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Outline
 Introduction
 Turbulence vs. the flow of dark matter: similarities and differences?
 Inverse mass cascade in dark matter flow
 Random walk of halos in mass space and halo mass function
 Random walk of dark matter in real space and halo density profile

 Energy cascade in dark matter flow
 Universal scaling laws from N-body simulations and rotation curves 
 Dark matter properties from energy cascade
 Uncertainty principle for energy cascade?
 Extending to self-interacting dark matter

 Velocity/density correlation/moment functions
 Maximum entropy distributions for dark matter
 Energy cascade for the origin of MOND acceleration
 Energy cascade for the baryonic-to-halo mass relation
 Energy cascade for SMBH-bulge coevolution

Relevant datasets are available at:
"A comparative study of dark matter flow & 

hydrodynamic turbulence and its applications“
http://dx.doi.org/10.5281/zenodo.6569901

http://dx.doi.org/10.5281/zenodo.6569901
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Kinetic 
Energy 
flow Пu

 Identify all halos of different sizes 
 Group halos according to the halo size np
 Kinetic energy flows from small to large mass scale through the 

merging with “single merger” (inverse cascade)
 Potential energy flows from large to small scales (direct cascade)

Rate of kinetic energy flux function πu(mh,a)

Potential 
Energy 

flow

Energy cascade in dark matter flow
Scale- and time-independent εu(a)
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https://doi.org/10.48550/arXiv.2110.13885
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Energy cascade in turbulence and dark matter

Stirring coffee
Big whirls have little whirls, That feed on their velocity; 

And little whirls have lesser whirls, And so on to viscosity. 

Length scale

Wavenumber

ε

or η

ε: dissipated 
by viscosity 
into heat

ε=du2/dt

Energy 
containe
d scale

Little halos have big halos, That feed on their mass; 
And big halos have greater halos, And so on to growth. 

Halo mass mh
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Injection at 
smallest scaleεm,εu

Propagation 
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Deposition 
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to grow 
halos.
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Energy 

(inverse)Potential 
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(direct)
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Energy cascade in turbulence and dark matter

Dissipation scale 
η=(ν3/ε)1/4

Integral 
scale L

Cascade (inertial range ε)Molecular 
scale

Cascade (propagation range εu)Quantum 
scale

deposition 
range

Hydrodynamic 
Turbulence

Dark 
matter flow

(η is not present for 
dark matter flow)

rl

Turbulence:
 Freely decaying (rate: ε)
 Direct energy cascade
 Vortex of different scales
 Integral scale: energy injection
 Inertial range: 

inertial >> viscous force
 Dissipation range: 

viscous force dominant

Dark matter flow:
 Freely growing (rate: εu): Virial theorem
 Inverse energy cascade
 Halos of different scales
 Collisionless, no dissipation range!
 The smallest length scale is not limited 

by viscosity. 

Stirring coffee

(G, εu, h) (G, εu, r) (G, εu, u0)

(ε, r)(ε, ν ) KEKey 
Constants:

Key 
Constants:
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Constant rate of energy cascade from N-body sim.

The time variation of specific kinetic and potential energies 
from N-body simulation.

Power-law for Peculiar 
kinetic energy Kp

Power-law for 
potential energy Py

2 2
70

3
0

3 4.6 10 0
2

p
u

K u m
t t s

ε −= − = − ≈ − × <

This rate εu is both time and scale independent, 
a fundamental constant!

From N-body simulation: (negative for inverse)

In Earth’s atmosphere: 3 2 310 m sε −≈

In Galaxy bulge: 4 2 310b m sε −≈

Cosmic energy Equation 
(Irvine 1961)

time

KineticPotential

u0 = 354.6km/s
t0 = 13.7Billion yrs

∝ a3/2 or ∝ t

pK tε= − u

7
5yP tε= u

https://doi.org/10.48550/arXiv.2209.03313
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Pair conservation equation for validation

( )( )
( )( )

( )( )1 , ln 1 ,
ln3 1 ,

L r a r au
Har ar a

ξ ξ

ξ

+ ∂ +∆
= −

∂+

Pair conservation equation (Peebles 1980) relates 
the pairwise velocity with density correlation ξ:

For large scale in linear regime, average correlation   

1ξ  ln ln 2aξ∂ ∂ =

( ) ( )( )
( )( ) ( )

2 , 1 , 2 ,
33 1 ,

L r a r au
r a

Har r a
ξ ξ

ξ
ξ

+∆
= − ≈ −

+

ln ln aξ α∂ ∂ =( ),r a a rα γξ ∝

1Lu
Har
∆

= − 3α γ= +

and

and

For small scale in non-linear regime (red dash), 

Stable 
clustering 
hypothesis

Irrotational 
flow: 

0∇× =u
Constant 

divergence flow: 
Const∇ =u

Zeldovich
approx.

