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Abstract

In this paper, we find all the sums of three Fibonacci numbers which are close to a
power of 2. This paper continues and extends previous work of Hasanalizade.

1. Introduction

The Fibonacci sequence {Fn}n≥0 is the binary recurrence sequence given by

Fn+2 = Fn+1 + Fn for n ≥ 0

with the initial conditions F0 = 0 and F1 = 1. The Fibonacci numbers are famous

for possessing wonderful and amazing properties. The problem of determining all

integer solutions to Diophantine equations with Fibonacci numbers has piqued the

curiosity of mathematicians and there is a wide literature on this subject. For

instance, Bugeaud et al. [4] studied the Fibonacci numbers, that is, perfect powers

and found that 1, 2 and 8 are the only powers of 2 in the Fibonacci sequence. Later,

Bravo and Luca [3] solved the Diophantine equation Fn +Fm = 2a in non-negative

integers n,m and a with n ≥ m. Following that, Bravo and Bravo [1] found all

solutions of the Diophantine equation Fn + Fm + Fl = 2a in non-negative integers

n,m, l and a with n ≥ m ≥ l. Subsequently, Chim and Ziegler [6] determined all

solutions of the Diophantine equations

Fn1
+ Fn2

= 2a1 + 2a2 + 2a3

and

Fm1
+ Fm2

+ Fm3
= 2t1 + 2t2
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in non-negative integers n1, n2,m1,m2,m3, a1, a2, a3, t1, t2 with n1 ≥ n2,m1 ≥
m2 ≥ m3, a1 ≥ a2 ≥ a3 and t1 ≥ t2.

An integer n is said to be close to a positive integer m if it satisfies

|n−m| <
√
m.

By using the above concept Chern and Cui [5] found all the Fibonacci numbers

which are close to a power of 2. More precisely they found all solutions of the

inequality

|Fn − 2m| < 2m/2.

Later, Bravo et al. [2] extended the previous work of [5] by taking into consideration

the k-generalized Fibonacci sequence {F (k)
n } and solved the Diophantine equation

|F (k)
n − 2m| < 2m/2

in non-negative integers n, k,m with k ≥ 2 and n ≥ 1.

Recently, Hasanlizade [8] extended the previous work of [5] by considering the

sum of Fibonacci numbers and studied the sum of two Fibonacci numbers close to

a power of 2. In particular, he solved

|Fn + Fm − 2a| < 2a/2,

in positive integers n,m and a with n ≥ m.

Motivated by the above literature, we extend the work of [5] and [8], and search

for the sum of three Fibonacci numbers which are close to a power of 2. More

specifically, we study the Diophantine inequality

|Fn + Fm + Fl − 2a| < 2a/2, (1)

in positive integers n,m, l and a with n ≥ m ≥ l.
In particular, our main result concerning (1) is the following. A list of solutions

of (1) is given in Table 1.

Theorem 1. There are exactly 280 solutions (n,m, l, a) ∈ N4 to Diophantine In-

equality (1). All the solutions satisfy n ≤ 42 and a ≤ 28.

2. Auxiliary Results

In this section, we will review several well-known results which will be used later.

The Binet formula for the Fibonacci sequence is

Fn =
αn − βn

α− β
(n ≥ 0), (2)
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where α = 1+
√
5

2 and β = −1
α are the roots of the characteristic equation x2−x−1 =

0.

Lemma 1. For every positive integer n ≥ 1, we have

αn−2 ≤ Fn ≤ αn−1. (3)

Lemma 2 ([10, Equation (5)]). For every positive integer n > 1, we have

0.38αn ≤ Fn ≤ 0.48αn.

To prove our main result, we use a few applications of a Baker-type lower bound

for non-zero linear forms in logarithms of algebraic numbers. We state a result of

Matveev [9] about the general lower bound for linear forms in logarithms. Applying

a version of the Baker-Davenport reduction method we reduce the large bound. We

first recall some basic notations from algebraic number theory.

Let η be an algebraic number of degree d with minimal primitive polynomial

f(X) := a0X
d + a1X

d−1 + · · ·+ ad = a0

d∏
i=1

(X − η(i)) ∈ Z[X],

where the ai’s are relatively prime integers, a0 > 0, and the η(i)’s are conjugates of

η. Then

h(η) =
1

d

(
log a0 +

d∑
i=1

log
(

max{|η(i)|, 1}
))

(4)

is called the logarithmic height of η. In particular, if η = p/q is a rational number

with gcd(p, q) = 1 and q > 0, then h(η) = log max{|p|, q}.
With these established notations, Matveev (see [9] or [4, Theorem 9.4]), proved

the ensuing result.

