):Gets list of Incentives from the server.

▪ getIncentiveDataById(incentiveId: number = null):

Get Incentive by incentiveId from the server.

▪ updateIncentiveDataById(incentiveId: number = null, dataModel: any):

Update Incentive by incentiveId from the server.

▪ addNewIncentive(dataModel: any): Create a new Incentive.

▪ deleteIncentive(incentiveId: number): Delete an incentive by incentiveId.

▪ getMotivesList(): Observable<Incentive[]>:Get list of Motives from the server.

▪ getMotiveDataById(motiveId: number = null):

Get Motive by motiveId from the server.

▪ updateMotiveDataById(motiveId: number = null, dataModel: any): Observable

<any[]>: Update Motive by motiveId from the server.

▪ addNewMotive(dataModel: any): Observable<any[]>:Create a new Motive.

▪ deleteMotive(motiveId: number): Observable<{}>:Delete a motive by motiveId.

▪ getActionsList(): Observable<Action[]>:Get list of Actions from the server.

 D3.8 – v. 1.0

www.policycloud.eu

37

▪ getActionDataById(actionId: number = null):

Get Action by actionId from the server.

▪ updateActionDataById(actionId: number = null, dataModel: any): Observable<

any[]>: Update Action by actionId from the server.

▪ addNewAction(dataModel: any): Observable<any[]>: Create a new Action.

▪ deleteAction(actionId: number): Observable<{}>: Delete an action by actionId

▪ getProducerTyplogiesList(): Observable<Action[]>:Get list of Producer typologies

 from the server.

▪ getProducerTypologyDataById(producerTypologyId: number = null): Observabl

e<Action>: Get Producer Typology by producerTypologyId from the server.

▪ updateProducerTypologyDataById(producerTypologyId: number = null, dataMod

el: any): Observable<any[]>:Update Producer typology by producerTypologyId from t

he server.

▪ addNewProducerTypology(dataModel: any): Observable<any[]>:Create a new Prod

ucer Typology.
▪ deleteProducerTypology(producerTypologyId: number): Observable<{}>:

Delete a producer typology by producerTypologyId.

o incentives component: Composed by:

▪ addIncentive(): Open a new window where policy makers will introduce the data needed

to create an incentive.

▪ editIncentive(id, element): Make changes in an already created incentive.

▪ deleteIncentive(id, element): Delete a created incentive.

▪ saveIncentiveForm(): Creates a new incentive with the data introduced for the policy

maker.

o motives component: Composed by:

▪ addMotive(); editMotive(id, element); deleteMotive(id, element); and

saveMotiveForm() with same functionalities as incentives, but with motives type.

o actions component: Composed by:

▪ addAction(); editAction(id, element); deleteAction(id, element); and

saveActionForm() with same functionalities, but with actions type.

o producerstypology component: Composed by:

▪ addProducerTypology();editPT(id, element); deletePT(id,element);

savePTForm()with same functionalities, but with actions type

 D3.8 – v. 1.0

www.policycloud.eu

38

The Back End interface that is provided by a Swagger GUI (https://swagger.io/) can be seen in the

following image:

FIGURE 24 - SWAGGER FOR INCENTIVE MANAGEMENT BACK END COMPONENT

Where all APIs provided by the component can be seen. This APIs provide all the functions described in

previous section:

o incentives_controller.py: Composed by:

▪ def add_incentive(body): Add a new incentive to the data base.

▪ def delete_incentive(incentiveId): Deletes an incentive.

▪ def find_incentives(creatorId=None): Get all incentives.

▪ def get_incentive_by_id(incentiveId): Find incentive by ID.

▪ def update_incentive(incentiveId, body): Updates an incentive by id.

o actions_controller.py:, Composed by:

▪ def add_action(body): Add a new action to the data base.

▪ def delete_action(actionId): Deletes an action.

▪ def find_actions(): Get all actions.

▪ def get_action_by_id(actionId): Find action by id.

▪ def update_action(actionId, body): Updates an action by id.

o motives_controller.py: Composed by:

▪ def add_motive(body): Add a new motive to the data base.

▪ def delete_motive(motiveId): Deletes a motive.

▪ def find_motives(): Get all motives.

https://swagger.io/

 D3.8 – v. 1.0

www.policycloud.eu

39

▪ def get_motive_by_id(motiveId): Find motives by id.

▪ def update_motive(motiveId, body): Updates an motive by id.

o producerstypology_controller.py: Composed by:

▪ def add_producer_typology(body): Add a new producer typology to the data base.

