
EINDHOVEN UNIVERSITY OF TECHNOLOGY

SLCO: The Simple Language of
Communicating Objects

MANUAL

VERSION 2.0

Authors
Melroy VAN NIJNATTEN and

Anton WIJS

November 8, 2022

1 Introduction

The Simple Language of Communicating Objects (SLCO) framework has been created to
simplify the development of complex, parallel and multi-component software through
a model-driven approach [1]. The primary building blocks of the language are classes,
and the concurrent state machines and statements contained therein. The SLCO frame-
work is built around the Domain-Specific Language (DSL) SLCO, which can be used to
specify the behavior of a concurrent software system by means of a model. This model
can be converted to other artifacts through model-to-model transformations, using the
framework.

The focus of this manual is on the DSL, as opposed to the framework. In particular, we
focus on those aspects of the language that are supported by the state space exploration
tool GPUEXPLORE (version 3.0), which is one of the tools of the framework. Adding
support for the few aspects of the language that are not yet supported by GPUEXPLORE

is planned for the near future.

In the SLCO framework, the DSL has been defined for PYTHON, using the TEXTX [2]
meta-language. A model-to-code transformation from SLCO to CUDA code for GPUEX-
PLORE has been defined with the JINJA21 template language. This manual is structured
as follows. First, an introduction to TEXTX’s grammar will be given in Section A. In the
next section, the SLCO 2.0 language is introduced. After that, Section 4 addresses the
semantics of SLCO. Finally, Section 3 contains several SLCO models through which the
language is demonstrated. In Appendix A, the TEXTX language is explained.

2 The SLCO 2.0 Language – Syntax

The SLCO 2.0 language has been designed to model systems that consist of a collection of
concurrent processes at a convenient level of abstraction [1]. The definition of an SLCO

model consists of a class definition, together with an instantiation of this class as an object.
The class defines a finite number of state machines that run concurrently, together with
a collection of member variables associated with the class. State machines consist of a
finite collection of states, the guarded transitions between those states, and a set of local
variables. The transitions express the desired behavior of the program through atomic
statements that need to be executed upon firing.

The language allows for the state machines in an object to interact via the variables of
that object. State machines are not allowed to access each other’s local variables.

The remainder of this section focusses on giving an in-depth description of all of the
components provided by the SLCO 2.0 language that are supported by GPUEXPLORE

version 3.0.

2.1 Model
SLCOModel:

'model' name=NID '{'
('classes' classes=Class)
('objects' objects=Object)

'}'
;

NID: !Keyword ID;

Listing 1: The SLCO model declaration syntax defined through the TEXTX grammar
language.

1The documentation of JINJA2 is given at http://jinja.pocoo.org

1

http://jinja.pocoo.org

The syntax definition of the root component of the SLCO model is given in Listing 1. A
model declaration starts with the model keyword that is succeeded by the model’s name,
followed by curly brackets that contain a class and an object in that order, preceded by
their respective keyword. The aforementioned components within the brackets will be
elaborated upon further in the next sections.

The model name is defined to be a NID, which is a value of built-in type ID that is
not equivalent to any of the keywords, with the exclusion of keywords being achieved
through a negative lookahead. Hence, the name can be any common identifier consisting
of letters, digits and underscores, under the condition that the chosen identifier does not
match one of the keywords.

2.2 Classes

Class:
name=NID '{'

('variables' variables*=Variable)?
('state machines' statemachines*=StateMachine)?

'}'
;

Listing 2: The class declaration syntax defined through the TEXTX grammar language.

An SLCO class is at its core a grouping of concurrently running state machines that have
access to the same set of member variables. Henceforth, variables at the class level will
be referenced to as class variables.

The syntax of a class is given in Listing 2. Note that there is no keyword for defining
a class. The class’s name is immediately followed by curly brackets, which contains a
finite number of variables and concurrent state machines in the given order, with each
member being optional. Note that all members needs to be preceded by their associated
keyword. Variable and state machine declarations are described in Sections 2.3 and 2.4,
respectively. The name of a class and the variable names used within the scope of that
class are all required to be unique.

2.3 Variables

Variable:
(type=Type?) name=NID
(':=' (

defvalue=INT | defvalue=BOOL | ('['(defvalues+=INT[','] | defvalues+=BOOL[','])']')
))?

;

Type:
(base='Integer' | base='Boolean' | base='Byte') ('[' size=INT ']')?

;

Listing 3: The variable declaration syntax defined through the TEXTX grammar language.

The syntax of a variable is given in Listing 3. A variable is defined to be of a certain
type followed by the variable’s name, with the supported types being Integer, Boolean,
unsigned Byte and arrays of the aforementioned types. The variable can be turned into
an array by stating the length of the array between brackets after declaring the base type.
The initial value of a variable can be declared through an assignment and needs to cor-
respond with the given type and array length if applicable. Initial values of an array
variable need to be comma separated and enclosed by square brackets. Assigning an
initial value to a variable is optional–appropriate default values are assigned automati-
cally to variables without a given initial value. Moreover, the initial values passed to an

2

object instantiation take precedence over the initial values assigned during the variable
declarations.

2.4 State Machines
StateMachine:

name=NID '{'
('variables' variables*=Variable)?
'initial' initialstate=State
('states' states*=State)?
('transitions' transitions*=Transition)?

