

SEVENTH FRAMEWORK PROGRAMME

FP7-ICT-2009-6

BlogForever
Grant agreement no.: 269963

BlogForever: D2.4 Weblog spider prototype and

associated methodology

 Editor: Morten Rynning

Revision: First version

Dissemination Level: Public

Author(s): Morten Rynning, Ioannis Manolopoulos,

Ioannis Tselepidis, Michael Gulliksen, Mike

Joy, Karen Stepanyan, Vangelis Banos

Due date of deliverable: 30
th
 November 2011

Start date of project: 01 March 2011

Duration: 30 months

Lead Beneficiary name: CyberWatcher

Abstract: The purpose of this document is to present the evaluation of different solutions for capturing

blogs, established methodology and to describe the developed blog spider prototype.

D2.4 Report: Weblog Spider Prototype and
 Associated Methodology 22 October 2013

BlogForever Consortium Page 2 of 71

Project co-funded by the European Commission within the Seventh Framework Programme (2007-2013)

The BlogForever Consortium consists of:

Aristotle University of Thessaloniki (AUTH) Greece

European Organization for Nuclear Research (CERN) Switzerland

University of Glasgow (UG) UK

The University of Warwick (UW) UK

University of London (UL) UK

Technische Universitat Berlin (TUB) Germany

Cyberwatcher Norway

SRDC Yazilim Arastrirma ve Gelistrirme ve Danismanlik Ticaret Limited Sirketi (SRDC) Turkey

Tero Ltd (Tero) Greece

Mokono GMBH Germany

Phaistos SA (Phaistos) Greece

Altec Software Development S.A. (Altec) Greece

D2.4 Report: Weblog Spider Prototype and
 Associated Methodology 22 October 2013

BlogForever Consortium Page 3 of 71

History

Version Date Modification reason Modified by

0.1 20/08/11 Initial draft Morten Rynning

0.2 12/09/11 Second draft Morten Rynning and

Michael Gulliksen

0.3 15/09/11 Feedback and revision Vangelis Banos and

Michael Gulliksen

0.4 19/09/11 Third draft Morten Rynning

0.5 20/09/11 Fourth draft – distributed to partners Morten Rynning

0.4 10/11/11 Fifth draft Morten Rynning

0.5 20/11/11 Sixth draft Karen Stepanyan,

Vangelis Banos and I.

Tselepidis

0.6 21/11/11 Seventh draft – distributed to partners Morten Rynning

0.7 27/11/11 Including diagram to integrate OAIS to the spider

(section 4.2)

Yunhyong Kim

0.8 27/11/11 Eighth draft Mike Joy

1.0 29/11/11 Review and clarification Ioannis Manolopoulos

1.0.1 15/02/12 Minor revisions I. Tselepidis

1.1 29/02/12 Minor revisions Morten Rynning

D2.4 Report: Weblog Spider Prototype and
 Associated Methodology 22 October 2013

BlogForever Consortium Page 4 of 71

Table of Contents

TABLE OF CONTENTS .. 4

INDEX OF FIGURES ... 5

EXECUTIVE SUMMARY ... 6

1 INTRODUCTION ... 7

1.1 GOALS AND OBJECTIVES OF THE DELIVERABLE .. 7

2 APPROACHES AND TECHNOLOGIES FOR CRAWLING .. 8

2.1 PING SERVERS AND PINGBACKS ... 9
2.2 LINKBACKS, TRACKBACKS AND PINGBACKS .. 10
2.3 AVAILABLE BLOG PLATFORMS AND BLOG SEARCH ENGINE APIS .. 12

3 THE DIFFERENT APPROACHES TO CAPTURING AND INDEXING WEBLOGS .. 13

3.1 CAPTURING BLOG UPDATES .. 13
3.1.1 Compare text similarity using the Levenshtein distance ... 13

3.2 DEFINE CONTENT ELEMENTS AND LINK TYPES USING DECISION TREES .. 14
3.3 HTML-AWARE DATA EXTRACTION ... 15

3.3.1 HTML-aware data extraction prototypes using available open source libraries 15
3.4 ADVANCED INFORMATION RETRIEVAL FROM BLOG CONTENT ... 16

3.4.1 Semantic information in the web .. 16
3.4.2 State of the art on extraction of semantic information from blogs .. 21
3.4.3 Prototype semantic data extractor application .. 21
3.4.4 Future work ... 22

3.5 SPAM DETECTION ... 22
3.6 RANKING .. 23

4 THE SELECTED WEBLOG SPIDER ARCHITECTURE AND FUNCTIONALITY .. 25

4.1 HIGH LEVEL OVERVIEW ... 25
4.2 SINGLE-SERVER SOFTWARE ARCHITECTURE .. 29

4.2.1 Inputter and web interface ... 29
4.2.2 Host Analyzer .. 31
4.2.3 System Manager to operate the spider and capturing – including a blog-source library 32
4.2.4 The Worker for fetching .. 33

4.3 MULTIPLE-SERVER SOFTWARE ARCHITECTURE .. 35
4.4 THEORY/APPROACHES/METHODS USED ... 36
4.5 TECHNICAL PLATFORMS AND DEVELOPMENT TOOLS ... 37
4.6 CONNECTION WITH PREVIOUS BLOGFOREVER TASKS ... 38

4.6.1 Connections with the D2.1 Weblog survey ... 38
4.6.2 Connection with D2.2 Weblog Data Model .. 39

4.7 DEVELOPMENT CHALLENGES AND FUTURE WORK .. 40

5 CONCLUSIONS ... 42

6 REFERENCES .. 43

A. APPENDIX A – WEBLOG SPIDER PROTOTYPE CODE REFERENCE ... 44

B. APPENDIX B – WEBLOG SPIDER USE CASE .. 50

C. APPENDIX C – WEBLOG SPIDER PROTOTYPE INSTRUCTION MANUAL .. 54

D. APPENDIX D – PROTOTYPE SEMANTIC DATA EXTRACTOR APPLICATION CODE REFERENCE 63

E. APPENDIX E – HTML AWARE PROTOTYPE APPLICATIONS .. 66

F. APPENDIX F - GLOSSARY .. 70

D2.4 Report: Weblog Spider Prototype and
 Associated Methodology 22 October 2013

BlogForever Consortium Page 5 of 71

Index of Figures

Figure 1 – Microformat example from http://johanramon.fr/ (class=''adr'') 17
Figure 2 – Event microdata from http://www.schema.org/Event .. 19
Figure 3 - Single-server Weblog Aggregation Prototype .. 28
Figure 4 - A single server BlogForever spider within the context of the OAIS (Open Archival

Information System) model. .. 29
Figure 5 – Inputter view in the Spider Portal – a web interface for inserting and managing of

selected blogs .. 30
Figure 7 - Host Analyzer, processing links to qualify blogs and establish link filters for monitoring

 ... 31
Figure 8 - Spider Portal interface – handling the System Manager User Interface 33
Figure 9 - Multi server architecture of the weblog spider ... 35
Figure 10 – Importance of blog elements to be preserved, according to D2.1 Weblog Survey 38
Figure 12 - While ping server is feeding the prototype spider with thousands of updates every

minute – the user only wants a few selective updates. In the ping server section, two search filters

are set. First requesting only blog hosts and blog posts from blogs .. 50
Figure 13 - In addition to science blogs and blogspotter blogs – the user would like the spider to

capture all new updates regarding a qualified blog host: http://www.pharmacistplace.com 51
Figure 15 - After the blog host has been analysed and included in the Blog source database; all

content elements are included and parsed – the output can be found in the Spider portal output

section as shown above. .. 52
Figure 17 - Download and installation instruction file for the Blogforever Prototype Spider 54
Figure 18 - Spider portal for adding blogs manually; by pasting in URLs 57
Figure 20 - ping server section – automatically indexing new blogs according to filters defining

what is relevant. ... 59
Figure 21 - Source list section where all latest blog sources included is listed 60
Figure 22 - Details linked from any of indexed sources – can display crawled XML, and link to

actual HTML. .. 61
Figure 23 - Output section and link to FTP where all latest files with captured content, can be

retrieved. .. 62
Figure 24 – HTML Database structure .. 66

D2.4 Report: Weblog Spider Prototype and
 Associated Methodology 22 October 2013

BlogForever Consortium Page 6 of 71

Executive Summary

This report summarises the work done to evaluate available weblog data extraction methodologies

and technologies. Additionally, this report presents a number of weblog data extraction tools

implemented to test the aforementioned techniques and evaluate alternative ways to implement the

BlogForever weblog spider in the following Work Package (WP4).

Weblog data extraction can be divided into two main steps, capturing weblog updates and

extracting relevant information from updated blogs.

Section 2 evaluates technologies for capturing blog updates, namely notifications that a specific

blog URL has been updated.

Section 3 evaluates technologies for capturing updated blog content, identifying new from old

content, extracting structured information from semi-structured data as well as extracting semantic

information such as microformats and microdata. Additionally, Section 3 evaluates spam filtering,

an important aspect of blog data extraction.

Section 4 presents the selected approached for weblog data extraction including the software

architecture and the methods applied, as well as the connections with other relevant BlogForever

Tasks and Deliverables.

Finally, the report outlines the next steps to design and implement the BlogForever weblog

aggregator component based on experience with the current work.

D2.4 Report: Weblog Spider Prototype and
 Associated Methodology 22 October 2013

BlogForever Consortium Page 7 of 71

1 Introduction

Within the last five years, the amount of weblog crawling has increased rapidly along with the

growth of social media. While for a long time the blogosphere was crawled and indexed by major

search engines, more recently a large number of start-up agencies within the Social Media

Monitoring area have launched their own spider platforms.

However, most spider platforms struggle with the vast volume of data within the blogosphere and

are often limited to selected geographical locations. Others are limited to indexing RSS feed data

received from weblog communities and ping servers. Another challenge which remains is that of

enabling spiders to distinguish between different types of blogs. Currently, few weblog spiders can

separate expert blogs from consumer blogs, or cover blogs from a selected domain, for instance

scientific blogs. The challenges in differentiating blogs relate to the issues of spam and noise in

blog search and analysis. The solutions developed as part the BlogForever project aim to address

some of these challenges.

1.1 Goals and Objectives of the Deliverable

The BlogForever project aims to develop a weblog spider to capture weblogs, blog posts and

additional blog content items to be indexed, analysed and preserved. This weblog spider is expected

to crawl and capture a defined set of blogs, as well as identify and capture new blogs.

The primary objective of this deliverable is to present the design and development of the prototype

BlogForever weblog spider and the associated methodologies. The prototype should take into

account existing approaches and solutions to crawling. It should also be able to accommodate recent

developments and recommendations in the area.

The developed prototype is expected to capture and populate a repository with weblog content

using a combination of weblog specific technologies such as ping servers and RSS feed monitoring,

as well as traditional web data extraction techniques such as scheduled crawls.

The weblog spider architecture, developed and presented in Section 4.2, defines the structure of the

prototype. The prototype is expected to be the basis of a more comprehensive software solution

throughout the next stages of the project in WP4, especially Task 4.2 (Design of the weblog spider

component) and Task 4.3 (Implementation of the weblog spider component)
1
. The prototype will

accommodate future requirements such as anticipated scalability and multi-server weblog crawling.

Prior to discussing the design and development of the prototype, this report describes some of the

existing techniques for crawling and outlines their relevance for the BlogForever spider being

developed. The report starts by outlining the existing approaches and technologies for crawling

(Section 2). It then identifies techniques that are relevant for the development of the prototype

(Section 3). This section also includes analysis and testing of various blog data extraction

methodologies. Finally, the report presents the architecture and discusses the developed prototype

(Section 4).

1
 For details see: Grant Agreement Annex I - Description of Work (DoW),

D2.4 Report: Weblog Spider Prototype and
 Associated Methodology 22 October 2013

BlogForever Consortium Page 8 of 71

2 Approaches and Technologies for Crawling

This section describes the main technologies for capturing weblogs. It includes a number of

additional tools and methods that are valuable for the purposes of filtering and parsing blogs as part

of the digital preservation effort.