▪ def producers_typology(): Get all producer typologies.

▪ def get_producer_typology_by_id(producerTypologyId): Get producer typology by

id.

▪ def update_producer_typology(producerTypologyId, body):Updates a

producer typology in the database with form data.

▪ def delete_producer_typology(producerTypologyId): Deletes a producer typology.

3.5 Baseline Technologies and Tools

The technologies used for the Incentive Management Tool can be divided in:

o For the Front End component: the technology used is Angular (https://angular.io/), having in

mind the integration with the PDT.

o For the Back End component: the technology chosen is Python3 (https://www.python.org/).

o For the Storage component: the technology used is MySQL (https://www.mysql.com/), having in

mind the integration with the PolicyCLOUD storage, LXC, which is based in MySQL.

3.6 Source Code

Code Overview and Availability

The code for the two different Incentive Management Tool components can be found at:

Front End component: https://registry.grid.ece.ntua.gr/kostas/pdt

Back End component: https://registry.grid.ece.ntua.gr/ana.pontual/incentivesmanagement_be

Access is restricted to members of the project consortium.

https://angular.io/
https://www.python.org/
https://www.mysql.com/
https://registry.grid.ece.ntua.gr/ana.pontual/incentivesmanagement_be

 D3.8 – v. 1.0

www.policycloud.eu

40

3.7 Deployment Status

The functionalities described for the Incentive Management Tool have been deployed restricted to the

project environment, that is, private. However, in the git repository are provided instructions and files

that allow components deployment whenever and wherever needed.

For the Front End component, as it is integrated inside the PDT, deployments will take place together and

in the same way as the PDT.

For the Back End component, the instructions of how to deploy it are in the Readme file in the Git

repository of the project. This component is deployed using Docker containers into the PolicyCLOUD

infrastructure.

The Storage component is deployed inside PolicyCLOUD storage, throw LXC.

 D3.8 – v. 1.0

www.policycloud.eu

41

4 Data Governance Model and Privacy Enforcement

mechanism

4.1 Updates since D3.5

Since D3.5, the Privacy Enforcement mechanism has been also integrated with the PolicyCLOUD

marketplace, in order to authenticate access to it. The same Keycloak realm that the PDT and Gateways

use has also been integrated to the marketplace in order for those components to share a common user

base and further ease the use of all the PolicyCLOUD services by the users.

Furthermore, a XACML editor has been provided in order to provide an easier way to create, edit and

customize access policies and avoid the more complex way of defining policies in the XML format, which

is not so human readable.

Finally, custom access policies have been developed to authenticate the gateway and interim repository

endpoints, based on the URL of the request and thus based on the pilot needs. This feature further

enhances the security of the platform and also allows on the fine-tuned fly adjustments on access to

different PolicyCLOUD endpoints.

4.2 Prototype Overview

The prototype’s purpose is to demonstrate the ability of the ABAC Engine to intercept a request, obtain

the attributes of the requestor and evaluate whether the request should be permitted, based on those

attributes and the enforced Policies. The two main components responsible for this functionality are the

ABAC Server and the ABAC Client Filter, while the prototype also contains a simple Web Client for testing

purposes.

Keycloak [15] is selected as the Attribute Provider and User Authenticator for this version of the

prototype. In the upcoming months, we will examine the integration of our solution as part of the

integrated PolicyCLOUD platform and alternate authentication solutions that could be used.

The Data model has been evolved through continuous discussion with the pilots in order to fit their needs

and requirements and has been refined in each version with all the necessary changes to follow the

maturity of the project.

 D3.8 – v. 1.0

www.policycloud.eu

42

4.3 Main Components of the Prototype

4.3.1 ABAC Server

The ABAC server is the backbone of the ABAC Authorization Engine and is responsible for evaluating the

access requests authorization. It communicates with the ABAC Client to retrieve these requests and

responds with a Permit message based on the Policies currently applied and the attributes of the

requestor. To set up the ABAC Server locally, Maven is required for an initial step

• mvn clean install

For the first installation there would be no keystore and trustsore files present so they should be created

for during the initialization by executing:

• keytool -genkey -alias YOUR_ALIAS

• keytool -list -v -storetype pkcs12 -keystore pdp-server-keystore.p12

• keytool -export -storetype PKCS12 -keystore pdp-server-keystore.p12 -storepass

<YOUR_KEYSTORE_PASSWORD> -alias pdp-server -file pdp-server.crt

• keytool -printcert -file pdp-server.crt

• keytool -import -alias pdp-server -file pdp-server.crt -storetype PKCS12 -keystore pdp-server-

truststore.p12 -storepass<YOUR_TRUST_STORE_PASSWORD>

• keytool -list -v -storetype pkcs12 -keystore pdp-server-truststore.p12

 When trying to run the server, the Configuration directory must be selected and exported via:

• export CONFIG_DIR=src/main/resources/config

Finally, the jar produced by the mvn clean install is executed via:

• java -jar target/abac-authorization-server.jar

4.3.2 KeyCloak
A dockerised version of Keycloak is used as the Attribute Provider and User Authenticator. The image

selected is jboss/keycloak and the admin username and password, as well as the ports of the docker

container are selected in the sample docker-compose.yaml provided below:

 D3.8 – v. 1.0

www.policycloud.eu

43

FIGURE 25 - DOCKER-COMPOSE.YAML FILE

Along with Keycloak, a simple mysql database and mhpmyadmin are installed with basic settings. The

Keycloak Admin Console can be accessed by visiting localhost:8180 and providing the login credentials

specified in Figure 25. The necessary steps for setting up Keycloak to act as a User Authentication

provider involve firstly creating the relevant realm. A Keycloak realm manages a set of users, credentials,

roles, and groups. A user belongs to and logs into a realm and realms are isolated from one another and

can only manage and authenticate the users that they control. It is important that the name of the realm

matches the one used in the application.yml of the service we are trying to secure.

FIGURE 26 - KEYCLOAK REALM CREATION

The next step is the creation of a client inside our newly created realm. In Keycloak, clients are entities

that can request Keycloak to authenticate a user. As mentioned before, it is also important here that the

 D3.8 – v. 1.0

www.policycloud.eu

44

new client is named appropriately compared to the “resource” attribute in the application.yml of the

service we are trying to secure.

FIGURE 27 - KEYCLOAK CLIENT CREATION

It is important to ensure that “Standard Flow Enabled” is selected as this enables standard OpenID

Connect redirect-based authentication with authorization code. More specifically, in terms of OpenID

Connect or OAuth2 specifications, this enables support of “Authorization Code Flow” [16] for this client.

The “Valid Redirect URls field must contain the location of the service we are trying to secure. Moving on,

relevant roles for the created realm are defined from the Admin Console as shown in Figure 28.

FIGURE 28 - KEYCLOAK REALM ROLES

 D3.8 – v. 1.0

www.policycloud.eu

45

User creation can also be handled by the Admin Console and for the purpose of this prototype a sample

user with username “user1” is created.

FIGURE 29 - KEYCLOAK USERS

At first the newly created user is not assigned the admin role but is given the member, offline_access and

uma_authorization roles. This default behaviour can be changed through Keycloak settings accordingly

for newly created or registered users.

FIGURE 30 - INITIAL ROLE MAPPINGS

As shown in Figure 30, the Role Mappings Tab provides an overview of all the assigned Roles for this

particular user. Roles can be added or removed accordingly and furthermore there is the option to assign

client-specific roles via the relevant dropdown menu.

 D3.8 – v. 1.0

www.policycloud.eu

46

FIGURE 31 – ADMIN ROLE GRANT

Figure 31 presents an example of the admin Role assignment to our test user. Information about users

in Keycloak is not restricted to Roles and Credentials, as each User can contain custom Attributes to

further define their right in the PolicyCLOUD ecosystem. Figure 32 shows such an example with the Date

of Birth of the user added as a custom Attribute from the relevant tab.

FIGURE 32 - CUSTOM USER ATTRIBUTE

These custom attributes are key for the PolicyCLOUD’s ecosystem ability to create and manage complex

Policies that contain multiple parameters for each User. It is essential therefore that Keycloak can

communicate these attributes in a safe and secure way. This can be achieved via Client Mappers in the

Keycloak Admin Console, as shown in Figure 33.

 D3.8 – v. 1.0

www.policycloud.eu

47

FIGURE 33 - CLIENT ATTRIBUTE MAPPER

There are multiple options available for the Mapper Type but our Use Case dictates that we use the “User

Attribute”. The “Name” and “User Attribute” fields must match the name of the corresponding User

Attribute from Figure 32, while the “Claim JSON Type” dictates the type of the mapped value. By selecting

“Add to ID token”, “Add to access token”, “Add to userinfo” the attribute value is added as a claim to the

relevant token. These can be used by the ABAC Client and Server in order to securely transmit the claims

to the ABAC Engine.