Good agreement on both small and large 
scales validates simulation data. 

https://doi.org/10.48550/arXiv.2202.06515
https://doi.org/10.48550/arXiv.2202.00910
https://doi.org/10.48550/arXiv.2202.00910
https://doi.org/10.48550/arXiv.2202.00910
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2/3 law for kinetic energy confirmed by N-body sim.

( ) ( )2 32 2
2 22lp lp

r r uS r u S v rε− = = ∝

( )
2 2 3
r r r

u r
r

v v vv
r r v r

ε− ∝ = =

Acceleration Turnaround 
time

Variation of normalized reduced pairwise 
dispersion and two-thirds law

( ) ( ) ( )22 '
2 ,lp

L L LS r a u u u= ∆ = −

Pairwise velocity dispersion (represents 
the kinetic energy on scale r):

Due to collisionless:
Extend all the way 

to the smallest 
scale for dark 

matter properties

On scale r, kinetic energy 
follows a 2/3 law !

Kinetic 
Energy

'
L L Lu u u∆ = −Pairwise velocity:

https://doi.org/10.48550/arXiv.2209.03313
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5/3 law for halo mass confirmed by N-body sim.

Halo mass mr enclosed in scale r can 
be obtained from N-body simulations

2 3 1 5 3
r r um G rα ε −=

2 3 1 4 3
r r u G rρ β ε − −=

Mass:

Density:

Kinetic 
energy: ( )2 32 2 3

r s uv rγ ε=

Time: 1 3 2 3
r ut rε −∝

-4/3 law 

2/3 law 

5/3 law 

Variation of halo core mass mr with scale 
radius rs follows a 5/3 law (Zhao et al. 2009)

5/3 law confirmed by N-body simulations

αr ≈ 5.28
βr ≈ 1.26

In propagation range, all relevant 
quantities are determined by G, εu, 

and scale r. This predicts:
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-4/3 law for halo density confirmed by rotation curves

Halo core density ρs and scale rs
radius can be obtained from 

galaxy rotation curves

-4/3 law confirmed by rotation curves 
Cuspy density for fully virialized collisionless DM halos

2 3 1 5 3
r r um G rα ε −=

2 3 1 4 3
r r u G rρ β ε − −=

Mass:

Density:

Kinetic 
energy: ( )2 32 2 3

r s uv rγ ε=

Time: 1 3 2 3
r ut rε −∝

-4/3 law 

2/3 law 

5/3 law 

Cross-section:

In propagation range, all relevant 
quantities are determined by G, εu, 

and scale r. This predicts:

https://doi.org/10.48550/arXiv.2209.03313
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Quick Recap II

In dark matter flow (DMF):
 Inverse cascade of kinetic energy from small to large scales (constant rate: εu m2/s3)
 Direct cascade of potential energy from large to small scales
 Two cascade connected by virial theorem

On any scale r, energy cascade predicts scaling laws on small scale: 
(confirmed by N-body simulations and galaxy rotation curves)

2 3 1 5 3
r r um G rα ε −=

2 3 1 4 3
r r u G rρ β ε − −=

Mass:

Density:

Kinetic 
energy: ( )2 32 2 3

r s uv rγ ε=

Time: 1 3 2 3
r ut rε −∝

-4/3 law 

2/3 law 

5/3 law 
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Extend to the smallest scale for collisionless DM 

Energy cascade in DMF predicts:

On the smallest scale:

2
X X Xv Gm l=

( ) 3
u X Xv lε− = Constant energy 

cascade

Virial theorem

Uncertainty principle2X X Xm v l⋅ = 

G, εu, and h

( )
1

5 4 129 10X um G GeVε∝ − ≈

( )
1

133 10X ul G mε −∝ − ≈

Mass scale:

Length scale:

( )
1

2 2 5 79 10X ut G sε −∝ ≈Time scale:

1m1A 1 light year
Two hypothesis:
 Dark matter is fully collisionless
 Gravity is the only interaction

Cross-
section

https://doi.org/10.48550/arXiv.2202.07240
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Dark matter particle mass, size, and properties

2 2
156.2 10X

X
X u

m c c yrτ
µ ε

= = − = ×

3 22 35.33 10X Xm l kg mρ = ≈ ×
22 2 37.44 10 0.0046X X X X X um a v m kg m s eV sµ ε −= ⋅ = − = × ⋅ =

2 914 0.87 10
2X X X X Xt t m v eVµ −= = = ×

17 310 kg mNuclear density:Density scale:

Particle lifetime:

1
15

2 6.2 10
X

X
X

e yr
m c

α

τ = = ×
 1

136.85Xα ≈

Energy scale: Rydberg energy of 13.6 eV for the 
ionization energy of the hydrogen atom

If instantons are responsible for the decay [1]:

[1] Anchordoqui, L.A., et al.,Astroparticle Physics, 2021. 132.