1. Ping servers and Pingbacks. In blogging, ping is an XML-RPC-based push mechanism by

which a weblog notifies a server that its content has been updated. An XML-RPC signal is

sent to one or more ping servers, which can then be used by those ping servers for

generating a list of blogs that have published new material. Today, most blog authoring

tools automatically ping one or more servers each time a blogger creates a new posts or

updates earlier ones.

Open ping servers allow other web services to subscribe to a list of blogs that have recently

pinged them, and include, for instance, Weblogs.com. Subsequently, having a list of

updated blogs, blog search engines can gain access to fresh results very quickly by polling

only the newly-updated blogs. In addition to search engines, web feed aggregators use the

results from ping servers to notify subscribers about the fresh material made available on

their subscription lists.

Unlike open ping servers, proprietary ping servers gather information primarily for their

own applications. Proprietary ping servers are operated, for instance, by most of the major

blog search engines.

2. Blog aggregator software/APIs. There are a number of tools that allow subscribing to web

feeds and accessing content from various sources via a single interface. These aggregators

can be proprietary or open, but in either case aggregators provide a mechanism for

capturing blog RSS/Atom feeds. In addition to aggregators, there are also a number of

plugins that utilise web feeds. These plugins are available for various blogging platforms,

for instance, for WordPress
2
. Whilst aggregators provide mechanisms for accessing newly

published blog content, they are not the only way of receiving the content. There are

services, for instance, Feedburner
3
 (now available via Google) that offer a range of

middleware services between the publishers and consumers. Access to some of these

services is available via API interfaces.

3. Open weblog spider for identifying web feeds. In addition to using aggregation and

updates from a ping server, it is possible to identify blogs by searching blog service

websites and directories. The use of directories in particular enables identification of new

blogs, local blogs and niche blogs with greater efficiency.

4. Full text weblog spider. Full text weblog spiders enable gathering of content from a

weblog site. Such a weblog spider may consist of two elements. Firstly, a spider component

for finding blog sites and blog feeds and, secondly, a component that acquires the list of

identified blogs and indexes them extensively to include all available content. This way of

capturing is usually contrasted with RSS crawling that is limited to the data distributed via

web feeds. Full text crawling provides a possibility of capturing content in full for blog

posts, comments, links, attachments, graphics, author information and metadata.

Recent developments in the area of weblog crawling

The World Wide Web continues to grow and evolve. New technologies, services and standards

emerge periodically, affecting the development of the blogosphere. Among the most recent

2
 http://wordpress.org/extend/plugins/search.php?q=feed&sort=

3
 http://feedburner.com

http://wordpress.org/extend/plugins/search.php?q=feed&sort=
http://feedburner.com/

D2.4 Report: Weblog Spider Prototype and
 Associated Methodology 22 October 2013

BlogForever Consortium Page 9 of 71

developments that may have direct implications for the development of the BlogForever project are

the developments of Microdata, crawling of JavaScript by Google, and HTML5:

 Microdata (schema.org) is a standard for enriching web content. This standard is recognised

and has been agreed by Microsoft, Google and Yahoo since July 2011. Microdata can be very

valuable when crawling the web and weblogs for different items and types of content.

 Capturing comments on blog posts often requires running some JavaScript code. This forms

one of the challenges when crawling social media websites. However, the recent announcement

of Google highlighted the launch of a Google spider that is capable of executing

AJAX/JavaScript code and capturing comments on social media sites, including Facebook [1].

The announcement raises a discussion on what the implications of this recent development may

be in relation to the blogosphere. It is clear, however, that capturing content that has remained

out of the reach of spiders is now becoming accessible.

 HTML5 is another substantial development in the area and constitutes a significant

improvement on its predecessor version. Although earlier versions of HTML are still being

used widely, the situation may change in the near future. The use of HTML5 can enable a more

extensive extraction and processing of semantic entities.

2.1 Ping servers and pingbacks

Given the potential for identifying new blogs and monitoring updates, it appears beneficial to

integrate BlogForever with a mechanism for working with ping servers. The spider can use openly

available ping servers to gain information about new posts and weblogs.

1. New blog posts (updates). Information about updates acquired from the ping server can

be collected by the BlogForever spider and used accordingly for crawling new posts.

2. New weblogs. Weblogs that have not been previously known to the BlogForever spider

can be identified from the ping server and added to the list of crawled weblogs.

Using information about newly added or updated pages on already existing blogs can reduce the

time lapse for crawling and indexing. For instance, the spider (more specifically, the integral

component of the spider – the scheduler) may set a certain frequency for visiting/re-visiting

weblogs for crawling new content. This frequency may be limited to daily visits, for example.

However, crawling frequently updated weblogs may require more frequent visits. Having

notifications from a ping server about new posts would allow fetching and indexing the posts

immediately rather than with a set delay.

Additionally, a ping server may be a useful resource for discovering new weblogs and extending the

repository of collected weblogs. For instance, when a new post is published by a previously

unknown resource it can be used for adding a new weblog to the database. However, a common

problem when working with ping servers is the presence of large amounts of spam. Spam sources

may not necessarily be weblogs, and they may have irrelevant content or re-publish original content

from elsewhere. All of those issues will need to be addressed at some point in the BlogForever

project.

There are a large number of ping servers available today
4
. Not all of the ping servers are openly

available, and some servers may not offer consistent or reliable services. Potentially suitable ping

servers for the BlogForever include Blo.gs and Feedburner.

4
 Sample List of Ping Servers: http://www.blog-blog.de/blogs/7-Liste-der-Ping server-Pingservices.html

http://www.blog-blog.de/blogs/7-Liste-der-Ping%20server-Pingservices.html

D2.4 Report: Weblog Spider Prototype and
 Associated Methodology 22 October 2013

BlogForever Consortium Page 10 of 71

For the ping servers to be able to receive and distribute notifications about a new post, weblog users

are expected to use a script to connect their weblog with a specified ping server. The addition of the

script will associate the weblog with a ping server and enable sending a ping message once the

content of the weblog is updated. As seen below in Table 1, the output from a ping server is very

limited beyond telling that a URL has been updated.

Weblog tracking services, however, use ping servers differently. The BlogForever spider should use

an appropriate interface for accessing the services provided by a ping server. More specifically, the

BlogForever spider will need to connect to the ping server (sometimes called ―hook up to a cloud‖)

and provide an IP address to be used for receiving the feed. It would also require connecting to a

specific URL (e.g. ping.blo.gs) via specific port (e.g. port 29999, in the case of blo.gs), which will

enable receiving a streaming version of the changes.xml files that contain information about the

received ping messages.

Table 1 – Example of an output received from the blo.gs ping server
<?xml version="1.0" encoding="utf-8"?>

<weblogUpdates version="1" time="20041127T22:51:58Z">

<weblog name="blog one"

 url="http://example.com/blogone/"

 rss="http://example.com/blogone/index.rss"

 service="ping" ts="20041127T22:51:59Z"

/>

<weblog name="blog two"

 url="http://example.com/blogtwo/"

 service="ping" ts="20041127T22:52:06Z"

/>

<weblog name="blog three"

 url="http://example.com/blogthree/"

 service="blogger.com"

 polled="true" ts="20041127T22:47:38Z"

/>

</weblogUpdates>

2.2 Linkbacks, Trackbacks and Pingbacks

LinkBack (or linkback) is a mechanism that enables receiving notifications when posts are

referenced in other weblogs. This mechanism provides information on how posts are being

referenced and, therefore, are prized by many bloggers. Capturing linkback data from blogs can

provide an insight into the network of blogs and the intricate inter-relations within the blogosphere.

Linkback mechanisms are used by various search engines, like Google or Technorati, to rank blogs

and their posts [2]. It is therefore important to ensure that the BlogForever spider captures and

processes the information about linkbacks.

To enable effective capture of linkback data it is necessary to look into the available types and

implementation of various linkback mechanisms. This section briefly outlines two of the linkback

mechanisms: Trackbacks [3] and Pingbacks [4]. The use of RefBacks is not covered in this report

due to the limitation in identifying the traces of using this type of linkback within the available

source code.

Linkback mechanisms automate the exchange of links between bloggers. To enable the automation,

the process of exchange consists of two parts: auto-discovery and notification. The auto-discovery

mechanism requires each post to have an RDF fragment (see Table 2 for an example) or a <link>

tag which specifies which page should be used by other blogs for submitting their linkback

notifications. The notification page is used for collecting and processing the received linkback

notifications. The protocols for sending notifications, on the other hand, differ from one type of

linkback to another. For instance, trackback notification is sent as an HTTP POST request which

D2.4 Report: Weblog Spider Prototype and
 Associated Methodology 22 October 2013

BlogForever Consortium Page 11 of 71

specifies the title, URL, and an excerpt of the posts as well as the name of the blog. On the other

hand, pingback notifications require the use of XML-RPC calls. Regardless of the protocols used,

the notified blog processes the received information and updates the blog by inserting a link to the

resource that cites it.

Table 2 – Example of RDF fragment enabling trackback auto-detection

<rdf:RDF

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:trackback="http://madskills.com/public/xml/rss/module/

trackback/"

xmlns:dc="http://purl.org/dc/elements/1.1/">

<rdf:Description

 rdf:about="http://www.orlandovacationer.com/archives/000076.html"

 trackback:ping="http://www.cadenhead.org/cgi-bin/mt-tb.cgi/76"

 dc:title="Dining in Orlando's Rainforest Cafes"

 dc:identifier="http://orlandovacationer.com/archives/000076.html"

 dc:subject=""

 dc:description="Theme Park Insider reviews the Rainforest Cafe

restaurants

at Disney World Animal Kingdom and Downtown Disney in Orlando: If

you’ve heard anything about the Rainforest Cafe, it’s likely been

the atmosphere, first and foremost. The entire restaurant is

themed to..."

 dc:creator="rcade"

 dc:date="2004-01-27T13:51:10-05:00" />

</rdf:RDF>

The approaches used by blogs for exploiting trackbacks may differ from one blog to another. Some

blogging platforms, in addition to incorporating the links or RDF code for auto-detection, allow

checking of links for potential trackback at the time of making a blog post. Because this check

requires the blogging platform to access the included links and search for the trackback notification

page, the process of making the posts may take longer than usual [5]. Hence, in some cases,

bloggers may prefer to disable the automatic checks and manually control the trackback

notifications by filling out a form that specifies the trackback page for sending a notification.

Capturing the relationships between blogs that are created by the linkbacks is an important part of

the BlogForever project. Therefore the spider (if not at the prototyping stage than later in the

project) will need to be able to identify and categorise linkbacks. This will be possible by parsing

the content of the accessed weblog pages. However, a distinction between the general links and

links added as a result of linkbacks is necessary. Although the inserted links usually appear as

comments with an indication of representing a trackback, the implementation of inserting trackback

links may vary from one blogging platform to another. The following tables (Table 3 and Table 4)

demonstrate an example of client side code inserted into a blog for displaying a trackback.

Table 3 – Example of an inserted trackback link (from [5])

<MTEntryIfAllowPings>

 | <a href="<$MTCGIPath$><$MTTrackbackScript$>?__mode=view&

entry_id=<$MTEntryID$>" onclick="OpenTrackback(this.href);

return false">TrackBack (<$MTEntryTrackbackCount$>)

</MTEntryIfAllowPings>

Table 4 – Example of JavaScript code for opening a trackback link in a pop-up window (from [5])

<script language="javascript" type="text/javascript">

function OpenTrackback (c) {

 window.open(c,

D2.4 Report: Weblog Spider Prototype and
 Associated Methodology 22 October 2013

BlogForever Consortium Page 12 of 71

 ‘trackback’,

 ‘width=480,height=480,scrollbars=yes,status=yes’);

}

</script>

An alternative representation of a trackback link can include the use of a rel=―‖ attribute for the

HTML <link> tag. For instance:

Text

An example of a pingback link inserted into a page can more commonly be:

<link rel="pingback" href="http://vbanos.gr/xmlrpc.php" />

Regardless of the mechanism for inserting and displaying linkbacks, the BlogForever spider aims to

distinguish different types of trackbacks and capture these for preservation. Whether linkback

insertions can be used to improve the process of identifying new blogs for crawling is an interesting

question that requires evaluation and lies beyond the scope of this report.