Theorem 2. Let K be a number field of degree D over Q, γ1, γ2, . . . , γt be positive

real numbers of K, and b1, ..., bt rational integers. Put

B ≥ max{|b1|, |b2|, . . . , |bt|},

and

Λ := γb11 . . . γbtt − 1.

Let A1, ..., At be real numbers such that

Ai ≥ max{Dh(γi), | log γi|, 0.16}, i = 1, . . . , t.

Then, assuming that Λ 6= 0, we have

|Λ| > exp
(
−1.4× 30t+3 × t4.5 ×D2(1 + logD)(1 + logB)A1 · · ·At

)
.
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The following criterion of Legendre, a well-known result from the theory of Dio-

phantine approximation, is used to reduce the upper bounds on variables that are

too large.

Lemma 3. Let τ be an irrational number, p0
q0
, p1q1 ,

p2
q2
, . . . be all the convergents of

the continued fraction of τ , and M be a positive integer. Let N be a non-negative

integer such that qN > M . Then putting a(M) := max{ai : i = 0, 1, 2, . . . , N}, the

inequality ∣∣∣ τ − r

s

∣∣∣> 1

(a(M) + 2)s2
,

holds for all pairs (r, s) of positive integers with 0 < s < M .

Another result which will play an important role in our proof is due to Dujella

and Pethö [7, Lemma 5 (a)].

Lemma 4. Let M be a positive integer, let p/q be a convergent of the continued

fraction of the irrational γ such that q > 6M , and let A,B, µ be some real numbers

with A > 0 and B > 1. Let ε := ||µq|| −M ||γq||, where || · || denotes the distance

from the nearest integer. If ε > 0, then there exists no solution to the inequality

0 < |uγ − v + µ| < AB−w,

in positive integers u, v and w with

u ≤M and w ≥ log(Aq/ε)

logB
.

Lemma 5. For any non-zero real number x, we have the following:

(a) 0 < x < |ex − 1|.
(b) If x < 0 and |ex − 1| < 1/2, then |x| < 2|ex − 1|.

3. Proof of Theorem 1

3.1. Upper Bound for n

First of all, observe that (n,m, l, a) is a solution of (1) for m = l = 1 and m = l = 2.

So from now on, we assume that m ≥ 2 and l ≥ 2. Since Fn + Fn−1 = Fn+1, we

can assume that n > m+ 1 and n > l + 1. In particular, n−m ≥ 2 and n− l ≥ 2.

Proposition 1. There are exactly 280 solutions (n,m, l, a) ∈ N4 to (1) with n ≤
550. All solutions satisfy n ≤ 42 and a ≤ 28. The list of solutions is given in Table

1.

Proof. The solutions were found by a brute force search with Mathematica.
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|Fi + F1 + F1 − 2| <
√
2, i = 1, 2 |F10 + F4 + Fi − 26| < 23, i = 1, 2, 3, 4

|F2 + F2 + Fi − 2| <
√
2, i = 1, 2 |F10 + F5 + Fi − 26| < 23, i = 1, 2, 3, 4, 5

|Fi + F1 + F2 − 22| < 2, i = 1, 2 |F10 + F6 + Fi − 26| < 23, i = 1, 2, · · · , 6
|F2 + F2 + Fi − 22| < 2, i = 1, 2 |F10 + F7 + Fi − 26| < 23, i = 1, 2, 3, 4

|F3 + F1 + F1 − 22| < 2 |F10 + F9 + F9 − 27| < 27/2

|F3 + F2 + Fi − 22| < 2, i = 1, 2 |F10 + F10 + Fi − 27| < 27/2, i = 6, 7, 8

|F3 + F3 + Fi − 22| < 2, i = 1, 2 |F11 + F8 + Fi − 27| < 27/2, i = 6, 7, 8

|F3 + F3 + F3 − 23| < 23/2 |F11 + F9 + Fi − 27| < 27/2, i = 1, 2, . . . , 7

|F4 + F1 + F1 − 22| < 2 |F11 + F11 + F11 − 28| < 24

|F4 + F2 + Fi − 22| < 2, i = 1, 2 |F12 + F10 + F10 − 28| < 24

|F4 + F3 + Fi − 23| < 23/2, i = 1, 2, 3 |F12 + F11 + Fi − 28| < 24, i = 6, 7, 8, 9

