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Challenge

Recent LES of diesel spray with 54-
species n-dodecane model1: 

48,000 CPU core-hours for 2 ms 

after start of injection

1A. A. Moiz et al. Combust. Flame 173 (2016): 123–131. doi:10.1016/j.combustflame.2016.08.005 8

https://doi.org/10.1016/j.combustflame.2016.08.005
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Kinetic models exhibit high stiffness:

Characteristic creation times of methane oxidation2
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Inst. Provo, UT, USA, Oct. 2015. doi:10.6084/m9.figshare.2075515.v1 10
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Stiffness

• Wide range of species/reaction time scales

• Rapidly depleting radical species, fast reversible 
reactions

• Traditionally requires implicit integration algorithms
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Are implicit integrators required everywhere?

Dynamic adaptive chemistry approach of Tosatto et. al, 
studying a 2-D diluted JP-8 flame3

3L. Tosatto, B. Bennett, & M. Smooke. Combust. Flame 158.5 (2011):820–835.  
doi:10.1016/j.combustflame.2011.01.018

are imposed at the lower boundary to fix the inlet compositions
and inlet velocities, with zero velocities applied across the thick-
ness of the fuel tube itself and in the region outside of the oxidizer
stream.

The problem has been solved on a 7.5 cm ! 20 cm computa-
tional domain discretized using a nonuniform structured grid of
123 ! 149 cells. The kinetic mechanism used in this first flame is
a very simple 16-species, 47-reaction oxidation model [49].
Although not very accurate at predicting the spatial profiles of
minor species, this simple model is useful because analysis of its
results can provide some insight into how the flux-based DRG
method works. During the simulation of this flame, the threshold
parameter e has been set to 0.10, because all previous research
on DRG-based static mechanism reduction suggests using values
of e equal to or slightly larger than 0.1 [25,27]. For comparison,
we have also simulated the flame with the full mechanism (i.e.,
without implementing the flux-based DRG).

The two temperature fields shown in Fig. 3 are taken from the
solution obtained with the full mechanism and with the on-the-
fly mechanism reduction. For the chosen value of e, the reduced
model is virtually indistinguishable from the full one, indicating
that flux-based DRG reduction introduces a minimal error in the
system in terms of the basic flame structure. The map of the active
species (see Fig. 3) shows how the flux-based DRG acts on the
flame. Not only does the method automatically remove the chem-
istry in the low temperature regions, but many species are actually
eliminated in the center of the flame. This result demonstrates that
the present adaptive technique promotes further simplification of
the already highly compact mechanism.

We can understand how such a reduction is possible by follow-
ing step by step the reduction of methane to CO2 in the 16-species
mechanism.

(1) The oxidation chain is initiated by H abstraction, CH4 ? CH3.
Therefore, in the directed relation graph, whenever the tem-
perature and CH4 concentration are sufficiently large, CH3

will connect to CH4. Thus, at the bottom of the flame (where
CH4 is a search-starting species), CH3 will surely be retained.

(2) Further H abstraction is impossible as CH2 is not considered
in the mechanism. Therefore, the next step involves the
reaction of CH3 with oxygen, leading to the formation of
formaldehyde, either directly (CH3 ? CH2O) or through the
methoxy radical (CH3 ? CH3O ? CH2O). It is important to

notice that, in the absence of methane, the methyl radical
is almost entirely depleted, but significant concentrations
of formaldehyde remain since it is a rather stable species.
We can then conclude that in the presence of oxygen, the
triplet {CH3, CH3O, CH2O} forms a strongly connected com-
ponent, meaning that if one of these species is retained, so
are the others.

(3) The combustion goes to completion through the unstable
intermediate HCO that feeds the CO submechanism
(CH2O ? HCO ? CO ? CO2). The most reactive species in
the chain is HCO, which is quickly depleted. Therefore, CO
and HCO will connect to CO2, but formaldehyde may not
depend on this reaction chain if HCO is depleted.

The portions of the directed graph shown in Fig. 4 reflect this
pattern. Notice how at the flame base, CH4 and CH3 form a connec-
tion set that also connects to the formaldehyde submechanism,
and, simultaneously, to the domain of dependence of CO2. Con-
versely, higher in the flame, where CH4 is depleted, heavy depen-
dence is still present among CH4, CH3, and the formaldehyde
subgroup, but these species fail to connect to CO2 and CO, since
the reactions that involve HCO are exhausted.