2.3 Available blog platforms and blog search engine APIs

Searching and fetching web feeds is often made possible via APIs. Search services offered by

Google, for instance, can be used to search or fetch feeds such as RSS. Similar functionality is often

provided by blogging platforms. This section briefly outlines some of the weblog search engines

and their use as part of the BlogForever spider.

There are a number of weblog search engines dedicated to searching though weblog content.

Among those are Bloglines
5
, BlogScope

6
 and Technorati

7
. Technorati, which is amongst the earlier

and most popular blog search engines, provides current information on popular weblogs and tags

used to categorize blog postings. Some of these search engines, for instance BlogScope, offer a

wider analysis of resources and extend beyond simple keyword search. Weblog search services

process large amounts of data and can publish information about trending topics or blogs.

Amatomu
8
 and Icerocket

9
 extend the list of similar tools with more specialised services.

In addition to freely available APIs, there are also commercial solutions that offer access to similar

data or even crawling software itself as a hired platform. Among those are Twingly
10

, Moreover and

CyberWatcher
11

.

Some of the blogging services like Blogger or WordPress offer APIs to their users for publishing or

managing their blogs. These APIs are discussed in greater detail in the previously submitted D2.2

BlogForever report [6]. Although considered useful for working with individual blogs, the use of

these APIs may not be relevant for identifying or crawling blog content. Blogger, similarly to

Weblogs.com ping server, provides access to the changes XML file. However, it appears to be less

common for blogging platforms to provide APIs or other distribution mechanisms for discovering

and accessing blogs on a large scale. Therefore, the use of APIs for developing a spider prototype is

not considered.

5
 http://www.bloglines.com/

6
 http://www.blogscope.net/

7
 http://technorati.com/

8
 http://www.amatomu.com/

9
 http://www.icerocket.com/

10
 http://www.twingly.com/

11
 http://www.cyberwatcher.com/

http://vbanos.gr/xmlrpc.php
http://www.bloglines.com/
http://www.blogscope.net/
http://technorati.com/
http://www.amatomu.com/
http://www.icerocket.com/
http://www.twingly.com/
http://www.cyberwatcher.com/

D2.4 Report: Weblog Spider Prototype and
 Associated Methodology 22 October 2013

BlogForever Consortium Page 13 of 71

3 The different approaches to capturing and indexing weblogs

Capturing and indexing web content is an active research topic with several web data extraction

methodologies available and a large volume of relevant tools already implemented. This section

aims to present the techniques evaluated for capturing and indexing weblogs. The process can be

divided into the following parts:

1. Capturing blog updates

2. Indexing weblog content

3. Advanced information retrieval from blog content

4. Spam detection (both in ping servers and blog content)

5. Blog ranking

3.1 Capturing blog updates

Section 2 (Approaches and technologies for crawling) discussed a number of approaches for

defining which blog URLs have been updated. While this step is an important one, it is only the

beginning in the task of capturing actual blog content. Specific techniques and algorithms are

required to find the updated content and define the elements of the latest blog posts. The following

subsections discuss some of them.

3.1.1 Compare text similarity using the Levenshtein distance

The Levenshtein distance [12] is a string metric for measuring the amount of difference between

two character sequences. This can be used to compare text in RSS format with full text in HTML in

order to perform approximate string matching and define the element location and attributed of the

corresponding RSS element and full text from the HTML.

Computing the Levenshtein distance is based on the observation that if we reserve a matrix to hold

the Levenshtein distances between all prefixes of the first string and all prefixes of the second, then

we can compute the values in the matrix by flood filling the matrix, and thus find the distance

between the two full strings as the last value computed.

This algorithm, an example of bottom-up dynamic programming, is discussed, with variants, in the

1974 article by Wagner and Fischer [13]. A straightforward implementation, as pseudo code for a

function LevenshteinDistance (Table 5) that takes two strings, s of length m, and t of length n,

and returns the Levenshtein distance between them is listed below:

Table 5 – Pseudocode for the Levenstein distance algorithm.

int LevenshteinDistance(char s[1..m], char t[1..n])

{

 // for all i and j, d[i,j] will hold the Levenshtein distance between

 // the first i characters of s and the first j characters of t;

 // note that d has (m+1)x(n+1) values

 declare int d[0..m, 0..n]

 for i from 0 to m

 // the distance of any first string to an empty second string

 d[i, 0] := i

 for j from 0 to n

 // the distance of any second string to an empty first string

 d[0, j] := j

 for j from 1 to n

 {

D2.4 Report: Weblog Spider Prototype and
 Associated Methodology 22 October 2013

BlogForever Consortium Page 14 of 71

 for i from 1 to m

 {

 if s[i] = t[j] then

 d[i, j] := d[i-1, j-1] // no operation required

 else

 d[i, j] := minimum

 (

 d[i-1, j] + 1, // a deletion

 d[i, j-1] + 1, // an insertion

 d[i-1, j-1] + 1 // a substitution

)

 }

 }

 return d[m,n]

3.2 Define content elements and link types using decision trees

A challenge when receiving input of blogs, e.g. from a ping server, is the volume of received URLs

with no structure. Each URL or specifically, the associated page to the URL, can be a blog host, a

blog post or a comment.

Machine learning using decision trees is a technique for defining which links are blog hosts, blog

posts and comments. These algorithms utilize sample tests of multiple attributes to recognize a

blog post link or a blog host link. This way the system learns the rules by attributes that relate to

either type of link. The output of this URL analysis is a set of rules per source called link filters.

Link filters separate valid links from invalid links and identify links that represent blog posts.

Similarly, each blog post will be analyzed to extract full text content using the same set of machine

learning algorithms that define content filters.

Machine learning using decision trees is also used to identify which part of the downloaded blog

HTML corresponds to each blog element. Using this method, the application is able to identify blog

elements such as main blog content, author name and publication date.

Decision trees are also known as classification trees or regression trees. In these tree structures,

leaves represent class labels and branches represent conjunctions of features that lead to those class

labels. In data mining, a decision tree describes data but not decisions – rather, the resulting

classification tree can be an input for decision making. ID3 and Neural Network algorithms were

tested during the prototype application development in order to assess their performance in weblog

data extraction.

ID3-algorithm

ID3 (Iterative Dichotomiser 3) is an algorithm used to generate a decision tree. The ID3 algorithm

can be summarized as follows.

1. Take all unused attributes and count their entropy concerning test samples.

2. Choose attribute for which entropy is minimum (or, equivalently, information gain is

maximum).

3. Make node containing that attribute.

The algorithm prefers smaller decision trees (simpler theories) over larger ones. However, it does

not always produce the smallest tree, and is therefore a heuristic. It is flexible and can be used both

for analyzing blog hosts as well as content per blog post and comments.

D2.4 Report: Weblog Spider Prototype and
 Associated Methodology 22 October 2013

BlogForever Consortium Page 15 of 71

Neural network (NN)

A neural network consists of an interconnected group of artificial neurons, and it processes

information using a connectionist approach to computation. Modern neural networks are non-linear

statistical data modeling tools. They are usually used to model complex relationships between

inputs and outputs or to find patterns in data.

Neural network is more sophisticated than ID3 but not equally scalable. For this purpose, ID3 is the

preferred algorithm as scalability is vital for a blog spider that is required to process large volumes

of URLs from ping servers.

3.3 HTML-aware data extraction

HTML-aware data extraction methods are based on the inherent characteristics of the HTML mark-

up language to infer extra information from documents. The HTML-aware method is the standard

method to convert HTML into structured information. This is needed because HTML is not

efficient for machine processing.

There are several challenges in converting HTML into text. The two basic requirements are (a)

speed in processing and (b) accuracy in converting all the HTML elements into text. The latter is

challenging due to many web technologies that obfuscate information and make it hard for the

software to process it. Such technologies include JavaScript framed feeds from other URLs, Flash,

etc. On the other hand, HTML5 and other open web technologies and standards promote open

access to web information and better HTML-aware data extraction. A useful summary by Azagra

covers the challenges as well as available tools [14].

When extracting data from a blog, the process can be based upon unwrapping the HTML on each

page. In addition, the process can include downloading the entire site and analyzing the site

structure using a DOM-tree. This also enables comparison of several webpages to be included when

finding structure and patterns to convert into text. One early tool to include this was the

RoadRunner, described in an early paper about extraction and analysis methods [11].

3.3.1 HTML-aware data extraction prototypes using available open source

libraries

In order to evaluate HTML-aware data extraction, three libraries were evaluated through a basic

prototype application that was developed for each of them, two of them well known and widely

used (HTML Agility and Beautiful Soup) and another one that is normally used for web page

testing but provides parsing capabilities too (Watin).

HTML Agility Pack
12

 is an HTML parsing library for the .NET framework which is tolerant with

HTML that is not well formed. The HTML tree can be queried with XPATH or LINQ
13

in newer

versions (via a LINQ to XML interface).

Beautiful Soup
14

 is an HTML parsing library written in the Python programming language. It’s also

tolerant in malformed HTML using a class that employs heuristics for getting a sensible tree even in

the presence of HTML errors but it also provides a class for parsing XML, SGML or a domain-

specific language that looks like XML.

12

 http://htmlagilitypack.codeplex.com/
13

 http://en.wikipedia.org/wiki/Language_Integrated_Query
14

 http://www.crummy.com/software/BeautifulSoup/

http://htmlagilitypack.codeplex.com/
http://en.wikipedia.org/wiki/Language_Integrated_Query
http://www.crummy.com/software/BeautifulSoup/

D2.4 Report: Weblog Spider Prototype and
 Associated Methodology 22 October 2013

BlogForever Consortium Page 16 of 71

WatIn
15

 is a .NET library primarily for Web testing that can be used for HTML parsing. It’s not as

well suited for parsing as HTML Agility or Beautifoul Soup but it is very good in interacting with

web pages, executing commands (e.g. with auto clicks) etc., which gives it an advantage over the

other two with regard to e.g. AJAX driven web sites.

After reading the libraries’ documentation and conducting prototyping, the following conclusions

were reached:

 HTML Agility and Beautiful Soup produced quite similar results, no definite advantage

was observed for the one over the other.

 Watin is quite slow and heavy (normally it loads a browser object although it is possible to

extract from web pages without loading a browser but this method is not well documented).

It doesn’t support the emulation of all browsers/all versions and its API has at least one

considerable shortcoming: there is no attributes collection.

 A combination of Watin and HTML Agility has been used during the evaluation to

overcome this problem (attributes were provided by HTML Agility to Watin). It is not

adequate by itself for the purposes of the project’s crawler but it might be very useful in

combination with another library.

 The combination of HTML Agility and Watin seems promising as these two libraries are

somehow complementary, one is good for parsing and the other for interacting with web

pages. This combination is more straightforward than the combination of Beautiful Soup

and Watin, since HTML Agility and Watin both target the same framework (.NET).

Technical details regarding the code implemented and tests conducted can be found at Appendix E.

3.4 Advanced information retrieval from blog content

BlogForever will develop robust digital preservation, management and dissemination facilities for

blogs. An important part of BlogForever is the aggregation of blog content and more specifically

the extraction of semantic elements omitted or ignored by current web archiving methods and

solutions.

Semantic data embedded in web pages have been gaining ground considerably during the last few

years in the form of many different schemas such as microformats, microdata and RDFa.

BlogForever aims to use information encoded in all these schemas in order to improve blog

preservation, management and dissemination.

This subsection begins by presenting an overview of the state of semantic information in the web.

Current schemas of semantic information embedded in web pages are also investigated and their

importance, as well as the information they convey, are evaluated. Additionally, the work done to

test semantic data extraction from blogs is illustrated. Finally, the open source library any23, which

was selected to handle the task, is presented. The final part of this subsection provides a detailed

description of the prototype and its use.

3.4.1 Semantic information in the web

The Semantic Web is a web of data that facilitates machines to understand the semantics, or

meaning, of information on the World Wide Web. One of the current trends in the web today is the

inclusion of semantic information within existing content on web pages. This way, special software

such as search engines, web crawlers and even browsers can extract and process this information.

The main metadata schemas for this purpose are microformats, microdata and RDFa.