4.3.3 ABAC Client Filter

The ABAC Client Filter can be included in a web client and trigger the necessary interception to the ABAC

Authorization Engine. It depends on the ABAC Client and acts as an access filter to a specific API or website

and restricts access until it receives authorization from the ABAC Engine. Furthermore, it handles the

IDToken provided by Keycloak with the custom User Attributes needed for the Policy Evaluation and

Enforcement. To include the Filter in a web client the relevant dependency must be added in the pom.xml

<dependencies>

 <dependency>

 <groupId>eu.policycloud.authorization.abac</groupId>

 <artifactId>abac-authorization-client</artifactId>

 <version>1.0.0-SNAPSHOT</version>

 </dependency>

</dependencies>

The next necessary step is to copy the truststore file of ABAC server into the application's resources

directory. Take care not to expose this file publicly.

• Cp abac-authorization/server/src/main/resources/config/pdp-server-truststore.p12

<YOUR_APP_HOME> /src/main/resources/truststore-client.p12

 D3.8 – v. 1.0

www.policycloud.eu

48

The final step is to include the appropriate variables, either through a .env file or script

AZ_CLIENT_TRUST_STORE_FILE=truststore-client.p12

AZ_CLIENT_TRUST_STORE_TYPE=PKCS12

AZ_CLIENT_TRUST_STORE_PASSWORD=YOUR_PASSWORD_HERE

AZ_SERVER_ENDPOINTS=https://localhost:7071/checkJsonAccessRequest

AZ_SERVER_ACCESS_KEY=723568712658723154532175675265723123321765723

AZ_CALL_DISABLED=false

AZ_CALL_LOAD_BALANCE_METHOD=ORDER

AZ_CALL_RETRIES=1

export AZ_CLIENT_TRUST_STORE_FILE AZ_CLIENT_TRUST_STORE_TYPE

AZ_CLIENT_TRUST_STORE_PASSWORD AZ_SERVER_ENDPOINTS AZ_SERVER_ACCESS_KEY

AZ_CALL_DISABLED AZ_CALL_LOAD_BALANCE_METHOD AZ_CALL_RETRIES

If you want to change the API Key for both the server and client, create a long, difficult to guess (random)

string. We suggest more than 32 characters long, including any combination of capital and plain letters,

numbers and symbols. Avoid using phrases or values that can be guessed or extracted from context.

New API Key value must be set in both ABAC Server and ABAC Client configuration files.

• For ABAC Server, edit authorization-server.properties file and set property pdp.access-key.

• For ABAC Client, edit authorization-client.properties file and set property pdp.access-key or

change the corresponding environment variable AZ_SERVER_ACCESS_KEY.

4.3.4 ABAC Proxy

There can be cases where applying the ABAC Client filter mentioned in Section 4.3.3 is not possible due

to limitations of the programming language or the technology stack used. That is the case with programs

utilizing PHP and in order to integrate ABAC in those cases, the ABAC Proxy has been developed. It is

based on the Zuul Proxy [17] and ensures that traffic coming to a specified port are checked against the

currently implemented policy and if the conditions are satisfied, allows for the redirection to the

underlying php application. In order to configure the proxy for a specific php application, the following

values of its application.yml file should be set:

https://localhost:7071/checkJsonAccessRequest

 D3.8 – v. 1.0

www.policycloud.eu

49

FIGURE 34 – ABAC PROXY APPLICATION.YML

The above file redirects all traffic to the php-app running locally, if the requests successfully pass through

the ABAC PDP server located at http://pdp-server:7071. The routes section can be enhanced with more

entries to fine-grain the needs of any application and allow for more specific routing to the php

application.

4.3.5 Test Web Client
A simple Web Client can be used in order to test both the ABAC Server and Filter. The Web Client is a

Spring-boot application that contains an ABAC Authorization Filter that is responsible for intercepting any

access to the secured API’s and instead redirects the user to login to Keycloak. Based on the User

Attributes retrieved from the Keycloak login, as well as the implemented Policies evaluated at the ABAC

Server, the request is either denied or permitted. An example of the aforementioned login page during

the interception of a request to get the user’s Date of Birth is shown in Figure 35 below.

 D3.8 – v. 1.0

www.policycloud.eu

50

FIGURE 35 - INTERCEPT LOGIN

If the user login is successful and the ABAC Engine permits the request, based on the applied Policies,

the Web Client is able to retrieve the userID and Date of Birth, as shown in Figure 36.