Interestingly, the localized reduction operated by the flux-based
DRG method seems consistent with a two-step approximation of
the combustion process, in which the fuel is first converted to CO
by a fast irreversible reaction, and CO is then converted to CO2. It
is further seen that CH3O can be eliminated on a much wider por-
tion of the domain than can CH2O or CH3, due to the competition
between two alternative oxidative pathways. The methoxy radical
contributes to the formation of formaldehyde through the reaction
CH3 + O2 ? CH3O + O ? CH2O + OH; this chain-branching step is
important in the ignition phase but becomes negligible in the fully
developed flame. In the latter case, CH2O can be produced directly
through CH3 + O ? CH2O + H; thus, CH3O can be eliminated with-
out breaking the oxidative pathway.

3.2. Steady-state combustion of ethylene (50-species mechanism)

The second test case is an axisymmetric laminar coflow ethyl-
ene/air flame, for which the geometrical dimensions of the burner
(see Fig. 2) are r1 = 0.56 cm, r2 = 0.64 cm, and r3 = 2.75 cm. The fuel
stream, which is a mixture of 34% ethylene diluted with nitrogen,
issues from the inner tube, and it has a fully developed flow profile

Fig. 3. Numerical solution of a diluted methane flame with e = 0.10. From left to right: two temperature profiles (the first from the solution obtained using the full mechanism
and the second from the solution obtained using flux-based DRG reduction); a plot of the number of active species in each computational cell; and mole fraction profiles of
CH3, CH3O, and HCO. The white regions in the mole fraction plots show where the relevant species equation has been eliminated. All plots are restricted to the r 6 1.5 cm,
z 6 7 cm portion of the computational domain, where the majority of the flame is located.

828 L. Tosatto et al. / Combustion and Flame 158 (2011) 820–835
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Are implicit integrators required everywhere?

For less-stiff chemistry, stabilized-explicit or semi-implicit 
solvers may be much faster4

4K. E. Niemeyer & C. J. Sung. J. Comput. Phys. 256 (2014), pp. 854–871. 

doi:10.1016/j.jcp.2013.09.025

Many areas of a reactive-flow simulation are non/weakly-
reacting, or at chemical equilibrium:
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Kinetic model sizes have grown in recent years:

5K. Niemeyer. Hydrocarbon chemical kinetic model survey. figshare. 2016. 

doi:10.6084/m9.figshare.3792660.v1

Chemical kinetic model size for hydrocarbon oxidation5

https://doi.org/10.6084/m9.figshare.3792660.v1
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Kinetic model sizes have grown in recent years:

5K. Niemeyer. Hydrocarbon chemical kinetic model survey. figshare. 2016. 

doi:10.6084/m9.figshare.3792660.v1

Chemical kinetic model size for hydrocarbon oxidation5

Transportation fuels

https://doi.org/10.6084/m9.figshare.3792660.v1
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Cost of integration

Implicit algorithms require:

• Jacobian evaluation with finite differences: cost scales 
quadratically with number of species

• (Dense) Jacobian factorization: cost scales cubically with 
number of species

Speedup may be achieved with a sparse, analytical 
Jacobian formulation

17
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Project thrusts
• Create sparse, analytical chemical kinetic Jacobian code 

to speed up existing programs, and power new ones 

• Develop library of vectorized solvers, usable on 
heterogeneous architectures (CPU, GPU, MIC, …) 

• Design scheduler for chemical kinetics ODEs based on 
stiffness metric to select appropriate integrators on 
available hardware

19
# https://github.com/SLACKHA
" http://slackha.github.io/
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pyJac: analytical chemical kinetic Jacobian generator

pyJac6: open-source Python package that generates 
source code used to analytically calculate constant-
pressure, mass-fraction based chemical kinetic Jacobian 
matrices. Currently supports: 

