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Outline
 Introduction
 Turbulence vs. the flow of dark matter: similarities and differences?
 Inverse mass cascade in dark matter flow
 Random walk of halos in mass space and halo mass function
 Random walk of dark matter in real space and halo density profile

 Energy cascade in dark matter flow
 Universal scaling laws from N-body simulations and rotation curves 
 Dark matter properties from energy cascade
 Uncertainty principle for energy cascade?
 Extending to self-interacting dark matter

 Velocity/density correlation/moment functions
 Maximum entropy distributions for dark matter
 Energy cascade for the origin of MOND acceleration
 Energy cascade for the baryonic-to-halo mass relation
 Energy cascade for SMBH-bulge coevolution

Relevant datasets are available at:
"A comparative study of dark matter flow & 

hydrodynamic turbulence and its applications“
http://dx.doi.org/10.5281/zenodo.6569901

http://dx.doi.org/10.5281/zenodo.6569901
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Energy cascade for baryonic-to-halo mass relation

SHMR Moster et al. 2010

 Total galaxy baryonic mass = stellar mass + cold gas. 
 Stellar-to-halo mass relation (SHMR)

 halo abundance matching
Goals:
 Baryonic-to-halo mass ration (BHMR>SHMR)
 The average mass fraction of baryons in all halos?
 The fraction of total baryons residing in all galaxies? 

 Baryonic Tully-Fisher (BTFR) for flat rotation speed:  

observed baryonic mass

 Halo mass mh can be related to the halo virial 
radius rh through constant density ratio Δc

4
0f bv Gm a=

( ) ( )3
0

4
3h h cm r aπ ρ= ∆

 The BHMR (between mb and mh) can be obtained 
only if the relation between vf and rh is known. 

3
u f hv rε ∝Relate to energy cascade in 

baryonic flow? see 2/3 law

Stellar-to-baryonic 
mass ratio (SHMR)

Pivot mass mhc

BHMR

BHMR

https://doi.org/10.48550/arXiv.2203.06899
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Energy cascade for the flow of baryonic mass 
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Small halos <mL:
Baryonic mass in 

equilibrium with DM,
i.e. same kinetic energy as 

DM particles u2

Large halos >mL: 
Baryonic mass and DM 

are two miscible 
phases sharing the 

same rate of cascade. 

Rate of 
energy 

cascade

Turnaround time

4
0f bv Gm a= 3 3

0
4
3h h cm r aπ ρ −= ∆

Baryonic Tully-Fisher 
relation (BTFR):  

Halo mass and halo 
size relation:

4
0f bv Gm a= 3 3

0
4
3h h cm r aπ ρ −= ∆

Baryonic Tully-Fisher 
relation (BTFR):  

Halo mass and halo 
size relation:

DM 
Circular 
velocity

DM halo 
size

Flat 
rotation 
speed
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Model prediction and validation by SPARC data I

https://doi.org/10.48550/arXiv.2203.06899
https://doi.org/10.48550/arXiv.2203.06899
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Model prediction and validation by SPARC data II
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( ) ( )1 3 4 3
1b c hm M m−=

( ) ( )5 9 4 9
2b c hm M m=

Baryonic mass in 
small halos 

< pivot mass mhc:

Baryonic mass in 
large halos 

< pivot mass mhc:

Model incorporate two limits:

 Dash line: the stellar-to-halo mass ratio (SHMR) 
obtained from halo abundance matching 
(required to match the stellar mass function)

 The 4/9 scaling law for both SHMR and BHMR

Agree with
Moster et al. 2010

Agree with
Chan M. H., 2019

Pivot 
mass:

https://doi.org/10.48550/arXiv.2203.06899
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Redshift evolution of baryonic-halo-mass ratio
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Overall cosmic baryonic-to-DM mass ratio (including 
both halos and out-of-halo) is ~18.8% in ΛCDM model:

( ) ( ) ( )
( )

0.188
1

dh bh
boh

dh

A z A z
A z

A z
−

=
−

Baryonic-to-DM mass 
ratio in out-of-halos

Average Baryonic-to-halo 
mass ratio in all halos

Fraction of DM mass in halos

Use double-λ mass function to compute:

The baryonic-to-
halo mass ratio 
in small halos

The baryonic-to-
halo mass ratio 
in large halos Redshift evolution of BHMR

Cosmic 
ratio

Agree with Read 
& Trentham 2005

92.4% baryonic mass 
are not in galaxies

https://doi.org/10.48550/arXiv.2203.06899
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Energy cascade for SMBH-galaxy evolution

(Ferrarese 
et al. 2005)

 Strong correlations between supermassive black holes 
(SMBHs) and host galaxies suggest a co-evolution.
 MB–σb relation (BH mass vs. velocity dispersion)
 MB–Mb relation (BH mass vs. bulge mass)
 MB–Lb relation (BH mass vs. bulge luminosity)

 Proposed mechanisms for BH-galaxy co-evolution
 AGN Feedback
 Statistical origin
 Effect of energy cascade?