15

 http://watin.org/

http://watin.org/

D2.4 Report: Weblog Spider Prototype and
 Associated Methodology 22 October 2013

BlogForever Consortium Page 17 of 71

Microformats
A microformat (sometimes abbreviated μF) is a web-based approach to semantic mark-up which

seeks to re-use existing HTML/XHTML tags to convey metadata and other attributes in web pages

and other contexts that support (X)HTML, such as RSS. This approach allows software to process

information intended for end-users (such as contact information, geographic coordinates, calendar

events, and the like) automatically.

Although the content of web pages is technically already capable of ―automated processing‖, and

has been since the inception of the web, such processing is difficult because the traditional mark-up

tags used to display information on the web do not describe what the information means.

Microformats can bridge this gap by attaching semantics, and thereby obviate other, more

complicated, methods of automated processing, such as natural language processing or screen

scraping (for example, Figure 1). The use, adoption and processing of microformats enable data

items to be indexed, searched for, saved or cross-referenced, so that information can be reused or

combined.

Figure 1 – Microformat example from http://johanramon.fr/ (class=''adr'')

Microformats allow the encoding and extraction of events, contact information, social relationships

and so on. A brief list of microformats, both stable and draft is listed below.

Stable Microformats

 hCalendar is a simple, open, distributed calendaring and events format, using a 1:1

representation of standard iCalendar (RFC2445) VEVENT properties and values in

semantic HTML or XHTML. http://microformats.org/wiki/hcalendar

 hCard is a simple, open, distributed format for representing people, companies,

organisations, and places, using a 1:1 representation of vCard (RFC2426) properties and

values in semantic HTML or XHTML. http://microformats.org/wiki/hcard

 rel-license is a simple, open, format for indicating content licenses which is embeddable in

HTML or XHTML, Atom, RSS, and arbitrary XML. http://microformats.org/wiki/rel-

license

 rel-nofollow is an elemental microformat, one of several open microformat standards. By

adding rel="nofollow" to a hyperlink, a page indicates that the destination of that hyperlink

should not be afforded any additional weight or ranking by user agents which perform link

analysis upon web pages (e.g. search engines). http://microformats.org/wiki/rel-nofollow

 rel-tag. By adding rel="tag" to a hyperlink, a page indicates that the destination of that

hyperlink is an author-designated "tag" (or keyword/subject) for the current page.

http://microformats.org/wiki/rel-tag

http://johanramon.fr/
http://microformats.org/wiki/hcalendar
http://microformats.org/wiki/hcard
http://microformats.org/wiki/rel-license
http://microformats.org/wiki/rel-license
http://microformats.org/wiki/rel-nofollow
http://microformats.org/wiki/rel-tag

D2.4 Report: Weblog Spider Prototype and
 Associated Methodology 22 October 2013

BlogForever Consortium Page 18 of 71

 VoteLinks. Indexing and tracking applications treat all links as endorsements or

expressions of support. This is a problem, as we need to link to those we disagree with as

well, to discuss why. http://microformats.org/wiki/vote-links

 XFN (XHTML Friends Network) is a simple way to represent human relationships using

hyperlinks. XFN enables web authors to indicate their relationship(s) to the people in their

blogrolls simply by adding a 'rel' attribute to their <a href> tags. http://gmpg.org/xfn/

 XMDP (XHTML Meta Data Profiles) is a simple XHTML-based format for defining

HTML meta data profiles easy to read and write by both humans and machines. The mark-

up is a profile of XHTML. http://gmpg.org/xmdp/

 XOXO is a simple, open outline format written in standard XHTML and suitable for

embedding in (X)HTML, Atom, RSS, and arbitrary XML.

http://microformats.org/wiki/xoxo

Draft Microformats

 adr is a simple format for marking up address information, suitable for embedding in

HTML, XHTML, Atom, RSS, and arbitrary XML. adr is a 1:1 representation of

the adr property in the vCard standard (RFC2426) in HTML, one of several

open microformat standards. It is also a property of hCard microformat.

http://microformats.org/wiki/adr

 geo is a simple format for marking up WGS84 geographic coordinates (latitude; longitude),

suitable for embedding in HTML or XHTML, Atom, RSS, and arbitrary XML. geo is a 1:1

representation of the "geo" property in the vCard standard (RFC2426) in HTML, one of

several open microformat standards. http://microformats.org/wiki/geo

 hAtom is a microformat for content that can be syndicated, primarily but not exclusively

weblog postings. hAtom is based on a subset of the Atom syndication format.

http://microformats.org/wiki/hatom

 hAudio is a simple, open, distributed format, suitable for embedding information about

audio recordings in (X)HTML, Atom, RSS and arbitrary XML.

http://microformats.org/wiki/haudio

 hListing is a proposal for an open, distributed listings (small-ads; classifieds) format

suitable for embedding in (X)HTML, Atom, RSS, and arbitrary XML.

http://microformats.org/wiki/hlisting

 hMedia is a simple and open format for publishing Images Video and Audio. hMedia may

be embedded in HTML or XHTML, Atom, RSS, and arbitrary

XML. http://microformats.org/wiki/hmedia

 hNews is a microformat for news content. hNews extends hAtom, introducing a number of

fields that more completely describe a journalistic work. hNews also introduces another

data format, rel-principles, a format that describes the journalistic principles upheld by the

journalist or news organization that has published the news item.

http://microformats.org/wiki/hnews

 hProduct is a microformat suitable for publishing and embedding product data. hProduct is

one of several open microformats standards suitable for embedding in HTML, XHTML,

Atom, RSS, and arbitrary XML. http://microformats.org/wiki/hproduct

 hRecipe is a simple, open, distributed format, suitable for embedding information about

recipes for cooking in (X)HTML, Atom, RSS, and arbitrary

XML. http://microformats.org/wiki/hrecipe

 hResume is a microformat for publishing resumes and CVs. hResume is one of several

open microformat standards suitable for embedding in HTML, XHTML, Atom, RSS and

arbitrary XML. http://microformats.org/wiki/hresume

 hReview is a simple, open, distributed format, suitable for embedding reviews (of products,

services, businesses, events, etc.) in HTML, XHTML, Atom, RSS and arbitrary XML.

http://microformats.org/wiki/hreview

http://microformats.org/wiki/vote-links
http://gmpg.org/xfn/
http://gmpg.org/xmdp/
http://microformats.org/wiki/xoxo
http://www.ietf.org/rfc/rfc2426.txt
http://microformats.org/wiki/adr
http://en.wikipedia.org/wiki/WGS84
http://www.ietf.org/rfc/rfc2426.txt
http://microformats.org/wiki/geo
http://www.atomenabled.org/
http://microformats.org/wiki/hatom
http://microformats.org/wiki/haudio
http://microformats.org/wiki/hlisting
http://microformats.org/wiki/hmedia
http://microformats.org/wiki/hatom
http://microformats.org/wiki/rel-principles
http://microformats.org/wiki/hnews
http://microformats.org/wiki/hproduct
http://microformats.org/wiki/hrecipe
http://microformats.org/wiki/hresume
http://microformats.org/wiki/hreview

D2.4 Report: Weblog Spider Prototype and
 Associated Methodology 22 October 2013

BlogForever Consortium Page 19 of 71

 Rel-Directory is one of several microformats. By adding 'directory' to the rel attribute of a

hyperlink, a page indicates that the destination of the hyperlink is a directory listing that

contains an entry for the current page. http://microformats.org/wiki/rel-directory

 Rel-Enclosure is a simple, open, format for indicating files to cache which is embeddable

in (X)HTML, Atom, RSS and arbitrary XML. http://microformats.org/wiki/rel-enclosure

 Rel-Home is one of several microformats. By adding rel="home" to a hyperlink, a page

indicates that the destination of that hyperlink is the homepage of the site in which the

current page appears. http://microformats.org/wiki/rel-home

 Rel-Payment is a microformat for making exchanges of support (be it financial or

otherwise) possible. By adding rel="payment" to a hyperlink a page indicates that the

destination of that hyperlink provides a way to show or give support for the current page.

http://microformats.org/wiki/rel-payment

 Robot Exclusion Profile is a reworking of the Robots META tag (and less-standard

extensions) as a microformat. http://microformats.org/wiki/robots-exclusion

 xFolk (from "xFolksomony") is a simple and open format for publishing collections of

bookmarks. It enables services for improving user experience and sharing data within web-

based bookmarking software. xFolk may be embedded in HTML or XHTML, Atom, RSS,

and arbitrary XML. http://microformats.org/wiki/xfolk

Microdata

Microdata are a WHATWG HTML5 specification used to nest semantics within existing content on

web pages. Search engines, web crawlers and browsers can extract and process microdata from a

web page, and use it to provide a richer browsing experience for users. Microdata use a supporting

vocabulary to describe an item and name-value pairs to assign values to its properties (for example

Figure 2). Microdata help technologies such as search engines and web crawlers to better

understand what information is contained in a web page, hence contributing to improved search

results. Microdata are an attempt to provide a simpler way of annotating HTML elements with

machine readable tags than the similar approaches of using RDFa and microformats. A list of all

microdata can be found at http://schema.org & http://data-vocabulary.org.

Figure 2 – Event microdata from http://www.schema.org/Event

http://microformats.org/wiki/rel-directory
http://microformats.org/wiki/rel-enclosure
http://microformats.org/wiki/rel-home
http://microformats.org/wiki/rel-payment
http://microformats.org/wiki/Robots_META
http://microformats.org/wiki/robots-exclusion
http://microformats.org/wiki/xfolk
http://schema.org/
http://data-vocabulary.org/

D2.4 Report: Weblog Spider Prototype and
 Associated Methodology 22 October 2013

BlogForever Consortium Page 20 of 71

Common Microdata Vocabularies

 Creative works:

o Book http://www.schema.org/Book

o Movie http://www.schema.org/Movie

o Recipe http://www.schema.org/Recipe

 Embedded non-text objects:

o AudioObject http://www.schema.org/AudioObject

o ImageObject http://www.schema.org/ImageObject

o VideoObject http://www.schema.org/VideoObject

 Event: An event happening at a certain time at a certain location.

http://www.schema.org/Event

 Organization: An organization such as a school, NGO, corporation, club, etc.

http://www.schema.org/Organization

 Person: http://www.schema.org/Person

 Place http://www.schema.org/Place

 Product http://www.schema.org/Product

 Review http://www.schema.org/Review

RDFa (or Resource Description Framework – in – attributes) is a W3C Recommendation that adds

a set of attribute-level extensions to XHTML for embedding rich metadata within web documents.

The RDF data model mapping enables its use for embedding RDF subject-predicate-object

expressions within XHTML documents, and also enables the extraction of RDF model triples by

compliant user agents.

The W3C RDF in XHTML Taskforce is also working on an implementation for non-XML versions

of HTML [1]. The primary issue for the non-XML implementation is how to handle the lack of

XML namespaces: http://www.w3.org/TR/xhtml-rdfa-primer/.

Figure 3 – Sample FOAF RDFa elements

Vocabularies

 Friend-of-a-Friend (FOAF) - FOAF provides some basic machinery to help us tell the web

about the connections between the things that matter to us.

 GoodRelations - GoodRelations is the most sophisticated and most widely used vocabulary

for product, price, store, payment, and product feature information.

 Semantically Interlinked Online Communities - The SIOC initiative (Semantically-

Interlinked Online Communities) aims to enable the integration of online community

information.

 Description of a Career (DOAC) is a vocabulary to describe the professional capabilities of

a worker.

 Media - An open standard for distributed media metadata.

http://www.schema.org/Book
http://www.schema.org/Movie
http://www.schema.org/Recipe
http://www.schema.org/AudioObject
http://www.schema.org/ImageObject
http://www.schema.org/VideoObject
http://www.schema.org/Event
http://www.schema.org/Organization
http://www.schema.org/Person
http://www.schema.org/Place
http://www.schema.org/Product
http://www.schema.org/Review
http://www.w3.org/TR/xhtml-rdfa-primer/
http://xmlns.com/foaf/spec/
http://purl.org/goodrelations/
http://rdfs.org/sioc/spec/

D2.4 Report: Weblog Spider Prototype and
 Associated Methodology 22 October 2013

BlogForever Consortium Page 21 of 71

 Audio - An open standard for distributed audio metadata such as audio recordings, albums,

titles, and contributors.

