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Outline
 Introduction
 Turbulence vs. the flow of dark matter: similarities and differences?
 Inverse mass cascade in dark matter flow
 Random walk of halos in mass space and halo mass function
 Random walk of dark matter in real space and halo density profile

 Energy cascade in dark matter flow
 Universal scaling laws from N-body simulations and rotation curves 
 Dark matter properties from energy cascade
 Uncertainty principle for energy cascade?
 Extending to self-interacting dark matter

 Velocity/density correlation/moment functions
 Maximum entropy distributions for dark matter
 Energy cascade for the origin of MOND acceleration
 Energy cascade for the baryonic-to-halo mass relation
 Energy cascade for SMBH-bulge coevolution

Relevant datasets are available at:
"A comparative study of dark matter flow & 

hydrodynamic turbulence and its applications“
http://dx.doi.org/10.5281/zenodo.6569901

http://dx.doi.org/10.5281/zenodo.6569901
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Correlation/moment functions from N-body sim.
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Kinematic relations

Relations to power 
spectrum function
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nth order spherical 
Bessel function of 

the first kind:
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For irrotational flow on large scale:

( )3
2 22 ,

1
r

R r T
r

= ( )2 2 ,r
L rT=

( ) ( ) ( ) ( )1
2 00

2 2u

j kr
L r E k j kr dk

kr
∞  

= − 
 

∫

( ) ( ) ( )1
2 0

2
u

j kr
T r E k dk

kr
∞

= ∫

Relations to density 
correlation function
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https://doi.org/10.48550/arXiv.2202.00910
https://doi.org/10.48550/arXiv.2202.00910
https://doi.org/10.48550/arXiv.2202.00910
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Kinematic and dynamics relations for vel. correlation

Kinematic 
relations 
(for same 
order p)

Dynamic relations 
(for different order p)
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For constant 
divergence 

flow
For 

irrotational 
flow

https://doi.org/10.48550/arXiv.2202.02991
https://doi.org/10.48550/arXiv.2202.02991
https://doi.org/10.48550/arXiv.2202.00910
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Velocity correlation functions on large scale
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r2 is constant, is it 
related to the size 
of sound horizon? 

On large scale, velocity correlation (exponential): applying kinematic relations for irrotational flow
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Transverse 
velocity 
correlation:

Longitudinal 
velocity 
correlation:

constant 
of time

Deviation 
Due to 

simulation 
box size?

Irrotational 
flow: 

0∇× =u

Constant 
divergence flow: 

Const∇ =u

https://doi.org/10.48550/arXiv.2202.00910
https://doi.org/10.48550/arXiv.2202.00910
https://doi.org/10.48550/arXiv.2202.00910
https://doi.org/10.48550/arXiv.2202.00910
https://doi.org/10.48550/arXiv.2202.00910


38

Density correlation function on large scale
On large scale, 
density correlation 
(exponential):

( ) 2
2 0

2 2

, exp 3r rR r a a u
r r

  
= − −  

  

Density correlation function at z=0 Density correlation function at different z 
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et al., 1998
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0rξ∂ ∂ =Peak in correlation 
and sound horizon? 

t

https://doi.org/10.48550/arXiv.2202.06515
https://doi.org/10.48550/arXiv.2202.06515
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Second moments of velocity field

Second moment of velocity (normalized by u2) 
varying with scale r at z=0

Increase of velocity dispersions with r for r<rt (pair of 
particles are more likely from same halos) is mostly due 
to the increase of velocity dispersion with halo size.

Converged on 
large scale?

https://doi.org/10.48550/arXiv.2202.06515
https://doi.org/10.48550/arXiv.2202.06515


40

Two-thirds law and generalized stable clustering (GSCH)
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All odd order structure functions follow linear law 
from generalized stable clustering hypothesis

All even order reduced structure functions follow 
two-thirds law:
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https://doi.org/10.48550/arXiv.2110.05784
https://doi.org/10.48550/arXiv.2202.06515
https://doi.org/10.48550/arXiv.2202.06515
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Maximum entropy distributions in kinetic theory of gases
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Taking the variation of the entropy functional with respect to distribution X:

Assume the distribution of one-dimensional gas molecule velocity is some unknown function X(v)
Review on how to derive maximum entropy distributions (Boltzmann distribution) 

Two constraints on X(v): normalization and fixed mean kinetic energy

and ( ) 23 2v vε =
Particle energy:

Write down the entropy functional with Lagrangian multiplier: 

( ) ( )2
2expX v vλ∝ Boltzmann 

distribution

( ) 2
0

2 2
0 0

12E e ε σεε
πσ σ

−=( ) 2 2
0

2
2

3
0

2 vvZ v e σ

π σ
−=Maxwell-Boltzmann 

distribution for speed:
Distribution for 
particle energy:

This is the key to 
be identified for 
dark matter flow
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Maximum entropy distributions in dark matter
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Taking the variation of the entropy functional with respect to X:

Deriving maximum entropy distributions in dark matter flow (X distribution) 

Two constraints on X(v):

and
Particle energy:

Write down the entropy functional with Lagrangian multiplier: 

The X distribution

Z distribution 
for speed:

E distribution for 
particle energy:

This is the key

( ) ( ) 3 3
2

X v v
v

X v n
ε  = − + ∂ ∂  

( )
( )

( )

22
0

0 1

1
2

v veX v
v K

α

α α

− +

=

( ) ( )
( )

( )

22
02

3 221 0 0

1 v vv eZ v
K v v v

α

α α α

− +

= ⋅ ⋅
+

( ) ( ) ( )
2 2

2
1 0

2
3 2

enE
n K v

γ γ α
ε

α α

− −
= −

+



43

Maximum entropy distributions in dark matter

The X distribution with different shape parameter α
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Comparison with N-body simulation

Exponential wings forGaussian core for

Bessel function

X is a two-parameter 
distribution with shape 

parameter α and a 
velocity scale v0

or an acceleration scale a0
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https://doi.org/10.48550/arXiv.2110.03126
https://doi.org/10.48550/arXiv.2110.03126
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non-Newtonian 

behavior
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Particle energy vs. particle velocity in dark matter
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Comparison with N-body simulation 
for particle energy ε(v)

Particle 
energy:

Deep-MOND?
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https://doi.org/10.48550/arXiv.2110.03126


Short range: molecule 
acceleration vanishes

Long range: nonvanishing 
and fluctuating acceleration 45

MOND theory and acceleration fluctuation in DMF
 In kinetic theory of 

gases, molecules 
undergo random elastic 
collisions with a short-
range of interaction. 
Only velocity fluctuation, 
no fluctuation of 
acceleration.

 The long-range gravity 
in dark matter flow leads 
to fluctuations in 
acceleration, in addition 
to the fluctuation in 
velocity. 

 What is the origin of MOND acceleration?
 What is the origin of deep “MOND”?
 Could MOND be an intrinsic property of dark 

matter flow in CDM cosmology?

 Empirical Tully-Fisher relation:  

1 4
f bv M∝

observed 
baryonic 

mass
 MOND (Milgrom 1983) is an empirical model to 

reproduce flat rotation curve without dark matter.
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Proper 
acceleration:

Acc fluctuation leads to distribution of acceleration

Halo particles

Single mergers
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Acceleration distributions in dark matter
Time variation of acceleration fluctuation (DM only sim.)

a0 ∝ t-1/2 decreasing with time, 
distinguish ΛCDM and MOND?

Compute 
standard 
deviation

ahp: halo particle acc.
aop: out-of-halo particle acc.
ap:   all particles acc.
ap:   halo acc

https://doi.org/10.48550/arXiv.2203.05606
https://doi.org/10.48550/arXiv.2203.05606
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MOND acceleration a0 from energy cascade
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Assume a0 is the typical acceleration scale of fluctuation,
u is the typical velocity scale of fluctuation, θur is the angle of incidence.

The rate of energy cascade in terms of a0, u and θur :

( ) 1cot
3urθ
π

=

The rate of energy cascade:

Potential connection with dark energy?? 
 Ideal gas pressure P (N/m2) ∝ temperature 

T  ∝ velocity fluctuation
 DE density (N/m2) ∝ a0

2 ∝ acceleration 
fluctuation (implies an entropic origin?)

In Earth’s 
atmosphere:

3 2 310u m sε −≈

Confirmed by 
simulations,

arXiv:2206.04333
arXiv:1712.01654

what about 
observations?
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https://doi.org/10.48550/arXiv.2203.05606
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Redshift dependence of acceleration fluctuation a0

( ) ( )2 3 4 1 2
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2
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Finally, our Model predicts:

How to compute the angle of incidence?

Critical density 
ratio:

Magneticum simulations:
(http://www.magneticum.org/ )
https://doi.org/10.48550/arXiv.2206.04333
MNRAS, Vol 518 Pages 257–269

Agree with hydrodynamic simulations

The time variation of a0
distinguishes ΛCDM and MOND?

RAR: Rotational 
Acceleration Relation

MDAR: Mass Discrepancy 
Acceleration Relation 

https://doi.org/10.48550/arXiv.2206.04333
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The origin of deep MOND behavior?
 Fluctuation of acceleration introduces a scale of acceleration a0

 Deep MOND for baryonic particles with acceleration ap<<a0

 Consider baryonic mass in a one-dimensional dark matter fluid 
with a velocity fluctuation v0 and acceleration fluctuation a0 
(Similar to Brownian motion)
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Constant rate of 
Energy cascade

Maximum entropy distribution: 
particle kinetic energy εk is 

proportional to velocity when 
ap<<a0 (deep-MOND)

Power (Joule/second) of baryonic mass: Baryonic mass immersed in DM fluid 
subject to external force Fp

(two miscible phases)
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p
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DM 
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