'}'
;

State: name=NID;

Listing 4: The state machine declaration syntax defined through the TEXTX grammar
language.

State machines are non-deterministic finite state machines that use guarded and priori-
tized transitions between states, i.e., each state can have zero, one or more transitions,
each to an arbitrary target state. A transition is considered active if its source state is
equal to the current state of the state machine. As a state may have more than one tran-
sition, multiple transitions can be simultaneously active. State machines communicate
with each other through the class variables provided by the parent object.

The syntax of a state machine is given in Listing 4. Similarly to a class definition, the
declaration of a state machine is not preceded by a keyword. A state machine declaration
starts with a unique name within the scope of the parent class. The name is followed
by curly brackets containing the state machine’s local variables, an initial state, the ad-
ditional states, and transitions between states in the described order. All members are
optional except for the initial state. Note that the initial state does not need to be added
to the list of additional states. Variable and transition declarations are described in Sec-
tions 2.3 and 2.5, respectively. The representation of a state is the name associated with
the state in question. The variable and state names are all required to be unique within
the scope of the state machine.

2.5 Transitions
Transition:

(priority=INT ':')?
((source=[State] '->' target=[State]) | ('from' source=[State] 'to' target=[State]))
('{' statement=Statement (';')? '}')?

;

Listing 5: The transition declaration syntax defined through the TEXTX grammar
language.

Transitions and the statements contained therein are used to describe the desired behav-
ior of a program. The syntax of a transition is given in Listing 5. The transition definition
starts with a priority followed by a colon, where the priority is defined to be an Integer
value. A lower number indicates a higher priority. Defining a priority is optional–if no
priority is given, the transition is automatically given the priority 0. Next, the names of
the source and target states of the transition are defined. Two notations are supported to
define the relation between the source and target states: one option is to connect the two
states with an arrow (->), and the other uses the from and to keywords.

The optional body of the transition is enclosed by curly brackets, and contains one state-
ment, optionally trailed by a semicolon. The available types of statements are introduced

3

in Section 2.6. A transition can be fired if it is active and the statement in the transition’s
body is enabled. Firing a transition results in the system changing state to the target state
of the transition, and the statement in the transition’s body being executed.

Finally, the parallel execution of transitions is formalised using interleaving semantics,
in which the SLCO framework’s statements are atomic. No finer-grained interleaving is
allowed [1]. More on the semantics of SLCO models in Section 4.

2.6 Statements

Statement:
(Composite | Assignment | Expression)

;

Listing 6: The statement declaration syntax defined through the TEXTX grammar
language.

SLCO offers several types of statements, namely (Boolean) expressions, assignments, and
composites. Boolean expressions are statements that can be evaluated, assignments are
used to alter variable values, and composites group an optional Boolean expression and
zero or more assignments into an atomic operation. The different types of statements are
discussed in more detail in Sections 2.6.1, 2.6.2 and 2.6.3, respectively.

2.6.1 (Boolean) Expressions

Expressions can be used to group one or more constant values, variables and operators
into a numerical or Boolean statement of which the value can be evaluated. The sup-
ported constant values are of the types integer and Boolean. Both class and local vari-
ables, including ones of the array variety, are valid targets to be referenced within an
expression, as long as they are in the scope of the state machine to which the expression
belongs.

The available unary operators are the logical negation (not), numerical negation (-) and
parentheses (()) operators. Additionally, the following binary operators are included:
addition (+), subtraction (-), multiplication (*), integer division (/), integer modulo (%),
exponentiation (**), equality (==, !=, <>), relation (<=, <, >, >=), logical conjunction (and,
&&), logical disjunction (or, ||) and logical exclusive disjunction (xor). The order of prece-
dence for the operators is given in Table 1.

Expressions are used as a sub-statement within assignments and composites–these types
of statements are discussed further in Sections 2.6.2 and 2.6.3, respectively.

A Boolean expression as a statement by itself is enabled iff it evaluates to true.

Operator Description

[] Array subscriptions
() Parentheses

not, +, - Negation, Unary Plus, Unary Minus
** Exponentiation

*, /, % Multiplication, Division, Modulo
+, - Addition, Subtraction

= , !=, <>, <, <=, >=, > Equality, Relational
or, ||, xor, and, && (Exclusive) Disjunction, Conjunction

Table 1: The order of precedence of operators used in SLCO. An operator precedes an-
other if it is placed higher up in the table. Operators located within the same table row
have the same precedence level and hence have the same significance.

4

2.6.2 Assignments

Assignment:
left=VariableRef ':=' right=Expression

;

VariableRef:
var=[Variable] ('[' index=Expression ']')?

;

Listing 7: The assignment declaration syntax defined through the TEXTX grammar
language.

Assignments can be used to alter the values associated with variables and are used as a
sub-component of composites, which are described in the following section. The syntax
of an assignment is given in Listing 7. The left-hand side component of an assignment is
a reference to the target variable by name (including an index if the variable is an array,
enclosed by square brackets), followed by the assignment operator (:=), and finalized
by an expression as the right-hand side component describing the desired value to be
assigned to the target variable. Note that both local and class variables are valid targets
within an assignment, as long as those variables are within the scope of the state machine
to which the assignment belongs.

An assignment is always enabled.

