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 Predictive diagnosis of motor defects can reduce repair and downtime costs 

of electrical equipment. This paper presents the results of a research on the 

effectiveness of the defect classification and recognition system based on 

convolutional neural network to detect defects in a squirrel-cage induction 

motor based on the stator supply voltage and output phase currents when 

supplied from an industrial grid of limited power with possible voltage 

asymmetry and harmonic distortion taken into account. In this work a 

simulation model, implemented in MATLAB/Simulink, is proposed to 

investigate unbalanced conditions. The mathematical model has been verified 

on a physical test bench and then used to create a database of currents from 

measured asymmetric grid voltages in the presence of defects such as short 

circuit between turns of one phase, rotor bar breakage, rotor eccentricity and 

bearing defects. The classification quality of all defects in the neural network 

was 72%, with the exclusion of intercoil short circuit defect and the merging 

of different bearing defects, the quality of the model was achieved 91%. A 

further increase in the quality of the defect recognition system is due to a 

building up modification of the neural network architecture. 
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1. INTRODUCTION 

Squirrel-cage induction motors (SCIM) are widely used in all areas of human activity and currently 

consume more than half of the world's electrical power. Hence, both the performance of technical operations 

and the energy efficiency of the electricity consumption depends on the actual condition of the SCIM. To 

ensure long service life of high performance SCIM, it is necessary to perform early diagnosis of failures, defects 

or malfunctions in operation. This paper focuses on the investigation of slowly developing defects, the 

occurrence and development of which can be registered and predicted before an emergency situation. These 

defects include various types of short circuits (inter-turn short circuit, inter-phase stator short circuits, etc., 

caused, for example, by insulation degradation or increased vibrations), rotor bar failure, small eccentricity 

values, various bearing defects (inner/outer raceway defects, and rolling element defects). 

Nowadays, different methods based on the physical principles are being developed for diagnosing 

SCIM defects based on measuring the following quantities [1]: vibration, emitted acoustic noise, temperature, 

partial discharges, electric current, electromagnetic field characteristics, electric power, and others. There are 

a number of works aimed to carry out a comparative analysis of the effectiveness of these methods for various 

https://creativecommons.org/licenses/by-sa/4.0/
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defects [2]–[5]. In this paper the development of current analysis method is proposed allowing to investigate 

SCIMs working in long steady-state conditions, typical for many technological processes without their 

stopping both at supplying from autonomous voltage inverter [6] and at supplying from grid [7]. Various 

methods of signal processing are used to analyze current and voltage peaks: frequency (fast Fourier transform), 

time (time series analysis, Park transform), frequency-time (wavelet transform), and intelligence (neural 

networks, fuzzy logic and genetic algorithms).  

A number of researchers are trying to apply different neural network architectures to detect faults. 

One of the most frequent faults are electrical defects in stator windings, which account for up to 40% of all 

cases [8]. A hybrid neural network (combination of self-organizing Kohonen (SOM) and multi-layer 

perceptron (MLP) networks) has been used to detect one or two faults but with no load [8], lightweight 1-D 

convolutional neural network (CNN) architecture along with maximal overlap discrete wavelet transform  

[9], [10] to detect electrical and/or mechanical defects in the rotor, the artificial neural network (ANN) aided 

by the Clarke transform when open-circuit fault detection in the IGBT inverter happens [11], neural network 

and hidden Markov model together (NN-HMM) to detect rotor eccentricity faults using current measurements 

[12], ANFIS-based neuro-fuzzy network also to detect mechanical defect in machine rotor [13], [14] 

application C4. 5 DT and MLP ANN has made it possible to determine short circuits under unbalanced grid 

and variable load [15], self-organizing maps neural networks based on active and reactive power components 

[16]. The active use of neural networks comes from their efficiency of 90% [9], [17], and in some cases up to 

100% [18]. 

This paper proposes a solution to the problem of classifying SCIMs defects based on the intelligent 

approach of analyzing the frequency and time dependencies of currents and voltages obtained from a 

mathematical model under the conditions of unbalancing and harmonic distortion supply voltage. The aim of 

the study is to confirm the hypothesis that it is possible to detect and classify defects by intelligent means from 

electrical measurements under operating conditions. To test the hypothesis, datasets obtained by mathematical 

modelling in MATLAB package are used. It allows collecting large datasets for training the neural networks. 

For variability of the data corresponding to the same defect, the supply voltages measured on the physical test 

bench of the three-phase grid at different time intervals. The depth (development stage) of the defect in the 

mathematical model also changed.  

For this purpose, the dynamic model of SCIM is considered in section 2, which allows to take into 

account the presence of asymmetry of electromagnetic system of electric machine, caused by both external 

voltage and defects of electric machine itself. Section 3 briefly describes the methodology for introducing 

defects into the mathematical model of SCIM. Section 4 gives a methodology for obtaining a dataset in the 

presence/absence of defects. To do this, the mathematical model was first verified by tests on the bench. Then, 

to generate data for training and multiple simulations, long term measurements of the network voltages were 

taken and later used for mathematical modelling. Section 5 describes the structure of the neural network under 

study for solving the problem of defect identification and classification, as well as the network training 

algorithms. Section 6 sums up the main results of the research. 

