

Cascade Theory for Turbulence, Dark Matter and SMBH Evolution

Dec 2022

Zhijie (Jay) Xu

Multiscale Modeling Team Computational Mathematics Group Pacific Northwest National Laboratory (PNNL) <u>Zhijie.xu@pnnl.gov</u>; <u>zhijiexu@hotmail.com</u>

U.S. DEPARTMENT OF BATTELLE

PNNL is operated by Battelle for the U.S. Department of Energy

- Introduction
- Turbulence vs. the flow of dark matter: <u>similarities and differences</u>?
- Inverse mass cascade in dark matter flow
 - Random walk of halos in mass space and halo mass function
 - Random walk of dark matter in real space and halo density profile
- Energy cascade in dark matter flow
 - Universal scaling laws from N-body simulations and rotation curves
 - Dark matter properties from energy cascade
 - <u>Uncertainty principle</u> for energy cascade?
 - Extending to <u>self-interacting dark matter</u>
- Velocity/density correlation/moment functions
- Maximum entropy distributions for dark matter
- Energy cascade for the origin of MOND acceleration
- Energy cascade for the baryonic-to-halo mass relation
- Energy cascade for SMBH-bulge coevolution

Relevant datasets are available at: "A comparative study of dark matter flow & hydrodynamic turbulence and its applications" http://dx.doi.org/10.5281/zenodo.6569901

- Dark matter: 85% of the total matter.
- Dark matter flow (DMF): the widest presence in the universe.
- Hydrodynamic turbulence: the most familiar flow in our daily life.
- What are the similarities and differences?

During the pandemic, we find a time to think about and leverage this comparison for better understanding the nature of dark matter (DM) flow and DM properties.

Content of universe

atoms 4.5%

dark energy 69.4%

today

© Encyclopædia Britannica, Inc.

Northwest What is dark matter?

No definite answer.

What it should not be?

No electric charge

Pacific

- No color charge (strong interactions)
- No strong self-interaction
- No fast decay: stable and long-lived
- Not any particles in standard model of particle physics

What it should be?

- Non-baryonic
- Cold (non-relativistic)
- Collisionless
- Dissipationless (optically dark)
- Sufficiently smooth with a fluid-like behavior

What is the nature of dark matter flow (DMF)? A special example of non-relativistic, self-gravitating, collisionless fluid dynamics (SG-CFD)

Might be a new opportunity for fluid dynamics contributing to the dark matter mystery, the biggest quest of contemporary astrophysics.

Pacific Northwest Brief timeline for dark matter research (~100 years)

Planck data of CMB anisotropies Confirm **ACDM** predictions

N-body simulations in this study

Run	$\Omega_{_{0}}$	Λ	h	Γ	$\sigma_{_8}$	L(Mpc/h)	N_p	$m_p(M_{\odot}/h)$	l _{soft} (1
SCDM1	1.0	0.0	0.5	0.5	0.51	239.5	256 ³	2.27×10 ¹¹	36

- N-body simulations carried out by the Virgo consortium. https://wwwmpa.mpa-garching.mpg.de/Virgo/data_download.html
- Standard CDM power spectrum (SCDM) with matter-dominant gravitational flow.
- Dark matter only simulations
- Similar analysis can be extended to other cosmological models and hydrodynamic simulations.
- All relevant datasets for this work are available at <u>http://dx.doi.org/10.5281/zenodo.6569901</u>

Kpc/h)

Pacific Northwest Brief timeline for turbulence research (~500 years)

RANS: Reynolds-averaged Navier-Stokes Equation;

What can we learn from turbulence?

da Vinci sketch of turbulence: plunging water jet

- "turbolenza": the origin of modern word "turbulence"
- The pattern of flow with vortexes in fluid
- The random chaotic nature

numberless, and large things are

"... the smallest eddies are almost rotated only by large eddies and not by small ones, and small things are turned by small eddies and large."

Pacific Northwest Richardson's direct cascade (1922)

"Big whorls have little whorls, That feed on their velocity; And little whorls have lesser whorls, And so on to viscosity."

Key attributes:

- initial conditions);
- and time scales;
- Three dimensionality;
- Time dependence;

<u>Cascade</u>: energy is injected on large scale, propagating across different scales, and dissipated on the smallest scale.