2.6.3 Composites

Composite:
'[' (guard=Expression ';')? assignments*=Assignment[';'] ']'

;

Listing 8: The composite declaration syntax defined through the TEXTX grammar
language.

In SLCO, statements are defined to be atomic entities. However, there exist use cases in
which atomicity at the level of a single Boolean expression or assignment is not sufficient
to attain the desired result. Take for example a transition that assigns a value v to an array
variable A at index i, with A and i both defined at the class level, but only if i is within
the bounds of the array. To achieve this, two statements are required–a guard expression
that checks if i is within the array bounds, and an assignment that assigns v to A[i]. Yet,
there are no guarantees that i remained unaltered between the evaluation of the guard
and execution of the assignment. Recall that the transitions of different state machines
are running in parallel using interleaving semantics. Due to this, another assignment to
i can take place between the range check and the execution of the assignment. Thus, the
desired behavior cannot be attained unless the entire operation is made atomic.

The concept of composite statements has been introduced to allow for a collection of
statements to be grouped into one overarching atomic entity. A composite statement
consists of an optional Boolean expression that is followed by zero or more assignments.
The syntax of a composite statement is given in Listing 8. The body of the composite is to
be enclosed by square brackets and contains all of the statements that are part of the struc-
ture, each of them separated by a semicolon. A trailing semicolon needs to be included
if only a guard expression is given. A composite statement [x := u; ...] can be inter-
preted as starting with the Boolean expression true, i.e., [true; x := u; ...].

When a composite statement is fired, the sub-statements inside it are executed in the
specified sequence.

A composite statement is enabled iff its first sub-statement is enabled.

5

2.7 Objects

Object:
name=NID ':' type=[Class] '(' assignments*=Initialisation[','] ')'

;

Initialisation:
left=[Variable] ':=' (right=INT | right=BOOL | ('[' (rights+=INT[','] | rights+=BOOL[','

]) ']'))
;

Listing 9: The object declaration syntax defined through the TEXTX grammar language.

The syntax of an object is given in Listing 9 and consists of two parts: the definition of
an object, and the definition of variable instantiations for variables included within the
target class of the object.

First, we discuss the definition of an object. An object definition consists of a unique
name for the object itself and the name of the class that is being instantiated. Addition-
ally, the initial values of the variables used within the class can be defined between the
brackets following the class name in a comma separated list. The inclusion of initial
values for variables is optional–variables that retain their default value can be excluded
from the list. On top of that, initial values given during the variable declaration itself are
overwritten by initial values given in the object initialization.

The syntax for initializing variables within the object definition is defined as follows.
An initialization is depicted as an assignment, with the left hand-side referring to the
target variable by name, and the right-hand side depicting the desired target value for
the variable in question. The assigned value needs to be a singular Integer, Boolean, or,
in case the variable refers to an array, a comma separated list of the aforementioned types
of the appropriate length, enclosed by square brackets.

3 Concrete Examples

The SLCO 2.0 language syntax is demonstrated in this section via a pair of examples. The
first model is discussed in Section 3.1 and depicts the behavior of an elevator. Secondly,
a model is introduced in Section 3.2 that depicts the puzzle game Toads and Frogs.

3.1 Elevator

In this section, an Elevator model is introduced, which depicts an elevator system ser-
vicing four floors. The model, given in Listing 10, originally stems from the BEEM bench-
mark suite [4], and has been translated to SLCO. The model is named elevator2.1.slco,
and variants of it are included in the artifact of GPUEXPLORE. The model consists of the
state machines cabin, environment and controller, with the four class variables req, t,
p and v (line 4). In the model, the array variable req of length n is used to track which
floors have requested the cabin, t is the floor number the controller directs the cabin to,
p is the floor the cabin is currently at, and lastly, v is a byte that tracks if the cabin is
currently executing the controller’s movement instruction. The state machines contained
within the model have been visualized in Figure 1. Each state machine fulfills a specific
task:

• The cabin state machine (lines 6-14) has the states idle, move and open, with the
model itself depicting the movement of the elevator cabin. The cabin starts in an
idle state, and remains there until the elevator is instructed to move. In the move
state, the cabin moves to the correct floor by moving up or down one step at a time.

6

1 model Elevator {
2 classes
3 GlobalClass {
4 variables Byte[4] req Integer t Integer p Byte v
5 state machines
6 cabin {
7 initial idle states mov open
8 transitions
9 from idle to mov { v>0 }

10 from mov to open { t=p }
11 from mov to mov { [t<p; p:=p-1] }
12 from mov to mov { [t>p; p:=p+1] }
13 from open to idle { [req[p]:=0; v:=0] }
14 }
15 environment {
16 initial read states
17 transitions
18 from read to read { [req[0]=0; req[0]:=1] }
19 from read to read { [req[1]=0; req[1]:=1] }
20 from read to read { [req[2]=0; req[2]:=1] }
21 from read to read { [req[3]=0; req[3]:=1] }
22 }
23 controller {
24 variables Byte ldir
25 initial wait states work done
26 transitions
27 from wait to work { [v=0; t:=t+(2*ldir)-1] }
28 from work to wait { [t<0 or t=4; ldir:=1-ldir] }
29 from work to done { t>=0 and t<4 and req[t]=1 }
30 from work to work { [t>=0 and t<4 and req[t]=0; t:=t+(2*ldir)-1] }
31 from done to wait { [v:=1] }
32 }
33 }
34 objects
35 globalObject: GlobalClass()
36 }

Listing 10: A concrete model declared with the SLCO 2.0 language syntax depicting an
elevator.