|F4 + F4 + Fi − 23| < 23/2, i = 1, 2, 3, 4 |F13 + F5 + Fi − 28| < 24, i = 4, 5

|F5 + F1 + F1 − 23| < 23/2 |F13 + F6 + Fi − 28| < 24, i = 1, 2, · · · , 6
|F5 + F2 + Fi − 23| < 23/2, i = 1, 2 |F13 + F7 + Fi − 28| < 24, i = 1, 2, · · · , 7
|F5 + F3 + Fi − 23| < 23/2, i = 1, 2, 3 |F13 + F8 + Fi − 28| < 24, i = 1, 2, . . . , 7

|F5 + F4 + Fi − 23| < 23/2, i = 1, 2, 3 |F13 + F9 + Fi − 28| < 24, i = 1, 2, 3, 4

|F5 + F5 + Fi − 24| < 22, i = 4, 5 |F13 + F12 + F12 − 29| < 29/2

|F6 + F1 + F1 − 23| < 23/2 |F13 + F13 + Fi − 29| < 29/2, i = 9, 10

|F6 + F2 + Fi − 23| < 23/2, i = 1, 2 |F14 + F11 + Fi − 29| < 29/2, i = 9, 10

|F6 + F4 + Fi − 24| < 22, i = 3, 4 |F14 +F12 +Fi − 29| < 29/2, i = 1, 2, · · · , 7
|F6 + F5 + Fi − 24| < 22, i = 1, 2, 3, 4, 5 |F15 +F14 +Fi − 210| < 25, i = 6, 7, 8, 9, 10

|F6 + F6 + Fi − 24| < 22, i = 1, 2, 3, 4 |F16 + F4 + F4 − 210| < 25

|F7 + F1 + F1 − 24| < 22 |F16 + F5 + Fi − 210| < 25, i = 1, 2, 3, 4, 5

|F7 + F2 + Fi − 24| < 22, i = 1, 2 |F16 + F6 + Fi − 210| < 25, i = 1, 2, · · · , 6
|F7 + F3 + Fi − 24| < 22, i = 1, 2, 3 |F16 + F7 + Fi − 210| < 25, i = 1, 2, · · · , 7
|F7 + F4 + Fi − 24| < 22, i = 1, 2, 3, 4 |F16 + F8 + Fi − 210| < 25, i = 1, 2, . . . , 8

|F7 + F5 + Fi − 24| < 22, i = 1, 2 |F16 + F9 + Fi − 210| < 25, i = 1, 2, . . . , 9

|F7 + F6 + F6 − 25| < 25/2 |F16 + F10 + Fi − 210| < 25, i = 1, 2, · · · , 7
|F7+F7+Fi−25| < 25/2, i = 1, 2, 3, 4, 5, 6 |F16 + F16 + Fi − 210| < 25, i = 9, 10, 11

|F8 + F4 + F4 − 25| < 25/2 |F17 + F13 + F13 − 211| < 211/2

|F8 + F5 + Fi − 25| < 25/2, i = 1, 2, 3, 4, 5 |F17 + F14 + Fi − 211| < 211/2, i = 9, 10, 11

|F8+F6+Fi−25| < 25/2, i = 1, 2, 3, 4, 5, 6 |F20 + F16 + F14 − 213| < 213/2

|F8 + F7 + Fi − 25| < 25/2, i = 1, 2, 3, 4 |F21 + F21 + F21 − 215| < 215/2

|F8 + F8 + F8 − 26| < 23 |F22 + F21 + F19 − 215| < 215/2

|F9 + F1 + F1 − 25| < 25/2 |F23 + F18 + F17 − 215| < 215/2

|F9 + F2 + Fi − 25| < 25/2, i = 1, 2 |F23+F19+Fi−215| < 215/2,i = 1, 2, . . . , 11

|F9 + F3 + Fi − 25| < 25/2, i = 1, 2 |F24 + F22 + F17 − 216| < 28

|F9 + F7 + F7 − 26| < 23 |F26 + F20 + F18 − 217| < 217/2

|F9 + F8 + Fi − 26| < 23, i = 3, 4, 5, 6, 7 |F29 + F20 + F18 − 219| < 219/2

|F9 + F9 + Fi − 26| < 23, i = 1, 2, 3, 4 |F41 + F40 + F29 − 228| < 214

|F10 + F1 + F1 − 26| < 23 |F42 + F28 + F27 − 228| < 214

|F10 + F2 + Fi − 26| < 23, i = 1, 2 |F42+F29+Fi−228| < 214, i = 1, 2, . . . , 22

|F10 + F3 + Fi − 26| < 23, i = 1, 2, 3

Table 1: Solutions of Inequality (1)
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Due to Proposition 1, for the rest of paper, we assume that n > 550. Using