 

 

2. BASIC EQUATIONS OF INDUCTION MOTOR PROCESSES 

There are significantly different approaches to SCIM modelling. The most accurate method of process 

research is the application of finite element analysis and specialized software packages. A considerable 

disadvantage of this method consists in significant computational time consumption. For example, in [19], [20] 

there are researches according to which when solving the same problem, the method of interrelated electrical 

subsystems (with application of winding functions method) reduces calculation time from hours to minutes. At 

the same time, the modeling accuracy of the coupled electrical subsystems method is substantially determined 

by the amount of input data of the SCIM and the veracity of the model. Since a large amount of experimental 

data is required to train and validate the neural network, this approach is used. 

The mathematical description uses the assumption that a short-circuited rotor consisting of a number 

of phases equal to the number of rotor bars with winding coefficients equal to 0.5 can be represented by an 

equivalent three-phase symmetrical rotor winding reduced to the stator parameters. The defects of the rotor 

bars can be accounted by the symmetry breaking of the equivalent three phase winding. On the basis of 

mathematical models [21]–[23] here is dynamic mathematical model of the SCIM in vector-matrix form. 
 

𝐼̇ = 𝐿−1 (𝑈 − 𝑅𝐼 −
𝜕𝐿

𝜕𝛾
⋅ 𝜔 ⋅ 𝐼)   (1) 

 

Where 𝑅 = [𝑅𝑠  𝑅𝑟 ] is the matrix containing the stator and rotor phase resistances; 

𝐿 = [
𝐿𝑠𝑠 𝐿𝑠𝑟

𝐿𝑟𝑠 𝐿𝑟𝑟
   ] is the matrix of mutual inductances between different stator and rotor phases respectively; 
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𝐼 = [𝑖𝐴𝐵𝐶  𝑖𝑎𝑏𝑐  ]𝑇 is the matrix vector of instantaneous stator and rotor phase currents; 

𝑈 = [𝑈𝑎𝑏𝑐  0 ]𝑇 is the matrix vectors of instantaneous stator phase supply voltages; γ is the rotor angle; ω is the 

angular speed. The description of SCIM (1) should be extended with the equations of rotational motion and 

electromechanical energy conversion given in [23]: 
 

𝑀 =  
1

2∙𝑍𝑝
∙ 𝐼𝑇 ∙

𝜕𝐿

𝜕𝛾
∙ 𝐼;

𝑀 − 𝑀𝑙 = 𝐽 ∙
𝜕2𝛾

𝜕𝑡2 ,
 (2) 

 

where Zp is the number of polarity pairs, J is the inertia moment, M and Ml are electromagnetic and resistant 

torques, respectively. 

 

 

3. DESCRIPTION OF THE DEFECTS TO BE IMPLEMENTED 

When building an intelligent defect detection and classification system, the following defects were 

initially considered: inter-turn short circuits in one phase of stator winding; symmetry violation of rotor 

electromagnetic system, which is equivalent to destruction or deterioration of conductivity of a certain part of 

rotor bars; mixed eccentricity of rotor; three types of rolling bearing defects (inner and outer raceway defect, 

rolling body defects). Well-known approaches were used to introduce defects into the mathematical model. 

For instance, the approach [23]–[25] was considered when introducing the defect caused by the presence of 

developing inter-turn short circuits associated with a decrease in insulation resistance and the appearance of 

additional current circuits. The approach increases the dimensionality of matrices in (1) by the number of short 

circuits. The principle of model complication is shown in Figure 1. The method allows taking into account the 

depth of the defect, the degree of insulation deterioration between the windings. 

The rotor defect is introduced in a similar way [23]. This assumes that short-circuited rotor faults do not 

result in new circuits. When both stator and rotor defects are found, some relative coefficient, denoting the depth 

of the defect, is introduced. Proportional to this coefficient, the resistance of the phase in which the defect occurs 

and the mutual inductances of this phase with all other phases of both the stator and the rotor changes. In addition, 

the main inductance of the phase in which the defect occurs changes in proportion to the second degree. 

Defects associated with the presence of rotor and bearing eccentricity are introduced in the same way: 

by taking into account the periodic variation of the air gap. Since all inductances in (1) are inversely 

proportional to the air gap and Carter coefficient, their influence can be determined according to [26]–[29]. 

A visualization of the defect introduction algorithm is given in Figure 1. 

 

 

 
 

Figure 1. Changing the mathematical description of the motor depending on the implemented defects  

 

 

4. DESCRIPTION OF THE EXPERIMENT 

The objective of this work is to build a neural network for detecting and classifying defects in SCIM 

when it is supplied from unbalanced grid with nonsymmetrical voltages. The following approach was used to 

form the dataset to train the intelligent system. First, the computer model was verified in normal operation on 

the physical test bench shown in Figure 2. Figure 2(a) shows where the measurement block. Figure 2(b) shows 

data processing center and Figure 2(c) shows SCIM. Then continuous measurements of the three-phase 

network voltages with limited power were performed on the test bench. Multiple data sets at different time 

intervals and for different defects were obtained using these voltage measurements on the computer model. 
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The computer model used in the study is shown in the Figure 3. Within the functions in Figure 3, the (1) and 

(2) are presented with the possibility of introducing a defect. 
 