5
B bM σ∝ B bM M∝ 2

b b bM rσ∝
Virial 

theorem
MB–σb

correlation 
MB–Mb

correlation 

3
b

b

Const
r
σ

=
why?

 Two-thirds law: 

 Does energy cascade exist in SMBH-bulge system?
 How energy cascade impacts SMBH-galaxy coevolution? 
 Can cascade induced accretion exceed Eddington limit?

( )2 32
b b brσ ε∝ 3

b b brε σ=
The rate of 

energy cascade 
in bulge

(Marconi 
et al. 2003)

Virial 
theorem

For comparison:

M31 bulge: 6×10−5 𝑚𝑚2/𝑠𝑠3

Average local galaxies: 10−4 𝑚𝑚2/𝑠𝑠3

Sun: mass-to-light ratio 5122 kg/W or 
2×10−4 𝑚𝑚2/𝑠𝑠3

Cascade in dark matter: 4.6x10−7 𝑚𝑚2/𝑠𝑠3

Bulge size

Bulge 
dispersion
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Energy cascade in galaxy bulge
Dynamics on large scale does not feel the 

dissipation of baryons. Flow is self-gravitating 
collisionless with the same scaling laws on scale r: 

Rate of cascade 
εb(z=0)~10-4 m2/s3

εu~10-7 m2/s3

Sun ~ 2x10-4 m2/s3 from mass-to-light ratio M/L 5122 kg/W  

Cascade in 
galaxy bulges

Cascade in 
DM halos

3/5
rr m∝Predicted galaxy 

mass-size relation:

[0.5 0.6]
rr m∝

Observed mass-size relation (ETG only, why?):

(Huertas-Company
et al. 2013)

0.6
rr m∝

(Mowla et al. 2019a)

0.55
rr m∝

(Shen et al. 2003)

2 3 1 5 3
r r bm G rα ε −=

2 3 1 4 3
r r b G rρ β ε − −=

Mass:

Density:

Kinetic 
energy: ( )2 32

r bv rε=

-4/3 law 

2/3 law 

5/3 law 

2 4 3 1 2 3
r r r bP v G rρ ε − −= ∝

2 4 3 1 4 3 44r r b rF r P G r v Gπ ε −= ∝ ∝

Cascade 
pressure:
Cascade 

Force:

Due to 
random 
motion 

( ) ( )
3

2b
b b b

b

da
r dt
σε ε σ≡ = ∝

https://doi.org/10.5281/zenodo.7490501
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Astronomical density variation on length scales
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Dynamics on the bulge scale and time-variation of εb

2 n
b br Constσ = 2

b b bGM rσ ∝

rM: the size of bulge with a fixed mass Mb at different z

1.05
Mr a∝1.01

Mr a∝ 0.95
Mr a∝

(Mowla et al. 2019b)(Huertas-Company
et al. 2013) (Yang et al. 2020)

1n =

From the observed evolution
of galaxy mass-size relation

br a∝ 1 2
b aσ −∝ 0

bM a∝
3

b aρ −∝ Mr a∝5 2
b aε −∝

(Huertas-Company et al. 2013)
rM: size with fixed bulge 

mass at different z

Mass-normalized radius as a function of z: 
Circles for ETGs

Squares for passive galaxies
Triangles for passive ETGs
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Key quantities and length scales for SMBH-Bulge

Bulge

SMBH

Six physical 
quantities:

Five length scales:

Bulge mass 𝑀𝑀b

BH luminosity LB

BH mass 𝑀𝑀B

Rate of energy cascade εb

Gravitational constant G

Light speed c

Radiation scale:

Bulge scale:

BH sphere of 
influence:
Schwarzschild
Radius:

Dissipation
scale:

Equivalent BH 
kinematic viscosity:

Energy 
injection: 

εbMb

Cascade
Pressure Pr

Energy 
Dissipation LB

Energy 
cascade: εb

( ) 24
B

rad
Lp r

rπ
=

( )
4 3

2 3
b

rp r
Gr
ε

=

Cascade pressure

Radiation pressure

2 3 1 5 3
r r bm G rα ε −=

Scaling laws:
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SMBH evolution from quasar luminosity function

Evolution of co-moving BH mass density from
Quasar luminosity function from 2dF Redshift Survey 

(Yu & Tremaine 2002)

Time evolution of BH mass MB, Luminosity LB, dimensionless γ and η

Luminosity is converted from mass evolution :

Two dimensionless parameters:

https://doi.org/10.5281/zenodo.7490501


61

The SMBH distribution and evolution in γ -- η plane

1) Survey of local galaxies from 
literature (squares) Multiple sources

Data sources:

2) Quasars from Sloan Digital Sky 
Survey DR7 (gray and black circles)

3) High redshift quasars from 
Canada–France High-z Quasar 
Survey (blue circles) Willott et.al 2010

Schneider et.al 2010, Shen et al. 2011.