• Multi-threaded C or CUDA execution

• Built-in library generation for linking to external codes

• Python wrapper creation for (relatively) easy access 

20

" https://github.com/SLACKHA/pyJac
6K. E. Niemeyer, N. J. Curtis, & C. J. Sung. Comput. Phys. Comm. 215 (2017):188–203.  

doi:10.1016/j.cpc.2017.02.004
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6K. E. Niemeyer, N. J. Curtis, & C. J. Sung. Comput. Phys. Comm. 215 (2017):188–203.  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pyJac: analytical chemical kinetic Jacobian generator

21
6K. E. Niemeyer, N. J. Curtis, & C. J. Sung. Comput. Phys. Comm. 215 (2017):188–203.  

doi:10.1016/j.cpc.2017.02.004

Performance comparison with finite differences and TChem6

But wait, there's more!

https://doi.org/10.1016/j.cpc.2017.02.004
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pyJac: analytical chemical kinetic Jacobian generator

pyJac v2 currently under development, targeting SIMD/
SIMT vectorization on CPUs, GPUs and MICs

• Change of system to concentration-based equations to 
increase sparsity

• Both wide (“per-thread”) and deep (“per-block”) 
vectorization pursued to provide more flexible options for 
ODE integration

22
" https://github.com/SLACKHA/pyJac
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• “C”-ordered (row-major) data up to 1.67–2.13× faster than “F”-ordered 
(column-major)

• SIMD-vectorized code up to 1.99–2.72 × faster than non-vectorized baseline 
24
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accelerInt: integrators for hybrid architectures

accelerInt: collection of validated4,8 stiff and non-stiff 
integrators for the CPU and GPU

• Multithreaded CPU/wide-vectorized GPU solvers

• Built-in compatibility with pyJac (but other ODE systems 
are possible too)

• Library interface available for use with external code

" https://github.com/SLACKHA/accelerInt
8N. J. Curtis, K. E. Niemeyer, & C. J. Sung. Combust. Flame 179 (2017):312–324.  

doi:10.1016/j.combustflame.2017.02.005

https://doi.org/10.1016/j.combustflame.2017.02.005
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Integrator Type Order CPU GPU

CVODE9 Variable-order BDF Variable (max 5th) × –

Radau-IIa10 Implicit RK 5th × ×

EXP411 Semi-implicit exponential Nominally 4th × ×

EXPRB4312 Semi-implicit exponential 4th × ×
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Integrator Type Order CPU GPU

CVODE9 Variable-order BDF Variable (max 5th) × –

Radau-IIa10 Implicit RK 5th × ×

EXP411 Semi-implicit exponential Nominally 4th × ×

EXPRB4312 Semi-implicit exponential 4th × ×

9P. N. Brown, G. D. Byrne, & A. C. Hindmarsh. SIAM J. Sci. Stat. Comput. 10.5 (1989):1038–1051. 
doi:10.1137/0910062

10G. Wanner & E. Hairer. Solving Ordinary Differential Equations II. 2nd ed. Springer-Verlag, Berlin, 
1996. doi:10.1007/978-3-642-05221-7

11M. Hochbruck, C. Lubich, & H. Selhofer. SIAM J. Sci. Comput. 19.5 (1998):1552–1574. doi:
10.1137/S1064827595295337

12M. Hochbruck, A. Ostermann, & J. Schweitzer. SIAM J. Numer. Anal. 47.1 (2009):786–803. doi:
10.1137/080717717

https://doi.org/10.1137/0910062
https://doi.org/10.1007/978-3-642-05221-7
https://doi.org/10.1137/S1064827595295337
https://doi.org/10.1137/S1064827595295337
https://doi.org/10.1137/080717717
https://doi.org/10.1137/080717717
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accelerInt: planned additions

• Addition of 5th-order explicit Runge–Kutta–Cash–Karp 
and stabilized explicit second-order Runge–Kutta–
Chebyshev solvers4

• Update for new vectorized version of pyJac

• Addition of linearly-implicit methods (Rosenbrock) and 
(potentially) hybrid implicit/explicit solvers 

27
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Stiffness characterization

• Goal: reliable stiffness metric to switch between 
integration algorithms based on state & hardware

• Currently: evaluate existing stiffness metrics using 
realistic, sampled PaSR state data