Once the right floor is reached, the cabin enters the open state, after which it pro-
ceeds to reset both v and req[p], followed by a transition back to the idle. Observe
that the cabin only has deterministic behavior in state mov–only one transition can
be active at any time due to the chosen guard statements.

• The environment state machine (lines 15-22) only has a single state read, and has the
task of modeling the act of calling an elevator to a certain position. Internally, state
read has a separate transition for each floor i ∈ [0, 4) back to itself, in which the as-
sociated value of req[i] is set to one if this was not already done. The environment
state machine randomly picks a floor to call the cabin to, and is hence behaviorally
completely non-deterministic.

• The controller state machine (lines 23-32) has the states wait, work and done, and
instructs the elevator cabin’s movements. The controller starts in the wait state
and remains there until v becomes zero, after which it moves to the work state. In
the work state, the controller increments or decrements the value of t until a floor
is encountered that has a cabin request. The direction of the search is dictated by
the variable ldir, which is a local variable (line 24) that is zero when searching
up, and one when searching down. The search direction is swapped whenever
the cabin reaches the top or bottom floor. The state machine proceeds to the done
state after finding an open cabin request, and subsequently moves back to the wait

7

state after enabling v. Observe that, similarly to state mov in state machine cabin,
the controller exclusively displays deterministic behavior in state work due to the
chosen guard statements.

idle

move

open

v>
0 t=p

[req[p]:=0; v:=0]

[t<p; p:=p-1][t>p; p:=p+1]

(a) State Machine cabin.

read

[req[i]=0; req[i]:=1]

(b) State Machine environment, with a separate transition for all i ∈ [0, 4).

wait

work

done[v=0
; t:=t

+(2*
ldir

)-1]

[t<
0 or

t=4
; ldi

r:=
1-l

dir
]

t>=0 and t<4 and req[t]=1

[v:=1]

[t>=0 and t<4 and req[t]=0; t:=t+(2*ldir)-1]

(c) State Machine controller.

Figure 1: Visual depiction of the Elevator SLCO model consisting of the three state ma-
chines cabin, environment and controller with the class variables req, t, p and v. Ad-
ditionally, the controller state machine has a local variable ldir.

3.2 Toads and Frogs

The second example depicts a single player variant of the puzzle game named Toads
and Frogs [3]. A brief introduction to the game and associated rules is provided in Sec-
tion 3.2.1, followed by a simulation of the game in the shape of an SLCO model in Sec-
tion 3.2.2.

3.2.1 Game Description

T T T T F F F F

Figure 2: The initial state of the Toads and Frogs playing board (n = 4). The board has an
empty cell at the center flanked to the left by four toads (T) and to the right by four frogs
(F).

The game is played on a playing board represented by an array of n · 2 + 1 cells. There
are n toads (depicted by the value T), n frogs (depicted by the value F), and one empty
cell on the board. The initial state of the board is depicted in Figure 2: all toads and frogs
are at the left and right side of the board, respectively, with the empty cell being at the
center position n + 1.

8

... T T F ...

(a) Legal moves for toads (T).

... F T F ...

(b) Legal moves for frogs (F).

Figure 3: The legal moves for toads and frogs in the Toads and Frogs puzzle game.

The movement of the toads and frogs is restricted to the moves presented in Figure 3.
Toads are forced to hop to the right, while frogs are allowed only to hop to the left. A
toad may hop to an empty cell that is located immediately to its right. Additionally, a
toad may hop over a frog that is directly to its right if the target frog’s neighbor is an
empty cell–however, it is not allowed for a toad to hop over another toad. Analogously,
a frog may hop to an open spot that is located directly to its left. Similarly, a frog can hop
over a toad that is directly to its left if the target toad’s neighbor is an empty cell. Any
moves not mentioned above are deemed illegal.

F F F F T T T T

Figure 4: The state that needs to be reached for a game of Toads and Frogs to be won
(n = 4).

The end goal of the game is to mirror the playing field, i.e., the game is won if all toads
are on the right side, and all frogs on the left side of the board, as depicted in Figure 4.
Conversely, a game is considered lost if both toads and frogs have no legal moves remain-
ing. In the single player variant of the game, the turns of the toads and frogs do not have
to alternate–instead, the toads and frogs need to essentially work together to achieve a
successful outcome.