(a) : Cascade of energy, (b) : Lewis Richardson

[1] "Weather Prediction by Numerical Process", Richardson, L.F. 1922

Disorganized, chaotic, random; Nonrepeatability (sensitivity to

Multiscale: large range of length Dissipation mediated by viscosity;

Rotationality (incompressible); Intermittency in space and time;

Pacific Northwest Direct energy cascade in turbulence (1940s)

- Freely decaying vs. forced stationary
- Integral scale: energy injection

Is there cascade in dark matter flow? If yes, how does it initiate, propagate, and die?

Inertial range: inertial >> viscous force Dissipation range: viscous dominant Dissipation scale: determined by kinematic

viscosity (m^2/s) and rate of cascade (m^2/s^3)

Pacific Northwest Hydrodynamic turbulence vs. dark matter flow

Key attributes of hydrodynamic turbulence:	Key attributes of dark matter flow:		
 Chaotic, random; 	 Chaotic, random; 		
 Nonrepeatability (sensitivity to initial conditions); 	 Nonrepeatability; 		
 Multiscale in length and time scales; Non-equilibrium; 	Multiscale in mass/length/time scales; Non-equilibri		
 Intermittency in space and time; 	Intermittency in space and time;		
 Dissipative and collisional 	 Dissipationless and collisionless 		
 Short-range interaction 	 Long-range gravity 		
 Velocity fluctuation 	 Velocity & acceleration fluctuation 		
 Vortex as fundamental building block 	Halos as fundamental building block		
 Maximum entropy distribution (Gaussian) 	 Maximum entropy distribution?? (X dist.) 		
• Incompressible on all scales $\nabla \cdot \mathbf{v} = 0$	 Flow behavior is scale-dependent (peculiar velocity) 		
 Divergence-free 	• Small scale: constant divergence $\nabla \cdot \mathbf{v} = \mathbf{k}$		
 Constant density 	• Large scale: irrotational (curl-free) $\nabla \times \mathbf{v} =$		
Energy cascade from large to small length scales	 Mass/energy cascade from small to large mass sca 		
 Vortex stretching responsible for energy cascade 	Role of halos for energy cascade??		
 Volume conserving 	 Halos are growing, rotating, with nonuniform d 		
 Shape changing 	Is halo shape changing important?		
 Uniform density 	Mass cascade facilitates energy cascade?		
 Reynolds decomposition 	Velocity/acceleration decomposition?		
 Reynolds stress for energy transfer between mean 	 What facilitates the energy transfer between mean f 		
flow and random motion (turbulence)	random motion in dark matter??		
 Closure problem, eddy viscosity, etc 	 Self-closed model (analogue of NS) ?? Closure pro 		
 Statistical theory: correlation/structure functions 	 Statistical theory: Kinematic and dynamic relations? 		
 Scaling laws in inertial range 	 Scaling laws in dark matter flow? 		

12

- Identify all halos of different sizes
- Group halos according to the halo size n_p
- Mass flow across halo groups from small to large mass scale (inverse) through the merging with "single merger"
- Cascade leads to random-walk of halos in mass space

 $\Pi_{m}(m_{h},a) = -\frac{\partial}{\partial t} \left[M_{h}(a) \int_{m_{h}}^{\infty} f_{M}(m,m_{h}^{*}) dm \right] \implies \frac{\partial \Pi_{m}}{\partial m_{h}} = \frac{1}{m_{n}} \frac{\partial m_{g}}{\partial t}$

10-4

Mass cascade rate $\Pi_{\rm m}({\rm m_h}, a)$ (normalized by ${\rm Nm_p}/{\rm t_0}$) Total halo mass Mass function m_q: Group mass ¹³

Pacific Northwest Halo group mass and time variation of total halo mass

(time-independent in mass propagation range)

The halo mass for type II halos (the dominant type for large halos, Fig. 2 in ref. [1]) exhibits a power law scaling

Northwest Random walk of halos and halo mass function

halo Merging frequency $f_h(m_h, a) \propto \text{surface} \propto n_h m_h^{\lambda}$ for halo group: area $\lambda \sim 2/3$: Exponent for halo surface area.

