

Cascade Theory for Turbulence, Dark Matter and SMBH Evolution

Dec 2022

Zhijie (Jay) Xu

Multiscale Modeling Team Computational Mathematics Group Pacific Northwest National Laboratory (PNNL) <u>Zhijie.xu@pnnl.gov</u>; <u>zhijiexu@hotmail.com</u>

U.S. DEPARTMENT OF BATTELLE

PNNL is operated by Battelle for the U.S. Department of Energy

- Introduction
- Turbulence vs. the flow of dark matter: <u>similarities and differences</u>?
- Inverse mass cascade in dark matter flow
 - Random walk of halos in mass space and halo mass function
 - Random walk of dark matter in real space and halo density profile
- Energy cascade in dark matter flow
 - Universal scaling laws from N-body simulations and rotation curves
 - Dark matter properties from energy cascade
 - <u>Uncertainty principle</u> for energy cascade?
 - Extending to <u>self-interacting dark matter</u>
- Velocity/density correlation/moment functions
- Maximum entropy distributions for dark matter
- Energy cascade for the origin of MOND acceleration
- Energy cascade for the baryonic-to-halo mass relation
- Energy cascade for SMBH-bulge coevolution

Relevant datasets are available at: "A comparative study of dark matter flow & hydrodynamic turbulence and its applications" http://dx.doi.org/10.5281/zenodo.6569901

Energy cascade in turbulence and dark matter

Big whirls have little whirls, That feed on their velocity; And little whirls have lesser whirls, And so on to viscosity.

Little halos have big halos, That feed on their mass; And big halos have greater halos, And so on to growth.

Pacific Northwest

Energy cascade in turbulence and dark matter

Turbulence:

- Freely decaying (rate: ε)
- Direct energy cascade
- Vortex of different scales
- Integral scale: energy injection
- Inertial range: inertial >> viscous force
- Dissipation range:

Dark matter flow:

- Inverse energy cascade
- Halos of different scales
- Collisionless, no dissipation range! The smallest length scale is not limited
- by viscosity.

Freely growing (rate: ε_{II}): Virial theorem

Pacific Northwest Constant rate of energy cascade from N-body sim.

 $\frac{\partial E_{y}}{\partial t}$ + $H(2K_p + P_y) = 0$ Cosmic energy Equation (Irvine 1961) Power-law for Peculiar $K_p = -\mathcal{E}_{\mathbf{u}}t$ kinetic energy K_p 10⁵ $P_y = \frac{7}{5} \varepsilon_{\mathbf{u}} t$

Power-law for potential energy P_v

This rate ε_{II} is both time and scale independent, a fundamental constant!

From N-body simulation: (negative for inverse)

$$\varepsilon_{u} = -\frac{K_{p}}{t} = -\frac{3}{2} \frac{u_{0}^{2}}{t_{0}} \approx -4.6 \times 10^{-7} \frac{m^{2}}{s^{3}} < 0$$

In Earth's atmosphere: $\varepsilon \approx 10^{-3} m^2/s^3$ $\varepsilon_b \approx 10^{-4} m^2/s^3$ In Galaxy bulge:

Pacific Northwest Pair conservation equation for validation

10-4

10-6

 10^{-2}

Pair conservation equation (Peebles 1980) relates the pairwise velocity with density correlation ξ :

Har

For small scale in non-linear regime (red dash), $\xi(r,a) \propto a^{\alpha} r^{\gamma}$ and $\partial \ln \overline{\xi} / \partial \ln a = \alpha$

Stable $\frac{\langle \Delta u_L \rangle}{=-1} \quad \Longrightarrow \quad \alpha = \gamma + 3$ clustering Har hypothesis

 $-<\Delta u_{T}/(Hr)>$

 10^{0}

r (Mpc/h)

—--Linear regime

 10^{-1}

 10^{1}

 10^{2}

23

5/3 law for halo mass confirmed by N-body sim.

In propagation range, all relevant quantities are determined by G, ε_{II} , and scale *r*. This predicts:

 $2/3 \sim -1 = 5/3$

Pacific

Northwest

Mass:
$$m_r = \alpha_r \varepsilon_u^{2/3} G^{-1} r^{-4/3}$$
 5/3 law
Density: $\rho_r = \beta_r \varepsilon_u^{2/3} G^{-1} r^{-4/3}$ -4/3 law
Kinetic
energy: $v_r^2 = (\gamma_s \varepsilon_u)^{2/3} r^{2/3}$ 2/3 law
Time: $t \propto \varepsilon^{-1/3} r^{2/3}$

Halo mass m_r enclosed in scale *r* can be obtained from N-body simulations

5/3 law confirmed by N-body simulations

25

-4/3 law for halo density confirmed by rotation curves

In propagation range, all relevant quantities are determined by G, ε_{u} , and scale *r*. This predicts:

 $m_r = \alpha_r \varepsilon_u^{2/3} G^{-1} r^{5/3}$

 $v_r^2 = \left(\gamma_s \varepsilon_u\right)^{2/3} r^{2/3}$

 $t_r \propto \varepsilon_u^{-1/3} r^{2/3}$

5/3 law

2/3 law

Mass:

Density: $\rho_r = \beta_r \varepsilon_u^{2/3} G^{-1} r^{-4/3}$ -4/3 law

Pacific

Northwest

Kinetic energy:

Time:

Halo core density ρ_s and scale r_s radius can be obtained from galaxy rotation curves

-4/3 law confirmed by rotation curves Cuspy density for fully virialized collisionless DM halos

In dark matter flow (DMF):

- Inverse cascade of kinetic energy from small to large scales (constant rate: ϵ_{μ} m²/s³)
- Direct cascade of potential energy from large to small scales
- Two cascade connected by virial theorem

On any scale r, energy cascade predicts scaling laws on small scale: (confirmed by N-body simulations and galaxy rotation curves)

Mass: $m_r = \alpha_r \varepsilon_u^{2/3} G^{-1} r^{5/3}$ 5/3 law Density: $\rho_r = \beta_r \varepsilon_u^{2/3} G^{-1} r^{-4/3}$ -4/3 law Kinetic $v_r^2 = (\gamma_s \varepsilon_u)^{2/3} r^{2/3}$ 2/3 law energy: $t_r \propto \varepsilon_u^{-1/3} r^{2/3}$

Northwest

Extend to the smallest scale for collisionless DM

Two hypothesis:

- Dark matter is fully collisionless
- Gravity is the only interaction

On the smallest scale:

 $m_{X}v_{X}\cdot l_{X}/2 = \hbar$ Uncertainty principle $v_X^2 = Gm_X/l_X$ Virial theorem Constant energy $(-\varepsilon_u) = v_X^3 / l_X$ cascade Energy cascade in DMF predicts: Mass scale: $m_X \propto (-\varepsilon_u \hbar^5/G^4)^{\overline{9}} \approx 10^{12} GeV$ Length scale: $l_X \propto (-G\hbar/\varepsilon_m)^{\frac{1}{3}} \approx 10^{-13} m$ Time scale: $t_X \propto (G^2 \hbar^2 / \varepsilon_u^5)^{\overline{9}} \approx 10^{-7} s$

Pacific

Northwest

Dark matter particle mass, size, and properties

Density scale: $\rho = m_X / l_X^3 \approx 5.33 \times 10^{22} kg/m^3$ \longrightarrow Nuclear density: $10^{17} kg/m^3$ Power scale (Joule/s): $\mu_X = m_X a_X \cdot v_X = -m_X \varepsilon_u = 7.44 \times 10^{-22} \text{ kg} \cdot m^2/s^3 = 0.0046 \text{ eV/s}$ Energy scale: $\mu_X t_X / 4 = \hbar / t_X = \frac{1}{2} m_X v_X^2 = 0.87 \times 10^{-9} eV$ Rydberg energy of 13.6 eV for the ionization energy of the hydrogen atom Particle lifetime: $\tau_X = \frac{m_X c^2}{\mu_X} = \left| -\frac{c^2}{\varepsilon_u} \right| = 6.2 \times 10^{15} yr$ Pressure scale: Number density $P_X = \frac{m_X a_X}{l_X^2} = \frac{8\hbar^2}{m_X} \rho_{nX}^{5/3} = 1.84 \times 10^{10} Pa$ If $\tau_x > 13.7 \times 10^9 yr$ $r = \varepsilon_u < 0.21 m^2/s^3$ analogue of the degeneracy pressure of Fermi gas If instantons are responsible for the decay [1]: $\tau_X = \frac{\hbar e^{1/\alpha_X}}{m_V c^2} = 6.2 \times 10^{15} \, yr \implies \alpha_X \approx \frac{1}{136.85}$ Cross section: WIMP miracle: Peanut Dynamic viscosity: $\eta = -\varepsilon_u/G \approx 6900 Pa \cdot s$ Kinematic viscosity Butter? for momentum transfer $v = \eta / \rho \approx 1.3 \times 10^{-19} m^2 / s$ [1] Anchordoqui, L.A., et al., Astroparticle Physics, 2021. 132. (collisionless):

 $l_X^2 v_X = 4 \times 10^{-32} m^3 s^{-1}$ $\langle \sigma v \rangle = 3 \times 10^{-32} m^3 s^{-1}$

From this prediction:

- Much heavier than WIMP
- Much heavier than axion Comparable to Wimpzilla

Two hypothesis:

- DM is fully collisionless
- Gravity is the only interaction

- If cannot detect DM at mass of 10¹²Gev, then DM is self-interacting?
- Involve unknown forces? How to be consistent with cascade theory?
- Potential flaws in this argument?
- Any impacts on the detection methods?

