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 Planning and management of distribution networks has become a very 

difficult task, especially with the strong expansion of renewable energy 

sources (RES) which are intermittent in nature. Maintaining fluidity and 

reliability of real-time decisions while taking into consideration uncertainties 

related to production and increasing the profit of distribution network 

operators is the objective of the system proposed in this work. It is an 

intelligent energy management system dedicated to the management of grid-

integrated RES and battery energy storage systems (BESS), composed of:  

i) a real-time control and data acquisition model, ii) a model for forecasting 

the intermittent parameters of RES based on neural networks, iii) a long-

term planning model based on the optimal placement and size of RES and 

BESS, and iv) an hourly planning model for scheduling the energy 

distribution between energy sources. The non-dominated sorting genetic 

algorithm and the entropy-TOPSIS method (technique for order of 

preference by similarity to ideal solution) form the basic block of this model. 

To evaluate it, a modified IEEE 33 bus network was used for testing and the 

results, for short-term scheduling, proved that the system succeeds in 

maximizing profits and significantly minimizing CO2 emissions, in addition 

to power losses and voltage drops. 
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1. INTRODUCTION 

− Motivation and background 

All over the world, a major transition in the energy field has emerged due to the increase in CO2 

emissions and the cost of electrical energy; renewable energy sources (RES) replace fossil fuel energy with a 

competitive cost and zero CO2 emissions [1]. This is the strategy of Morocco, located in North Africa, which 

has reviewed its development strategy much like other countries and changed its orientation by starting to 

invest more and more in renewable energy projects, given its geographical position and its significant 

potential in terms of solar and wind resources [2]–[4].  

As key drivers of energy transition and sustainable development, renewable energies such as wind 

turbines (WT) and photovoltaic panels (PV) pose several challenges due to their stochastic and intermittent 

nature [5]. Battery energy storage systems (BESS) can be a promising solution to manage the intermittent 

nature of RES since their cost has decreased by 45% between 2012 and 2018 [5], and it is still decreasing. 

BESS can guarantee a variety of services in the network; it can regulate and control voltage, reduce reverse 

power flows, guarantee power in the event of an interruption, and smooth production [6]. The integration of 

https://creativecommons.org/licenses/by-sa/4.0/
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RES with storage offers several advantages to the network. In order to get the maximum possible benefit 

during the installation, their planning is of major importance [7]. 

Decentralization, digitalization and decarbonization (3D) are the three pillars for the green energy of 

the future [8]. It is the 3Ds that have redefined the world of energy and paved the way for a smart, reliable 

and increasingly independent grid. With the integration of smaller and dispersed RES and BESS into the grid, 

reliance on large generation plants will be limited, which will also lead to reduced CO2 emissions and 

transmission losses. Moreover, effective monitoring and management of these decentralized generation 

sources will help ensure the system efficiency in the midst of complex changes in the energy market. This is 

the concept of energy management.   

Energy management systems (EMS) are defined as systems that monitor and control the electrical 

network by receiving data collected from sensors installed in this network, exploiting them for optimization 

purposes and sending the results back to the network as soon as possible [9]. The energy management 

concept includes all optimal decisions planned and implemented to ensure energy availability at minimum 

cost. It is a very important concept that is supposed to help distribution network operators (DNO) to face the 

challenges of energy costs, uncertainties related to production and load variations [10]. Hence the need to 

develop a robust intelligent energy management system equipped with artificial intelligence techniques and 

information technology capabilities in order to overcome these challenges. 

− Literature review 
In the literature, several researchers were interested in the energy management problem.  

Mazidi et al. [11] proposed an optimization model for day-ahead dispatch of renewable sources, which aims 

to minimize operating costs and takes into consideration uncertainties related to the load and wind 

production. Nikmehr and Ravadanegh [12] used particle swarm optimization (PSO) algorithm and imperialist 

competition algorithm (ICA) in order to minimize the operating cost of microgrids. The results obtained 

showed that an optimal sharing of power between the main network and the microgrid reduces these costs 

significantly. An energy management strategy based on a hybrid algorithm has been proposed, in [3], for a 

grid-integrated residential system to optimize daily operating costs and CO2 emissions. Aghdam et al. [13] 

proposed a procedure for energy management between multi-microgrid systems which takes into consideration 

the stochastic character of renewable energies and the cost of degradation of batteries. El Kazaz et al. [14] have 

developed a two-layer energy management model that optimizes the daily network operating cost.  

Energy management has also been the center of interest of [15] where an energy management 

system based on three services has been proposed; a demand forecasting service, a voltage profile forecasting 

service and a management constraint service. Chen et al. [16] in turn, have proposed a model of energy 

management in distribution networks taking into account the uncertainties of production. For economic 

optimal operation and improved system quality, power losses and nodal voltage deviation have been 

optimized. Reihani et al. [17] conducted an extensive study on the use of BESS to show their effectiveness in 

managing energy from intermittent sources. It has been found that proper BESS charge/discharge planning 

can ensure system efficiency. Jozwiak et al. [18] carried out an analysis of the load demand for boats in 

Ballen Marina to optimize the cost of energy for sailors and the cost of energy exchanged with the main grid. 

This proved the important role of demand flexibility analysis as a key element in the energy system. An 

energy management model has also been developed for microgrids, in [19], to minimize main grid imports 

and minimize cash flow. Azoug et al. [20] proposed an efficient hybrid energy system after demonstrating 

the effect of efficient use of renewable energy sources on system efficiency. Kothai and Jayapal [21] 

developed a cost management system for grid-connected PV-wind system scheduling with storage for cost 

minimization and un-interruption of power. 

− Contribution and paper structure 

The system proposed in this work is a system that promotes the strong insertion of renewable 

energies and BESS as well, while limiting imports from the main grid. Made up of several complementary 

modules, the system is based on a two-level planning model:  

a) Long-term planning (over the lifetime of the equipment) through the optimal placement and size of PV, 

WT and BESS. 

b) Short-term planning which consists of the daily operation of production units and the 

charging/discharging behavior of BESS. The model is based on two parallel modes, real-time scheduling 

and day-ahead scheduling. This model optimizes four objective functions; two of a technical nature, one 

economic and the other environmental. 