3.2.2 Model Representation

The SLCO model ToadsAndFrogs depicting the Toads and Frogs puzzle game for n = 4 is
given in Listing 11. The model has been designed in such a manner that the program
is continuous, i.e., once the game is over, the board will be reset such that the game can
be restarted. The model consists of the state machines toad, frog and control, with the
four class variables y, tmin, tmax and a (lines 5-6). The variable y contains the index
of the empty cell on the game board. The variables tmin and fmax track the indices of
the leftmost and rightmost toad and frog, respectively, such that the win condition can
be evaluated efficiently. Lastly, the array a is a representation of the playing board, and
encodes the empty cell as 0, a frog as 1, and a toad as 2. The initial values assigned to the
variables conform to the situation sketched in Figure 2. In the model, each state machine
fulfills a specific role within the game:

• The state machine toad (lines 8-15) performs the movement actions that can be
taken by a toad, and only contains the state q, which is marked as the initial state.
Additionally, the state machine has four transitions. The first two transitions move
a toad to a neighboring empty cell to the left, with the latter two executing a hop
to the left over a frog into an empty cell. Each type of movement is represented by
two transitions, with the difference being in the target subjects–the first occurrence

9

1 model ToadsAndFrogs {
2 classes
3 GlobalClass {
4 variables
5 Integer y:=4 Integer tmin:=0 Integer fmax:=8
6 Integer[9] a:=[1,1,1,1,0,2,2,2,2]
7 state machines
8 toad {
9 initial q

10 transitions
11 q -> q {[y>0 and tmin!=y-1 and a[y-1]=1; a[y]:=1; y:=y-1; a[y]:=0]}
12 q -> q {[y>0 and tmin=y-1 and a[y-1]=1; a[y]:=1; tmin:=y; y:=y-1; a[y]:=0]}
13 q -> q {[y>1 and tmin!=y-2 and a[y-2]=1 and a[y-1]=2; a[y]:=1; y:=y-2; a[y]:=0]}
14 q -> q {[y>1 and tmin=y-2 and a[y-2]=1 and a[y-1]=2; a[y]:=1; tmin:=y; y:=y-2; a[y]:=0]}

15 }
16 frog {
17 initial q
18 transitions
19 q -> q {[y<8 and fmax!=y+1 and a[y+1]=2; a[y]:=2; y:=y+1; a[y]:=0]}
20 q -> q {[y<8 and fmax=y+1 and a[y+1]=2; a[y]:=2; fmax:=y; y:=y+1; a[y]:=0]}
21 q -> q {[y<7 and fmax!=y+2 and a[y+1]=1 and a[y+2]=2; a[y]:=2; y:=y+2; a[y]:=0]}
22 q -> q {[y<7 and fmax=y+2 and a[y+1]=1 and a[y+2]=2; a[y]:=2; fmax:=y; y:=y+2; a[y]:=0]}

23 }
24 control {
25 initial running states done success failure reset
26 transitions
27 running -> done {y=0 and a[y+1]=1 and a[y+2]=1}
28 running -> done {y=1 and a[y-1]=2 and a[y+1]=1 and a[y+2]=1}
29 running -> done {y=7 and a[y-2]=2 and a[y-1]=2 and a[y+1]=1}
30 running -> done {y=8 and a[y-2]=2 and a[y-1]=2}
31 running -> done {y>1 and y<7 and a[y-2]=2 and a[y-1]=2 and a[y+1]=1 and a[y+2]=1}
32 done -> success {tmin>y and fmax<y}
33 done -> failure {not (tmin>y and fmax<y)}
34 success -> reset
35 failure -> reset
36 reset -> running {[
37 y:=4; tmin:=0; fmax:=8; a[4]:=0;
38 a[0]:=1; a[1]:=1; a[2]:=1; a[3]:=1;
39 a[5]:=2; a[6]:=2; a[7]:=2; a[8]:=2
40]}
41 }
42 }
43 objects
44 globalObject : GlobalClass()
45 }

Listing 11: A concrete model declared with the SLCO 2.0 language syntax depicting the
single-player variant of the puzzle game named Toads and Frogs.

(lines 11, 13) targets toads that are not the leftmost specimen, and vice versa for the
last occurrence (lines 12, 14). The latter two transitions maintain the variable tmin
in addition to executing the move itself, which ensures that tmin always points to
the index of the leftmost toad.

• The state machine frog (lines 16-23) is analogous to the state machine toad, with the
difference being that it focuses on the movements performed by the frogs instead.
The first two transitions move a frog to a neighboring empty cell to the right, with
the latter two executing a hop to the right into an empty cell over a toad. On top of
that, the second and fourth transitions (lines 20, 22) update the variable fmax such
that it is always ensured that its value points to the index of the rightmost frog.

• The state machine control (lines 24-41) focuses on managing the state of the game.
The state machine has the initial state running and is supplemented by the states
done, success, failure and reset. In the running state, it is checked whether the
game has reached a point where neither the toad or the frog is able to execute any
moves. In terms of logic, this implies that the two slots to the left of the empty

10

cell are frogs and the two slots to the right are toads (lines 27-31). If the condition
holds, the state machine proceeds to the done state, in which it is verified if the
game has been completed successfully or ended in a failure. A game is successful
if all toads are to the right and all frogs are to the left of the empty cell. Given that
tmin and fmax represent the leftmost and rightmost toad and frog, respectively, it
must hence hold that tmin > y and fmax < y for the state machine to transition to
the success state (line 32). Otherwise, a transition will be made to state failure
(line 33). States success and failure make an empty transition to the state reset
(lines 34-35). Lastly, the sole transition in the reset state will reset all the variables
to their original value, such that the game can start over, signified by the transition
returning to state running (lines 36-40).

4 The SLCO 2.0 Language – Semantics

In this section, we define and discuss the formal semantics of SLCO. In order to do so, we
first mathematically define SLCO models and their components.

4.1 Objects and state machines

An SLCO model N corresponds with an SLCO object. Such an object consists of a finite
number of state machines and a finite number of (object-local) variables.