Lemma 2 for n > m > l > 1, we have

0.38αn < Fn < Fn + Fm + Fl < 0.48αn + 0.48αn−1 + 0.48αn−2 < 0.97αn. (5)

Let us now get a relationship between n and a. Without affecting generality, we

may now assume a ≥ 2. Combining (1) with the upper bound of (5), we get that

2a−1 ≤ 2a − 2
a
2 < Fn + Fm + Fl < 0.97αn < αn. (6)

When we combine (1) with the lower bound of (5), we get

0.38αn < Fn + Fm + Fl < 2a + 2
a
2 < 2a+1.

Thus

n
logα

log 2
+

log 0.38

log 2
− 1 < a < n

logα

log 2
+ 1, (7)

where logα
log 2 = 0.6942 . . . . Hence, we have a < n. Using (2) in (1), we get

αn + αm + αl√
5

− Fn + Fm + Fl =
βn + βm + βl√

5
. (8)

Taking the absolute values on both sides in (8), we obtain∣∣∣∣αn(1 + αm−n + αl−n)√
5

− 2a
∣∣∣∣ < |β|n + |β|m + |β|l√

5
+ 2

a
2 <

3

5
+ 2

a
2 < 2

a
2+1,

for all n ≥ 4 and m, l ≥ 2. Dividing both sides of the above relation by 2a, we get∣∣∣∣αn(1 + αm−n + αl−n)

2a
√

5
− 1

∣∣∣∣ < 2−
a
2+1. (9)

For the left-hand side, we apply Theorem 2 with the following data. Set

Λ1 := 2−aαn
(1 + αm−n + αl−n)√

5
− 1.

Note that Λ1 6= 0. If Λ1 = 0, we would get the relation

2a
√

5 = αn + αm + αl. (10)

Conjugating the above relation in Q(
√

5), we get

−2a
√

5 = βn + βm + βl. (11)

Equations (10) and (11) lead to

αn < αn + αm + αl = |βn + βm + βl| < |βn|+ |βm|+ |βl| < 1,
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which is impossible for positive integers n. Hence Λ1 6= 0. We take t := 3,

γ1 := 2, γ2 := α, γ3 :=
(1 + αm−n + αl−n)√

5
,

and

b1 := −a, b2 := n, b3 := 1.

Note that K := Q(
√

5) contains γ1, γ2, γ3 and has D := [K : Q] = 2. Since a < n,

we can take B := max{|b1|, |b2|, |b3|} = n. Since h(γ1) = log 2 and h(γ2) = logα
2 , it

follows that we can take A1 := 1.4 > Dh(γ1) and A2 := 0.5 > Dh(γ2). To estimate

h(γ3), we begin by observing that

γ3 =
(1 + αm−n + αl−n)√

5
<

3√
5

and γ−13 =

√
5

(1 + αm−n + αl−n)
<
√

5,

so it follows that | log γ3| < 1. Using the properties of logarithmic height, we get

h(γ3) ≤ log
√

5 + |m− n|
(

logα

2

)
+ |l − n|

(
logα

2

)
+ 2 log 2

= log(4
√

5) + (n−m)

(
logα

2

)
+ (n− l)

(
logα

2

)
.

Thus, we can take A3 := 5 + (2n−m− l) logα > max{2h(γ3), | log γ3|, 0.16}. Then

by using Theorem 2, we have

log |Λ1| > −1.4× 306 × 34.5 × 22 × (1 + log 2)× (1 + log n)× 1.4× 0.5×
(5 + (2n−m− l) logα)

> −1.4× 1012 × log n× (5 + (2n−m− l) logα) ,

where 1 + log n < 2 log n holds for all n ≥ 3. By comparing the above inequality

with (9), we get(a
2
− 1
)

log 2 < 1.4× 1012 × log n× (5 + (2n−m− l) logα). (12)

Now consider the second linear form in logarithms by rewriting (8) differently.

Using (2), we get that

αn√
5
− (Fn + Fm + Fl) =

βn√
5
− Fm + Fl.