FIGURE 36 - SUCCESSFUL ATTRIBUTES RETRIEVAL

4.3.6 EGI Check-In integration

The need for managing user identity across borders between organizations, different domains and

services, leads to the creation of federated identity environments. An Identity federation is a group of

Identity and Service Providers that sign up to an agreed set of policies for exchanging information about

users and resources to enable access to and use of the resources. Home organizations (e.g. a university,

research institute, etc.), who operate an Identity Provider (IdP), register users by assigning a digital

identity -- in this way, they are able to authenticate their users and provide a limited set of attributes that

characterize the user in a given context. Service Providers (SPs) delegate the authentication to IdP, in

order to control access to the provided resources. EGI Check-In [18] (a service provided by EGI

Foundation) is a solution for federated identity management with the architecture of a proxy that

operates as a central hub to connect federated Identity Providers and Service Providers.

 D3.8 – v. 1.0

www.policycloud.eu

51

In the PolicyCLOUD scenario, EGI Check-in proxy is provided like an alternative login button in the

Keycloak service authentication page: through EGI Check-In users will be able to use their eduGAIN [19]

credentials (institutional or academic accounts) as well as ORCID [20] credentials (researcher identifier

that disambiguates researchers and their work) as well as most popular social media accounts (Google,

LinkedIn, etc.) allowing PolicyCLOUD services to be easily accessible and adopted by a broader audience,

while also maintaining the ability to have also internal users registered to the Keycloak service. The

Keycloak Log In page shown in Figure 35 contains a link on the right side with the EGI Check-In label. This

provides an alternative method of logging in and redirects the user to the integrated EGI Check-In page,

as shown in Figure 37 below.

FIGURE 37 - INTEGRATED EGI CHECK-IN

 D3.8 – v. 1.0

www.policycloud.eu

52

A user can select its Identity Provider from that page and input his/her credentials from the Identity

Provider login page as usual. This allows users who are not already registered to the PolicyCLOUD

ecosystem and Keycloak to use some of the provided tools, using their academic accounts or accounts

from popular providers like Google, Facebook, LinkedIn, etc. This integration with EGI Check-In allows

PolicyCLOUD to be easily accessible and adopted by a broader audience, while also maintaining the

ability to have internal users registered to the Keycloak Server.

4.3.7 XACML Editor

In order to further improve the usability of the PolicyCLOUD platform and ease the process of creating

and managing access policies the XACML Editor was introduced as a user interface. The editor is an open-

source software (https://gitlab.com/asclepios-project/ample-editor) that allows users to easily create

XACML Policies and enrich them with access rules in a user-friendly graphic environment. In this way, the

more complex way of defining policies in the XML format is avoided and the adoption of the PolicyCLOUD

solution is further helped for a larger audience, without the need of certain technical knowledge, like the

creation and editing of an XML file. A sample of a created XACML file can be found in Figure 38 below.

FIGURE 38 - SAMPLE ACCESS POLICY IN EDITOR

 D3.8 – v. 1.0

www.policycloud.eu

53

This particular XACML policy allows access to the system only during working days and hours. The user

can edit all its parameters or create a new policy altogether. An example of adding a new rule to an

already existing policy can be found on Figure 39 below.

FIGURE 39 - SAMPLE ACCESS RULE IN EDITOR

This newly created rule enhances the previous XACML policy by restricting access during working hours

to all but Greek Policy makers, as can be seen from the expressions and attributes on the bottom. A user

can in this practical way create, combine, delete and manage XACML policies and rules to fit the security

needs of the ecosystem.

4.3.8 Custom Access Policies for Gateways

To further refine the access of users in the gateways component, access policies based on the URL of the

request have been developed. In this way, each access request is evaluated based on its URL and custom

access policies have been developed for the APIs listed in Figure 6. Each rule can be applied to one or

more of those endpoints and can further fine-tune access to the corresponding gateway. As a practical

example, the /api/sofia_air/populate URL can be secured by a targeted access policy which includes this

URL and restricts access to specific working hours and to users who have the “Sofia Municipality” attribute

in their profile. This rule will be applied only to requests for this URL and will not affect access to the

other resources of the gateway. A part of the policies implemented for restricting access to working hours

and more specifically the rule that checks if the current time is after the shift start of the subject

requesting access is presented in Figure 40.

 D3.8 – v. 1.0

www.policycloud.eu

54

FIGURE 40 - ABAC CUSTOM RULE FOR ACCESS DURING SHIFT

 D3.8 – v. 1.0

www.policycloud.eu

55

4.4 Interfaces

The following APIs are provided by Keycloak and are the most used ones for requesting access from the

component, retrieving user attributes and managing the server.

