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* Introduction
= Turbulence vs. the flow of dark matter: similarities and differences?
= Inverse mass cascade in dark matter flow
= Random walk of halos in mass space and halo mass function
= Random walk of dark matter in real space and halo density profile
= Energy cascade in dark matter flow
= Umniversal scaling laws from N-body simulations and rotation curves
= Dark matter properties from energy cascade
= Uncertainty principle for energy cascade?
- EXtending to Self'interaCting dark matter hydrodynamic turbulence and its applications”
0 Velocity/density correlation/moment functions http://dx.doi.org/10.5281/zeno0do.6569901
= Maximum entropy distributions for dark matter
= Energy cascade for the origin of MOND acceleration
= Energy cascade for the baryonic-to-halo mass relation
= Energy cascade for SMBH-bulge coevolution

Relevant datasets are available at:
"A comparative study of dark matter flow &



http://dx.doi.org/10.5281/zenodo.6569901
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Northwest ENergy cascade in dark matter flow
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Big whirls have little whirls, That feed on their velocity; Little halos have big halos, That feed on their mass;
And little whirls have lesser whirls, And so on to viscosity. And big halos have greater halos, And so on to growth.
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Turbulence: Dark matter flow:

* Freely decaying (rate: ¢€) = Freely growing (rate: g): Virial theorem

= Direct energy cascade = |nverse energy cascade

= Vortex of different scales = Halos of different scales

= [ntegral scale: energy injection g = Collisionless, no dissipation range!

= |nertial range: = The smallest length scale is not limited
inertial >> viscous force by viscosity.

= Dissipation range:

viscous force dominant /\ /\ Hydrodynamic
AN /_\ /_\ Turbulence

= Molecular Dissipation scale Cascade (inertial range ) Integral
€ scale n=(v3/g)! scale |
& Key (€, V) (€, 1) KE
e = Constants: /‘\ /\ /\ Dark
~ OO ala /\ /_\ matter flow
. . Quantum —(n is not present for  cagcade (propagation range € deposition
- . scale dark matter flow) (propag ge £.) L rpange
o (G, &, h) (G, &, 1) (G, &4, Up) 21

Constants:
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The time variation of specific kinetic and potential energies
from N-body simulation. =

In Galaxy bulge: g, =107 m?/s’
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= Pair conservation equation (Peebles 1980) relates R R S 1 SR R R Rk
_- . . . . . . ] i - — _ ]
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— N 1+&(r,a)) Oln(1+ & (r,a = divergence flow: . LY. approx.
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In dark matter flow (DMF):

= |nverse cascade of kinetic energy from small to large scales (constant rate: €, m?/s3)
= Direct cascade of potential energy from large to small scales

= Two cascade connected by virial theorem

On any scale r, energy cascade predicts scaling laws on small scale:
(confirmed by N-body simulations and galaxy rotation curves)

Mass: m =a &e’G'r” 5/3law
Density: p, = ,B,,gj/ 3G 413 law

Kinetic V= ( ve )2/3 #2323 law
energy:

Time: [ oC 5;1/37”2/3

27



Pacific

Northwest

NATIONAL LABORATORY

— Two hypothesis:
= Dark matter is fully collisionless

&= = Gravity is the only interaction

= On the smallest scale:

—m,v, -1, [2="

vy =Gm, /I,

(_gu)zvif/l)(
¥

Energy cascade in DMF predicts:

Uncertainty principle

Virial theorem

Constant energy
cascade
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3
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5
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Extend to the smallest scale for collisionless DM
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10% } - } ‘ .
SPARC NFW fitting
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|
|
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107 o . =10"20ke/m> ) |
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\ \.
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Density scale: p = m,, /l; ~5.33x10* kg/m3 4mm) Nuclear density: 10" kg/m3
s = Power scale (Joule/s): My =Myly -Vy ==&, =71.44X 107 kg - mz/ s° =0.0046¢ Vs

Energy scale: iyl [4=h/t, = lvai 10.87x10°%e)| €@ Rydberg energy of 13.6 eV for the
= i 22 ionization energy of the hydrogen atom
$=— : . m,c C 15 ,
& Particle lifetime: 7, = =[-—=6.2x10"yr Pressure scale: 2 'umber density
luX gu p _mXaX _8h2 5/3 —1 84X1010P
— If 7, >13.7x10°yr mp g <021m*/s’ R m, Pux =1 ¢
analogue of the degeneracy pressure of Fermi gas

= |f instantons are responsible for the decay [1]:
hel/OCX 15 1 Cross section: l)zva - 4X10_32 m3S_1
_ =62x10°yrmp a, ~

2 U

e 136.85 WIMP miracle: <0v> — 3102 g
Dynamic viscosity: 77 =—¢, /G ~ 6900Pa - Peanut

Butter? Kinematic viscosity
for momentum transfer v=n/p ~1.3x10™"° m*/s

[1] Anchordoqui, L.A., et al.,Astroparticle Physics, 2021. 132, o
(collisionless): 29
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:g q'r T T T T T T T T T T T T T T T T T q From thIS pred|Ct|on:

10 | 1 = Much heavier than WIMP

w ® | - Much heavier than axion

10 b . .