 

  
(a) (b) 

 

 
(c) 

 

Figure 2. Data verification test bench (a) measurement block, (b) data processing center, and (c) SCIM 
 
 

 
 

Figure 3. SCIM model with the possibility of applying defects 
 
 

Figure 4 shows examples of the time dependences of stator phase currents of the SCIM at different 

defects, as well as a spectrum decomposition using the fast Fourier transform with a prior Kaiser window 

overlay [30] of one of the stator currents and the Park current vector travel time curve [31], [32]: (a) bearing 

inner raceway surface defect, (b) bearing outer raceway surface defect, (c) bearing body defect, (d) stator inter-

turn short circuits, (e) rotor bar breakage, (f) static eccentricity. 

It is worth noting that the results of the mathematical modelling shown in Figure 4 are in line with 

theoretical expectations in terms of the frequencies at which the expressed current harmonics appear. 

Frequencies fdef are corresponding to ISO 20958 “Condition monitoring and diagnostics of machine systems. 

Electrical signature analysis of three-phase induction motors”. The following notations are shown in  

Figure 4, fr is the rotor frequency in Hz; Dpit is the separator diameter, m; dball is the rolling ball diameter, m; 

nb is the number of rolling balls; f1 is the mains supply frequency in Hz; k, m are integers, s is sliding; p is the 

number of poles pairs. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 

Figure 4. Single-phase curves and spectra, Park’s hodograph and comparison with ideal operating 

conditions for bearing inner (a) and outer (b) raceway surface defect, (c) bearing body defect, (d) stator inter-

turn short circuits, (e) rotor bar breakage, and (f) static eccentricity 
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5. DESCRIPTION OF THE NEURAL NETWORK TO BE TRAINED 

The motor defect detection problem was reduced to a multi-class classification problem. A 34-layer 

convolutional neural network [33] based on the Standford ResNet architecture was used in this work, with 

cross entropy loss as the loss function. The input to the network is the data from the computer model of the 

SCIM, and the output of the network is one of the defect classes (including one class represented by the absence 

of any defects in the motor). The choice of network architecture was justified by the following factors. i) In 

Rajpurkar et al. [33], the authors of the network architecture achieved high network performance in classifying 

ECG (time series) signals; and ii) SCIM’s data have similar shape and discreteness to ECG signals. A simplified 

diagram of the network architecture is shown in Figure 5.  

 

 

 
 

Figure 5. Simplified diagram of the neural network architecture 

 

 

Two sets of classes were used in the training of the intelligent system: a full set (7 classes) and a 

modified set (5 classes). The completed set is represented by the following classes: bearing body defect, bearing 

inner rolling surface defect, bearing outer rolling surface defect, inter-turn short circuits within one phase, 

serviceable motor, rotor bar breakage and static eccentricity. The modified dataset does not include the class 

“inter-turn short circuits” but the classes “bearing inner raceway defect” and “bearing outer raceway defect” 

have been merged into one “bearing raceway defect”. For the experiments, the following inputs were 

considered: raw measurement results, normalized time dependences and the Park vector travel time curves of 

the phase voltages and currents. The instants of the phase voltages ranged from -335 to 335 V and the phase 

currents ranged from -8 to 8 A.  

During data analysis it was noticed that the form of currents travel time curves at static eccentricity 

significantly differs from other classes, while travel time curves of classes “bearing internal rolling surface 

defect”, “bearing external rolling surface defect” and “stator inter-turn short circuits” largely repeat the form 

of travel time curves of data without introduced defect with a significant thickening of the travel time curve 

border caused by the appearance of higher harmonics of the spectrum. In this case, the form of the voltage time 

curves does not depend on the type of defect, but is determined by the current load of the power source, and 

therefore has approximately the same form for all classes. Examples of current time curves for all classes of 

defects are shown in Figure 4. A total of 5418 data files were used in the work, where each file corresponds to 

a signal of a certain defect class with a duration of 20 s. The distribution of classes in the data is balanced, each 

class is represented as 774 files. This data set was divided into 3 samples with stratification by defect class i) 

training sample (80%): 4334 files; ii) validation sample (10%): 542 files; and iii) test sample (10%): 542 files.  