A secure real-time acquisition architecture, based on the internet of things (IoT), has been proposed 

in order to guarantee end-to-end communication between the EMS and the network. The proposed system 

respects the notion of 3D; decentralization is guaranteed during the optimal location of RES and BESS and 

the notion of de-carbonization is investigated during the optimal daily operation of the network. As for 

digitization, it is highlighted by the exploitation of IoT technologies for an effective exchange of data. 
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This paper is structured as follows: the general architecture of the proposed system is described in 

section 2. The mathematical modeling of loads, RES and BESS is introduced in section 3. Section 4 is 

devoted to the sizing and long-term planning of a hybrid system made up of WT, PV, and BESS. The daily 

planning of this hybrid system is formalized and detailed in section 5. And section 6 contains the general 

conclusion of this work. 

 

 

2. DESCRIPTION OF THE PROPOSED SYSTEM 

In addition to the main grid, PV, WT and BESS can also support the load. These units can interface 

with the grid through electronic power converters. The objective of this system is to promote the insertion of 

these sources in a decentralized way and limit imports of energy from the main network. Figure 1 presents 

the energy management system proposed in this work. The system includes the following modules: 

− An IoT-based real-time acquisition and control module that collects real-time data from RES and BESS, 

stores it in a database as historical data, and displays it on the EMS interface. This module is also capable 

of sending execution orders to the network. 

− A forecasting module that uses historical data to forecast production and demand 24 hours in advance. 

− A long-term planning module which intervenes at the time of the installation of production sources by 

planning their optimal size and position. 

− A short-term planning module that is capable of developing an optimal energy distribution plan for a time 

step of one hour. 

In order to exchange data and decisions between RES, BESS, loads and EMS, each unit must be 

equipped with a Raspberry Pi via sensors installed in the field. The Raspberry Pi will exchange data and 

decisions with the broker using the message queuing telemetry transport (MQTT) application protocol. All 

generating units, loads, and EMS are MQTT clients that publish or subscribe to the MQTT broker in order to 

send or access data. A robust, efficient and reliable communication network is therefore necessary to transmit 

information and instructions in real-time between the various equipment and the EMS and a robust 

encryption technique must be used in order to secure the communication. In this work, an end-to-end 

communication system based on a virtual private network (VPN) concentrator with 4G cellular network (4 th 

generation) was proposed to be added to the system in order to guarantee remote communication between the 

MQTT broker and MQTT clients, in addition to a VPN tunnel created by OpenVPN in order to secure the 

exchange of data. OpenVPN uses certificates and encryption algorithms to secure data from end to end. 

Forecast parameters, optimization results and real-time collected data will be displayed on a human-machine 

interface (HMI). 
 

 

 
 

Figure 1. The proposed energy management system 
 

 

For the two-level scheduling model, the resolution of the optimization problem is done using the non-

dominated sorting genetic algorithm II (NSGA-II). An algorithm combining performance and robustness and 
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part of the most dominant evolutionary algorithms in the field of multi-objective optimization. It is the most 

studied algorithm in scheduling since 2014 [22]. NSGA-II is based on the notion of non-dominance, which 

makes it possible to assign the solutions of a population to the different Pareto fronts and is characterized by a 

high diversity of results, thanks to the congestion distance and elitism. It has been used for both long-term and 

short-term planning, in this work, all long with entropy-TOPSIS method (technique for order preference by 

similarity to ideal solution) which is used to classify the optimal-Pareto solutions. Entropy-TOPSIS is a hybrid 

method that determines the weights in an objective way using entropy and classifies the solutions by TOPSIS. It 

has proven its effectiveness when compared to other several classification methods [23]. The flowchart of the 

two-level planning model, developed in this work, is shown in Figure 2. 
 

 

 
 

Figure 2. The two-level scheduling solution flowchart 

 

 

3. MATHEMATICAL MODELING OF THE HYBRID SYSTEM 

Planning and properly evaluating the performance of a hybrid production system requires the 

modeling of its various components. The optimization of the location and size of the hybrid system as well as 

the planning of the energy distribution in the network strongly depend on the mathematical models of the 

components of this system. It is a step of great importance that consists in developing a mathematical model 

which describes the system in the most representative and precise way. The hybrid system, in this work, 

consists of a PV/wind/storage system integrated into the distribution network. In this section, mathematical 

modeling of photovoltaic and wind power generation, load power and stored energy is presented. 

 

3.1.  Load modeling 

The uncertainties related to the variation of the load can be represented according to the type of load 

(industrial, commercial, residential). In this article, all three types were considered, each at a specific 

percentage. The percentage of each type of load during a 24 h period and at each node of the IEEE 33 bus 

network were taken from [24]. Therefore, the load can be modeled as in (1) and (2).  

 

𝑃𝑖(𝑡) = 𝑃𝐿,𝑖 × [𝑓𝐶(𝑖). 𝐶𝑝,𝐶(𝑡) + 𝑓𝐼(𝑖). 𝐶𝑝,𝐼(𝑡) + 𝑓𝑅(𝑖). 𝐶𝑝,𝑅(𝑡)] (1) 
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𝑄𝑖(𝑡) = 𝑄𝐿,𝑖 × [𝑓𝐶(𝑖). 𝐶𝑞,𝐶(𝑡) + 𝑓𝐼(𝑖). 𝐶𝑞,𝐼(𝑡) + 𝑓𝑅(𝑖). 𝐶𝑞,𝑅(𝑡)] (2) 

 

Where 𝑃𝑖  and 𝑄𝑖 are the active and reactive powers for the mixed load at node 𝑖. 𝑃𝐿,𝑖 and 𝑄𝐿,𝑖  are the active and 

reactive load powers at each node 𝑖. 𝑓𝐶, 𝑓𝐼 and 𝑓𝑅  are respectively the proportions of the commercial, industrial 

and residential load of each node and 𝐶𝑝,𝐶 , 𝐶𝑞,𝐶, 𝐶𝑝,𝐼 , 𝐶𝑞,𝐼, 𝐶𝑝,𝑅 and 𝐶𝑞,𝑅 are the coefficients that represent the 

proportions of the commercial, industrial and residential load for each time interval for active and reactive load 

powers, respectively. The typical load profile generated within a 24 h interval is represented in Figure 3. 
 