 Video - An open standard for distributed video metadata such as movies, television, titles,

contributors, and duration.

 Commerce - Another open standard for distributed commerce metadata such as price,

currency, and amount.

 Music Ontology - Provides main concepts and properties for describing music (i.e. artists,

albums, tracks, but also performances, arrangements, etc.)

3.4.2 State of the art on extraction of semantic information from blogs

There are many possible solutions to use in order to extract semantic information from web pages

and particularly blogs. In essence, the process involves parsing the HTML source code of the web

page and creating a DOM tree with all page elements and attributes. Afterwards, the software

enumerates all elements trying to match known microformats, microdata & RDFa standards’

patterns.

To avoid the difficult and error-prone task of HTML parsing and DOM tree creation, a number of

open source libraries have emerged, giving the ability to extract semantic data transparently and

hiding much of the complexity. Searching the web revealed multiple implementations and online

services such as:

 PHP Microformats Parser http://www.phpclasses.org/package/3597-PHP-Extract-

microformat-data-embedded-in-HTML.html

 http://www.alchemyapi.com/

 Perl Text::Microformat http://code.google.com/p/ufperl/

 Python library for extracting html5 microdata https://github.com/edsu/microdata

 Anything to Triples (Any23) library http://developers.any23.org/

Any23 was selected as the most suitable library to use in our prototype implementation for a number

of reasons.

1. It supports a large number of formats:

o RDF/XML, Turtle, Notation 3

o RDFa with RDFa1.1 prefix mechanism

o Microformats: Adr, Geo, hCalendar, hCard, hListing, hResume, hReview, License,

XFN and Species

o HTML5 Microdata: (such as Schema.org)

o CSV: Comma Separated Values with separator autodetection.

2. It is currently used by a large number of applications and web services such as

http://sindice.com/ and http://sig.ma/

3. It is actively developed and maintained but Digital Enterprise Research Institute (DERI)

http://www.deri.ie/

4. It is written in Java and published under Apache License Version 2.0

http://www.apache.org/licenses/LICENSE-2.0

3.4.3 Prototype semantic data extractor application

The BlogForever semantic data extractor prototype application is a Java command line application

capable of extracting semantic information from web pages. Application code references describing

main classes and methods can be found at Appendix C.

http://purl.org/media/audio
http://purl.org/media/video
http://purl.org/commerce/
http://musicontology.com/
http://www.phpclasses.org/package/3597-PHP-Extract-microformat-data-embedded-in-HTML.html
http://www.phpclasses.org/package/3597-PHP-Extract-microformat-data-embedded-in-HTML.html
http://www.alchemyapi.com/
http://code.google.com/p/ufperl/
https://github.com/edsu/microdata
http://developers.any23.org/
http://www.w3.org/TR/REC-rdf-syntax/
http://www.w3.org/TeamSubmission/turtle/
http://www.w3.org/DesignIssues/Notation3
http://www.w3.org/TR/xhtml-rdfa-primer/
http://www.w3.org/TR/2010/WD-rdfa-core-20100422/#scoping-of-prefix-mappings
http://microformats.org/
http://dev.w3.org/html5/md/
http://schema.org/
http://www.ietf.org/rfc/rfc4180.txt
http://sindice.com/
http://sig.ma/
http://www.deri.ie/
http://www.apache.org/licenses/LICENSE-2.0

D2.4 Report: Weblog Spider Prototype and
 Associated Methodology 22 October 2013

BlogForever Consortium Page 22 of 71

Usage

The only requirement to use the prototype application is to have Java installed in your computer.

Instructions:

1. Download software source code and binary from http://blogforever.eu/wp-

content/uploads/2011/07/Blogforever-microformats.tar.gz

2. Unzip

3. Execute using the following command: ./Extractor URL -o outputfile.xml

Example

Execute the following command:

./Extractor http://rachaeljames.wordpress.com/2011/06/27/the-tree-

of-life/ -o outputfile.xml

Output file: outputfile.xml

<rdf:Description rdf:nodeID="node163o96nfgx12">

<rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Person"/>

<mePage xmlns="http://vocab.sindice.com/xfn#"

rdf:resource="http://rikkicheri.blogspot.com/"/>

</rdf:Description>

3.4.4 Future work

The adoption of semantic information embedded in web pages is growing every day. Large

companies like Microsoft, Google and Yahoo support microdata as well. Blogs also support some

aspects of these protocols and their adoption is rising.

The investigation in microdata, microformats and RDFa as well as the prototype developed

showcased the added value of supporting this technology in BlogForever. Our approach to semantic

data extraction is to incorporate this functionality as an additional step in the data extraction process

of the aggregator. The design and implementation of this feature will be part of Tasks 4.2 & 4.3,

Design and implementation of the weblog spider component.

3.5 Spam detection

Spam detection is important for all blog crawling services. This is especially important when using

ping servers or allowing access to an arbitrary list of weblogs beyond a defined list. As a separate

process to fetching, spam filtering is about identifying and stopping blog posts that should not be

further processed and stored in the repository.

Spam blogs (splogs) are an increasing problem when capturing blogs beyond a list of qualified

weblogs. Splogs are generated with two often overlapping motives. The first motive is the creation

of fake blogs, containing gibberish or hijacked content from other blogs and news sources with the

sole purpose of hosting profitable context based advertisements. The second, and a better

understood form, is to create false blogs that constitute a link farm intended to unjustifiably increase

the ranking of affiliated sites [7].

Splog detection

There are several techniques for detecting Spam, and several freeware tools available such as

blogspam.net. However most of these are too simple to be implemented in a weblog spider.

http://blogforever.eu/wp-content/uploads/2011/07/Blogforever-microformats.tar.gz
http://blogforever.eu/wp-content/uploads/2011/07/Blogforever-microformats.tar.gz

D2.4 Report: Weblog Spider Prototype and
 Associated Methodology 22 October 2013

BlogForever Consortium Page 23 of 71

Another technique would be to implement our own Spam-blog Detection, and three different

techniques are described in [7].

Given a blog profile, we present three (obviously non-exhaustive) scoring functions based on the

heuristics stated below, denoted by SF1 to SF3. Each of them independently attempts to estimate

the likelihood of a blog being a splog. For the ease of discussion, each state tuple in a given blog

profile b is denoted as ST. A blog profile consists of the blog's URL and a sequence of blog state

tuples, each of which is denoted as (t, N, p.spam_score).

SF1: Inblog increment over time. Based on a recent study on evolving graph data, links among

legitimate blogs are expected to follow a densification law [1]. SF1 is therefore proposed to detect

sudden shrink2 in inblog increment. Let N’ be the estimated number of inblog links by a linear

regression model during W time, N be the actual number, and N* be the average derived from ST,

the likelihood of b being a splog is given as (N’-N`)/N*

SF2: Correlation between the number of posts appearing in top search results and inblog

increment. It is expected that a blog would attract more inblog links if its posts frequently appear in

top-ranked search results, as those posts would expected to reach more readers. Hence, the blogs

whose posts frequently appear in top-ranked results but do not attract inblog links are more likely

to be splogs. SF2(b) = 1- C, where C is the correlation coefficient between the two values derived

from ST.

SF3: Average spam-post score. As a legitimate blog often contains relatively fewer spam posts, the

average spam-post score derived from ST can be used to detect splogs: SF3(b) = ∑ p.spam_score/

(ST)

An even more comprehensive insight to the problem and how to create a spam filter that can learn

from new types of spam can be found in [9]. The 13 different features described there that can be

used to identify splogs, and how these were tested and evaluated, are:

No. Feature Description
1 Location Entity Ratio

2 Person Entity Ratio

3 Organization Entity Ratio

4 Female Pronoun Entity Ratio

5 Male Pronoun Entity Ratio

6 Text Compression Ratio

7 URL Compression Ratio

8 Anchor Compression Ratio

9 All URLs character size Ratio

10 All Anchors character size Ratio

11 Hyphens compared with number of URLs

12 Unique URLs by All URLs

13 Unique Anchors by All Anchors
Source: Table 1 in [9]

3.6 Ranking

Blog ranking is partly done to separate popular weblogs from irrelevant blogs or even spam. When

searching through a blog search engine you might want the findings sorted by importance and

relevance – for which ranking is used. Additionally, blog communities, directories and platforms

also use blog ranking to structure blogs across popular topics. For example, French Wikio

publishes, on the 5
th
 of every month, its ranking of blogs in different categories.

D2.4 Report: Weblog Spider Prototype and
 Associated Methodology 22 October 2013

BlogForever Consortium Page 24 of 71

To ensure a certain quality of the blogs’ content, the ranking is created depending upon the number

of tweets, and the weight and number of backlinks on a blog (the links that lead to that specific blog

from different websites). As an example, for Wikio, generating a ranking is both for marketing as

well as for securing an up to date and representative list of new blog posts. As for marketing, the

bloggers can show their position in Wikio’s ranking with a badge on their blog.

The method of ranking by links forms the basis for most search engines. Several web search

ranking algorithms use link-based centrality metrics, including (in order of appearance) Marchiori's

Hyper Search, Google's PageRank, Kleinberg's HITS algorithm, the CheiRank and TrustRank

algorithms.

Link analysis is also conducted in information science and communication science in order to

understand and extract information from the structure of collections of web pages. For example the

analysis might be of the interlinking between politicians' web sites or blogs
16

.

TrustRank is a link analysis technique described in a paper
17

 by Stanford University and Yahoo!

researchers for semi-automatically separating useful webpages from spam.

Another type of ranking is based on peer-to-peer (mutual sharing and linking between users e. g.

peer networks). Although peer-to-peer systems available today (like Gnutella) are open, often

anonymous and are lacking in accountability, some of those can still enable trustworthy relations. A

research team from Stanford provides a reputation management system
18

, where each peer in the

system has a unique global trust value based on the peer's history of uploads. Any peer requesting

resources will be able to access the trust value of a peer and avoid downloading files from untrusted

peers.

16

 http://en.wikipedia.org/wiki/Network_theory
17

 Gyöngyi, Zoltán; Hector Garcia-Molina, Jan Pedersen, "Combating Web Spam with TrustRank‖, 2004
18

 http://en.wikipedia.org/wiki/EigenTrust

http://en.wikipedia.org/wiki/Network_theory
http://en.wikipedia.org/wiki/Hector_Garcia-Molina
http://www.vldb.org/conf/2004/RS15P3.PDF
http://en.wikipedia.org/wiki/EigenTrust

D2.4 Report: Weblog Spider Prototype and
 Associated Methodology 22 October 2013

BlogForever Consortium Page 25 of 71

4 The selected weblog spider architecture and functionality

The main aim of this section is to present the selected approach for developing the weblog spider

prototype application. First, a high level overview of the application processes and architecture is

presented and discussed. Second, some key techniques and data extraction algorithms are

elaborated. Third, the connections between the weblog spider prototype and existing work in D2.1

(Weblog Survey) as well as D2.2 (Weblog Data Model) are considered. Finally, future work-plan

for developing D4.1 Weblog Spider Component Design) and D4.3 (Initial Weblog Spider

Prototype) are presented.

4.1 High Level Overview

The weblog spider functionality can be divided into two main tasks: capture all available blog

content elements and, then, continuously monitor and secure blog updates, including both blog

posts and comments to each blog post.

The application processes can be divided into six main steps.

Step 1: Inputter

The Inputter is where all the blog URLs are inserted into the system. It is accessible through a web

interface referred here as Spider Portal.

There are two different ways of inserting URLs. First option is for the end-user to manually insert a

list of defined blog URLs (blog source – technically called blog hosts). The second option is to

connect to a ping server, which receives blog URLs and blog post updates from a large number of

blog authors and blog platforms. Blog authors post to certain ping servers to ensure their posts get

to a wider reader audience. The spiders subscribe to the selected ping servers in order to receive an

ongoing feed of URLs with new updates.

The main components of the Inputter are as follows.

 Blog Host Addition. ―Add blog hosts‖ is the section in the Spider Portal where a list of

blog URLs can be inserted, for the initial step of monitoring. This application just holds this

list until it is received and handled by the source database.