Due to computational limitations, it was not possible to use all 20s of data, as the signal frequency is 

40 kHz, resulting in 800,000 points. Therefore, experiments with different signal durations from 0.5s to 3s 

were performed. The network was trained for 150 epochs on an NVIDIA GeForce 2080ti video card. The total 

amount of data was approximately 267 GB. The data was loaded into the TimescaleDB database, which gave 

quick access to the signal parts and allowed searching for the required files. However, due to the nature of the 

operating system (caching of data with frequent accesses) the use of more data is associated with even more 

computational and hardware loads, which may require the creation of a cluster of computing power and 

distributed computing between them, as well as the use of BigData solutions. Table 1 shows the metrics 

obtained on the test sample from the various experiments with the full set of defects. 
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Table 1. Summary of the result table (complete set of defects of 7 classes) 
Inputs  Duration (s) Number of test intervals Accuracy F1 macro Precision macro Recall macro 

Raw data 0.5 2168 0.28 0.24 0.35 0.28 
Normalized data 0.53 0.52 0.61 0.53 

DQ 0.48 0.46 0.54 0.49 

Raw data 1 1084 0.52 0.47 0.54 0.52 
Normalized data 0.46 0.43 0.47 0.46 

DQ 0.36 0.32 0.39 0.36 

Raw data 2 542 0.72 0.71 0.76 0.72 
Normalized data 0.64 0.62 0.66 0.64 

DQ 0.69 0.66 0.7 0.69 

 
 

6. RESULTS AND DISCUSSION 

The best result was obtained by inputting raw measurements of voltages and currents with a duration 

of 2s. Figure 6 shows the error matrix obtained on the test sample in this experiment. Figure 7 shows the graphs 

of f1-score variation in the training and validation samples; (a) F1-macro, (b) F1-micro, (c) F1-score bearing 

body defect, (d) F1-score bearing inner rolling surface defect, (e) F1-score bearing outer rolling surface defect, 

(f) F1-score inter-turn short circuits within one phase, (g) F1-score faulty motor, (h) F1-score rotor bar failure, 

(i) F1-score static eccentricity, (j) F1 weighted. 
 
 

 
 

Figure 6. Error matrix 
 

 

It is worth noting that the model is particularly over-trained on three classes: “bearing body defect” 

shown in Figure 7(c), “rotor bar failure” shown in Figure 7(h) and “static eccentricity” shown in Figure 7(i). 

The over-learning effect itself indicates that there may not be enough information in the data and it is easier 

for the model to remember certain values than to find relationships between them. Figure 8 shows the model's 

“confidence” distribution, ROC and RP curves for each class versus the other classes. The following correlation 

can be observed, the longer the duration of the input data, the better the model begins to distinguish the different 

defects from each other. It is worth noting that the use of time curve data also provides good results, close to 

the raw measurement results. It was also noticed that the network tends to over-train, the reason for this could 

be too implicit dependencies in the data, especially in the classes “bearing inner rolling surface defect” shown 

in Figure 7(c), “bearing outer rolling surface defect” shown in Figure 7(d) and “inter-turn short circuits” shown 

in Figure 7(f) as compared to data without defects as seen both in the error matrix and in the curve plots.  

The difficulty in separating these classes can be explained by the insufficient information in the data, 

so further studies require more detailed elaboration of all features. Based on the results obtained, a “modified” 

set of classes was generated, Table 2 shows the metrics obtained on the test sample, as part of the new 

experiments. The best result was obtained when normalized voltage and current signals, of 3s duration, were 

applied. Figure 9 shows the f1-score variation plots on the training and validation sample; (a) F1-macro, (b) 

F1-micro, (c) F1-score bearing ball defect, (d) F1-score bearing ring defect, (e) F1-score no defect, (f) F1-score 

rotor defect, (g) F1-score static eccentricity defect, and (h) F1-weighted. 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

  
(g) (h) 

  
(i) (j) 

 

Figure 7. Graphs of f1-score change in the training and validation samples (a) F1-macro, (b) F1-micro,  

(c) F1-score bearing body defect, (d) F1-score bearing inner rolling surface defect, (e) F1-score bearing outer 

rolling surface defect, (f) F1-score inter-turn short circuits within one phase, (g) F1-score faulty motor,  

(h) F1-score rotor bar failure, (i) F1-score static eccentricity, and (j) F1 weighted 
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Table 2. Summary table of the results (modified set of faults of 5 classes) 
Inputs  Duration (s) Number of test intervals Accuracy F1 macro Precision macro Recall macro 

Raw data 2 465 0.8 0.78 0.92 0.76 
Normalized data 0.85 0.84 0.9 0.82 

DQ 0.55 0.53 0.54 0.58 

Normalized data 3 465 0.91 0.91 0.94 0.9 

 

 

 
 

Figure 8. ROC and PR curves (defect vs other defects) 
 

 

From the figures presented, it can be seen that this model is also likely to be over-trained. However, 

exclusion of the class “inter-turn short circuits” and merging of the classes “bearing inner rolling surface 

defect” and “bearing outer rolling surface defect” into “bearing surface defect” had a positive effect on the 

quality of the defect classification by the model. Figure 10 shows the error matrix obtained on the test sample. 

Figure 11 shows the distribution of the model “confidence”, ROC and RP curves for each class against the 

other classes. 

Using the modified configuration, it was possible to obtain better metrics for the model quality score, 

which confirms the hypothesis established above about the data of bearing inner rolling surface defect, bearing 

outer rolling surface defect and inter-turn short-circuiting. In this case, as with the full defect set, a similar 

relationship with the duration of the signals is seen, but normalization of the data showed better results than 

using raw values of voltages and currents. 