 

 
 

Figure 3. Typical load profile 
 

 

3.2.  The photovoltaic system modeling 

The output photovoltaic power 𝑃𝑃𝑉  is expressed, in (3) and (4), as a function of the standard 

photovoltaic power 𝑃𝑃𝑉,𝑠𝑡𝑐 and solar irradiance 𝐺 [25]. 

 

𝑃𝑃𝑉 = 𝑃𝑃𝑉,𝑠𝑡𝑐 × 𝑓𝑃𝑉 × 1 + 𝛼𝑝 × (𝑇𝑐 − 25) ×
𝐺

1000
 (3) 

 

𝑇𝑐 = 𝑇𝑎 + 𝐺 
𝑇𝑐,𝑁𝑂𝐶𝑇−𝑇𝑎,𝑁𝑂𝐶𝑇

𝐺𝑇,𝑁𝑂𝐶𝑇
 (4) 

 

Here, 𝑇𝑐 and 𝑇𝑎 are, respectively, the temperature of the photovoltaic cell and the average ambient 

temperature (°C) and 𝑓𝑃𝑉  and 𝛼𝑝 are the PV derating factor (%) and the temperature coefficient (%/°C), 

respectively. 𝑇𝑐,𝑁𝑂𝐶𝑇  is the nominal operating cell temperature NOCT (°C), 𝑇𝑎,𝑁𝑂𝐶𝑇  is the ambient 

temperature at which the NOCT is set, and 𝐺𝑇,𝑁𝑂𝐶𝑇  is the solar irradiance at which the NOCT is defined.  

 

3.3.  The wind turbine modeling 

The choice of the appropriate model for calculating wind power is of great importance. The most 

simplified model that expresses the relationship that links wind power (𝑃𝑊𝑇) to wind speed (𝑣𝑊) [26] is 

formalized in (5).  
 

𝑃𝑊𝑇 = {

0                                             𝑣𝑤 ≤ 𝑣𝑐𝑖  ; 𝑣𝑤 ≥ 𝑣𝑐𝑜  

𝑃𝑊𝑇𝑟  ×  
𝑣𝑤−𝑣𝑐𝑖

𝑣𝑟−𝑣𝑐𝑖
                        𝑣𝑐𝑖 ≤ 𝑣𝑤 ≤ 𝑣𝑟

𝑃𝑊𝑇𝑟                                                𝑣𝑟 ≤ 𝑣𝑤 ≤ 𝑣𝑐𝑜

 (5) 

 

Where 𝑃𝑊𝑇𝑟  is the rated output power of the wind turbine and 𝑣𝑟 , 𝑣𝑐𝑜 and 𝑣𝑐𝑖  are the rated speed, cut-out 

speed and cut-in speed of the wind turbine, respectively in m/s. Historical wind speed data is measured at a 

reference height of 10 m by anemometer. The power law is therefore used to convert the wind speed from the 

reference height to the hub height of the wind turbine [27], as in (6) and (7). 

 

𝑣 = 𝑣0 (
ℎ

ℎ0
)

𝛼

 (6) 

 

𝛼 =
0.37−0.088 ln (𝑣0)

1−0.088 ln (
𝑍0
10

)
 (7) 
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𝑣0 and 𝑣 are wind speeds at anemometer height and hub height, respectively (m/s). ℎ0 is the anemometer 

height (m) and ℎ is the hub height (m). 𝛼 is the power law exponent and 𝑍0 is the roughness length (m). 
 

3.4.  The battery energy storage system modeling 

Lithium-ion batteries are selected in this work for their better performance and their longer life 

cycle, in addition to their cost which is decreasing over time. BESS is used to support the load during peak 

hours (generally between 4 p.m. and 10 p.m.), when there is no photovoltaic or wind power or when it is 

insufficient. The state of charge (SoC) of the BESS at time t as a function of its state of charge at time  

t-1 [14] is expressed in (8). 
 

𝑆𝑜𝐶(𝑡) = 𝑆𝑜𝐶(𝑡 − 1) + 𝜂𝑐ℎ ×
𝑃𝑐ℎ(𝑡)

𝑃𝐵𝐸𝑆𝑆𝑟
−  

𝑃𝑑𝑖𝑠(𝑡)

𝜂𝑑𝑖𝑠×𝑃𝐵𝐸𝑆𝑆𝑟
 (8) 

 

Where 𝑃𝐵𝐸𝑆𝑆𝑟  represents the rated power of BESS, 𝑃𝑑𝑖𝑠 and 𝑃𝑐ℎ are the discharging and charging powers of 

the BESS at time 𝑡, and 𝜂𝑐ℎ  and 𝜂𝑑𝑖𝑠 represent the charging and discharging efficiencies respectively.  

 

 

4. LONG-TERM SCHEDULING: OPTIMAL LOCATION AND SIZE  

In this work, a two-layer planning model was proposed, providing long-term planning and daily 

scheduling. In this section, it is about long-term planning. The objective is to optimize the locations and sizes 

of BESS, WT and PV systems integrated into the distribution network, simultaneously, in order to minimize 

investment costs, voltage drops and active power losses. 

 

4.1.  Typical generated solar irradiance and wind speed profiles 

Solar irradiance and wind speed data (at 10 m) for five years were collected (43,776 hours) for a 

location in the city of Casablanca in Morocco in order to estimate and model the uncertainties linked to PV 

and WT. Simulation with such a number will require enormous time, hence the need to generate a daily 

typical profile that is the most representative by reducing all these scenarios. The k-means algorithm [28] was 

used to group the data into several clusters, each cluster being characterized by a centroid and a probability of 

occurrence. The profile with the lowest distance from the centroid and the highest probability of occurrence 

is the one selected as the typical profile. Figure 4 represents the normalized typical profiles of solar irradiance 

and wind speed. The per-unit system associates the values of irradiance and wind speed with their maximum 

value and compares it with their real values. These typical data will be used to calculate the wind and 

photovoltaic powers at each instant 𝑡 (using (3)-(7)). 
 