 Ping Server Management. Ping servers are external to the spider. There is, however, a

Ping Server Management section in the Spider Portal for handling the ping servers the

spider subscribes to. When subscribing to a ping server the spider gets access to all new

blog URLs received by the ping server from any blog author or blog platform, according to

the rules set in the Spider Portal. Such rule can be: get Wordpress-URLs (see user guide) or

a source name keyword.

Step 2: Source Database checking

Step 2 prequalifies the URLs received from the Inputter. The URLs are firstly checked by the

Source Database in the System Manager. In the Source Database the URLs are sorted according to

3 categories: if the URL is previously marked as spam, it will be rejected; if the URL is a new blog

post from a known blog host in the database, the URL will be processed by the Worker; if the URL

is unknown, it will be processed by the Host Analyzer, Step 3.

The main component of this Step is the following.

D2.4 Report: Weblog Spider Prototype and
 Associated Methodology 22 October 2013

BlogForever Consortium Page 26 of 71

 The Source database is a database that holds the entire list of all blog host sources that

have been processed by the spider, and related blog post URLs, metadata and filtering rules

for ongoing monitoring and extraction. It also holds the list of blacklisted blog hosts.

Step 3: Host Analyzer

The Host Analyzer interacts with the Fetcher in the Worker (also part of Step 4). The fetcher

initially downloads the blog content from each unknown URL, in order to identify which blog host

it relates to. When identifying the blog host, the Analyzer can identify the URL of the RSS of the

blog host, and from this RSS the list of all URLs from each blog post.

The blog hosts URLs are now included into the source database of the System Manager, with a

relating link filter describing the structure of this blog host. Each relating blog post, however, are

resent to the Worker and fetcher for downloading content.

The main components involved in this step are as follows.

 The Scheduler is the unit that manages when the spider needs to check out certain URLs

for any new updates. For most URLs the ping server delivers all updates automatically,

except for three different areas where the spider needs to do frequent polling and

downloading to look for updates: URLs inserted manually from the input application not

covered by ping servers, blog comments from most URLs as long as the ping server does

not push updates of this blog element, and thirdly, controlling some blog hosts that should

be updated by a ping server to see if there are any omissions. Frequency of checking the

URLs is rule-based.

 The Fetcher downloads the RSS and the entire HTML, matching them and analyzing

which rules to apply to get the right URLs into the source database and right content

including all blog elements.

Step 4: System Manager

This is a module rather than a step, as the System Manager will route all URLs of a blog host to the

Worker, just storing input in the source database. However, the System Manager both handles the

source database and the Scheduler. The Scheduler ensures that even blog content that is not offering

RSS feeds is also covered and checked regularly.

Step 5: Worker

This step actually involves two parts. The first part includes the Fetcher, to download all content per

URL sent from the System Manager. This includes firstly retrieving RSS, but more important,

downloading all HTML. The captured RSS will be used initially to match the downloaded HTML,

making sure the blog post has been identified correctly. The HMTL is then analyzed using machine

learning techniques, such as ID3, in order to find the full text of the blog post, related comments

and other relevant blog elements. This process may also include a spam detection, to filter out new

types of spam.

The second part of the Worker is to parse all found HTML-based blog content and convert this into

XML. This is handled through the leading parsing engine, the HTML Agility Pack. Also included

in this part is the extraction of microdata with a semantic engine that extracts certain entities. The

downloaded content is firstly compared with the RSS.

The main components involved in this step are as follows.

D2.4 Report: Weblog Spider Prototype and
 Associated Methodology 22 October 2013

BlogForever Consortium Page 27 of 71

 The Parser converts all content in HTML into machine readable XML-format.

Additionally, it extracts metadata and microformats to further enhance and enrich the XML.

 The Semantic Engine can enable entity extraction of the blog content from each web page.

It is not implemented in the prototype as further investigation by BlogForever is necessary,

which looks into the potential with upcoming HTML5 versus third party engines such as

OpenCalais. Scaling and bottle neck is a major issue, so the project will also consider

moving this module towards the repository.

 The Spam Filter module will include extra testing of links and content beyond what is

done by host analyzer and fetcher. The more accurate the two others are, the less is needed

by the spam filter.

Step 6: Exporter

The Exporter stores the parsed XML, including additional content. The storage is temporary, just

enough to ensure the XML is available when the external Repository requests updates. The XML is

then distributed onto whichever repository, search engine or database, that the end client is

requesting from.

The only component of Step 6 is the Exporter.

 The Exporter stores the XML temporarily in an FTP server for repositories to come and

fetch the latest data file of the XML captured by the spider. When the file is exported each

data file is expected to be deleted. Any data file older than 24 hours on the FTP-server are

deleted.

The steps and the components of the spider are presented in The BlogForever spider component

forms part of the pre-ingest activity leading to the creation of the submission information package

as prescribed by the Open Archival Information System (OAIS) model. The integration of the

weblog spider into the OAIS model is illustrated in Figure 4.

D2.4 Report: Weblog Spider Prototype and
 Associated Methodology 22 October 2013

BlogForever Consortium Page 28 of 71

Figure 4 - A single server BlogForever spider within the context of the OAIS (Open Archival

Information System) model.

.

Figure 3 - Single-server Weblog Aggregation Prototype

D2.4 Report: Weblog Spider Prototype and
 Associated Methodology 22 October 2013

BlogForever Consortium Page 29 of 71

The BlogForever spider component forms part of the pre-ingest activity leading to the creation of

the submission information package as prescribed by the Open Archival Information System

(OAIS) model
19

. The integration of the weblog spider into the OAIS model is illustrated in Figure 4.

Figure 4 - A single server BlogForever spider within the context of the OAIS (Open Archival

Information System) model.

4.2 Single-server software architecture

In the previous chapter, an overview of the weblog spider aggregator was presented. The main

components of the application are presented in greater detail in this section. Detailed descriptions of

the source code, structure and main classes can be found in Appendix A. Detailed instructions on

installation and usage can be found in Appendix B.

4.2.1 Inputter and web interface

The Inputter is available through a web interface, Spider Portal. It enables blog monitoring in two

ways:

a) manually, through user defined list of selected blog sites that can be maintained via the

application interface; and

b) automatically, through subscribing to all new blog sites from a ping server.

The list of blog sources inserted manually will represent a limited volume of qualified blog sites

while on the other hand the automatically generated blog sites through ping servers will represent a

high volume.

19

 CCSDS (2002) ―Reference Model for an Open Archival Information System (OAIS)‖, CCSDS 650.0-B-1

(2002): http://public.ccsds.org/publications/archive/650x0b1.pdf

http://public.ccsds.org/publications/archive/650x0b1.pdf

D2.4 Report: Weblog Spider Prototype and
 Associated Methodology 22 October 2013

BlogForever Consortium Page 30 of 71

Figure 5 – Inputter view in the Spider Portal – a web interface for inserting and managing selected

blogs

Manual monitor of user defined blogs

The input application enables the user to insert a list of blogs sites to be monitored and crawled. The

list can be comprised of blog URLs and can be inserted via the application form or from a

spreadsheet or comma separated file list.

The manual Inputter of the spider prototype currently supports only inserting the URLs of the blog.

In WP4 the manual Inputter will allow insertion of more criteria such as language, location, topic or

type of blog/author (e.g. academic, businessman), as shown in Figure 6.

List by 2011 - 11

Blog URLs Language Location Topic Author institution

http://www.drugwonks.com/ English Sweden Drug research Stockholm University

http://primeinc.org/pharmacistblog.html English UK Cancer research Cambridge

http://www.edrugsearch.com/edsblog English US Cancer research UCLA

http://pharmacytechnology.blogspot.com English US Pharmacy Technology Arizona State University

http://www.medhumanities.org English US Cancer research Stanford

Blog inserter

Figure 6 - User defined blogs for the Inserter

The Inserter will send these blog URLs to the Source library to check if they already registered

there. If they already exist in library, an output XML file will be generated and stored in the

Exporter immediately. This will also create an FTP XML feed for the repository. If they are not

registered in the Source library, they will be sent to the Host Analyzer for processing.

Automatic blog monitoring using ping servers

The Inputter module in the Spider Portal includes a manager for subscribing to one or several ping

servers. An appropriate user interface allows manipulating the list of ping servers monitored by the

D2.4 Report: Weblog Spider Prototype and
 Associated Methodology 22 October 2013

BlogForever Consortium Page 31 of 71

application. These ping servers will be a constant feed of blog URLs, including a mix of new blog

hosts, blog posts, and spam blogs (often called splogs).

All the URLs coming from the ping server will be sent to the Source library to check whether they

are already listed there and how to handle them accordingly. For instance, one handling rule could

be to process only new blog posts from the blog hosts already listed in the source library and not

anything else from unknown/unregistered blogs.

Another rule could be to process all URLs except the ones which are black listed in the Source

library. The black list contains all URLs that are not recognized as blogs or contained problematic

content which could not be processed by the spider.

All new URLs not identified as blog posts to identified blog hosts will be sent to the Host Analyzer,

whereas blog posts to identified blog hosts will be handled by the Fetcher.

4.2.2 Host Analyzer

The Host Analyzer is the gateway for all new URLs. It qualifies or potentially blacklists new

unknown URLs. Through a process of fetching HTML and analyzing content and URLs using

machine learning processing, such as ID3, the Host Analyzer will accomplish the following steps in

order to analyze a blog page.

1. Does this URL contain content likely from a blog or potential spam?

2. Does the URL relate to a feed, a specific comment, a post or a blog host? Identify the link of the

blog host (or blog platform, when host is not a domain but part of a platform – e.g. Blogger.com

is the platform but the blog host needed to find the blog posts is for example

blogger.com/nokia).

3. Identify the link to the RSS for the blog host – which will deliver the latest blog posts?

4. Identify RSS for the comments.

5. Identify which link filter rules to apply for this blog host – to be added to the source library for

future monitoring

Figure 7 - Host Analyzer, processing links to qualify blogs and establish link filters for monitoring

D2.4 Report: Weblog Spider Prototype and
 Associated Methodology 22 October 2013

BlogForever Consortium Page 32 of 71

4.2.3 System Manager to operate the spider and capturing – including a blog-

source library

The System Manager is the centre of the entire spider. It communicates with all other modules in

the spider. It also contains the main information and identifier of the Spider – e. g. which versions

of the Spider should handle remote updates.

Source library

This is the database for all blogs to be monitored and processed towards the Exporter.

The source database includes a library of blog hosts, blog posts relating to it and how blog

comments relate to each of the blog posts. The library also contains:

1. All information from the Input Application of manually inserted blog hosts

2. Link filters

3. Latest blog post and comment processed to exporter

4. Additional source information found from the processing – e. g. Parser, Semantic engine

etc.

5. Communication with the Scheduler

6. List of black listed links – Spam list

The source library will also support future scaling through connecting to a centralized source library

for distributed processing, exchanging qualified cluster of sources and updating to a new version of

the Spider.

Scheduler

The Scheduler manages the monitoring process of the blog library.

Through the ping server the Spider will receive updates of blog posts from blog hosts that are

connected to the actual ping server, so fetching will not normally be needed.

But the Scheduler will run control fetching of blog hosts with no updates within a defined time

range – e. g. weekly. This will check if the blog is active or shut down, and if the ping server is

missing out updates. Additionally, the Scheduler will handle blogs not connected to ping servers

and comments which normally are not handled by the specified ping servers. The Scheduler will

then request the RSS Comments and RSS for non ping server listed blog hosts for updates, and then

let the Fetcher download the HTML.

D2.4 Report: Weblog Spider Prototype and
 Associated Methodology 22 October 2013

BlogForever Consortium Page 33 of 71

Figure 8 - Spider Portal interface – handling the System Manager User Interface

4.2.4 The Worker for fetching

The Worker handles the actual content from the Fetcher downloading HTML, to Spam filtering,

Parser processing HTML to XML and adding additional blog elements, and finally to storage and

the Exporter.

Fetcher

The task of the Fetcher is to download RSS, as well as HTML from the actual host. The Fetcher

will be used for two different steps of the Spider: initially when Host Analyzer is qualifying URLs

and then for downloading and analyzing content.