The following APIs are provided by the Cloud Backbone component.

Method Path Description

POST {realm}/protocol/openid-connect/token Token retrieval for user or service

PUT /{realm}/users/{id} User Update

DELETE /{realm}/users/{id} User Deletion

POST /{realm}/users Create User and set user attributes

GET {realm}/users?username={username} Retrieve user attributes by username

GET {realm}/users/{id} Retrieve user attributes by user-id

GET /{realm}/users Retrieve all realm users

PUT /{realm}/users/{id}/reset-password Reset the user password

GET /{realm}/users/{id}/role-mappings/clients

/{client}/available

Retrieve roles that can be mapped to the user

GET /{realm}/clients/{id}/roles Retrieve all roles of client

GET /{realm}/roles Retrieve all roles of realm

GET /{realm}/users/{id}/role-mappings/realm Get realm level role mapping

TABLE 1 - KEYCLOAK COMMON APIS

All the APIs provided by the Keycloak ADMIN REST API [21] are also available to be used, with the retrieval

of a valid Keycloak Admin token.

 D3.8 – v. 1.0

www.policycloud.eu

56

4.5 Baseline Technologies and Tools

4.5.1 Balana

Balana [22] was the first open-source reference implementation of the XACML protocol, is a widely

adopted solution and has been used for the needs of PolicyCLOUD. It supports the entire lifecycle of

authorization processing. It is tightly integrated into the WSO2 Identity Server [23]. Balana, as XACML

engine of the WSO2 Identity Server has two major components, the Policy Administration Point (PAP) and

Policy Decision Point (PDP). Figure 41below presents the component architecture of the PDP that is our

main interest.

FIGURE 41 - BALANA PDP

More details on the components of in the PDP architecture are presented below.

Entitlement Admin Service provides an API that is used to expose all PDP configurations, such as:

• Invalidating caches

• Refreshing policy, attribute, resource finder modules

• Retrieving PDP configurations

• Testing the PDP

Entitlement Service provides XACML authorization API that supports the following three communication

methods with PEP.

 D3.8 – v. 1.0

www.policycloud.eu

57

• SOAP-based Web service

• Apache Thrift binary protocol [24]

• WS-XACML

Balana PDP is the core of the engine of Balana

Balana Test PDP is a duplication of Balana PDP can be only used for testing policies.

Carbon Policy Finder is a module that finds policies from different policy stores to evaluate an XACML

request. Figure 42 presents a high-level diagram of the usage of the carbon policy filter for the collection

of the policies to be evaluated.

FIGURE 42 - CARBON POLICY FILTER

Policy finder modules implementing the CarbonPolicyFinderModule interface should be registered and

plugged with the Carbon policy finder. WSO2 Identity Server provides by default a Carbon registry-based

policy finder module that can retrieve policies from a registry collection. Carbon policy finder finds XACML

requests and creates an effective policy. When an update in the policy store happens, Carbon policy

finder can be re-initialized automatically by the module, or it can be re-initialized using the API of the

Entitlement Admin Service.

Carbon Attribute Finder is a module that is responsible for finding missing attributes for a given XACML

request, using the underlying PIP attribute finders. Figure 43 below provides a high-level diagram for

both the Carbon attribute finder and resource finders.

 D3.8 – v. 1.0

www.policycloud.eu

58

FIGURE 43 - CARBON ATTRIBUTE FINDER

A PIP attribute finder module should implement the PIPAttributeFinder interface and register it using the

entitlement properties configuration file to the Carbon attribute finder. WSO2 Identity Server by default

communicates with the underlying user store of the Identity Server that is built with ApacheDS [25].

On runtime, Carbon attribute finder checks for the attribute Id and hands it over to the proper module

to handle, while caching mechanism (provided by Carbon attribute finder) is used for caching the findings

when possible.

Carbon Resource Finder is used to retrieve children or descendant resources of a given root level

resource value, used to fulfil requirements for a multiple decision profile. Similarly to the PIP attribute

finder module, it has to implement the PIPAttributeFinder interface.

4.5.2 Keycloak

Keycloak [15] is probably the most powerful authentication proxy for micro-services and legacy systems.

As such, it abstracts the functionality of identity extraction and identity verification for different systems

and for different protocols. In parallel, it is able to map users and roles from existing legacy systems in

what it calls authentication realms. Through configured realms, Keycloak is able to centralize the login-

process of various systems through the implementation of many protocols such as oAuth2.0 [26] and

OpenIDConnect [27] (a.k.a. OIDC). The OpenIDConnect signalling is presented in Figure 44.