 

 
 

Figure 4. Normalized typical data of wind speed and solar irradiance  
 

 

4.2.  Formulation of the multi-objective problem 

In the literature, several works have confirmed that the advantages of integrating RES and BESS in 

the network are numerous, either at the economic or technical level. In order to have the maximum benefit 

without disruption of the network during their installation, their coordination in terms of location and size is a 

very important issue [29]. For optimal sizing of PV, WT and BESS, the network is assumed to be in stand-

alone mode and only these sources can support the loads. The location and size problem is solved 

simultaneously for PV, WT and BESS. All sources integrated into the network are assumed to be type III 
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with a power factor of 0.85. The optimization problem is formalized in order to minimize the following 

objective functions: 

 

4.2.1. Total active power losses 

Active power losses, in distribution networks, constitute the highest percentage in the electrical 

system [29]. Minimizing these losses is one of the main objectives of DNO while guaranteeing a stable and 

continuous supply to end customers [23]. The daily power losses 𝑃𝐿𝑜𝑠𝑠
𝑑  are to be minimized in this problem 

and are formalized in (9) and (10). 
 

𝑃𝐿𝑜𝑠𝑠
𝑑 = ∑ 𝑃𝐿𝑜𝑠𝑠(𝑡)24

𝑡=1  (9) 
 

𝑃𝐿𝑜𝑠𝑠(𝑡) = ∑ ∑ 𝑅𝑖,𝑗  𝐼𝑖,𝑗
2 (𝑡)𝑛

𝑗=1
𝑛
𝑖=1
𝑖≠𝑗

 (10) 

 

𝑃𝐿𝑜𝑠𝑠 represents the hourly active power losses, 𝑅𝑖,𝑗 is the line resistance, 𝐼𝑖,𝑗 is the current passing through 

this line and 𝑛 is the number of nodes in the network. 

 

4.2.2. Voltage drops 

The distribution system voltage may vary when the network is subject to many changes, causing 

voltage drops which may have negative effects on the system operation [23]. The average daily voltage drops 

∆𝑉𝑑,𝑚𝑒𝑎𝑛  are expressed as a function of the nodal voltage 𝑉𝑖 in (11) and (12). 

 

∆𝑉𝑑,𝑚𝑒𝑎𝑛 =
1

24
 ∑ 𝑉𝑑(𝑡)24

𝑡=1  (11) 

 

𝑉𝑑(𝑡) =
1

𝑛
∑ (𝑉𝑖(𝑡) − 𝑉𝑚𝑒𝑎𝑛(𝑡))𝑛

𝑖=1
2
 (12) 

 

𝑉𝑑 and 𝑉𝑚𝑒𝑎𝑛  are the hourly voltage drops and the average voltage at each instant 𝑡, respectively. 

 

4.2.3. Total investment cost 

The total investment cost is one of the objectives to be minimized in the long-term planning 

problem. This total cost 𝐶𝑇 includes the capital cost of RES and BESS and their operation and maintenance 

costs, as in (13)-(17). 
 

𝐶𝑇 =
1

365
× [𝐶𝑅𝐸𝑆 × 𝐶𝑅𝐹𝑅𝐸𝑆 + 𝐶𝐵𝐸𝑆𝑆,𝑇 × 𝐶𝑅𝐹𝐵𝐸𝑆𝑆] (13) 

 

𝐶𝑅𝐸𝑆 = (𝐶𝑃𝑉 + 𝐶𝑂&𝑀,𝑃𝑉). 𝑃𝑃𝑉𝑟 + (𝐶𝑊𝑇 + 𝐶𝑂&𝑀,𝑊𝑇). 𝑃𝑊𝑇𝑟 (14) 

 

𝐶𝐵𝐸𝑆𝑆,𝑇 = (𝐶𝐵𝐸𝑆𝑆 + 𝐶𝑂&𝑀,𝐵𝐸𝑆𝑆). 𝐸𝐵𝐸𝑆𝑆,𝑟 (15) 

 

𝐶𝑅𝐹𝑅𝐸𝑆 =
𝑟(1+𝑟)𝑦

(1+𝑟)𝑦−1
 (16) 

 

𝐶𝑅𝐹𝐵𝐸𝑆𝑆 =
𝑟𝐵𝐸𝑆𝑆(1+𝑟𝐵𝐸𝑆𝑆)𝑦𝐵𝐸𝑆𝑆

(1+𝑟𝐵𝐸𝑆𝑆)𝑦𝐵𝐸𝑆𝑆−1
 (17) 

 

𝐶𝑅𝐸𝑆 and 𝐶𝐵𝐸𝑆𝑆,𝑇 represent total investment costs of RES and BESS respectively. 𝐶𝑃𝑉, 𝐶𝑊𝑇 and 𝐶𝐵𝐸𝑆𝑆 are the 

investment costs of PV, WT and BESS, respectively. 𝐶𝑂&𝑀,𝑃𝑉, 𝐶𝑂&𝑀,𝑊𝑇  and 𝐶𝑂&𝑀,𝐵𝐸𝑆𝑆  are the operation and 

maintenance costs of PV, WT and BESS respectively. 𝑃𝑃𝑉𝑟  and 𝑃𝑊𝑇𝑟  are the rated powers of PV and WT and 

𝐸𝐵𝐸𝑆𝑆,𝑟 is the rated capacity of BESS. 𝑟 and 𝑟𝐵𝐸𝑆𝑆 are the discount rates for RES and BESS and 𝑦 and 𝑦𝐵𝐸𝑆𝑆 

represent the lifetime of RES and BESS respectively. 𝐶𝑅𝐹𝑅𝐸𝑆 and 𝐶𝑅𝐹𝐵𝐸𝑆𝑆 are the capital recovery factors 

that convert initial costs to an annual basis for RES and BESS respectively. 

 

4.2.4. Constraints 

The equations formulated above are subject to equality and inequality constraints formalized in 

(18)-(22). The constraints expressed in (20)-(22) are valid also for reactive powers. 