Again, combining the above relation with (1), we get that∣∣∣∣ αn√5
− 2a

∣∣∣∣ < 2
a
2 +
|β|n√

5
+ Fm + Fl, (13)
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where |β|n < 1/2 for all n ≥ 2. Dividing both sides of Inequality (13) by αn√
5

and

taking into account that α >
√

2 and n > m > l, we obtain

|1− 2aα−n
√

5| < 2
a
2

√
5

αn
+

√
5

2αn
+

√
5

αn−m
+

√
5

αn−l

< 2
√

5 max{αm−n, αl−n, αa−n}. (14)

For the left-hand side, we apply Theorem 2 with the following data. Set

Λ2 := 2aα−n
√

5− 1.

Note that Λ2 6= 0. If Λ2 = 0, then we have that 2a = αn√
5
. So α2n ∈ Z, which is not

possible. Therefore Λ2 6= 0. We take t := 3,

γ1 := 2, γ2 := α, γ3 :=
√

5,

and

b1 := a, b2 := −n, b3 := 1.

Note that K := Q(
√

5) contains γ1, γ2, γ3 and has D := 2. Since a < n, we deduce

that B := max{|b1|, |b2|, |b3|} = n. The logarithmic heights for γ1, γ2 and γ3 are

calculated as follows:

h(γ1) = log 2, h(γ2) =
logα

2
and h(γ3) = log

√
5.

Thus, we can take

A1 := 1.4, A2 := 0.5 and A3 := 1.7.

As before, applying Theorem 2, we have

log |Λ2| > −1.4× 306 × 34.5 × 22 × (1 + log 2)× (1 + log n)× 1.4× 0.5× 1.7

> −2.31× 1012 × log n.

Comparing the above inequality with (14) implies that

min{(n−m) logα, (n− l) logα, (n− a) logα} < 2.4× 1012 log n.

Now the argument splits into three cases.

Case 1. min{(n−m) logα, (n− l) logα, (n− a) logα} = (n−m) logα.

In this case, we have

(n−m) logα < 2.4× 1012 log n.
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Case 2. min{(n−m) logα, (n− l) logα, (n− a) logα} = (n− l) logα.

In this case, we have

(n− l) logα < 2.4× 1012 log n.

Now by using Case 1 and Case 2 in (12), we have(a
2
− 1
)

log 2 < 1.4× 1012 × log n× (5 + (2n−m− l) logα)

< 1.4× 1012 × log n× (5 + 4.8× 1012 log n)

< 6.86× 1024 log2 n.

Combining the above with the lower bound of (7) and by a calculation in Mathe-

matica, we get

a < 9× 1028 and n < 1.87× 1029.

Case 3. min{(n−m) logα, (n− l) logα, (n− a) logα} = (n− a) logα.

In this case, we have

(n− a) logα < 2.4× 1012 log n. (15)

Note that the upper bound of (7) yields

n− a > n

(
1− logα

log 2

)
− 1. (16)

From (15) and (16), we obtain

a < 3.84× 1014 and n < 5.53× 1014.

Thus, in all the three cases, we have

a < 9× 1028 and n < 1.87× 1029.

Now we need to reduce the bound of n.

3.2. Reducing the Bound on n

Let us assume that n −m > 550, n − l > 550 and n − a > 550. In order to apply

Lemma 2, we put

z1 := a log 2− n logα+ log
√

5.

Since we have assumed that min{n−m,n− l, n−a} > 550, we have |ez1−1| < 1/2.

Thus, by Lemma 2, we have that |z1| < 2|ez1 − 1|. Replacing z1 by its formula and

by (14), we get that

|a log 2− n logα+ log
√

5| < 4
√

5

αmin{n−m,n−l,n−a} .
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Dividing both sides of the above inequality by logα, we can conclude

0 <

∣∣∣∣∣a log 2

logα
− n+

log
√

5

logα

∣∣∣∣∣ < 4
√

5

logα
· α−w, (17)

where w = min{n−m,n− l, n− a}. Putting now

γ :=
log 2

logα
, µ :=

log
√

5

logα
, A :=

4
√

5

logα
and B := α,

the above Inequality (17) implies

0 < |aγ − n+ µ| < AB−w.

It is clear that γ is an irrational number. We also put M := 9× 1028 which is an

upper bound for a. We find that the convergent p
q = p69

q69
is such that q = q69 > 6M .

By using this we have that ε = ||µq69|| −M ||γq69|| > 0. Therefore

n−m <
log
(

4
√
5q

ε logα

)
logα

< 157

or

n− l <
log
(

4
√
5q

ε logα

)
logα

< 157

or

n− a <
log
(

4
√
5q

ε logα

)
logα

< 157.