waiting \bullet m_p time τ_g

1D Random walk equation in mass space (similar to diffusion):

Characteristic merging time for halo group:

Pacific

Characteristic merging time (lifetime) for a given halo: waiting time to merge

The exponential merge:

$$\tau_h(m_h,a) = 1/f_h$$

of halos in group

The exponential distribution of waiting time to $P(\tau_{gr}) = \frac{1}{\tau_a} \exp\left(-\frac{\tau_{gr}}{\tau_a}\right)$

 $\frac{\partial m_h(t)}{\partial t} = \frac{m_p \xi(t)}{\tau_g(m_h)} = \sqrt{2D_p(m_h)} \zeta(t) \qquad \text{Position-dependent} \\ \frac{\partial m_h(t)}{\partial t} = \sqrt{2D_p(m_h)} \zeta(t) \qquad \text{Position-dependent} \\ \frac{\partial m_h(t)}{\partial t} = \sqrt{2D_p(m_h)} \zeta(t) \qquad \text{Position-dependent} \\ \frac{\partial m_h(t)}{\partial t} = \sqrt{2D_p(m_h)} \zeta(t) \qquad \text{Position-dependent} \\ \frac{\partial m_h(t)}{\partial t} = \sqrt{2D_p(m_h)} \zeta(t) \qquad \text{Position-dependent} \\ \frac{\partial m_h(t)}{\partial t} = \sqrt{2D_p(m_h)} \zeta(t) \qquad \text{Position-dependent} \\ \frac{\partial m_h(t)}{\partial t} = \sqrt{2D_p(m_h)} \zeta(t) \qquad \text{Position-dependent} \\ \frac{\partial m_h(t)}{\partial t} = \sqrt{2D_p(m_h)} \zeta(t) \qquad \text{Position-dependent} \\ \frac{\partial m_h(t)}{\partial t} = \sqrt{2D_p(m_h)} \zeta(t) \qquad \text{Position-dependent} \\ \frac{\partial m_h(t)}{\partial t} = \sqrt{2D_p(m_h)} \zeta(t) \qquad \text{Position-dependent} \\ \frac{\partial m_h(t)}{\partial t} = \sqrt{2D_p(m_h)} \zeta(t) \qquad \text{Position-dependent} \\ \frac{\partial m_h(t)}{\partial t} = \sqrt{2D_p(m_h)} \zeta(t) \qquad \text{Position-dependent} \\ \frac{\partial m_h(t)}{\partial t} = \sqrt{2D_p(m_h)} \zeta(t) \qquad \text{Position-dependent} \\ \frac{\partial m_h(t)}{\partial t} = \sqrt{2D_p(m_h)} \zeta(t) \qquad \text{Position-dependent} \\ \frac{\partial m_h(t)}{\partial t} = \sqrt{2D_p(m_h)} \zeta(t) \qquad \text{Position-dependent} \\ \frac{\partial m_h(t)}{\partial t} = \sqrt{2D_p(m_h)} \zeta(t) \qquad \text{Position-dependent} \\ \frac{\partial m_h(t)}{\partial t} = \sqrt{2D_p(m_h)} \zeta(t) \qquad \text{Position-dependent} \\ \frac{\partial m_h(t)}{\partial t} = \sqrt{2D_p(m_h)} \zeta(t) \qquad \text{Position-dependent} \\ \frac{\partial m_h(t)}{\partial t} = \sqrt{2D_p(m_h)} \zeta(t) \qquad \text{Position-dependent} \\ \frac{\partial m_h(t)}{\partial t} = \sqrt{2D_p(m_h)} \zeta(t) \qquad \text{Position-dependent} \\ \frac{\partial m_h(t)}{\partial t} = \sqrt{2D_p(m_h)} \zeta(t) \qquad \text{Position-dependent} \\ \frac{\partial m_h(t)}{\partial t} = \sqrt{2D_p(m_h)} \zeta(t) \qquad \text{Position-dependent} \\ \frac{\partial m_h(t)}{\partial t} = \sqrt{2D_p(m_h)} \zeta(t) \qquad \text{Position-dependent} \\ \frac{\partial m_h(t)}{\partial t} = \sqrt{2D_p(m_h)} \zeta(t) \qquad \text{Position-dependent} \\ \frac{\partial m_h(t)}{\partial t} = \sqrt{2D_p(m_h)} \zeta(t) \qquad \text{Position-dependent} \\ \frac{\partial m_h(t)}{\partial t} = \sqrt{2D_p(m_h)} \zeta(t) \qquad \frac{\partial m_h(t)}{\partial t} \qquad \frac{\partial m_h(t)}{\partial t} = \sqrt{2D_p(m_h)} \zeta(t) \qquad \frac{\partial m_h(t)}{\partial t} \qquad \frac{\partial m_$