 

0.95 ≤ 𝑉𝑖(𝑡) ≤ 1.05 (18) 
 

𝑆𝑜𝐶𝑚𝑖𝑛 ≤ 𝑆𝑜𝐶(𝑡) ≤ 𝑆𝑜𝐶𝑚𝑎𝑥 (19) 
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𝑃𝑚𝑖𝑛 ≤ 𝑃𝑃𝑉𝑟 , 𝑃𝑊𝑇𝑟 ≤ 𝑃𝑚𝑎𝑥 (20) 
 

𝐸𝑚𝑖𝑛 ≤ 𝐸𝐵𝐸𝑆𝑆,𝑟 ≤ 𝐸𝑚𝑎𝑥  (21) 
 

𝑃𝑔𝑟𝑖𝑑(𝑡) + 𝑃𝑃𝑉(𝑡) + 𝑃𝑊𝑇(𝑡) + 𝑃𝐵𝐸𝑆𝑆(𝑡) = 𝑃𝑙𝑜𝑎𝑑(𝑡) + 𝑃𝐿𝑜𝑠𝑠(𝑡) (22) 
 

𝑃𝐵𝐸𝑆𝑆 is the BESS power at time 𝑡, 𝑆𝑜𝐶𝑚𝑖𝑛  and 𝑆𝑜𝐶𝑚𝑎𝑥  represent the minimum and maximum state of 

charge of BESS and 𝑃𝑚𝑖𝑛 and 𝑃𝑚𝑎𝑥 are the minimum and maximum powers generated by RES. 𝐸𝑚𝑖𝑛 and 

𝐸𝑚𝑎𝑥 are the minimum and maximum capacities of battery systems, 𝑃𝑔𝑟𝑖𝑑  is the power delivered by the main 

grid and 𝑃𝑙𝑜𝑎𝑑  is the total load power.  
 

4.3.  Simulation and results  

In this work, the 12.66 kV IEEE 33 bus test network was used to test the proposed model and the 

typical load profile shown in Figure 3 was used in the simulation. The NSGA-II algorithm was used for 

solving the multi-objective problem and the entropy-TOPSIS method was deployed for the classification of 

optimal-Pareto solutions. The technical parameters of RES and BESS and investment costs used in this study 

are presented in Table 1 and Table 2. The results of the simulation are presented in Table 3 and Figure 5. 
 
 

Table 1. RES and BESS economic data [30]–[32] 
Costs PV  WT BESS 

Investment cost  1020 (€/kW) 1350 (€/kW) 458 (€/kWh) 
O&M cost (% of investment cost) 1.7 3 2 

Lifespan (years) 25 25 15 

Discount rate (%) 4.5 4.5 10 

 

 

Table 2. Technical data of RES and BESS [33] 
Equipment Technical parameters 

PV Ta (°C) 19 
Ta, NOCT (°C) 20 

GT, NOCT (W/m2) 800 

𝛼𝑝  (%/°C) -0.48 

fPV (%) 95 

WT 𝑣ci (m/s) 3 

𝑣co (m/s) 25 

𝑣r (m/s) 11.5 

BESS SoCmin (%) 10 

SoCmax (%) 90 

ηch  0.95 

ηdis  0.95 

 

 

Table 3. Optimal location and size results 
Equipment PV 1 PV 2 WT 1 WT 2 BESS 1 BESS 2 

Size 782 (kW) 755 (kW) 764 (kW) 742 (kW) 4.251 (MWh) 3.3449 (MWh) 

Location (bus) 15 31 23 28 7 19 

 
 

It is quite clear, from Figure 5, that the concept of decentralization is respected. Instead of 

depending 100% on the main grid with very high-power losses and voltage drops, with decentralized RES 

and BESS throughout the network and close to the consumer, these losses and voltage drops will decrease 

considerably, as shown in Table 4, without forgetting their positive impact on the environment. Other 

evolutionary algorithms, well known in the literature for their performance, have been applied to solve this 

planning problem and have been compared in terms of results and computational time. These algorithms are 

NSGA-III, SPEA2 (strength Pareto evolutionary algorithm 2) and MOEA/D (multi-objective evolutionary 

algorithm based on decomposition). More details about these algorithms are provided in [34]. 

The results, presented in Table 4, show that NSGA-II, compared to other algorithms, gives better 

results in a reduced computational time for this specific problem. Thanks to its non-dominated sorting properties 

and crowding distance, NSGA-II forms a diversified and distributed Pareto front in addition to its rapid 

convergence. Even though NSGA-III is a more developed version of NSGA-II, but it doesn’t always 

outperform it [35]. Optimal sizes and locations found by NSGA-II were able to achieve significant reductions, 

when compared to the base case (where only the main grid supports loads), in terms of daily power losses with a 

value of 82.97%, compared to 70% for NSGA-III, 76.37% for SPEA2 and 76.3% for MOEA/D. 
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Figure 5. The optimal location results in the IEEE 33 bus network 

 

 

Table 4. Comparison results of optimization algorithms 
Methods PLoss (kW) Vmean (p.u.) Cost (€) Simulation time (s) 

NSGA-II 253.29 1.98 e-5 1959.53 4037.43 

NSGA-III 445.11 5.63 e-5 1959 5155.1 
SPEA2 351.50 4.93 e-5 1945.14 4902.37 

MOEA/D 366.60 4.98 e-5 1971 4287 

 

 

5. SHORT-TERM SCHEDULING: ENERGY MANAGEMENT 

Unlike long-term scheduling, discussed in the previous section, which consists of planning the 

location and size of production units over a long period of time, short-term planning is a decision-making 

procedure that aims to ensure the correct operation of the distribution network in a short period of time. The 

objective of the short-term planning layer, in this work, is to determine the operation and decisions of the 

system with respect to the energy distribution in order to optimize the profit of network operators, CO2 

emissions, power losses and voltage drops. 

 

5.1.  Formulation of the multi-objective problem 

The objective of short-term energy scheduling is to efficiently manage the energy distribution 

between the available sources in the network in order to optimize specific objective functions. The dynamic 

economic dispatch must be ensured every moment trying to limit energy imports from the main grid and 

improve energy production from RES. In this problem, the decision vector is a binary vector of 9 elements: 

 

𝑋 = [𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑥7 𝑥8 𝑥9] (23) 

 

The first two elements are dedicated to PV 1 and PV 2 and they either take 1 when these two PV 

systems inject power into the grid or 0 otherwise. Likewise, 𝑥3 and 𝑥4 are devoted to WT. 𝑥5 and 𝑥6 are for 

BESS 1 and BESS 2 and they are 1 if these systems inject into the network and 0 otherwise. For 𝑥7 and 𝑥8, 

their value is 1 if BESS 1 and BESS 2 are charging and 0 otherwise. 𝑥9 is devoted to the main grid. This 

vector is generated randomly in order to optimize the functions expressed in (10) and (12), in addition to the 

objective functions below, subject to the constraints expressed in (18)-(19) and (22).  