As further research, it is planned:  

− To increase the measurement frequency of the motor electrical signals. This can be achieved by optimizing 

the mathematical model and refining the physical test bench. By increasing the frequency of measurements, 

the effects of defects in the high-frequency part of the spectrum can become visible, which in turn can have 

a beneficial effect on the probability of correct classification of defects using neural networks. 

− To change the approach to normalization of measurements. Although the use of data generalization in the 

form of the Park transform has not yielded any noticeable positive results, it is possible that data 

normalization could be useful to highlight more explicitly changes in the amplitudes of electrical signals. 

On the other hand, it may also have a negative effect on the accuracy of the classification, e.g. for non-

defective changes in signal amplitudes, such as an increase in stator current with a rise in load. For this 

reason, it may be useful to normalize the value of each measurement independently. 

− To use a longer duration of measurements for training. This would require a significant increase in 

computing power to process the same amount of input data. It also makes sense to diversify the training 

sample with a wider representation of each defect. This could involve varying the depth of the defect, 

introducing the defect into different motor phases where possible, and so on. 

Consider other alternatives for the neural network architecture. 



                ISSN: 2088-8694 

Int J Pow Elec & Dri Syst, Vol. 14, No. 1, March 2023: 185-198 

194 

  

(a) 
 

(b) 

  
(c) 

 
(d) 

  
(e) 

 
(f) 

  
(g) (h) 

 

Figure 9. Graphs of f1-score variation on the training and validation sets (a) F1-macro, (b) F1-micro, (c) F1-

score bearing ball defect, (d) F1-score bearing ring defect, (e) F1-score no defect, (f) F1-score rotor defect, 

(g) F1-score static eccentricity defect, and (h) F1-weighted 
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Figure 10. Error matrix 

 

 

 
 

Figure 11. ROC and PR curves (defect vs other defects) 

 

 

7. CONCLUSION 

The study presents the results of development and setting of the neural network, which is able to detect 

and classify several classes of developing the SCIM defects (stator phase short circuits, 

destruction/deterioration of conductivity of rotor rods, air gap eccentricity, bearing defects). The research was 

purposely carried out under semi-natural conditions in order to verify the principal possibility of separating 

defects in an ideal measuring system. In this case, the task was complicated by the fact that the computer model 

obtained the spectral composition of stresses corresponding to physical measurements of the real network, and 

the depth of the defect changed insignificantly in a series of experiments. These studies indicate that positive 
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results in solving the classification problem can be obtained by enlarging the defect classes according to the 

nature of origin (e.g., a group of bearing raceway defects). The only defect that is difficult to identify is stator 

insulation degradation. Positive learning effects were only obtained at low insulation resistances, which 

actually correspond to an emergency situation. The research has shaped the way forward and developed a 

prototype neural network that will be further tested on a physical prototype. 

 

 

ACKNOWLEDGEMENTS 

The research results presented in the article were obtained during the implementation of the initiative 

research and development project "Energy Efficient Electric Drive Systems of Industrial Facilities 

(NP/POPR- 4)" (Registration number: 121121700170-5), which is implemented in the framework of the 

Strategic Academic Leadership program "Priority 2030" at the St. Petersburg State Electrotechnical University. 

 

 

REFERENCES 

[1] L. Frosini, “Novel diagnostic techniques for rotating electrical machines a review,” Energies, vol. 13, no. 19, p. 5066, Sep. 2020, 

doi: 10.3390/en13195066. 

[2] T. C. Anil Kumar, G. Singh and V. N. A. Naikan, “Effectiveness of vibration and current monitoring in detecting broken rotor bar 
and bearing faults in an induction motor,” in Proc. 2016 IEEE 6th Int. Conf. on Power Syst. (ICPS), 2016, pp. 1-5, doi: 

10.1109/ICPES.2016.7584030. 

[3] S. Jokic, N. Cincar and B. Novakovic, “The analysis of vibration measurement and current signature in motor drive faults detection,” 
in Proc. 17th Int. Symp. INFOTEH-JAHORINA (INFOTEH), 2018, pp. 1-6, doi: 10.1109/INFOTEH.2018.8345531. 

[4] C. Kumar, G. Krishnan and S. Sarangi, “Experimental investigation on misalignment fault detection in induction motors using 

current and vibration signature analysis,” in Proc. Int. Conf. on Futuristic Trends on Comput. Anal. and Knowl. Manage. (ABLAZE), 
2015, pp. 61-66, doi: 10.1109/ABLAZE.2015.7154971. 

[5] W. Dehina, M. Boumehraz, F. Kratz and J. Fantini, “Diagnosis and Comparison between Stator Current Analysis and Vibration 

Analysis of Static Eccentricity Faults in The Induction Motor,” in Proc. 4th Int. Conf. on Power Electron. and their Appl. (ICPEA), 
2019, pp. 1-4, doi: 10.1109/ICPEA1.2019.8911193. 

