
1. Bundled References

In this paper we address the challenge of providing linearizablerange query operations for linked data

structures by introducing a new building block; we call bundled references. Using bundled references

provides range queries with a path through the data structure consistent with their linearization point. Our

design guarantees that range queries only traverse nodes belonging to their snapshot and that they never

block writers. With multi-version concurrency control (MVCC) in mind, we implement our technique in three

data structures. We experimentally evaluate the performance of our bundled linkedlist, skip list, and binary

search tree, and integrate them as indexes in the DBx1000 in-memory database.

2. Implementation notes

This work graciously builds on a benchmark developed by Arbel-Raviv and Brown's work

(https://bitbucket.org/trbot86/implementations/src/master/cpp/range_queries/) to provide linearizable

range queries in linked data structures. We use their codebase as a starting point and implement our

technique on top of the existing framework. The core of our bundling implementation is contained in the

'bundle' directory, which implements the global structures as well as necessary functions of bundling. The

three data structures we implement are found in 'bundled_*' directories. The scripts necessary to produce

the plots found in our paper are included under the 'microbench' directory.

3. Getting Started Guide

a. Important files and directories

Implementation

./bundle implements the bundling interface as a linked list of bundle entries. In addition to the linked list

bundle, there is an experimental cirular buffer bundle (not included in the paper) as well as an unsafe

version that eliminates the overhead of ensuring bundle consistency for comparison.

./bundle_lazylist, ./bundle_skiplistlock and ./bundle_citrus each implement a data

structure to which we apply bundling. Note that we do not apply our technique to the remaining data

structures (which are lock-free) because our current bundling implementation would impose blocking.

./vcas_lazylist, ./vcas_skiplist_lock, and ./vcas_citrus each implement our porting of vCAS

to lock-based data structures for the evaluation.

Experiments

config.mk is the primary configuration file and is used across all experiments. Users will need to update

this file to match their system (more on this later).

The experiments that we report in the paper are located in the following directories.

./microbench tests each data structure in isolation.

./macrobench ports DBx1000 to include the implemented data structures.



Both of the above experiments are run by using their respective ./runscript.sh scripts.

Generated files

experiment_list.txt is generated by the microbenchmark, resides in ./microbench and contains the

list of experiments to run.

./microbench/data and ./macrobench/data are the destination directories for all saved data during

experiments. This is also where automatically generated .csv files will be saved when plotting the results.

./figures stores all generated plots. It is split first into the respective experiments and then into the

data structures used. Note that the generated plots are saved as interactive HTML files and should be

opened using a browser.

b. Requirements

The experiments from the paper were executed on a 4-socket machine with Intel Xeon Platinum 8160

processors running Ubuntu 20.04. However, we also verified our results on a dual-socket machine with Intel

Xeon E5-2630 v3 processors running Ubuntu 18.04. The C++11 libraries are requried to build and run the

experiments, while the Python libraries are used for plotting results.

Unix Utilities

make (e.g., sudo apt install make)

dos2unix (e.g., sudo apt install dos2unix)

bc (e.g., sudo apt install bc)

C++ Libraries:

libnuma (e.g., sudo apt install libnuma-dev)

libjemalloc (e.g., sudo apt install libjemalloc-dev)

libpapi (e.g., sudo apt install libpapi-dev)

Python libraries:

python (v3.10)

plotly (v5.1.0)

psutil (v5.8.0)

requests (v2.26.0)

pandas (v1.3.4)

absl-py (v0.13.0)

The above libraries can be installed with Miniconda, whose installation instructions can be found here

(https://docs.conda.io/en/latest/miniconda.html). Generally speaking, you will download the appropriate

installer for your machine, run the install script, and follow the prompts. After it is installed, use the

following commands to prepare the environment needed for plotting output.

conda create -n paper63 python=3 
conda activate paper63 
conda install plotly psutil requests pandas absl-py 

https://docs.conda.io/en/latest/miniconda.html


In order to reproduce our results, it is necessary to link against jemalloc. For convenience, our scripts

assume that a symbolic link is available in the lib subdirectory. If you already have it installed on your

system you can create a link to the shared library in lib so that the scripts can locate it. Otherwise, you can

use the following command to install it in the previously configured conda environment and link it. Note

that we assume the commands are run from the project's root directory.

conda install -c conda-forge jemalloc 
ln -s $(conda info --base)/envs/paper63/lib/libjemalloc.so 
./lib/libjemalloc.so 

Docker. As a convenience, we also include a Dockerfile that will handle all of the setup steps outlined

above. Note that running in a Docker container may inhibit performance, so we advise running on bare

metal if you wish to reproduce our results. The Dockerfile can be used as a guide when doing so. Please see

the comments in the Dockerfile for more detailed information. Once Docker is installed on your machine

following the instructions here (https://docs.docker.com/engine/install/), you can build and run the

container in the background by running the following commands from the root directory, where the

Dockerfile is located.

docker build -t bundledrefs . 
docker run -d -p 8022:22 bundledrefs 

After, you can ssh into the container using

ssh -p 8022 bundledrefs@localhost 

and provide the password bundledrefs. From there, you will be able to follow the rest of this README as

usual.

c. Configuration

Note: any warnings regarding hardware transactional memory (HTM) can be safely ignored since we do not

compare against it.