 

5.1.1. The profit of the distribution network operators 

During each hour, the DNO profit 𝑃𝑟  is a function to be maximized in order to guarantee the 

financial gains to the distribution network operators. The profit is expressed as the difference between the 

cost of the energy sold 𝐶𝑠𝑒𝑙𝑙 and the cost of the energy bought 𝐶𝑏𝑢𝑦  by DNO, as in (24)-(27). 

 

𝑃𝑟(𝑡) = [𝐶𝑠𝑒𝑙𝑙(𝑡) − 𝐶𝑏𝑢𝑦(𝑡)]  ×  𝛥𝑡 (24) 

 

𝐶𝑠𝑒𝑙𝑙(𝑡) = 𝑃𝑐ℎ(𝑡) 𝐶𝐵𝐸𝑆𝑆,𝑠𝑒𝑙𝑙 + 𝑃𝑙𝑜𝑎𝑑(𝑡) 𝐶𝑙𝑜𝑎𝑑,𝑠𝑒𝑙𝑙(𝑡) + 𝑃𝑒𝑥𝑐𝑒𝑠𝑠(𝑡) 𝐶𝑒𝑥𝑐𝑒𝑠𝑠,𝑠𝑒𝑙𝑙(𝑡) (25) 

 

𝐶𝑙𝑜𝑎𝑑,𝑠𝑒𝑙𝑙(𝑡) = 𝐶𝐶𝑜𝑚,𝑠𝑒𝑙𝑙  . 𝑓𝐶(𝑖). 𝐶𝑝,𝐶(𝑡) + 𝐶𝐼𝑛𝑑,𝑠𝑒𝑙𝑙 . 𝑓𝐼(𝑖). 𝐶𝑝,𝐼(𝑡) + 𝐶𝑅𝑒𝑠,𝑠𝑒𝑙𝑙 . 𝑓𝑅(𝑖). 𝐶𝑝,𝑅(𝑡) (26) 
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𝐶𝑏𝑢𝑦(𝑡) = 𝑃𝑃𝑉(𝑡) 𝐶𝑃𝑉,𝑏𝑢𝑦 + 𝑃𝑊𝑇(𝑡) 𝐶𝑊𝑇,𝑏𝑢𝑦 + 𝑃𝑑𝑖𝑠(𝑡) 𝐶𝐵𝐸𝑆𝑆,𝑏𝑢𝑦 + 𝑃𝑔𝑟𝑖𝑑(𝑡) 𝐶𝑔𝑟𝑖𝑑,𝑏𝑢𝑦(𝑡) (27) 

 

Where 𝐶𝐵𝐸𝑆𝑆,𝑠𝑒𝑙𝑙  is the cost of selling energy to BESS to charge it (€/kWh), 𝐶𝑙𝑜𝑎𝑑,𝑠𝑒𝑙𝑙  is the cost of selling 

electricity to customers at time 𝑡 (€/kWh), 𝑃𝑒𝑥𝑐𝑒𝑠𝑠 is the excess power in the network (kW), 𝐶𝑒𝑥𝑐𝑒𝑠𝑠,𝑠𝑒𝑙𝑙  is the 

cost of exporting excess power to the main grid (€/kWh) and 𝐶𝑃𝑉,𝑏𝑢𝑦   and 𝐶𝑊𝑇,𝑏𝑢𝑦 are the purchased costs of 

photovoltaic and wind power (€/kWh), respectively. 𝐶𝐵𝐸𝑆𝑆,𝑏𝑢𝑦 represents the cost of purchasing energy from 

BESS (€/kWh), 𝐶𝑔𝑟𝑖𝑑,𝑏𝑢𝑦  is the cost of purchasing energy from the main grid at time 𝑡 (€/kWh) and 𝛥𝑡 is the 

time step (1 h). 𝐶𝐶𝑜𝑚,𝑠𝑒𝑙𝑙 , 𝐶𝐼𝑛𝑑,𝑠𝑒𝑙𝑙  and 𝐶𝑅𝑒𝑠,𝑠𝑒𝑙𝑙  are costs of the energy sold to commercial, industrial and 

residential clients, respectively.   

 

5.1.2. Carbon dioxide emissions 

Emissions reduction is one of the challenges facing distribution network operators. This reduction 

leads to amazing improvements in air quality [9]. In this work, only carbon dioxide (CO2) is considered, as 

being the largest cause of global warming. It was assumed that 100% of the energy provided by the main grid 

is generated from coal power plants. This is justified by the great participation of coal in the production of 

electricity in Morocco [36]. These emissions 𝐸𝐶𝑂2  are expressed in (28) and (29). 

 

𝐸𝐶𝑂2(𝑡) = 𝑃𝑔𝑟𝑖𝑑(𝑡) × 𝐸𝑔,𝐶𝑂2 + 𝑃𝑅𝐸𝑆(𝑡) × 𝐸𝑅𝐸𝑆,𝐶𝑂2 + 𝑃𝐵𝐸𝑆𝑆(𝑡) × 𝐸𝐵𝐸𝑆𝑆,𝐶𝑂2 (28) 

 

𝑃𝑔𝑟𝑖𝑑(𝑡) = 𝑃𝑙𝑜𝑎𝑑(𝑡) − ∑(𝑃𝑃𝑉(𝑡), 𝑃𝑊𝑇(𝑡), 𝑃𝐵𝐸𝑆𝑆(𝑡)) (29) 
 

𝐸𝑔,𝐶𝑂2, 𝐸𝑅𝐸𝑆,𝐶𝑂2 and 𝐸𝐵𝐸𝑆𝑆,𝐶𝑂2 represent the equivalent CO2 emissions emitted by the main network, by RES 

and by BESS, respectively, and are presented in Table 5. 𝑃𝑅𝐸𝑆 is the power generated by RES.  