0 | Q-ball f | = Comparable to Wimpzilla

:5 j This work & |

] g Two hypothesis:

10° | neutrinoe WIMPs - :‘E‘ = DM s fU”y collisionless

10° neutralino o 4 FI - -

| KK pholon S| Gravity is the only interaction

" i P

0 T E If cannot detect DM at mass of 10'?Gey, then
it - “1 = DM is self-interacting?

10 - axion f axino 1 = Involve unknown forces?

gl . = How to be consistent with cascade theory?
10 uzzy COM l gravitino :

10" el KK graviton :

10° 51‘ arXiv:hep-ph/0404052 = Potential flaws in this argument?

107 )

u;"m’“m”m“m“m“ln“m“m 10* u;" 1;:' l;]] 1;1" 1{L:' u;“ 1|:.|“ u;“ . Any impaCtS on the detection methods?
mass (GeV)

30
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Dark matter flow

1.'.1 turm
AN N\ /\/\m
o - Inwverse ma ,-" cascade
= h:: — t't” ﬂmlu] (Pre p gatio g; with M
—————— scale-indepe d nte_ande )
= [he smallest The largest
: scale scale

Gravitational

constant G=6.67x107" m’ /(kg s*)

Rate of energy

£ =—4.6x107 m*/s’
cascade

Planck constant h=1.05x10" kg -m’ /s

Simple dimensional analysis predicts:
1

Mass scale:  m, o (—6‘uh5/G4)9 ~10"”GeV

Length scale: [ oc( Gh/g ) ~10 " m

Time scale: ¢, o (Gzh /gu )9 ~107s

On the smallest scale, three fundamental constants:

Three fundamental constants on large scale:

Gravitational
constant

Rate of
energy
cascade

G=6.67x10"m’/(kg-s*)
g =—4.6x107 m*/s’

Velocity

_ _ :1):354.61km/s
dispersion

uy=u(a

Simple dimensional analysis predicts:

Mass scale: m, o« —ug/(Ggu) ~9.14x10° M _

I, c—u, [, =~3.14Mpc
{ ocuo/g ~8.7x10° yr

Length scale:

Time scale:

31
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On the smallest length scale: 10 e — Py = e AGP(2) SPARC NFW fitting |
— p.(o/m)vt =1  Elasticscatter ChEgET ; % =00Im*/kg | © SPARC pISO fitting |
i P, ror _ t , _ g6 B DMS NFW fitting ||
s r\Is )T “ | structure | Inverse O SOFUE NFW fitting
e = V3/ . Constant energy g- 1071 erfergy cascade s From four-thirds law _
u s/ Vst cascade = £u & +4.6 x 1077m? /s -
— J L = | L mb Tkl et
.. . | _
All relevant quantities determined by G, =, | \ /
cross-section o/m and ¢ : = I '
'~._ ”:-___ Y 3 +§1 101'3 I | (i)fnaig — 112m2/kgﬁ h i ]
2 Length or minimum 5 = 2G> (G/m) Z ! .
= halo core size: oo S ! W
3 —— '._ 4 6 5 E | fll
= Mass scale: m, =¢, G (G/ m) S | < halo core i
— | o a 4 | size 1 > !
& Density scale: ,077 =&, G (O'/m) _E‘ 10° | . : :
— | S B A WA, b ) I
= . . r, =G0 (+ |
&= Maximum halo core size r . : : n = &G : 3 ) i
' l.._.‘_‘:.._:- T',f — ""T,L,D E-u
O ' e i1 ~1a I |
> 0, —V.t,. =1t age of Universe; } Femar = —€ul itage = L87TMpc/h 1 |
§ o0 Lo e N N
_Ccmax _guG‘ltage ~10kpc & 5 10710 108 10°® 10 102 10° 102 10*

(6/ m) cm Halo scale radius I (kpc)
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Position (x), Velocity (v = dx/dt), Acceleration (a = dv/dt) Wave function for position: P (x)

For fully collisionless dark matter: Wave function for momentum: ¢ ()
1) A unique "symmetry" between x and v in phase space: = Wave function for acceleration: u(a)
= At given x , particles can have multiple v (multi-stream) _ — 74410 P ke 12/ 3

= For given v, particles can be at different x Hy =—myE, =T7.44x10 " kg -m /S

= NOT possible for non-relativistic baryons | »

v (x)= o | o(p)e"dp
2) Due to the long-rang gravitational interaction, 271Th o
» Fluctuations (uncertainty) in x _ a e dg
» Fluctuations (uncertainty) in v gp(p) /zwa _-[Oﬂ( )e

* Fluctuations (uncertainty) in a

\ 4

3) Two pairs of conjugate variables:
) > )t Uncertainty principles: o©,0, 2 h/2 0,0, ,uX/Z

= Position x and momentum p
* Momentum p and acceleration a ‘

Postulated uncertainty principle for a and p

leads to the constant rate of energy cascade: éu = Hy / My =dxVy

33
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= |[f DM is fully collisionless:
= Scaling laws extended to the smallest
scale (quantum)
= Dark matter mass, size, density, pressure,
lifetime, cross-section, etc.
= The origin of cascade: uncertainty principle
between momentum and acceleration?

= |[f DM is self-interacting:
* The smallest scale determined by G,
cross-section o/m and g,
= Smallest structure size (dependent on o/m)
= Maximum core size (dependent on o/m)
»= Observational constraint for a/m?

= Suggestions on the current work?

= Suggestions on the future work?

= Suggestion on the potential collaboration?
* Hydrodynamic simulations?
» Self-interaction DM simulations?
= Code, data processing?

34
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