4) BH evolution from the luminosity 
function from 2dF Redshift Survey 
(solid green) Yu & Tremaine et.al 2002

Any other potential sources?

https://doi.org/10.5281/zenodo.7490501
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Galaxy bulge and SMBH data
Length scalesVelocity scales Rate of 

cascade

https://doi.org/10.5281/zenodo.7490501
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The SMBH distribution in γ -- η plane
p Br r=

The upper 
limit (red):

12γη =

4 5 4 5 1 5
B b BL M G cε −∝

The  lower 
limit (blue):

p sr r= 24γ η=

4 3 4 3 1 3 5 3
B b BL M G cε −∝

The boundary 
of active and 
inactive (black):

p xr r= 18.6γ =

B b BL Mε
4

B pL c Gσ∝

MB – σ relation

Radiation 
force

Cascade 
force

https://doi.org/10.5281/zenodo.7490501


Co-evolution
Transitional

From quasars 
luminosity function 
from 2dF redshift 

survey

SMBH dissipates 
most energy 

injected into bulge
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The three-stage SMBH evolution in γ -- η plane
Co-evolution stage (E1): parallel to the upper limit

p sr r=
Dormant stage (E3): parallel to the lower limit

γ η∝ 4 3 4 3 1 3 5 3
B b BL M G cε −∝

B b BL Mε

p Br r∝ Constγη = 4 5 4 5 1 5
B b BL M G cε −∝

m
b aε −= m=5/2B b b b BL M Mε ε 

Transitional stage (E2): 2 *
B B b bL M ε ε∝ 2γ η∝or

B b BL Mε

Three-stage SMBH evolution 

https://doi.org/10.5281/zenodo.7490501
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Cascade induced accretion vs. Eddington accretion
Eddington 
accretion: 

Radiation force balances the weight of static gas: 

( )1 1 1 ia z= +

Cascade induced accretion (first stage E1): 

Alternatively, radiation force must balance the 
cascade force: 

EddL
c



(second stage E2) 

Potential flaws in this argument?

5 2
b aε −∝

5
B p bM Gσ ε∝ (in stage E1) 

In early universe, cascade accretion >> Eddington?

https://doi.org/10.5281/zenodo.7490501
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Conclusions, keywords, and hyperlinks
 Cascade is ubiquitous in our universe 
 Inverse mass cascade with a scale-independent rate εm (kg/s)

 Random walk of halos in mass space (diffusion)      Double-λ halo mass function
 Random walk of DM particles       Double-γ halo density profile
 Halo mass function and density profile share the same origin and similar functional form.
 No critical density ratio δc or spherical/ellipsoidal collapse model required

 Energy cascade with a constant rate εu (m2/s3)
 2/3 law for kinetic energy vr

2∝ (εu r)2/3

 5/3 law for enclosed mass, mr∝ εu
2/3G-1r5/3

 -4/3 law for halo density, ρr∝ εu
2/3G-1r-4/3

 The fundamental origin of cascade on the smallest scale (uncertainty principle)?

 The smallest scale dependent on the nature of dark matter:
 Collisionless dark matter: rη ∝ (εu Gh)1/3 DM particle mass & properties
 Self-interacting dark matter: rη ∝ εu

2G-3(σ/m)3 the smallest structure
 The largest scale determined by u0, εu, and G the largest halo & its properties

 Velocity/density correlation/moment functions
 The maximum entropy distributions in dark matter
 Energy cascade for the origin or MOND acceleration
 Energy cascade for the baryonic-to-halo mass relation
 Energy cascade for SMBH-galaxy co-evolution

In propagation range, all 
quantity by εu, G, and r

All quantity by εu, G, and h
All quantity by εu, G, and σ/m
All quantity by εu, G, u0, a

http://doi.org/10.48550/arXiv.2109.09985
http://doi.org/10.48550/arXiv.2110.13885
http://doi.org/10.48550/arXiv.2209.03313
http://doi.org/10.48550/arXiv.2209.03313
http://doi.org/10.48550/arXiv.2209.03313
http://doi.org/10.48550/arXiv.2209.03313
http://doi.org/10.48550/arXiv.2202.07240
http://doi.org/10.48550/arXiv.2209.03313
http://doi.org/10.48550/arXiv.2203.05606
http://doi.org/10.48550/arXiv.2202.00910
http://doi.org/10.48550/arXiv.2110.03126
http://doi.org/10.48550/arXiv.2203.05606
http://doi.org/10.48550/arXiv.2203.06899
http://doi.org/10.5281/zenodo.7490502
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