 

 

Table 5. Equivalent CO2 emissions per kWh for each source 
 Main grid  PV WT BESS 

kg CO2 eq/kWh 1.06 [37] 0 0 0 

 

 

5.2.    Numerical results 

5.2.1. System data 

In order to validate the model, the test was done for the modified IEEE 33 bus test network, shown 

in Figure 5, with the locations and sizes found in the previous section. Due to the lack of real data, the load 

profile used in this test is presented in Figure 3. A summer day was selected to test the model, solar 

irradiance and wind speed data for this day are presented in Figure 6. Electricity selling tariffs in Morocco for 

residential and commercial customers and purchasing tariffs from RES and BESS are listed in Table 6. Time-

of-Use (TOU) electricity tariffs are used for industrial customers and the main grid, as shown in Figure 7. 

 

 

  
  

Figure 6. Wind speed and solar irradiance data for a 

sunny day 

Figure 7. TOU purchasing and selling tariffs to the 

main grid and industrial customers 

 

 

Table 6. Purchasing and selling tariffs 
 CPV,buy CWT,buy CBESS,buy CBESS,sell Cres,sell Ccom,sell 

Cost (€/kWh) 0.062 0.039 0.1 0.045 0.15 0.16 
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5.2.2. Data forecasting 

Non-linear autoregressive (NAR) neural networks were used to predict the data in Figure 6. Figure 8 

presents the prediction results. NAR neural networks are used to solve nonlinear time series problems. They 

can be described as in (30). 

 

𝑦(𝑡) = 𝑓(𝑦(𝑡 − 1), 𝑦(𝑡 − 2), 𝑦(𝑡 − 3), … . . , 𝑦(𝑡 − 𝑑)) (30) 

 

𝑑 past values are used to predict 𝑦 over time. 𝑑 is defined as feedback delays and 𝑓 is approximated after 

determining optimal biases and weights during training. The value of 𝑑 is 24 and 120 for solar irradiance and 

wind speed respectively. The mean square error (MSE) performance function found is 0.0017 W/m2 and 

0.0018 m/s for solar irradiance and wind speed and R2 regression values are 0.966 and 0.985, respectively. 

 

 

 
 

Figure 8. Actual vs. predicted wind speed and solar irradiance 

 

 

5.2.3. Simulation results 

Figure 9 shows the participation of each unit in supporting the load at each instant. It represents the 

optimal decisions taken by the energy management algorithm for real-time decision-making (case 1) and day-

ahead scheduling (case 2) which is based on forecasts at the 24-hours horizon. The initial state of charge 

(at 𝑡 = 0) in this test is 50%. 

Due to forecast errors, it is noticeable, from Figure 9, that there is a difference between decisions 

based on data collected in real-time and those based on forecasts. From 1:00 a.m. to 5:00 a.m., for both cases, 

only wind turbines WT 1 and WT 2 were supporting the load and the excess of energy was stored in BESS 1 

and BESS 2. For case 1, the algorithm decided to continue to support the load using both wind turbines and 

to charge both BESS at 6:00 a.m. and 7:00 a.m. For case 2, the main grid compensated for the lack of power 

due to forecast errors during these hours and until 12:00 p.m. The main grid started to intervene in case 1 

from 8:00 a.m. to 12 p.m. From 1:00 p.m. to 3:00 p.m., PV 1, PV 2, WT 1 and WT 2 supported the load and 

the surplus was sold to the main grid (for both cases). Both BESS, fully charged, started to discharge from  

4 p.m. to 10 p.m. and the load power for the rest of the day was supplied by wind turbines with support from 

the main grid for case 2 (10 p.m. and 11 p.m.). Battery systems started to be charging again at 23:00 p.m. for 

case 1 and at 12 a.m. for case 2. Figure 10 illustrates the behavior of BESS 1 and BESS 2 at each instant. It is 

quite clear that the two BESS discharge only during peak hours and the algorithm proceeded to charge them 

from the excess energy coming from RES outside these hours. In addition, supplying the load power during 

the day mainly by RES with the main grid support for few hours was the algorithm's optimal decision which 

gave less power losses, voltage drops and CO2 emissions with higher profit.  

For both cases (real and forecasted), battery energy storage systems have almost the same behavior 

but with different charging and discharging powers depending on the excess power from RES at each instant 

and on the charging power. It is noteworthy that the state of charge of the two BESS is always kept within the 

limits in order to avoid the systems degradation. Table 7 presents objective functions for each case compared 

to the base case (where only the main grid supports loads). In order to highlight the importance of adding 

storage to the system, a comparison was made between the PV/WT hybrid system with BESS (for case 1) 

and without BESS (for the same case) in terms of total daily power losses, average voltage drops, profits and 

CO2 emissions, as presented in Table 8. 
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From Table 7, it is clear that for all hours, all objective functions have been improved compared to 

the base case. These are the most optimal results among all possible solutions. Even with forecasting errors, 

case 2 remains better than the base case and better than all the other possible solutions, with significant gains. 

It can be concluded that the integration of WT, PV and BESS using a robust energy management system has 

many advantages for distribution system operators. These advantages are summed up in a reduction of power 

losses and CO2 emissions, in addition to an increase in profits and a great improvement in the voltage profile. 

Considerable gains have been made across all objectives, as shown in Figure 11 and Figure 12. The 

advantages brought by the integration of BESS were underlined by the results listed in Table 8. By 

comparing it to the system containing only PV and WT (without BESS), the system with BESS was able to 

record better gains in terms of voltage drops, CO2 emissions and power losses while keeping almost the same 

profit for DNOs. 

 

 

 
(a) 

 
(b) 

 

Figure 9. Optimal energy distribution decisions for (a) case 1 and (b) case 2 

 

 

 
 

Figure 10. Power stored in BESS 1 and 2 



                ISSN: 2088-8694 

Int J Pow Elec & Dri Syst, Vol. 14, No. 1, March 2023: 480-495 

492 

Table 7. Optimization results of short-term planning 
 

t 

Real Predicted Base case 

PLoss 
(kW) 

Var (V) Pr (€) ECO2 
(kg) 

PLoss 
(kW) 

Var (V) Pr (€) ECO2 
(kg) 

PLoss 
(kW) 

Var (V) Pr (€) ECO2 
(kg) 

1 1.63 4.46 e-6 42.1 0 6.22 1.04 e-5 45.29 0 3.99 1.85 e-5 36.92 582.1 

2 5.81 9.83 e-6 45.09 0 7 1.14 e-5 45.65 0 3.99 1.85 e-5 36.92 582.1 

3 10.81 1.54 e-5 37.24 0 8.12 1.18 e-5 36.23 0 3.81 1.79 e-5 27.16 554.7 
4 9.58 1.4 e-5 31.85 0 7.61 1.11 e-5 31.10 0 1.63 7.49 e-6 23.08 366.4 