28
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LeVeque, R. J. Finite Difference Methods for Ordinary and Partial Differential Equations. (2007)
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�p = eigenvalue of Jacobian
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Partially Stirred Reactor (PaSR)

• Cantera-based PaSR implementation; premixed 
combustion with fresh fuel/air mixture & pilot streams


• Pairwise mixing, reaction fractional steps, inflow/
outflow events

31https://github.com/SLACKHA/pyJac"
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Temperature vs. time

Stiffness index vs. time

Positive eigenvalue/CEMA

Stiffness ratio vs. time



Sampled data

33



Stiffness index vs. temperature
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Stiffness index vs. temperature  
2nd derivative
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Stiffness characterization: 
future work

• Investigating additional metrics (e.g., “stiffness indicator”)

• Also comparing stiffness prediction with “actual” stiffness: 
computational cost

• Next steps: use metrics to switch integrators, and 
evaluate improvement in performance

36
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Group themes

• Combustion/reactive flow modeling


• Numerical methods for CFD


• Ocean biogeochemistry/turbulence


• Smoldering combustion


• Open science
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Importance of multicomponent 
diffusion in turbulent flames

• Student: AJ Fillo; collaboration with Prof. 
Guillaume Blanquart at CalTech


• DNS supposedly “model-free”, but 
community relies on mixture-averaged (or 
simpler) approximation for diffusion


• Differences in laminar flames have been 
observed, and recent studies pointed out 
affect of differential diffusion on turbulent 
flame speed/structure
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Flux angle contours
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Conditional means
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Turbulent flame speed
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Turbulent flame speed
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Effect of kinetic model reduction 
on turbulent flame characteristics
• Student: AJ Fillo


• Common to perform chemical kinetic model reduction and 
validate against detailed model using homogeneous or 
laminar phenomena: autoignition, PSR, laminar flame speed


• Assumed that “good” comparison in these implies “good” 
performance in unsteady, turbulent flames—but this has not 
been confirmed


• Our work: compare detailed n-heptane model (174 species) 
with reduced models in premixed turbulent flames
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Turbulent flame speed

44

5×10-3 s

shift

1% reduction 20% reduction
SL,0 37.5 cm/s 36.7 cm/s
ST 69.3 cm/s 74.04 cm/s



Turbulent flame speed
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5×10-3 s

shift

1% reduction 20% reduction
SL,0 37.5 cm/s 36.7 cm/s
ST 69.3 cm/s 74.04 cm/s

~7% difference



Temperature contour
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1% reduction

𝑡/𝜏 ≈ 7


20% reduction

𝑡/𝜏 ≈ 7




OH mass fraction contour
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𝑡/𝜏 ≈ 7


20% reduction
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PDE-MHD for oxycoal 
power generation

• PDE-MHD potential for oxycoal combustion: high efficiency 
(topping cycle) & direct power extraction—no moving parts


• Questions about interaction between detonation and MHD/
seed particle ionization, and potential power generation
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PDE-MHD for oxycoal 
power generation

• Student: Matt Zaiger, collaboration with Prof. David 
Blunck at Oregon State


• Method: use CLAWpack + Cantera to solve reactive Euler 
equations
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PDE: H2+O2
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PDE: H2+O2
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Swept time-space domain 
decomposition

• Student: Daniel Magee; collaboration with Qiqi Wang (MIT) and David 
Gleich (Purdue)


• Main idea: reduce communication in distributed parallel PDE solution by 
performing all possible calculations in subdomain


• Our work: designed GPU-capable version of algorithm, tested with various 
1D PDEs

50
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Smoldering combustion of 
wood fuels

• Smoldering combustion of wood fuels not well understood—what 
parameters control ignition & propagation?


• Student: Tejas Mulky; collaboration with Prof. David Blunck @ Oregon State


• Fuels of interest: wood-like combinations of cellulose, hemicellulose, & lignin


• Peat smoldering propagation:
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Interaction between ocean 
biogeochemistry and turbulence

• Student: Luz Pacheco; collaboration with 
Katherine Smith  & Prof. Peter Hamlington @ 
CU Boulder


• Much like in combustion, in the ocean strong 
interactions occur between 
(biogeo)chemistry and turbulence


• Currently: interaction between wave-driven 
Langmuir turbulence and carbonate 
chemistry.