[6] J. R, T. Holla, U. Rao K, and J. R, “Machine learning based multi class fault diagnosis tool for voltage source inverter driven 

induction motor,” IJPEDS, vol. 12, no. 2, p. 1205, Jun. 2021, doi: 10.11591/ijpeds.v12.i2.pp1205-1215. 
[7] A. T. Radhi and W. H. Zayer, “Faults diagnosis in stator windings of high speed solid rotor induction motors using fuzzy neural 

network,” IJPEDS, vol. 12, no. 1, p. 597, Mar. 2021, doi: 10.11591/ijpeds.v12.i1.pp597-611. 

[8] U. Dongare, B. Umre, M. Ballal and V. Dongare, “Incipient faults detection in induction motor using MLP-NN and RBF-NN-based 
fault classifier,” in Proc. IEEE 2nd Int. Conf. on Smart Technol. for Power, Energy and Control (STPEC), 2021,  

pp. 1-6, doi: 10.1109/STPEC52385.2021.9718693. 

[9] M. Skowron, M. Wolkiewicz, C. T. Kowalski and T. Orlowska-Kowalska, “Application of hybrid neural network to detection of 
induction motor electrical faults,” in Proc. Int. Conf. on Elect. Drives & Power Electron. (EDPE), 2019, pp. 6-11,  

doi: 10.1109/EDPE.2019.8883935. 

[10] M. Jiménez-Guarneros, C. Morales-Perez and J. d. J. Rangel-Magdaleno, “Diagnostic of combined mechanical and electrical faults 
in asd-powered induction motor using MODWT and a lightweight 1-D CNN,” IEEE Trans. on Ind. Inform., vol. 18, no. 7, pp. 4688-

4697, July 2022, doi: 10.1109/TII.2021.3120975. 

[11] M. Minervini, S. Hausman and L. Frosini, “Transfer Learning technique for automatic bearing fault diagnosis in induction motors,” 
in Proc. IEEE 13th Int. Symp. on Diagnostics for Electr. Mach., Power Electron. and Drives (SDEMPED), 2021, pp. 186-192, doi: 

10.1109/SDEMPED51010.2021.9605514. 

[12] A. Bendiabdellah, B. D. E. Cherif and A. H. Boudinar, “Diagnosis of an inverter by clark transform technique based on neural 
network,” in Proc. 6th Int. Conf. on Control Eng. & Inf. Technol. (CEIT), 2018, pp. 1-5, doi: 10.1109/CEIT.2018.8751940. 

[13] I. Bouchareb, A. Lebaroud, A. J. M. Cardoso and S. B. Lee, “Towards advanced diagnosis recognition for eccentricities faults: 
application on induction motor,” in Proc. IEEE 12th Int. Symp. on Diagnostics for Electr. Machines, Power Electron. and Drives 

(SDEMPED), 2019, pp. 271-282, doi: 10.1109/DEMPED.2019.8864920. 

[14] L. Souad, Bendiabdallah, M. Youcef, M. Samir and Boukezata, “Use of neuro-fuzzy technique in diagnosis of rotor faults of cage 

induction motor,” in Proc. 5th Int. Conf. on Electr. Eng. - Boumerdes (ICEE-B), 2017, pp. 1-4, doi: 10.1109/ICEE-B.2017.8192148 

[15] L. Souad, B. Azzedine, C. B. D. Eddine, B. Boualem, M. Samir and M. Youcef, “Induction machine rotor and stator faults detection 

by applying the DTW and N-F network,” in Proc. IEEE Int. Conf. on Ind. Technol. (ICIT), 2018, pp. 431-436,  
doi: 10.1109/ICIT.2018.8352216. 

[16] G. H. Bazan, P. R. Scalassara, W. Endo, A. Goedtel, R. H. C. Palácios and W. F. Godoy, “Stator short-circuit diagnosis in induction 

motors using mutual information and intelligent systems,” IEEE Trans. on Ind. Electron., vol. 66, no. 4, pp. 3237-3246, April 2019, 
doi: 10.1109/TIE.2018.2840983. 

[17] J. M. Bossio, G. R. Bossio and C. H. De Angelo, “Fault diagnosis in induction motors using self-organizing neural networks and 

quantization error,” in Proc. XVII Workshop on Inf. Process. and Control (RPIC), 2017, pp. 1-6, doi: 10.23919/RPIC.2017.8211630. 
[18] L. S. Maraaba, Z. M. Al-Hamouz, A. S. Milhem and M. A. Abido, “Neural network-based diagnostic tool for detecting stator inter-

turn faults in line start permanent magnet synchronous motors,” IEEE Access, vol. 7, pp. 89014-89025, 2019,  

doi: 10.1109/ACCESS.2019.2923746 
[19] T. Ilamparithi and S. Nandi, “Comparison of results for eccentric cage induction motor using Finite Element method and Modified 

Winding Function Approach,” in Proc. Joint Int. Conf. on Power Electron., Drives and Energy Syst., India, 2010, pp. 1-7.  

doi: 10.1109/PEDES.2010.5712482. 
[20] Y. Zheng, L. Zhou, J. Wang, Y. Ma and J. Zhao, “Dynamic startup characteristics analysis of single-winding pole changing line-

start canned solid-rotor induction motor with squirrel-cage,” in Proc. 22nd Int. Conf. on Electr. Mach. and Syst. (ICEMS), 2019, 

pp. 1-6, doi: 10.1109/ICEMS.2019.8921684. 