5 5.45 1.11 e-5 89.38 0 2.82 8.41 e-6 86.94 0 10.11 4.34 e-5 80.06 901 

6 6.05 9.86 e-6 86.84 0 2.17 8.25 e-6 68.62 87.26 8.26 3.66 e-5 63.11 816.9 
7 4.30 1.35 e-5 102.67 0 5.07 2.38 e-5 98.24 477.73 15.27 6.71 e-5 93.91 1116.6 

8 7.70 3.87 e-5 113.34 584 6.81 3.25 e-5 112.81 557.3 21.57 9.62 e-5 107.75 1332.2 

9 13.92 6.4 e-5 159.13 894 13.81 6.08 e-5 156.53 953.72 54.85 2.54 e-4 125.3 2137.9 
10 8.82 1.92 e-5 190.5 416 8.97 2.22 e-5 181.51 690.9 72.73 3.4 e-4 138.62 2447.6 

11 8.78 7.5 e-6 220.3 438 8.67 6.71 e-6 220.5 419.06 90.61 4.17 e-4 166.4 2709.9 

12 9.04 6.57 e-6 227.92 297 8.91 5.63 e-6 227.69 323.75 95.55 4.37 e-4 172.3 2766.6 
13 13.81 4.16 e-5 229.83 0 11.11 2.32 e-5 224.14 0 74.20 3.29 e-4 169.7 2446.8 

14 15.68 5.54 e-5 227.79 0 17.74 6.87 e-5 242.3 0 75.86 3.41 e-4 165.9 2484.2 

15 14.36 4.68 e-5 224.22 0 13.68 4.21 e-5 223.53 0 83.95 3.84 e-4 164.28 2615.8 
16 12.6 2.66 e-5 272.45 0 12.58 2.65 e-5 272.41 0 114.4 5.22 e-4 112.6 3036.9 

17 12.03 1.78 e-5 276.46 0 11.43 1.33 e-5 274.03 0 121.5 5.5 e-4 118.9 3121 

18 10.62 9.01 e-6 269.86 0 10.36 6.57 e-6 266.7 0 117.8 5.29 e-4 118.2 3056.2 
19 10.32 5.29 e-6 264.57 0 10.56 6.34 e-6 262.9 0 122.1 5.47 e-4 119.48 3085.6 

20 17.09 2.81 e-5 274.8 0 17.08 2.81 e-5 274.4 0 157.3 7.07 e-4 134.5 3479.3 
21 23.62 6.87 e-5 262.7 0 25.74 7.76 e-5 251.3 0 155.7 7.02 e-4 131.9 3452 

22 11.17 4.11 e-5 160.4 0 13.19 6.23 e-5 154.7 466.11 53.86 2.43 e-4 124.9 2065.1 

23 7.73 2.46 e-5 128.44 0 7.66 3.53 e-5 125.2 385.7 27.4 1.22 e-4 116.99 1483 
24 2.77 8.68 e-6 64.84 0 2.9 8.77 e-6 65 0 8.79 4.02 e-5 57.96 854.3 

 

 

 
 

Figure 11. Gains in terms of power losses, profits and CO2 emissions 

 

 

 
 

Figure 12. The average nodal voltage 
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Table 8. The total daily objective functions comparison (with and without BESS) 
Objective functions Base case With BESS Without BESS 

Daily power losses (kW) 1495.5 243.69 302.57 
Daily average voltage drops (pu) 2.82 e-4 2.45 e-5 3.69 e-5 

Daily profits (€) 2606.84 4002.72 4032.3 

Daily CO2 emissions (kg) 47494.2 2629 8494.4 

 

 

In most research work, researchers carry out the energy scheduling based on forecasts or what is 

called optimal day-ahead dispatch. In this work, the proposed system takes into consideration the two modes 

in parallel; real-time and day-ahead scheduling. The estimated response time of the real-time scheduling 

system, proposed in this work, does not exceed 2 minutes, which falls within the definition of real time [38]. 

This time includes the acquisition and control time and the optimization and classification time. The 

decisions estimated 24 hours in advance will serve to support any delay at the system level and also to detect 

errors in the measurement sensors. If the forecast errors are minimal and the predicted data matches the data 

collected in real-time, the predicted decision will be executed immediately without running the algorithm 

another time, in order to save execution time. 

The proposed model can achieve considerable gains for both real-time and day-ahead scheduling. 

Forecast errors, which must be within the limits, did not impact the gains expected by the DNO. The NSGA-

II algorithm, modified in this work, has proven its robustness and performance for a large number of 

objectives, knowing that several algorithms lose their performance when increasing the number of objectives. 

Depending on the constraints and functions to be optimized, the algorithm makes the appropriate and optimal 

decision at each instant in order to increase benefits for network managers. 

 

 

6. CONCLUSION  

This paper proposes an intelligent energy management system based on NSGA-II and entropy-

TOPSIS and dedicated to the acquisition, modeling, long-term and short-term scheduling and control of the 

distribution network in the presence of RES and BESS. The proposed system is based on a secure 

communication architecture that guarantees the acquisition of data from sensors installed in the field and the 

sending of execution orders from the EMS to the network. The collected data is used to model the energy 

sources on the one hand and to forecast their parameters on the other hand. Long-term planning is done only 

once before the installation of RES and BESS in order to optimize the total investment cost, voltage drops 

and power losses. Daily scheduling is also part of the system tasks which aims to optimize hourly power 

losses, voltage drops, DNO profits and CO2 emissions. A test was performed for a modified IEEE 33 bus 

network for the two planning models and the obtained results have proven their effectiveness. For long-term 

planning, the optimal solution proposed by the system significantly minimizes power losses, voltage drops 

and total investment cost. Significant gains were also recorded, for short-term planning, in terms of profits, 

voltage drops and power losses and a very significant reduction in CO2 emissions has been observed. This 

paper proposes an integral solution for energy management in distribution networks based on real-time and 

day-ahead scheduling as complementary tasks for more accuracy and less execution time. 
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