• Developing new solver based on FEniCS
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Effects of Langmuir Turbulence on Upper Ocean Carbonate Chemistry
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Carbonate	Chemistry

Synoptic	Scales	
(~1000km)

Mesoscales
(~100km)

Submesoscales
(~10km)

Small	Scales
(<10km)

Scales	that	must	be	
modeled	in	ESMs

Figure	1.	Range	of	scales	
within	the	ocean.	Modern	
ESMs	can	afford	to	simulate	
up	to	two	orders	of	
magnitude,	thus	processes	at	
submesoscales and	below	
must	be	modeled.	

Figure	5.	Fields	of	total	dissolved	inorganic	carbon	in	a	horizontal	x-y plane	at	the	surface	(top	
panels)	and	in	a	vertical y-z	plane	in	the	middle	of	the	domain	(bottom	panels)	600	seconds	
after	air-sea	flux	of	CO2 is	turned	on.

Table	1.	Summary	of	simulations.	Lat2 =	u*/us(0)	
[surface	friction	velocity	/	Stokes	drift	velocity].		

Future	Work:	
1. Compare	to	runs	with	both	no	chemistry	and	equilibrium	

chemistry	used	in	Earth	System	Models	(ESMs)
2. Explore	longer	time	evolution	of	carbonate	chemistry
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2Department of Mechanical, Industrial, and Manufacturing Engineering, Oregon State University
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Grand Question: What affects what our climate will look like in 10, 25,
50 years?
Hypothesis: Strong non-linear interactions exist between
biogeochemically (BGC) reactive tracers and upper ocean turbulent
processes that greatly affect the exchange rate of carbon dioxide
across the air-sea interface, the efficiency of the carbon pump, and the
overall global climate cycle.
Problem: These interactions are ‘subgrid’ in all state-of-the-art and
state-of-the-practice earth system models (ESMs) and thus their effects
must be accurately parameterized in order to improve predictions of
future climate.

Perform high-fidelity small-scale simulations of realistic upper ocean
turbulence and BGC tracers in order to better understand these
interactions and develop better models to capture their effects.
In this study, we chose to focus on understanding interactions
between wave-driven Langmuir turbulence and ocean carbonate
chemistry.

Langmuir	Turbulence

Small, 3D, non-hydrostatic turbulence due
to the tilting of vertical vorticity anomalies
by the Stokes drift shear
Promotes fast mixing, flushes out the
surface layer, and deepens the mixed layer
T ~ Ο(1 – 10 mins) L ~ Ο(1 – 100 m)

Conclusions/Future Work

We solve the wave-averaged
Boussinesq equations, which include
Stokes drift velocities due to wave
forcing1,2

Domain
§ Physical: 320m x 320m x -96m
§ Grid: 1283
§ Resolution: 2.5m x 2.5m x 0.75m

Physical Set-Up
Wind forcing (5.75 m/s) on top surface,
initial mixed layer depth at H=-30m,
uniform stratification below
Chemical Formulation
Time-dependent, seven reactive
species4

Chemical Forcing
Atmospheric CO2 flux into domain
according to Henry’s Law5, F = k(cair –
coc)
Two cases
1. w/	Stokes	drift	(La	=	0.4,	0.3,	0.2)
2. w/o Stokes drift (NS)

Figure	3. Horizontal	velocity,	vertical	velocity,	
and	temperature	fields.	

Label Langmuir	
Number	(Lat)

Surface	Stokes	
Forcing	(m/s)

NS ∞ 0.000
La04 0.4 0.032
La03 0.3 0.080
La02 0.2 0.132

Figure	4.	Vertical	Stokes	drift	velocity	profile	
for	the	different	Langmuir	cases.	

Figure	2.
Schematics	of	(a)	
various	upper	
ocean	physical	and	
biological	process,	
(b)	upper	ocean	
carbonate	
chemistry,	and	(c)	
the	counter	
rotating	cells	and	
convergent	zones	
produced	by	
Langmuir	
turbulence

mixed	layer	depth

Wind-driven	
mean	flow

Figure	6.	Flux	rate	of	CO2 across	the	air-sea	
interface	as	a	function	of	time	normalized	
by	initial	flux	rate.	