Definition 1 (Model). A model N is a tuple (M,V), where

• M is a finite set of state machines;

• V is a finite set of variables.

Definition 2 (State machine). A state machine G is a 5-tuple (S ,A, T , ŝ,Vs), where

• S is a finite set of states.

• A is a finite set of statements, with ϵ ∈ A the empty statement.

• T : S × A ×N× S is a transition relation, formalising transitions labelled with a
statement between the states in S . A transition has a priority in N.

• ŝ ∈ S is the initial state.

• Vs is a finite set of (state machine-local) variables.

With s⇒i(a) s′, we denote the fact that (s, a, i, s) ∈ T , and in case the priority i is not rel-
evant, we write s⇒(a) s′. The reflexive, transitive closure of ⇒ is denoted by ⇒∗.

Concerning the priority of transitions, we use the convention that 0 is the default priority,
and for all priority values p, q ∈ N, p is a higher priority than q iff p < q.

4.2 Well-formedness constraints

The definitions above are very general, and therefore allow the construction of inconsis-
tent specifications. Therefore, next, we present a list of well-formedness constraints, that
should be satisfied by an SLCO model N = (M,V) in order to be consistent:

• In each state machine, all states are reachable from the initial state:
∀(S ,A, T , ŝ,Vs) ∈ M, s ∈ S .ŝ ⇒∗ s

• Variables referred to in a statement of a state machine are either local to that state
machine, or owned by the object containing that state machine:
∀(S ,A, T , ŝ,Vs) ∈ M, a ∈ A, x ∈ a.x ∈ V ∪ Vs

11

4.3 Semantics

We reason about the state of an SLCO model by means of a situation.

Definition 3 (Situation). Given an SLCO model N = (M,V), with M = {M1 =
(S1,A1, T1, ŝ1,Vs,1), . . . ,Mn = (Sn,An, Tn, ŝn,Vs,n)}, i.e., N has n state machines in to-
tal. Then, we define a situation as a tuple ⟨σ, s1|| . . . ||sn⟩, where

• σ is a total function mapping variables in V ∪ Vs,1 ∪ . . . ∪ Vs,n to values of the ap-
propriate types.

• s1|| . . . ||sn indicates the current state of the combined state machines, where each si
is the current state of state machine Mi.

To evaluate statements, we use a function ξσ : A → B that maps a statement a to a
Boolean value in the situation σ. The function reflects whether a statement is enabled. It is
defined as follows, with [e]σ being the expression resulting from replacing every variable
reference x in e by its corresponding value σ(x).

ξσ(ϵ) = true

ξσ(x := e) = true

ξσ(e) = [e]σ
ξσ([e; x1 := e1; . . . ; xm := em]) = ξσ(e)

Next, we present the operational semantics of an SLCO model in the form of SOS rules.
The function σ[ξ(e)/x] is equal to σ, except for the fact that x has been updated to the
value ξ(e), i.e., σ(x) = ξ(e).

silent step
s⇒i(ϵ) s′ ∧ ¬(s⇒j(a) s′′ ∧ ξσ(a) ∧ j < i)

⟨σ, s⟩ τ−→ ⟨σ, s′⟩

assignment step
s⇒i(x := e) s′ ∧ ¬(s⇒j(a) s′′ ∧ ξσ(a) ∧ j < i)

⟨σ, s⟩ x:=e−−→ ⟨σ[ξ(e)/x], s′⟩

expression step
s⇒(e) s′ ∧ ξ(e) ∧ ¬(s⇒j(a) s′′ ∧ ξσ(a) ∧ j < i)

⟨σ, s⟩ e−→ ⟨σ, s′⟩

composite step
s⇒([e; x1 := e1; . . . ; xn := em]) s′ ∧ ξ(e) ∧ ¬(s⇒j(a) s′′ ∧ ξσ(a) ∧ j < i)

⟨σ, s⟩ [e;x1:=e1;...;xm :=em]−−−−−−−−−−→ ⟨σ[ξ(e1)/x1] · · · [ξ(em)/xm], s′⟩

parallel-1
⟨σ, s⟩ a−→ ⟨σ′, s′⟩

⟨σ, s||t⟩ a−→ ⟨σ′, s′||t⟩

parallel-2
⟨σ, s⟩ a−→ ⟨σ′, s′⟩

⟨σ, t||s⟩ a−→ ⟨σ′, t||s′⟩

The silent step rule expresses that if a state machine in state s has an active transition with
the empty statement ϵ, and no transitions from s are enabled with a higher priority, then
the system can perform a transition labelled τ in which the state machine changes state
accordingly. In this case, σ is not updated.

The assignment step rule expresses in a similar way that an active transition from a state
s can be fired when there are no transitions enabled from s with a higher priority. In this

12

case, the state machine changes state accordingly and the effect of the assignment is taken
into account by the update to σ.

The expression step rule expresses that a transition from s can be fired if its associated ex-
pression statement is enabled, and no transitions from s are enabled with a higher prior-
ity. The state machine changes state accordingly and the function σ is not updated.

The composite step rule expresses that when a transition from s with a composite state-
ment can be fired, the state machine changes state accordingly, and the function σ is up-
dated by taking the assignments in the composite statement into account in the specified
sequence.