[21] N. Djagarov, G. Enchev, S. Kokin and J. Djagarova, “Fault diagnosis modeling of induction machine,” in Proc. 17th Conf. on 

Electr. Mach., Drives and Power Syst. (ELMA), 2021, pp. 1-7, doi: 10.1109/ELMA52514.2021.9503023. 



Int J Pow Elec & Dri Syst  ISSN: 2088-8694  

 

 Neural network based detecting induction motor defects supplied by unbalanced grid (Nikita Dobroskok) 

197 

[22] F. Duan, “Induction motor parametrs estimation and faults diagnosis using optimization algorithms,” Ph.D. dissertation, School of 
Electrical and Electronic Engineering, The University of Adelaide, Adelaide, Australia, 2014. 

[23] Tang J, Chen J, Dong K, Yang Y, Lv H and Liu Z., “Modeling and evaluation of stator and rotor faults for induction 

motors,” Energies, vol. 13, n. 1, 2020; pp. 133. doi: 10.3390/en13010133 
[24] B. Saddam, B. S. Ahmed, A. Aissa and T. Ali, “Squirrel cage induction motor under stator and rotor bars faults modeling and 

diagnosis,” in Proc. Int. Conf. on Commun. and Electr. Eng. (ICCEE), 2018, pp. 1-6, doi: 10.1109/CCEE.2018.8634502. 

[25] J. S. Thomsen and C. S. Kallesoe, “Stator fault modeling in induction motors,” in Proc. Int. Symp. on Power Electron., Electr. 
Drives, Automat. and Motion (SPEEDAM), 2006, pp. 1275-1280, doi: 10.1109/SPEEDAM.2006.1649964. 

[26] A. Ghoggal, S. E. Zouzou, M. Sahraoui, H. Derghal and A. Hadri-Hamida, “A winding function-based model of air-gap eccentricity 

in saturated induction motors,” in Proc. XXth Int. Conf. on Electr. Mach., 2012, pp. 2739-2745,  
doi: 10.1109/ICElMach.2012.6350274. 

[27] J. Faiz and M. Ojaghi, “Unified winding function approach for dynamic simulation of different kinds of eccentricity faults in cage 

induction machines,” IET Electric Power Appl., vol. 3, n. 5, 2009, pp. 461-470, doi: 10.1049/iet-epa.2008.0206 
[28] M. Ojaghi, M. Sabouri and J. Faiz, “Analytic model for induction motors under localized bearing faults,” IEEE Trans. on Energy 

Convers., vol. 33, no. 2, pp. 617-626, June 2018, doi: 10.1109/TEC.2017.2758382. 

[29] M. Ojaghi and N. Yazdandoost, “Winding function approach to simulate induction motors under sleeve bearing fault,” in Proc. 
IEEE Int. Conf. on Ind. Technol. (ICIT), 2014, pp. 158-163, doi: 10.1109/ICIT.2014.6894931. 

[30] M. Khodja, A. Boudinar and A. Bendiabdellah “Effect of kaiser window shape parameter for the enhancement of rotor faults 

diagnosis,” IREACO, vol. 10, no 6, pp. 461-467, November 2017 doi: 10.15866/ireaco.v10i6.13077 
[31] A. J. M. Cardoso and E. S. Saraiva, “Computer-aided detection of airgap eccentricity in operating three-phase induction motors by 

Park's vector approach,” IEEE Trans. on Industry Appl., vol. 29, no. 5, pp. 897-901, Sept.-Oct. 1993, doi: 10.1109/28.245712. 

[32] A. J. Marques Cardoso, S. M. A. Cruz, J. F. S. Carvalho and E. S. Saraiva, “Rotor cage fault diagnosis in three-phase induction 
motors, by Park’s vector approach,” in Proc. IAS  IEEE Industry Appl. Conf. 30th IAS Annu. Meeting, 1995,  

doi: 10.1109/ias.1995.530360 

[33] P. Rajpurkar, A. Y. Hannun, M. Haghpanahi, C. Bourn, and A. Y. Ng, “Cardiologist-level arrhythmia detection with convolutional 
neural networks,” 2017, doi: 10.48550/ARXIV.1707.01836 

 

 

BIOGRAPHIES OF AUTHORS 
 

 

Nikita A. Dobroskok     is an associate professor in Saint-Petersburg electrotechnical 

university "LETI", Saint-Petersburg, Russia. In 2012, he received a master's degree in 

engineering and technology in the direction of automation and control at the Saint-Petersburg 

Electrotechnical University. In 2014, he received a Ph.D. degree in technical sciences with a 

degree in Electrical Complexes and Systems (Saint-Petersburg electrotechnical university). 

Until 2020, he worked at the Central Research Institute of Marine Electrical Engineering and 

Technology branch of State Krylov Research Center. Since 2016, he has held the position of an 

associate professor of the Department of Automatic Control Systems, LETI. Field of work: 

theory of automatic control, electric drive. He is the author of over 40 publications. Research 

interests: AC varied frequency drives; static frequency converters. He can be contacted at email: 

nadobroskok@etu.ru. 
  