 D3.8 – v. 1.0

www.policycloud.eu

59

FIGURE 44 - OIDC SIGNALLING

According to the flow diagram, a user is attempting to connect to a service which supports OIDC. The

health care service is redirecting the user to an OIDC provider that is configured to authenticate users

based on a service-id and a user-role mapping. The combination of the service-id and the user-role-

mapping is addressed as a realm.

The OIDC server is “challenging” the user to authenticate based on various methods

(username/password, X509 certificate etc.). Our software prototype utilizes the username/password

method and upon successful login a distinct set of claims are serialized as a token back to the user in

order to use it in his/her interaction with the service. These claims contain electronically signed attributes

that can be used by the ABAC authorization engine.

As a result, the OIDC signalling (and Keycloak in general) is extremely crucial for PolicyCLOUD ABAC even

if it is not an ABAC engine per se. It acts as an enabler of verifier attributes and attribute provider.

4.6 Source Code

Code Overview and Availability

The docker image for the ABAC Server as well as the image and the code for the ABAC Proxy can be found

at https://registry.grid.ece.ntua.gr/oikonomou/abac_proxy.

Access is restricted to members of the project consortium.

 D3.8 – v. 1.0

www.policycloud.eu

60

4.7 Deployment Status

The Keycloak Server containing the realms, clients and users of the PolicyCLOUD ecosystem is deployed

at https://policycloud-auth.euprojects.net. The ABAC Server has been deployed together with the

Gateways it protects on a public VPS server in the project’s cloud infrastructure that has been provided

and is supported by RECAS-BARI and EGI.

 D3.8 – v. 1.0

www.policycloud.eu

61

5 Conclusions

In this document the progress in the technical work of the tasks T3.1, T3.3, T3.4, and T3.6 until M34

(October 2022) of the project was presented. EGI operates the cloud-based infrastructure for the project

and monitors its performance on a regular basis so no new mention is made to the INDIGO-DataCloud

PaaS Orchestrator. Members of the project continue to have access and deployment capabilities of

virtual clusters on top of the IaaS resources through this component.

Furthermore, in this document the status of the cloud gateways component has been reported. These

gateways are responsible for obtaining data from heterogenous data sources; gateways for Maggioli,

Aragon, London and Sofia use-cases have been provided through various services like the global

terrorism database and Twitter. More microservices and APIs have been made available to satisfy the

needs of the PolicyCLOUD pilots and the integration between Cloud Gateways & APIs component has

been implemented for all the endpoints, while the integration with the user authorization mechanism

has been completed, thus ensuring that all the required security standards are met.

Regarding Incentive Management, the software prototype presented here is the final one since no further

development was deemed necessary. However, the necessary integration and deployment steps have

been concluded and are presented.

Finally, in section 4, the components and technologies that are used to provide an ABAC based access

control mechanism suitable for PolicyCLOUD were described. A project wide authentication mechanism,

called Keycloak, that ensured a common user base and secure authentication in the PolicyCLOUD

ecosystem is also presented in this Section and has been integrated with the Marketplace, the PDT and

the cloud gateways. This final prototype contains eight key components that have been combined, along

with a test client, in order to provide the required access control capabilities to the use cases. To further

enhance this, custom access policies have been developed for all the gateway APIs to fine-tune access to

each URL, based on the scenario. Finally, to boost the number of potential adopters of the prototype and

increase the usability of it, an alternative way to authenticate to it through EGI Check-In has been

implemented and a new XACML editor for policy development has been created.

This version of the deliverable describes the third and final version of the project cloud infrastructure

incentives management and data governance software prototype.

 D3.8 – v. 1.0

www.policycloud.eu

62

References

[1] PolicyCLOUD D3.1, Cloud Infrastructure Incentives Management and Data Governance: Design and

Open Specification 1, 2020

[2] PolicyCLOUD D3.4, Cloud Infrastructure Incentives Management and Data Governance: Design and

Open Specification 2, 2021

[3] PolicyCLOUD D3.7, Cloud Infrastructure Incentives Management and Data Governance: Design and

Open Specification 3, 2022

[4] PolicyCLOUD D3.2, Cloud Infrastructure Incentives Management and Data Governance: Software

Prototype 1, 2020

[5] PolicyCLOUD D3.5, Cloud Infrastructure Incentives Management and Data Governance: Software

Prototype 2, 2021

[6] PolicyCLOUD D6.11, Use Case Scenarios Definition & Design,2022

[7] PolicyCLOUD D6.3, Use Case Scenarios Definition & Design,2020

[8] Twitter Search Tweets, https://developer.twitter.com/en/docs/twitter-api/tweets/search/api-

reference/get-tweets-search-recent.