Finally, the rules parallel-1 and parallel-2 express how state machines behave in a par-
allel context, i.e., combined with other state machines. This is straightforward, as state
machines cannot synchronize.

13

References

[1] Sander de Putter, Anton Wijs, and Dan Zhang. The SLCO framework for veri-
fied, model-driven construction of component software. In Kyungmin Bae and Pe-
ter Csaba Ölveczky, editors, Formal Aspects of Component Software - 15th International
Conference, FACS 2018, Pohang, South Korea, October 10-12, 2018, Proceedings, volume
11222 of Lecture Notes in Computer Science, pages 288–296. Springer, 2018.

[2] Igor Dejanović, Renata Vaderna, Gordana Milosavljević, and Željko Vuković. TextX:
A python tool for domain-specific languages implementation. Knowledge-Based Sys-
tems, 115:1 – 4, 2017.

[3] Anany Levitin and Maria Levitin. Algorithmic puzzles, page 53. Oxford University
Press, 2011.

[4] Radek Pelánek. BEEM: Benchmarks for Explicit Model Checkers. In SPIN 2007, vol-
ume 4595 of LNCS, pages 263–267, 2007.

14

A The TEXTX Grammar

The syntax of SLCO’s DSL, called the SLCO 2.0 language, is defined through TEXTX,
which is a meta-language tool for specifying DSLs in Python. The syntax definition is
clear and unambiguous, and hence, it will be referred to extensively during the introduc-
tion of the SLCO 2.0 language to provide a concise overview of the supported structures.
However, note that a full understanding of the TEXTX language will not be required–
a natural language description will be given of each construct, independently from the
syntax definition itself. Nevertheless, a basic understanding of the TEXTX grammar is
considered helpful, since it allows for the concrete syntax and the textual description
thereof to be cross-referenced if further clarification if required. As such, the remainder
of this section will be dedicated to giving an introduction to the TEXTX grammar.

<name>: <body>;

Listing 12: The general structure of a TEXTX rule definition.

In TEXTX2, a language is defined through rules. The general structure of a rule is pro-
vided in Listing 12. Each rule starts with a name, which is followed by a colon that leads
into the rule’s body, with the rule declaration itself being concluded with a semicolon.
The rule’s body is defined to be an expression that contains the desired parsing behavior
of the rule. The following sections will discuss the majority of basic expressions that are
provided by the TEXTX grammar.

A.1 Base Types

First, several base type rules are provided by the TEXTX language, including but not
limited to the ID, INT and BOOL rules. An ID matches a common identifier that consists
of letters, digits and underscores and is hence generally used as the type of a name or
identity, an INT rule matches to integer values, and a BOOL rule matches to the Boolean
values true and false.

A.2 Matching

StringMatch: 'A';
RegexMatch: \[a-z]+\;

Listing 13: A demonstration of matching expressions in the TEXTX grammar.

The base type rules are followed by expressions that match to a given string or regular
expression. The matching expressions, demonstrated in Listing 13, are the basic building
blocks of the language, and allow for more complex expressions to be created. String
matches are defined through quoted strings and will match a literal string in the input,
and are often used to match for keywords in the target language. Regular expressions, to
be enclosed by backlashes, are defined using the syntax of regular expressions as used in
Python.

A.3 Sequence

Sequence: E1 E2 E3;

Listing 14: A demonstration of a sequence in the TEXTX grammar.

2The official documentation of the grammar can be found at https://textx.github.io/textX/3.0/
grammar/

15

https://textx.github.io/textX/3.0/grammar/
https://textx.github.io/textX/3.0/grammar/

The sequence operator, as demonstrated in Listing 14, is an n-ary operator that is used to
chain sub-expressions together. Expressions contained within a sequence will be matched
in the given order. By default, whitespace characters are skipped when parsing a se-
quence, and hence, sub-expressions may be separated by an arbitrary number of white
spaces.

A.4 Ordered Choice
OrderedChoice: E1 | E2 | E3;

Listing 15: A demonstration of an ordered choice in the TEXTX grammar.

The n-ary vertical bar operator (|), as demonstrated in Listing 15, denotes an ordered
choice between expressions. During parsing, the matching of the listed expressions will
be performed from left to right, which guarantees that the first successful match will
be chosen. The benefit of ordered choices is that the parsing always yields the same
parse tree, and hence, the output will always be unambiguous. Furthermore, it allows
for certain expressions to be prioritized.

A.5 Optional
Optional: E1 E2?;

Listing 16: A demonstration of optional expressions in the TEXTX grammar.

As demonstrated in Listing 16, an expression can be made optional during matching by
appending it with the unary question mark operator (?). The rule Optional requires a
match with E1, which is sequenced with an optional expression E2. In other words, the
rule will match to both expression E1 and the sequence of expressions E1 E2. The optional
operator relatively has a high order of precedence–as shown through the example, the
operator solely targets expression E2, and not the sequence E1 E2 in its entirety. More
complex optional behavior can be expressed by surrounding the target expression by a
set of parentheses prior to adding the optional operator.

A.6 Repetitions
ZeroOrMore: E1*;
OneOrMore: E1+;

Listing 17: A demonstration of repetitions in the TEXTX grammar.