 

Anastasiia D. Skakun     was born in Leningrad (Russia) 01.01.1987. In 2010 

graduated from the Saint-Petersburg Electrotechnical University "LETI" with master degree in 

control and automation of industrial mechatronic systems and special moving objects. In 2013 

she defended thesis and received a PhD degree in the specialty "Electrotechnical complexes and 

systems" (Saint-Petersburg Electrotechnical University "LETI", Saint-Petersburg, Russia). 

Since 2014, she has been working as an assistant professor at the Department of Automatic 

Control Systems, since 2022 she has been the dean of the Faculty of Electrical Engineering and 

Industrial Automation. Major field of study - automatic control, modern control methods, 

electrical engineering. She is an author of over 40 publications and has 10 certificates of 

registration of software tools. Current research interests: high-speed rotation machinery, 

mathematical modeling and nonlinear systems. She can be contacted at email: 

adskakun@etu.ru. 
  

 

Grigorii V. Belskii     was born in Saint-Petersburg, Russia on 21/03/1993. In 2016, 

he graduated from the St. Petersburg State Electrotechnical University and received a master's 

degree in engineering and technology in the direction of automation and control at the St. 

Petersburg State Electrotechnical University. Since 2015, he has held the position of an assistant 

professor of the Department of Automatic Control Systems, LETI. Field of work: embedded 

systems, automatic control systems. He is the author of over then 20 publications. Research 

interests: digital signal processing, robotics and mechatronics. He can be contacted at email: 

gvbelskiy@etu.ru. 

 

  

https://doi.org/10.3390/en13010133
https://doi.org/10.1109/ias.1995.530360
https://orcid.org/0000-0003-0569-3304
https://scholar.google.com/citations?hl=ru&user=rT9EucUAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=56703466000
https://www.webofscience.com/wos/author/record/1913193
https://orcid.org/0000-0003-2934-490X
https://scholar.google.com/citations?hl=ru&user=nPjsJTcAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=55877121400
https://www.webofscience.com/wos/author/record/1279333
https://orcid.org/0000-0002-8093-9397
https://scholar.google.com/citations?hl=ru&user=c32VjXwAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=57144618800
https://www.webofscience.com/wos/author/record/HGB-6694-2022


                ISSN: 2088-8694 

Int J Pow Elec & Dri Syst, Vol. 14, No. 1, March 2023: 185-198 

198 

 

Elena V. Serykh     was born in Stary Oskol, Russia on 31/01/1994. In 2017 graduated 

from the Saint-Petersburg Electrotechnical University "LETI" with a master’s degree in 

engineering and technology in the direction of automation and control. Since 2015 she has 

worked as an engineer for the Department of Automatic Control Systems, LETI. Major fields 

of study: machine learning, automatic control, robotics and mechatronics. She can be contacted 

at email: seryhelena@gmail.com. 

  

 

Alexey V. Devyatkin     was born in Komsomolsk-on-Amur in 1994. In 2018, he 

received a master's degree in engineering and technology from St. Petersburg Electrotechnical 

University "LETI". In 2022, he completed his postgraduate studies in the field of "Informatics 

and Computer Engineering", received the qualification of a teacher-researcher, works as an 

assistant at the department of ACS. He can be contacted at email: avdevyatkin@etu.ru. 

  

 

Ruslan M. Migranov     was born in Tashkent, Uzbekistan on 03/04/1999. In 2021, 

he graduated from the Saint-Petersburg Electrotechnical University "LETI" with a bachelor’s 

degree in Department of Automatic Control Systems, where since 2021 he has been worked as 

engineer and continue his education in master degree. He can be contacted at email: 

rmmigranov@etu.ru. 

  

 

Valeriy K. Bulichyov     was born in Karaganda, Kazahstan on 17/06/1999. In 2021, 

he graduated from the St. Petersburg State Electrotechnical University and received a bachelor's 

degree in engineering and technology in the direction of automation and control at the St. 

Petersburg State Electrotechnical University. Field of work: automatic control systems. 

Research interests: adaptive systems, chaos theory. He can be contacted at email: 

vbulychyov@stud.eltech.ru. 
 

 

https://orcid.org/0000-0001-9180-0713
https://scholar.google.com/citations?hl=ru&user=MlrlZycAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=57191610781
https://www.webofscience.com/wos/author/record/748072
https://orcid.org/0000-0002-5712-1626
https://scholar.google.com/citations?hl=ru&user=Nxva6YQAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=57194234854
https://www.webofscience.com/wos/author/record/HGB-5817-2022
https://orcid.org/0000-0002-4543-7535
https://scholar.google.com/citations?user=S5cn14YAAAAJ&hl=en
https://www.scopus.com/authid/detail.uri?authorId=57668961200
https://www.webofscience.com/wos/author/record/HGB-7115-2022
https://orcid.org/0000-0001-7975-2210
https://www.webofscience.com/wos/author/record/HGB-6529-2022