Fokker-Planck equation for distribution function:

$$\frac{\partial P_h}{\partial t} = \frac{\partial}{\partial m_h} \left[\sqrt{D_p} \frac{\partial}{\partial m_h} \left(\sqrt{D_p} P_h \right) \right] = D_{p0} \frac{\partial}{\partial m_h} \left(\sqrt{D_p} P_h \right)$$

Solving Fokker-Planck Eq. leads to Halo mass function:

$$f_M(m_h, a) = \frac{(1-\lambda)}{\sqrt{\pi\eta_0}} \left(\frac{m_h^*}{m_h}\right)^{\lambda} \frac{1}{m_h^*} \exp\left[-\frac{1}{4\eta_0}\right]^{\lambda}$$

Reduce to Press-Schechter (PS) if $\lambda = 2/3$! (single λ here, how about double λ ?)

Double-*λ* mass function from mass cascade Northwest

Pacific

Pacific Northwest Random walk of DM and double-y halo densify profile

3D DM particle random walk to form/grow halos

Waiting time dependent on halo size r (position-dependent):

$$\tau_p(r) \propto m_r(r)^{-\lambda} \propto r^{-1}$$

The larger halo, the shorter waiting time

 dX_t 3D Random walk equation:

$$\sqrt{2D_P(\boldsymbol{X}_t)}\boldsymbol{\xi}(t) .$$

$$D_P(\boldsymbol{X}_t) = D_0(t)r^{2\gamma}$$

Fokker-Planck equation for distribution function:

$$\frac{\partial P_r(\mathbf{X},t)}{\partial t} = D_0 \frac{\partial}{\partial X_i} \left[r^{\gamma} \frac{\partial}{\partial X_i} \left(r^{\gamma} P_r(\mathbf{X},t) \right) \right] \begin{bmatrix} \alpha = 2 - 2\gamma_2 \\ \beta = \frac{2 - 2\gamma_2}{2 - \gamma_1} \end{bmatrix}$$
Double- γ halo density profile: $\mathbf{I} = \mathbf{x} = \mathbf{r}/\mathbf{r}_s(t)$
Reduce to $p_{D\gamma} \left(x = \frac{r}{r_s(t)} \right) = \frac{\alpha \beta^{-(1/\alpha + 1/\beta)}}{4\pi \Gamma(1/\alpha + 1/\beta)} x^{\frac{\alpha}{\beta} - 2} \exp\left(-\frac{x^{\alpha}}{\beta}\right) \stackrel{\bullet}{\longrightarrow} \frac{\alpha}{r_s(t)}$
Reduce to $\alpha = 2\beta$!

FIG. 2. Halo density profiles for simulated halos: 1) Ghalo [51]; 2) Via Lactea [52]; 3) Aquarius [53]; 4) Dubinski [54]; 5) to o if FIRE:DMO [30]. The double- γ density model (Eq. (24)) was also used to fit all simulated halos for the entire range of r.

In (incompressible) hydrodynamic turbulence:

- Energy cascade is well established
 - Direct energy cascade from large to small scales (3D)
 - Inverse energy cascade from small to large scales (2D)
- No mass cascade involved

In dark matter flow:

- Inverse mass cascade from small to large scales (rate: ε_m kg/s)
- Mass cascade leads to the random walk of halos in mass space
- Random walk of halos in mass space leads to halo mass function (just like diffusion)
- Random walk of DM particles leads to halo density profile
- Halo density profile and mass function share the same origin.
- Halo density and mass function share similar functional form
- Both random walks involve a <u>position-dependent waiting time</u> (or diffusivity)
- **No** critical density ratio δc or spherical/ellipsoidal collapse model required

Halo mass function and density profile