Figure	7.	Vertical	flux	of	total	dissolved	
inorganic	carbon	normalized	by	flux	rate	of	
CO2 across	air-sea	interface	600	seconds	
after	air-sea	flux	of	CO2 is	turned	on.	

CO2 reacts with water to form bicarbonate
(HCO3

-), and carbonate(CO3
2-)

This reduces the standing concentration of
CO2, allowing additional CO2 to flux across
the air-sea interface
Individual reactions are fast, but the
cumulative process is T ~ Ο(1 min)

Potential	for	strong	interactions

Total Dissolved Inorganic Carbon (TDIC)
Normalized Air-Sea Flux Rate Normalized Vertical Flux of TDIC

Increasing Langmuir Strength

Increasing	
Langmuir	
strength

Increasing	
Langmuir	
strength

Langmuir	turbulence	pulls	carbon	deeper	into	the	mixed	layer	
in	a	shorter	period	of	time
As	Langmuir	turbulence	strength	is	increased,		near	surface	
mixing	becomes	fast	enough	to	rival	the	air-sea	flux	rate	of	
CO2.	This	flushes	out	the	surface	layer	and	provides	a	favorable	
gradient	for	increased	CO2 flux	from	the	atmosphere	to	the	
ocean.
Without	the	presence	of	Langmuir	turbulence,	the	surface	
layer	becomes	saturated	and	air-sea	flux	rate		of	CO2 rapidly	
drops	off
When	developing	sub-grid	scale	parameterizations,	neglecting	
Langmuir	turbulence	and	its	interactions	with	carbonate	
chemistry	could	result	in	an	error	in	estimating	air-sea	
interface	CO2 flux	rates

K Smith, P Hamlington, K Niemeyer, B Fox-Kemper, & N Lovenduski. “Effects of Langmuir Turbulence on Upper Ocean 
Carbonate Chemistry”, presented at 21st Conference on Atmospheric and Oceanic Fluid Dynamics (2017), Portland OR
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50 years?
Hypothesis: Strong non-linear interactions exist between
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mixing	becomes	fast	enough	to	rival	the	air-sea	flux	rate	of	
CO2.	This	flushes	out	the	surface	layer	and	provides	a	favorable	
gradient	for	increased	CO2 flux	from	the	atmosphere	to	the	
ocean.
Without	the	presence	of	Langmuir	turbulence,	the	surface	
layer	becomes	saturated	and	air-sea	flux	rate		of	CO2 rapidly	
drops	off
When	developing	sub-grid	scale	parameterizations,	neglecting	
Langmuir	turbulence	and	its	interactions	with	carbonate	
chemistry	could	result	in	an	error	in	estimating	air-sea	
interface	CO2 flux	rates

Flux rate of CO2 across the air-sea interface as a function of 
time normalized by initial flux rate
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pyMARS: chemical kinetic model 
reduction software

• Students: Phillip Mestas, Parker Clayton


• Under development: Python & Cantera-based, open-
source version of MARS for automatically reducing 
chemical kinetic models


• Currently supports directed relation graph (DRG) method; 
DRG with error propagation and sensitivity analysis being 
added
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ChemKED: data format for fundamental 
combustion measurements

• Student: Morgan Mayer; collaboration with Dr. 
Bryan Weber @ Univ. Connecticut


• Human- and machine-readable, open standard 
for describing fundamental combustion 
experiments—currently, autoignition


• PyKED: Python-based software for validating 
and interacting with ChemKED files


• Also building database of files: Prometheus
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JOSS: Journal of Open 
Source Software

• JOSS publishes (short) software articles


• Peers review article, software, and associated artifacts


• JOSS has an ISSN (2475-9066) and software articles 
receive Crossref DOI upon publication


• JOSS celebrated its first birthday in May 🎂


• 111 articles published in first year


• Now: 123 published articles and 68 submitted
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Group themes

• Combustion/reactive flow modeling


• Numerical methods for CFD


• Ocean biogeochemistry/turbulence


• Smoldering combustion


• Open science
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Thank you! 
Questions?
https://git.io/nrg#
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