Repetition operators are provided that allow for an expression to be repeated an unde-
fined number of times. Zero or more repetitions of an expression are specified by ap-
pending the expression with the asterisk (*) operator. Similarly, one or more repetitions
are specified by appending the plus (+) operator. Both types of repetition operators are
demonstrated in Listing 17. Note that, similarly to the optional operator, repetitions have
a high order of precedence–more complex behavior can be expressed through the combi-
nation of parentheses and repetition operators.

UnorderedGroupS: ((E1 E2) E3)#;
UnorderedGroupC: (E1 E2 | E3)#;

Listing 18: A demonstration of unordered groupings in the TEXTX grammar.

An additional repetition type operator provided by TEXTX is the unordered grouping
operator as presented in Listing 18. As shown in the listing, an unordered group is
expressed by appending a sequence or ordered choice with the number sign (#). An

16

unordered grouping operator matches any input that repeats a permutation of the sub-
expressions contained within the given sequence or ordered choice. Note that nested
sequence and ordered choice sub-expressions are not considered separate elements in
the group–due to this, rules UnorderedGroupS and UnorderedGroupC are considered to be
equivalent. Hence, the sequence E1 E2 E3 E3 E1 E2 is a match to both rules in the given
example, but E3, E1 E3 E2 and E3 E3 E1 E2 are not.

A.7 Assignments
PlainAssignment: a=E1;

Listing 19: A demonstration of a plain assignment in the TEXTX grammar.

All of the expressions and operators discussed up to this point have in common that they
allow for a rule to be created that can match a certain input, but they do, thus far, not pro-
vide the means to extract information and data contained therein. The plain assignment
operator (=), as demonstrated in Listing 19, allows for a target match or rule value to be
saved as an attribute within the generated Python object graph. The left-hand side of the
assignment contains the attribute name, with the right hand side holding a reference to
another rule or match expression.

BooleanAssignment: a?=E1;
ZeroOrMoreAssignment: a*=E1;
OneOrMoreAssignment: a+=E1;

Listing 20: A demonstration of additional assignment types in the TEXTX grammar.

Note that the plain assignment is just one of four assignment types provided by the
TEXTX grammar. The remaining types of assignments are presented in Listing 20. The
first rule uses the Boolean assignment operator (?=), which sets the target attribute to
true if the target match can be made, false otherwise. The second rule uses the zero or
more assignment operator (*=), and assigns a list that contains all matches of the rule to
the target attribute. If no matches can be made, the attribute will be assigned an empty
list. Finally, the third rule uses the one or more assignment operator (+=), which behaves
virtually the same as the zero or more assignment operator, but will fail if no matches can
be made instead of returning an empty list.

A.8 Repetition Modifiers
RepetitionModifier: a*=E1[','];

Listing 21: A demonstration of a repetition modifier in the TEXTX grammar.

The repetition modifier expression demonstrated in Listing 21 allows for modifications
to be made to expressions with repetition (*, +, #, *=, +=). The modifications are defined
at the end of an expression between square brackets, with each entry separated by a
comma. TEXTX defines two modifier types: separator modifiers and end-of-line termina-
tion modifiers (eolterm). The former is used to set a simple string or regular expression
as the required separator between elements in the list, while the latter will terminate the
repetition on an end-of-line character.

A.9 References
MatchRuleReference: a=E1;
LinkRuleReference: a=[E1];

Listing 22: A demonstration of references in the TEXTX grammar.

17

A reference to a rule can be included within another rule to create a nested structure of
rules or refer by name to instances of rules that have been instantiated elsewhere. The
two types of references are demonstrated in Listing 22, being the match rule and link
rule references respectively, with the latter being defined by surrounding the rule name
with square brackets. A match rule reference simply executes the target rule, while the
link rule reference matches to an identifier for an existing instance of the given rule, with
the reference itself being resolved automatically by TEXTX. By default, the identifier is
equivalent to the name attribute of the target rule.

A.10 Syntactic Predicates

NegativeLookahead: !Keyword ID;
PositiveLookahead: Keyword &ID;

Listing 23: A demonstration of syntactic predicates in the TEXTX grammar.

The final basic expressions that remain to be discussed are syntactic predicates, which
focus on implementing lookahead functionality for the parser. Two types of syntactic
predicates are provided by the TEXTX grammar, namely the negative lookahead (!) and
positive lookahead (&). Both types of lookaheads are demonstrated in Listing 23. Observe
that the syntactic predicate operators are placed before their target expression. The rule
NegativeLookahead, using a negative lookahead, matches to any ID that is not a match
to Keyword, and can hence be used to ensure that the sets of available identities and key-
words are disjoint. The rule PositiveLookahead uses a negative lookahead, and will only
match an ID if it is preceded by a Keyword.

18

	Introduction
	The Slco 2.0 Language – Syntax
	Model
	Classes
	Variables
	State Machines
	Transitions
	Statements
	(Boolean) Expressions
	Assignments
	Composites

	Objects

	Concrete Examples
	Elevator
	Toads and Frogs
	Game Description
	Model Representation

	The Slco 2.0 Language – Semantics
	Objects and state machines
	Well-formedness constraints
	Semantics

	The TextX Grammar
	Base Types
	Matching
	Sequence
	Ordered Choice
	Optional
	Repetitions
	Assignments
	Repetition Modifiers
	References
	Syntactic Predicates