Power scale (Joule/s):

2
5 3 10

2

8 1.84 10X X
X nX

X X

m aP Pa
l m

ρ= = = ×


Pressure scale: Number density

Cross section:
2 32 3 14 10X Xl v m s− −= ×

32 3 13 10v m sσ − −= ×WIMP miracle:
6900u G Pa sη ε= − ≈ ⋅Dynamic viscosity:

19 21.3 10 m sυ η ρ −= ≈ ×
Kinematic viscosity

for momentum transfer 
(collisionless):

Peanut 
Butter?

analogue of the degeneracy pressure of Fermi gas

913.7 10X yrτ > ×If 2 30.21u m sε <
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Where is our prediction?

This work

arXiv:hep-ph/0404052

From this prediction:
 Much heavier than WIMP
 Much heavier than axion
 Comparable to Wimpzilla

Two hypothesis:
 DM is fully collisionless
 Gravity is the only interaction

If cannot detect DM at mass of 1012Gev, then
 DM  is self-interacting?
 Involve unknown forces?
 How to be consistent with cascade theory?

 Potential flaws in this argument?
 Any impacts on the detection methods?
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Critical scales in collisionless dark matter flow

7 2 34.6 10u m sε −= − ×

34 21.05 10 kg m s−= × ⋅

( )11 3 26.67 10G m kg s−= × ⋅

( )
1

5 4 129 10X um G GeVε∝ − ≈

( )
1

133 10X ul G mε −∝ − ≈

On the smallest scale, three fundamental constants:

Rate of energy 
cascade

Planck constant

Gravitational 
constant

Simple dimensional analysis predicts: 

Mass scale:

Length scale:

( )
1

2 2 5 69 10X ut G sε −∝ ≈Time scale:

7 2 34.6 10u m sε −= − ×

( )0 1 354.61u u a km s≡ = =

( )11 3 26.67 10G m kg s−= × ⋅

( )5 13
0 9.14 10L um u G Mε∝ − ≈ ×



3
0 3.14L ul u Mpcε∝ − ≈

Three fundamental constants on large scale:

Rate of 
energy 

cascade

Velocity 
dispersion

Gravitational 
constant

Simple dimensional analysis predicts: 

Mass scale:

Length scale:
2 9
0 8.7 10L ut u yrε∝ ≈ ×Time scale:

The largest 
scale

The smallest 
scale

https://doi.org/10.48550/arXiv.2202.07240
https://doi.org/10.48550/arXiv.2203.05606
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Critical scales for self-interacting dark matter
On the smallest length scale:

( ) 1r r rm v tρ σ =

( )2
s r s s

v Gm r r=
3

u s s sv rε γ− = Constant energy 
cascade

Virial theorem

Elastic scatter 

( )54 6
um G mη ε σ−=

All relevant quantities determined by G, 
cross-section σ/m and εu :

Mass scale:

Density scale:

Length or minimum 
halo core size:

( )32 3
ur G mη ε σ−=

( ) 42 3
u G mηρ ε σ −−=

Maximum halo core size rcmax :

1r r agev t
m
σρ =

( )
1max

210c
u age

r gG t kpc
m cm

ε
σ

−= − ≈

The smallest 
structure

tage: age of Universe; 

https://doi.org/10.48550/arXiv.2209.03313
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The origin of energy cascade: Uncertainty principle?

For fully collisionless dark matter:
1) A unique "symmetry" between x and v in phase space: 
 At given x , particles can have multiple v (multi-stream)
 For given v, particles can be at different x
 NOT possible for non-relativistic baryons

2) Due to the long-rang gravitational interaction, 
 Fluctuations (uncertainty) in x
 Fluctuations (uncertainty) in v
 Fluctuations (uncertainty) in a

3) Two pairs of conjugate variables:  
 Position x and momentum p 
 Momentum p and acceleration a

Position (x), Velocity (v = dx/dt), Acceleration (a = dv/dt)

( ) ( )1
2

ipxx p e dpψ ϕ
π

∞

−∞

= ∫ 



( ) ( )1
2

Xipa

X

p a e daµϕ µ
πµ

∞

−∞

= ∫

𝜓𝜓 𝑥𝑥Wave function for position:
Wave function for momentum: 𝜑𝜑 𝑝𝑝

Wave function for acceleration: 𝜇𝜇 𝑎𝑎

2x pσ σ ≥  2p a Xσ σ µ≥

22 2 37.44 10X X um kg m sµ ε −= − = × ⋅

u X X X Xm a vε µ= =

Uncertainty principles:

Postulated uncertainty principle for a and p
leads to the constant rate of energy cascade:
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Quick Recap III

 Suggestions on the current work?

 Suggestions on the future work?

 Suggestion on the potential collaboration?
 Hydrodynamic simulations?
 Self-interaction DM simulations?
 Code, data processing?

 If DM is fully collisionless:
 Scaling laws extended to the smallest 

scale (quantum)
 Dark matter mass, size, density, pressure, 

lifetime, cross-section, etc.
 The origin of cascade: uncertainty principle 

between momentum and acceleration?

 If DM is self-interacting:
 The smallest scale determined by G, 

cross-section σ/m and εu
 Smallest structure size (dependent on σ/m)
 Maximum core size (dependent on σ/m)
 Observational constraint for σ/m?
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