Fetcher for defining links and link filters

The Fetcher downloads HTML to find all links from the websites and identifies which of these

constitute a blog host, RSS to the blog host, each blog post and RSS for blog comments. In this

process the Spider will use machine learning and ID3 to create rules for recognizing the different

types of links. It will firstly find the blog host, the RSS to the blog host, then the blog posts and the

RSS to comments.

Fetcher for capturing full text and blog elements

In this process the Fetcher will download and compare RSS with the HTML of both the blog post

and the blog host. The main steps of the process are listed below.

1. The Levenshtein distance will be used to detect which RSS posts relate to similar post

in the HTML version.

2. Connecting to the Spam filter module will check whether the rest of the content, not

included in RSS, is potentially relevant or spam.

3. Machine learning rules and platform specific rules (WordPress and Blogger) will be

used to use the extract from RSS to define the entire full text of each blog post.

4. The rest of blog elements will also be used in similar machine learning processes, such

as ID3, to find related comments, external links, dates, author pictures and attachments.

D2.4 Report: Weblog Spider Prototype and
 Associated Methodology 22 October 2013

BlogForever Consortium Page 34 of 71

5. As some elements in the RSS may be additional to the full text – e. g. author and date –

both parts of the RSS and full text are included in the Parser process and Exporter.

Based upon the filters such as those for Wordpress, or comparing RSS with HTML, the Worker can

separate and download all different blog elements.

There are exception rules. A blogosphere spider development will be ongoing to be able to improve

how well it captures all variations of blog posts. Sometimes RSS doesn’t exist or is broken. Rules

can still be used in that case, but with less control of the quality. Sometimes there is even

information in the RSS that is not published in blog posts. We plan to establish a fall back rule for

such a case. Author was only in RSS, not in the full text or the website. Initially we will not

categorize such unknown RSS-content, but only index to be searchable. Extra RSS information can

then be defined as one type of meta-data. This process also includes a spam-filter process, using

available spam tools.

Spam-filtering

In connection with the fetching process, the removal of spam is handled in several steps.

The first line of defense is the Host Analyzer and Fetcher using the ID3 algorithm to identify which

URLs match the link filters for blogs in acceptable formats. Unless the fetcher can identify a valid

RSS for blog posts or blog comments, the source will be rejected or even blacklisted. Potentially,

there will even be a pre-fetcher filtering, ruling out URLs that have characteristics of a splog.

Among such characteristics can be an unreasonably high volume of new updates or links from the

ping server.

The second involves matching RSS to the full text content from the HTML-site using Levenshtein

distance. Without such a match there will be no further capturing of blog content.

Parser – that process the captured material and storage of XML-version

The Parser includes processing the captured HTML and converting all relevant captured blog

elements into XML format storage for the Exporter. The process uses HTML-aware as an

established technique to convert HTML into XML

Among the processes that the Parser may be doing in the final spider are the following.

1. Detecting further internal links to return to the System Manager for further work or fetching

such as RSS comments and archived blog posts.

2. Detecting external links that can be categorized without having to be crawled separately –

e. g. pictures, videos, blogrolls, Facebook, Twitter, LinkedIn and blog-networks.

3. Identifying attachment links in formats such as PDF and doc.

4. Utilizing microformats to expose more tags and meta info from the blogs.

The parser process may also include connecting to an external semantic engine, such as Open

Calais, in order to identify elements within the text. However, such text mining in the crawling

process is likely to become a bottle neck for parsing toward final XML-feed. This will affect

scalability and stability.

In the final version, some light version of a semantic engine for entity extraction might be included.

However, a better approach will be to implement such a semantic engine in front of repository. This

can enable post processing of already stored data and batch jobs at any stage later.

D2.4 Report: Weblog Spider Prototype and
 Associated Methodology 22 October 2013

BlogForever Consortium Page 35 of 71

The Parser is also a final step of processing text toward the repository. This includes converting all

captured blog elements from HTML format into XML. Furthermore, it defines the format of the

XML and additional data to be included in the XML of the blog post or comment.

Adding information into the final XML includes:

1. Comments to include the links to the blog post;

2. Semantic entities, meta tags or links to attachments;

3. Parts of the RSS to be merged or attached to the XML.

Even though the XML generated from the HTML is richer and more extensive than the RSS, there

are some elements that make the RSS relevant for including in the final XML:

1. Date information is more structured in RSS than HTML;

2. For some blogs the author is in RSS but not in HTML;

3. A snippet of the text and XML is better for a scaled entity extraction than the complete

XML.

4.3 Multiple-Server software architecture

The BlogForever Spider prototype is structured as a single server application to simplify

local installation and maintenance. A single server Spider will however have scaling

limitations as multiple processing is required when capturing and analyzing the structure of

new blog sources.

The Spider prototype is not optimized, but scaling tests reveals the need for and benefits of

a multiple server architecture. Such a structure enables scaling especially when handling

new blog sources.

Figure 9 - Multi server architecture of the weblog spider

Front end web server

The front end server will mainly handle volumes of URLs from the ping server and input

application. With a scaled volume of input URLs from one or several ping servers the front

end server will sort which URLs are already detected in the source database and which are

D2.4 Report: Weblog Spider Prototype and
 Associated Methodology 22 October 2013

BlogForever Consortium Page 36 of 71

new blog sources that need to be processed by one of the distributed servers handling

fetching of the HTML and analysis of the host.

The front end server also hosts the Spider Portal where end users can insert new blogs and

manage the spider towards the output XML feed.

The front end server may include the source database. However, this database can vary

extensively with high volume input from ping servers, as well as serving all steps of the

processing. It is therefore recommended to distribute the source database with just a small

version kept in the front end server. This front end only holds URLs of already indexed

sources, URLs of blog posts already indexed and URLs blacklisted as spam or splogs.

Fetcher and blog analyzer

The front end server will distribute all new URLs not found in the source database towards

a number of distributed servers. These Fetcher-servers will download the HTML and

analyze the host for structure and potential spam.

The analysis of the blog hosts includes matching patterns towards existing patterns in the

source databases to automatically create correct processing rules for the new blog source.

The Fetcher-servers will also handle new blog posts from existing blog sources. The

HTML of such blog posts and blog comments will be downloaded according to established

rules in the source database.

All content fetched and processed will be handled by the Parser servers. The required

number of distributed servers for the process mainly depends on what is included beyond

converting the HTML content into XML.

Such extra processes, which require extra numbers of servers, analyze all blog elements,

detecting meta tags and any entity extraction and semantic processes.

FTP server

The output from the parser will be stored on an FTP server, accessible for exporting onto

any external application or repository.

The FTP server could potentially be the same server as the Front end server. However, the

scaling will be much better for handling high volumes with a separate FTP server, and there

will be no architecture issues with a separate FTP server.

4.4 Theory/Approaches/Methods used

The basic underlying approach used to capture blogs is subscription to ping servers. From ping

servers a flow of URLs will include new blog sites, new blog posts and links to RSS feeds. With

this approach a fetcher can capture high volume of blog content. This will be significant for parsing

XML and exporting blog content. However, this approach needs additional methods or will

otherwise lead to large amount of content without any identification, structure or removal of spam.

D2.4 Report: Weblog Spider Prototype and
 Associated Methodology 22 October 2013

BlogForever Consortium Page 37 of 71

By the maturity of blog usage, with more dedicated, sophisticated and even professional users, it is

imperative to segment blogs – initially by adding user required blogs that are tagged according to

well defined criteria. This method is well established in news monitoring, research and market

intelligence and enables an extensive source library. The spider will have an input application to

insert lists of blogs with a few additional metadata.

The validation of input HTML and the identification of specific elements within the HTML

document structure are done using a Modeling-based approach where HTML elements conforming

to specific structure are searched inside the Document Object Model (DOM) of each blog page.

Other HTML parsing methods are also used in order to qualify and structure the input so the output

from the spider is as structured and enriched as possible, capturing all blog elements, updated and

with marginal spam.

The approach is to find all blog elements from just a list of URLs, and to identify the RSS and use

this to match with the fetched content of the entire blog site in HTML. This matching method will

use a growing range of rules based upon decision trees and machine learning techniques. Such a

method enables matching to improve constantly and handling the vast number of variations and

break of standards caused by blog authors.

Scaling the semantic engine is not built-in to the spider. For the future, HTML5 may enable the

parser itself to extract more entities. However, any analysis processing before storage will

automatically become a bottleneck to the flow of new updates from ping servers. This may pile up

and create instability. Therefore, unless the spider is set up to a limited number of sources, the

semantic engine should be put onto the platform after storage and after being exported to a

repository.

Spider Architecture

The spider architecture is based upon a freeware version which is able to be downloaded onto a

single machine. This requires a small footprint and a balanced use of resources. For example, the

volume of URLs from a ping server may cause bottleneck issues in the Fetcher.

However, the architecture also supports each server to be upgraded to a paid scalable version and

even to connect to a central spider farm. This is based upon a current method and technology

already developed for the CyberWatcher news spider. For a scaled version, the architecture supports

adding more resources and server for parts of the spider, e.g. the Fetcher.

4.5 Technical platforms and development tools

The spider prototype is based upon the .NET Framework. Although it is developed by Microsoft,

.NET supports several programming languages and allows language interoperability where each

language can use code written in other languages.

One of the benefits of the .NET Framework is support for memory management. However,

applications running in a managed environment tend to require more system resources than similar

applications which access resources more directly.

The spider prototype is developed by experts in the .NET Framework, who have already created

highly scale spiders using .NET. The .NET experience of the programming team and the support for

memory handling are the main reasons for the choice of the framework.

The only consequence for the users will be that downloading the server requires a Microsoft server.

D2.4 Report: Weblog Spider Prototype and
 Associated Methodology 22 October 2013

BlogForever Consortium Page 38 of 71

4.6 Connection with previous BlogForever tasks

The development of the weblog spider prototype is highly interconnected with other BlogForever

project tasks. First of all, deliverable D2.1 Weblog survey was used as a basis to identify software

platforms, encoding standards, third party services and libraries used in blogs. The results of this

survey were used to define the environment and targets of the weblog spider prototype application.

4.6.1 Connections with the D2.1 Weblog survey

The BlogForever Weblog Survey (Task 2.1) was very successful in informing the project regarding:

[i] the common practices of blogging and attitudes towards preservation of blogs; [ii] the use of

technologies, standards and tools within blogs; and finally, [iii] the recent theoretical and

technological advances for analysing blogs and their networks.

The survey listed 25 blog elements to potentially be captured by the spider and, then, to be

preserved in the repository. This enabled us to focus on the most important elements first,

improving the value of the aggregated data.

Figure 10 – Importance of blog elements to be preserved, according to D2.1 Weblog Survey

As seen in Figure 10, the weblog survey shows a natural path of important blog elements rated from

the two main content elements – Posts and Comments – to the 9 least interesting elements being

mostly functionalities with no content included. Accordingly, the weblog spider prototype will try

to capture all the content, while other functionalities are not a priority.

Another important finding of the weblog technical survey conducted in Task 2.1 was the analysis

and results of the blog publishing software use. Among the findings was that 50% of blogs use two

main platforms, Wordpress
20

 and Blogger
21

. Based upon these findings, the blog data extraction

rules are required to facilitate the intricacies and special behaviors of these platforms.

20

 http://www.wordpress.org

D2.4 Report: Weblog Spider Prototype and
 Associated Methodology 22 October 2013

BlogForever Consortium Page 39 of 71

One of the key characteristics of blogs is that they use some type of XML feed, RSS or Atom. This

was confirmed in the weblog technical survey and the specific types of RSS and Atom versions and

encodings were identified, enabling the weblog spider prototype to support them. Additionally, the

weblog spider prototype will utilize XML feeds to analyze blog content and identify specific

information elements. The spider will compare the information encoded in XML feed elements

against the blog HTML in order to identify information such as the structure of the blog, the length

of a blog post and the new blog content.

4.6.2 Connection with D2.2 Weblog Data Model

The BlogForever Weblog Semantics (Task 2.2) has already created D2.2 Weblog Data Model,

describing in detail individual blog components and their interconnections. The entities comprising

the weblog data model are listed in Table 6.