Thus, we have that either n−m < 157 or n < 517. The latter case contradicts our

assumption that n > 550. Inserting the upper bound for n −m into (12), we get

that a < 3.93× 1015. Finally, we shall use Inequality (9) to improve the bound on

n, where we put

z2 := a log 2− n logα+ logψ(n−m,n− l),

where ψ(t, s) :=
√

5(1 + α−t + α−s)−1. Therefore, (9) implies that

|1− ez2 | < 2

2a/2
. (18)

Note that z2 6= 0. Thus, we distinguish the following cases. If z2 > 0, then

0 < z2 < ez2 − 1 ≤ 2

2a/2
.

Suppose z2 < 0. Then, from (18) we have that |1−ez2 | < 1/2 and therefore e|z2| < 2.

Since z2 < 0, we have

0 < |z2| ≤ e|z2| − 1 = e|z2||ez2 − 1| < 4

2a/2
.
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In any case, we have that

0 < |z2| ≤
4

2a/2
.

Replacing z2 in the above inequality and dividing both sides by logα, we conclude

that

0 <

∣∣∣∣a log 2

logα
− n+

logψ(n−m,n− l)
logα

∣∣∣∣ < 4

logα
· 2−a/2. (19)

Here we take M := 3.93× 1015 which is an upper bound for a. By virtue of Lemma

2 with

γ :=
log 2

logα
, µ :=

logψ(n−m,n− l)
logα

, A :=
4

logα
, B :=

√
2

to Inequality (19) for all choices n − m ∈ {1, . . . , 157} and n − l ∈ {1, . . . , 157}
except when

(n−m,n− l) ∈ {(0, 3), (1, 1), (1, 5), (3, 0), (3, 4), (4, 3), (5, 1), (7, 8), (8, 7)}.

Furthermore, with the help of Mathematica, we find that if (n,m, l, a) is a possible

solution of (1), excluding those cases mentioned previously, then n ≤ 550. This

is false because we have assumed n > 550. Finally, we deal with the special cases

where

(n−m,n− l) ∈ {(0, 3), (1, 1), (1, 5), (3, 0), (3, 4), (4, 3), (5, 1), (7, 8), (8, 7)}.

As can be seen, there are certain symmetric cases and there is no significant

difference in their study. Therefore, we deal with the cases (n − m,n − l) ∈
{(1, 1), (3, 0), (4, 3), (5, 1), (8, 7)}. For these special cases, we have that

logψ(t, s)

logα
=



0 if (t, s) = (1, 1);

0 if (t, s) = (3, 0);

1 if (t, s) = (4, 3);

2− log 2
logα if (t, s) = (5, 1);

3− log 2
logα if (t, s) = (8, 7).

Note that, when we apply Lemma 2 to the Inequality (19), the parameters γ and

µ appearing in Lemma 2 are linearly dependent and the corresponding value of ε is

always negative. When n−m = 1 and n− l = 1 from (19), we have

0 < |aγ − n| < 4

logα
· 2−

1
2 (n logα

log 2 + log 0.38
log 2 −1). (20)

We recall that a < 3.93 × 1015. Let [a0, a1, a2, a3, a4, . . . ] = [1, 2, 3, 1, 2, . . . ] be

the continued fraction of γ. A quick search using Mathematica reveals that

q34 < 3.93× 1015 < q35.
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Furthermore, aM := max{ai : i = 0, 1, . . . , 35} = a17 = 134. So by Lemma 2 we

have

|aγ − n| > 1

(aM + 2)a
.

Comparing estimates (19) and (20) we get that n < 112. Similarly, one can get

n < 112 in all other cases. This again contradicts our assumption that n > 550.

Hence, the result is proved.

4. The Code

In this section, for the sake of completeness, we present the Mathematica code used

to confirm Proposition 1:

Catch [ Do[{n ,m, l , a } ;
I f [ Abs [ F ibonacc i [ n ] + Fibonacc i [m] + Fibonacc i [ l ] − 2ˆ( a ) ]
< 2ˆ( a /2) && n >= m >= l , Pr int [{n ,m, l , a } ] ] , { n ,1 , 550} ,
{m,1 ,548} ,{ l , 1 , 548} ,{ a , 1 , 1 0 0 } ] ]

Acknowledgement. We would like to express our gratitude to the referee for the

comments which improved the quality of this paper.
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