Pacific Northwest Critical scales in collisionless dark matter flow

 $G = 6.67 \times 10^{-11} m^3 / (kg \cdot s^2)$

 $\mathcal{E}_{u} = -4.6 \times 10^{-7} \ m^{2}/s^{3}$

 $u_0 \equiv u(a=1) = 354.61 \, km/s$

 $l_{I} \propto -u_0^3 / \varepsilon_u \approx 3.14 Mpc$

 $t_{I} \propto u_{0}^{2} / \varepsilon_{u} \approx 8.7 \times 10^{9} yr$

Pacific

Critical scales for self-interacting dark matter Northwest

On the smallest length scale:

 $-
ho_\eta = arepsilon_u^{-2} G^3(rac{\sigma}{m})^{-4}$ $rac{\sigma}{m}=0.01m^2/kg$ $m_\eta=arepsilon_u^4G^{-6}(rac{\sigma}{m})^5$ $\rho_r(\sigma/m)v_rt_r = 1$ Elastic scatter The smallest $v_s^2 = Gm_r(r_s)/r_s$ Virial theorem (W_{sun}/kpc³) structure Inverse Constant energy $-\mathcal{E}_{\nu} = v_{s}^{3} / \gamma_{s} r_{s}$ energy cascade cascade $\varepsilon_u \approx +4.6 \times 10^{-7} m^2/s$ All relevant quantities determined by G, cross-section σ/m and ϵ_{II} : density 1010 $\left(\frac{\sigma}{m}\right)_{max} = 1.2m^2/kg$ $r_{\eta} = \varepsilon_u^2 G^{-3} \left(\sigma / m \right)^3$ Length or minimum halo core size: core $m_n = \varepsilon_u^4 G^{-6} \left(\sigma/m \right)^5$ halo core Mass scale: $\rho_{\eta} = \varepsilon_u^{-2} G^3 \left(\sigma/m \right)^{-4} \quad \text{Prime} \quad 10^5$ size r Density scale: $r_n = \varepsilon_u^2 G^{-3} (\frac{\sigma}{m})^3$ Maximum halo core size r_{cmax}: $\rho_r \frac{\sigma}{m} v_r t_{age} = 1$ t_{age} : age of Universe; 10^{0} $\frac{r_{c\max}}{(\sigma/m)} = -\varepsilon_u G^{-1} t_{age} \approx 10 kpc \frac{g}{cm^2}$ 10⁻¹⁰ 10⁻⁸ 10⁻⁶ 10^{-4} Halo scale radius r_s (kpc)

10²⁰

Pacific Northwest The origin of energy cascade: Uncertainty principle?

Position (**x**), Velocity ($\mathbf{v} = d\mathbf{x}/dt$), Acceleration ($\mathbf{a} = d\mathbf{v}/dt$)

For fully collisionless dark matter:

- 1) A unique "symmetry" between x and v in phase space:
- At given x, particles can have multiple v (multi-stream)
- For given v, particles can be at different x
- NOT possible for non-relativistic baryons
- 2) Due to the long-rang gravitational interaction,
- Fluctuations (uncertainty) in **x**
- Fluctuations (uncertainty) in v
- Fluctuations (uncertainty) in a
- 3) Two pairs of conjugate variables:
- Position x and momentum p
- Momentum p and acceleration a

Postulated uncertainty principle for **a** and **p** leads to the constant rate of energy cascade:

Wave function for position: Wave function for momentum: Wave function for acceleration:

$$\mu_X = -m_X \varepsilon_u = 7$$

Uncertainty principles: $\sigma_x \sigma_p \ge \hbar/2$

- $\psi(x)$ $\varphi(p)$
- $\mu(a)$
- $V.44 \times 10^{-22} kg \cdot m^2/s^3$

 $\psi(x) = \frac{1}{\sqrt{2\pi\hbar}} \int_{-\infty}^{\infty} \varphi(p) e^{ipx/\hbar} dp$ $\varphi(p) = \frac{1}{\sqrt{2\pi\mu_X}} \int_{-\infty}^{\infty} \mu(a) e^{ipa/\mu_X} da$ $\sigma_{p}\sigma_{a} \geq \mu_{X}/2$ $\mathcal{E}_{\mu} = \mu_{\chi} / m_{\chi} = a_{\chi} v_{\chi}$

- If DM is fully collisionless:
 - Scaling laws extended to the smallest scale (quantum)
 - Dark matter mass, size, density, pressure, lifetime, cross-section, etc.
 - The origin of cascade: uncertainty principle between momentum and acceleration?
- If DM is self-interacting:
 - The smallest scale determined by G, cross-section σ/m and ϵ_{μ}
 - Smallest structure size (dependent on σ/m)
 - Maximum core size (dependent on σ/m)
 - Observational constraint for σ/m ?

Suggestions on the current work?

Suggestions on the future work?

- - Hydrodynamic simulations?

 - Code, data processing?

Suggestion on the potential collaboration? Self-interaction DM simulations?