[9] Twitter Filtered Stream, https://developer.twitter.com/en/docs/twitter-api/tweets/filtered-

stream/introduction.

[10] Twitter Rate Limits, https://developer.twitter.com/en/docs/twitter-api/rate-limits

[11] Swagger Stats, https://www.npmjs.com/package/swagger-stats.

[12] Prometheus, https://prometheus.io/docs/introduction/overview/

[13] Grafana, https://grafana.com/

[14] SheetJS, https://docs.sheetjs.com/.

[15] KeyCloak, https://keycloak.org

[16] C. Flow, https://auth0.com/docs/flows/authorization-code-flow

[17] Netflix ZUUL Proxy, https://github.com/Netflix/zuul

https://docs.sheetjs.com/
https://keycloak.org/
https://auth0.com/docs/flows/authorization-code-flow

 D3.8 – v. 1.0

www.policycloud.eu

63

[18] EGI Check-In, https://www.egi.eu/services/check-in/

[19] eduGAIN, https://edugain.org/.

[20] ORCID, https://orcid.org/

[21] Keycloak Admin REST API, https://www.keycloak.org/docs-api/5.0/rest-api/index.html

[22] Balana, https://github.com/wso2/balana

[23] W. I. Server, https://wso2.com/identity-and-access-management/.

[24] Thrift, https://thrift.apache.org/.

[25] ApacheDS, https://directory.apache.org/apacheds/.

[26] O. 2.0, https://oauth.net/2/.

[27] OpenIDConnect, https://openid.net/connect

https://edugain.org/
https://github.com/wso2/balana
https://oauth.net/2/

	Versioning and Contribution History
	Author List
	Abbreviations and Acronyms
	Executive Summary
	1 Introduction
	1.1 Structure of the document
	1.2 Summary of Changes

	2 Cloud Gateways & APIs for Efficient Data Utilization
	2.1 Updates since D3.5
	2.2 Prototype Overview
	2.3 Main Components of the Prototype
	2.3.1 Microservices
	2.3.1.1 Global Terrorism Database Microservice (GTD Microservice)
	2.3.1.2 RAND Database Microservice (GTD Microservice)
	2.3.1.3 Aragon Microservice
	2.3.1.4 Twitter Microservice
	2.3.1.5 London Microservice
	2.3.1.6 Sofia Microservices

	2.3.2 Monitoring – Metrics

	2.4 Interfaces
	2.4.1 Monitoring
	2.4.2 Microservices
	2.4.2.1 MoleculerJS API
	2.4.2.2 OpenAPI
	2.4.2.3 Maggioli
	2.4.2.4 Aragon
	2.4.2.5 London
	2.4.2.6 Sofia
	2.4.2.7 Rand

	2.5 Baseline Technologies and Tools
	2.5.1 MoleculerJS
	2.5.2 Traefik
	2.5.3 Docker
	2.5.4 File Parsers
	2.5.4.1 CSV Papa.parse
	2.5.4.2 XLSX file parser

	2.6 Source Code
	2.6.1 Code Overview and Availability
	2.6.2 NPM scripts

	2.7 Deployment Status

	3 Incentives Management
	3.1 Updates since D3.5
	3.2 Prototype Overview side
	3.3 Main Components of the Prototype
	3.4 Interfaces
	3.5 Baseline Technologies and Tools
	3.6 Source Code
	Code Overview and Availability

	3.7 Deployment Status

	4 Data Governance Model and Privacy Enforcement mechanism
	4.1 Updates since D3.5
	4.2 Prototype Overview
	4.3 Main Components of the Prototype
	4.3.1 ABAC Server
	4.3.2 KeyCloak
	4.3.3 ABAC Client Filter
	4.3.4 ABAC Proxy
	4.3.5 Test Web Client
	4.3.6 EGI Check-In integration
	4.3.7 XACML Editor
	4.3.8 Custom Access Policies for Gateways

	4.4 Interfaces
	4.5 Baseline Technologies and Tools
	4.5.1 Balana
	4.5.2 Keycloak

	4.6 Source Code
	Code Overview and Availability

	4.7 Deployment Status

	5 Conclusions
	References