Once the C++ dependencies have been installed, you can begin to test the microbenchmark. First, configure

the build with the config.mk file. There are six configuration parameters.

allocator is the path (relative to microbench/runscript.sh and

macrobench/runscript.sh) to the allocator to dynamically load, if any.

(Default=../lib/libjemalloc.so)

maxthreads is the maximum number of threads to be tested during the experiments

maxthreads_powerof2 this is used for bookkeeping and is the next largest power of two from

maxthreads

https://docs.docker.com/engine/install/


threadincrement is the sampling period of threads between 0 and maxthreads for each

experiment

cpu_freq_ghz is the system's CPU frequency in GHz (used by the macrobenchmark)

pinning_policy is a string that starts with "-bind " (or left blank) and maps threads to cores during

execution

Configuration Tips

1. Together, maxthreads and threadincrement determine the number of samples generated during

experiments. For example, on a 44 core machine with maxthreads=44 and threadincrement=8
the resulting numbers of threads tested will be [1, 8, 16, 32, 40, 44]. Both 1 and maxthreads are

always included, regardless of whether maxthreads is a multiple of threadincrement.

2. The easiest way to determine both cpu_freq_ghz and pinning_policy is to execute lscpu on

the command line. The first is directly used from the line indicating CPU frequency. The latter is a

comma separated list of the NUMA node mappings. Consider a hypothetical machine with NUMA

zones of four cores each that has the folling mappings: NUMA 0: 1,3,5,7 and NUMA 1: 0,2,4,6.

The pinning policy that mimics our setup would then be pinning_policy="-bind
1,3,5,7,0,2,4,6. If pinning_policy is left blank then no specific policy is used.

3. The following command will extract the cores associated with each NUMA zone and make a comma

deliminated list that follows our pinning policy of filling NUMA zones. The output can then be copy

and pasted into config.mk.

lscpu | grep -P "NUMA node[[:digit:]]" | sed -E 's/.*:\W*([0-9]*)/\1/g' | 
tr '\n' ',' | sed 's/,$/\n/g' | xargs echo "-bind" 

d. Building the Project

Once configured, build the binaries for each of the data structures and range query techniques with the

following:

cd microbench 
make -j lazylist skiplistlock citrus rlu 

The first three arguments to the make command (i.e., lazylist, skiplistlock, citrus) build the EBR-

based approach from Arbel-Raviv and Brown, the vCAS approach of Wei et al., our bundling approach, and

an unsafe version of each that has not consistency guarantees for range queries. The next argument (i.e.,

rlu) builds the RLU-based lazy-list and Citrus tree.

e. Running Individual Experiments

Finally, run individual tests to obtain results for a given configuration. The following command runs a

workload of 5% inserts (-i 5), 5% deletes (-d 5), 80% gets and 10% range queries (-rq 10) on a key

range of 100000 (-k 100000). Each range query has a range of 50 keys (-rqsize 50) and is prefilled (-p)

based on the ratio of inserts and deletes. The execution lasts for 1s (-t 1000). There are no dedicated



range query threads (-nrq 0) but there are a total of 8 worker threads (-nwork 8) and they are bound to

cores following the bind policy (-bind 0-7,16-23,8-15,24-31). Do not forget to load jemalloc and

replace <hostname> with the correct value.

env LD_PRELOAD=../lib/libjemalloc.so TREE_MALLOC=../lib/libjemalloc.so \  
./<hostname>.skiplistlock.rq_bundle.out -i 5 -d 5 -k 100000 -rq 10 \  
-rqsize 50 -p -t 1000 -nrq 0 -nwork 8 -bind 0-7,16-23,8-15,24-31 

For more information on the input parameters to the microbenchmark itself see README.txt.old, which is

for the original benchmark implementation. We did not change any arguments.

4. Results Validation

Corresponding Figures

Each of the following experiments saves a set of raw data, which is then automatically converted into a .csv

file for processing and graphing. For both, the plots generated by plot.py and saved to ./figures are

interactive HTML files, which can be opened using a browswer window. These files correspond to Figures 2-

5 in the paper.

Figure 2 and Figure 3 are compilations of plots generated under

./figures/microbench/workloads, with each individual file (in its data structure subdirectory)

representing a subplot. Each plot is named updateX_rqY_maxkeyZ.html where X is the

percentage of update operations, Y the percentage of range queries, and Z the key range. The

percentage of get operations is calculated by 100 - (X + Y).

Figure 2:

figures/microbench/workloads/lazylist/update10_rq10_maxkey10000.html and

figures/microbench/workloads/lazylist/update90_rq10_maxkey10000.html
Figure 3: figures/microbench/workloads/skiplistlock/* and

figures/microbench/workloads/citrus/*
Figure 4 is ./figures/microbench/rq_sizes/citrus/nrqthreadsX_maxkeyY.html, where X

is the configured number of threads for each operation type (default=24) and Y is the maximum key

for the run (default=1000000).

Figure 5 is represented by the two plots generated when passing the --macrobench argument to

plot.py, which are stored in ./figures/macrobench/.

The remaining plots in the supplemental material can be generated using the --workloads_urate
flag for plot.py and passing the appropriate value corresponding to the update rate, assuming that

the runs have already been collected.

Configuring plot.py (Advanced)

In general, there should be no need to perform any configuration for plot.py itself. We have arranged for

it to pull information from other scripts. However, there are numerous flags that can be set if the user

wants more control over the output (run python plot.py --help for details).

a. Microbenchmark



Our results demonstrate that in mixed workload configurations, and in the presence of range queries, our

implementation outperforms competitors. This can be demonstrated by running the full microbenchmark

using microbench/runscript.sh.

Assuming that the data structure libraries have already been built during the previous steps, let's generate

the plots included in the paper (once the dependencies above are installed). From the root directory, run

the following:

./runscript.sh 
cd .. 
python plot.py --save_plots --microbench 

runscript.sh will run expeirments based on experiment_list_generate.sh, which will write a list of

experiments to be run into a file. This generation script can be altered to try out new configurations.

plot.py pulls the configuration directly from config.mk so no changes to it should be necessary.

experiment_list_generate.sh includes two experiments. The first, saved under

microbench/data/workloads fixes the range query size to 50 and tests various workload

configurations. This corresponds to Figure 2 in the paper as well as additional experiments for get-only and

update-only workloads. The second, whose results will be written to microbench/data/rq_sizes,

executes a 50%-50% update-rq workload at various range query lengths. This corresponds to Figure 3.

WARNING: The experiments can take a long time to run because there are many competitors. As was used

for our results, have preconfigured the run to execute three trials, run for 3s, and test the lazy-list, skip-list

and Citrus tree. Both runscript.sh and experiment_list_generate.sh contain some addtional

configuration options, but they are not required.

runscript.sh defines the length of experiments. Specifically, lines 9 and 36 are pertinent as they

adjust the number of trials per-configuration and the length of each trial. If you do not wish to wait

as long for the experiments to terminate, you may adjust these values knowing that the results may

differ from those presented in the paper.

experiment_list_generate.sh contains some other configuration options. The current

configuration includes all plots in the paper. The first few lines indicate which competitors to test

(rqtechniques), which data structures to run them on (datastructures), and the key ranges to

use (ksizes).

Output

As stated previously, the microbenchmark saves data under ./microbench/data. This raw data is used by

the plotting script, but is first translated to a .csv file that is also stored in the subdirectory corresponding

to each experiment in experiment_list_generate.sh. Upon running plot.py with the argument --
save_plots, the generated graphs will be stored in ./figures (again, in the corresponding

subdirectories).

To further support the figures, passing --print_speedup to plot.py will print the speedup of each

competitor over the "unsafe" version.

b. Macrobenchmark



In addition to demonstrating better performance in mixed workloads, we also demonstrate improvements

over competitors in index performance when integrated into a database. This can be observed by running

the macrobenchmark.

To build and run the DBx1000 integration, run the following from the root directory:

cd ./macrobench 
./compile.sh 
./runscript.sh 
cd .. 
python plot.py --save_plots --macrobench 

In comparison to the microbenchmark, this will take much longer to run. We suggest going for a long walk,

calling a friend, or taking a nap. Two plots will be generated, one for each of the data structures at various

numbers of threads.

Output

As with the microbenchmark, the macrobenchmark generates raw output in ./macrobench/data. The

last command in ./runscript.sh automatically generates the .csv file that is stored in ./macrobench.

This file (i.e., data.csv) is then used by the plotting scripts, whose output is saved under

./figures/macrobench.

c. Memory Reclamation

The initial binaries are built with memory reclamation enabled but do not include background bundle entry

cleanup, which matches the paper discussion. In other words, when a node is deleted its bundle entries are

reclaimed but stale bundle entries are not garbage collected for connected nodes. To enable reclamation

of bundle entries, uncomment line 11 of bundle.mk. The following line defines the number of

nanoseconds that elapse between iterations of the cleanup thread. It is currently set to 100ms.

Once bundle.mk is updated, remake the the bundled data structures using make -j lazylist.bundle
skiplistlock.bundle citrus.bundle and rerun the previously described microbenchmark. Be sure

to move the original plots so they are not overwritten when regenerating them.