Table 6 – Main blog data model entities

Entity Attributes Description Prototype

support

Blog title Title of the blog Yes

subtitle Subtitles of the blog No

URI URI of the blog Yes

status_code Status defines whether the blog ceased to exist(if in

RSS)

Yes

language Retrieved language field, as defined by the blog(if in

RSS)

Yes

charset Retrieved charset field, as defined by the blog

sitemap_uri URI of the blog sitemap if exists No

platform Platform of the blog powering service, retrieved

where available

No

platform_version Versioning information about the platform Yes

webmaster Information about the webmaster where available No

hosting_ip IP address of the blog No

location_city Location city based on the hosting details No

location_country Location country based on the hosting details No

last_activity_date Date as retrieved from the blog Yes

post_frequency As retrieved from the blog Yes

update_frequency As retrieved from the blog No

copyright Notes of copyright as retrieved from the blog No

ownership_rights Notes of ownership rights as retrieved from the blog No

distribution_rights Notes of distribution rights as retrieved from the blog No

access_rights Notes of access rights as retrieved from the blog No

Entry title Title of the entry Yes

subtitle Subtitle of the entry if available No

URI Entry URI Yes

date_created Retrieved from the blog or obtained from the

date/time crawling

Yes

date_modified Retrieved from the blog or obtained from the

date/time crawling

No

version Auto-increment: derived version number (versioning

support)

No

status_code Information about the state of the post: active,

deleted, updated (versioning support)

No

geo_longitude Geographic positioning information No

geo_latitude Geographic positioning information No

visibility Information about accessibility of the post No

21

 http://www.blogger.com

D2.4 Report: Weblog Spider Prototype and
 Associated Methodology 22 October 2013

BlogForever Consortium Page 40 of 71

has_reply Derived property (also SIOC) No

last_reply_date Derived property (also SIOC) No

num_of_replies Derived property (also SIOC) No

child_of ID of entry parent if available No

Page template Information about the design template if available

and if different from the general blog

No

Post type Type of the post if specified (e.g. WordPress):

attachment, page/post or other custom type

No

posted_via Information about the service used for posting if

specified

No

previous_URI URI to the previous post is available Yes

next_URI URI to the next post if available No

Comment subject Subject of the comment as retrieved Yes

URI URI of the comment if available Yes

status Information about the state of the comment: active,

deleted, updated (versioning support)

No

date_added Date comment was added or retrieved Yes

date_modified Date comment was modified or retrieved as modified No

addressed_to_URI Implicit reference to a resource Yes

geo_longitude Geographic positioning information No

geo_latitude Geographic positioning information No

has_reply Derived property (also SIOC) No

num_replies Derived property (also SIOC) No

is_child_of_post Indicates information about the parent post Yes

is_child_of_comment Indicates information about the parent comment, from

RSS

No

Author name_displayed Name of the poster as displayed Yes

email_displayed Email address of the poster as displayed Yes

is_anonymous Boolean property to indicate anonymity No

Content full_content Content as extracted Yes

full_content_format Content format (i.e. HTML, XML) No

note Additional notes if available No

encoding Information on encoding of the content Yes

copyright Notes of copyright as retrieved from the blog No

ownership_rights Notes of ownership rights as retrieved from the blog No

distribution_rights Notes of distribution rights as retrieved from the blog No

access_rights Notes of access rights as retrieved from the blog No

Since this is a prototype, not all entities are supported but most of the relevant entities available in

the blog host will be included incrementally in the final BlogForever weblog aggregator which will

be designed in Task 4.2 (Design of the weblog spider component) and implemented in Task 4.3

(Implementation of the weblog spider component).

4.7 Development challenges and future work

The spider prototype is the first version of the BlogForever spider. The platform is based upon well-

known methods and modules. However, further tools, as well as tuning and scaling, are needed.

The developed prototype captures and populates a repository with weblog content using a

combination of weblog specific technologies such as ping servers and RSS feed monitoring, as well

as traditional web data extraction techniques such as scheduled crawls.

The key challenge of the objective is to capture and identify automatically all type of content

elements and metadata across the variation of blog hosts. Analysing blog pages and extracting

information is demanding both on resources as well as on handling all types of exceptions. For

D2.4 Report: Weblog Spider Prototype and
 Associated Methodology 22 October 2013

BlogForever Consortium Page 41 of 71

instance, blog comments and some blog elements are not exposed to the spiders due to JavaScript

coding.

Another related challenge is scaling. The more analysis is required for finding and identifying blog

elements, the longer processing and more hardware is required. This can be handled through

multiple servers, but the objective for the prototype has been to enable this on a single server. One

of the key challenges of next development is the implementation of the multi-server architecture.

The prototype spider handles the above challenges, although further work is required to improve

both analysis and scalability, as described in Section 4.7. This will be done in the next stages of the

project in WP4, especially Task 4.2 (Design of the weblog spider component) and Task 4.3

(Implementation of the weblog spider component). Further work planned towards WP4 includes:

Expand the Host analyzer

The Host analyzer has used machine learning techniques to establish a few sets of rules detecting

content and blog elements. Based on this experience with the prototype spider analysing a number

of blogs more rules can be added to the platform. This can enable the prototype to handle increased

volumes and different blog setups that were not handled in the initial prototype version.

Extend the source database

The prototype source database is a first version, based upon serialized lists of sources. The final

BlogForever spider requires a better design for handling two parallel processes: URL matching to

find new versus existing URLs and identifying and storing rules per blog host. The design should

even be prepared for further scaling including multiple database servers.

Blog-ranking

For the techniques for blog ranking described in this report no tool has been implemented.

Implementation of ranking requires a scaled, operational platform on which to test. The prototype

will be used to test the listed techniques and additional ones to implement a blog ranking system in

the BlogForever Spider.

Evaluating current spam filtering for further improvements

The host analyzer and filtering rules in the Fetcher will prevent most obvious spam. However,

further testing is expected to demonstrate the need for more extensive spam filtering.

Extend parsing of additional blog elements

Whereas the prototype has fetched and downloaded most of the blog elements, future work will

extend the parser to extract entities both from metadata as well as microformats and additional blog

elements.

Testing semantic engines in the parser vs. the repository

The prototype spider has limited capacity to handle text mining and entity extraction when there is a

high volume flow, and even in the final version the semantic engine will be a limited part of the

entire Spider. However, some semantic engine might be connected and evaluated with a similar

implementation in the repository.

D2.4 Report: Weblog Spider Prototype and
 Associated Methodology 22 October 2013

BlogForever Consortium Page 42 of 71

5 Conclusions

The primary objective of this report has been to present the design and development of the

BlogForever weblog spider prototype; as well as associated methodologies for blog monitoring and

data extraction that have been considered in this development.

One key requirement having impact on the architecture and preferred technologies for the spider is

that the entire spider should be able to download all the content onto one single server. In addition,

the spider should have ability to scale onto multiple servers. This requires focus on resource

efficiency.

The initial process of developing the spider included detecting which modern blogosphere

technologies and protocols could be used to facilitate efficient blog crawling. This included

considering ping servers, pingbacks, trackbacks & linkbacks as efficient methods of blog update

notifications. Additionally, blog platforms and APIs were also researched.

The conclusion from this research was to combine Pingserver-feeds with a host analyzer and a blog

crawler. The RSS-feeds from Pingserver secure timely updates and a standard formatted input used

to analyze the blog page – with minimized resources spent on scheduled crawling.

The spider uses learning tree algorithms (such as ID3) to fetch and analyze blog sites efficiently.

Learning tree algorithm is the preferred technology chosen to analysis of blog pages as it is not too

resource-demanding. In addition, the efficiency of the learning tree algorithm increases over time

with more usage.

The report outlines and evaluates different approaches to capturing and indexing weblogs. It must

be noted that some of the most important methods were evaluated via prototyping. HTML-aware

and semantic data extraction prototypes were implemented in order to gain experience in using

these technologies and evaluate their characteristics, creating the foundation for further

development in WP4.

The prototype spider based upon the chosen architecture and methods has demonstrated ability to

scale (Appendix B) on a single server.

In addition, the prototype has demonstrated the ability to automatically capture blog content

comprehensively, including additional entities from each site.

Connections with previous BlogForever work were also recorded and taken under consideration in

the development of this prototype. The testing showed that the prototype has successfully fulfilled

several of the requirements raised in D2.1 and D2.2, fully described in chapter 4.6.2, table 6.

Last but not least, current work has facilitated future development in the scope of the BlogForever

Software Infrastructure (WP4) and especially Task 4.2 (Design of the weblog spider component)

and Task 4.3 (Implementation of the weblog spider).

D2.4 Report: Weblog Spider Prototype and
 Associated Methodology 22 October 2013

BlogForever Consortium Page 43 of 71

6 References

[1] E. Protalinski (2011, 10.11.2011). Google starts indexing Facebook comments,

AJAX/JavaScript content. Available: http://www.zdnet.com/blog/facebook/google-starts-

indexing-facebook-comments-ajaxjavascript-content/4978

[2] E. Bursztein, B. Gourdin and J. Mitchell (2011). ―Reclaiming the blogosphere, talkback: a

secure linkback protocol for weblogs,‖ Computer Security–ESORICS 2011, pp. 133-149.

[3] S. Apart (2011, 10.11.2011). Events and Callbacks in Movable Type: Table of Contents.

Available: http://www.movabletype.org/documentation/developer/callbacks/

[4] S. Langridge and I. Hickson (2002, 27.11.2011). “Pingback 1.0”, Available:

http://www.hixie.ch/specs/pingback/pingback

[5] R. Cadenhead (2004). Movable Type 3 Bible. London: Wiley.

[6] K. Stepanyan, M. Joy, A. Cristea, Y. Kim, E. Pinsent and S. Kopidaki (2011, 27.11.2011).

“D2.2 Report: BlogForever Data Model”. Available: http://blogforever.eu/

[7] B. Wu and B.D. Davison (2005). ―Identifying link farm spam pages‖, Proceedings of the

14
th
 World-Wide Web Conference, pp. 820-829.

[8] L. Zhu, A. Sun and B. Choi (2008). ―Online spam-blog detection through blog search‖,

Proceedings of CIKM 2008, pp. 1347-1348.

[9] P. Kolari, A. Java, T. Finin, T. Oates and A. Joshi (2006). ―Detecting spam blogs: A

machine learning approach‖, Proceedings of the 21
st
 National Conference on Artificial

Intelligence, p. 1351.

[10] X.A. Boronat (2008). “A comparison of HTML-aware tools for Web Data extraction”,

Master’s thesis, Universität Leipzig, Fakultät für Mathematik und Informatik, Abteilung

Datenbanken.

[11] A.H.F. Laender, B.A. Ribeiro-Neto, A.S. da Silva and J. S. Teixeira (2002). ―A brief survey

of web data extraction tools‖, ACM Sigmod Record, vol. 31, pp. 84-93.

[12] V.I. Levenshtein (1966). ―Binary codes capable of correcting deletions, insertions, and

reversals‖. Soviet Physics Doklady, vol. 10, pp. 707–710.

[13] R.A. Wagner and M.J. Fischer (1974). “The String-to-String Correction Problem”, Journal

of the ACM, vol. 21 no. 1, pp. 168-173.

[14] P. Kolari, A. Java, T. Finin, T. Oates and A. Josh (2006). “Detecting Spam Blogs: A

Machine Learning Approach”, University of Maryland Baltimore County.

[15] X. Azagra (2011, 27/11/11). “HTML aware tools available for data extraction”,

Universität Leipzig. Available: http://dbs.uni-leipzig.de/file/Xavi_Extraction.pdf

[16] N. Agarwal and H. Liu (2009). “Modeling and Data Mining in Blogosphere”, San

Rafael, CA: Morgan & Claypool Publishers.

[17] Gyöngyi, Zoltán; Hector Garcia-Molina, Jan Pedersen, "Combating Web Spam with

TrustRank”, 2004

http://www.zdnet.com/blog/facebook/google-starts-indexing-facebook-comments-ajaxjavascript-content/4978
http://www.zdnet.com/blog/facebook/google-starts-indexing-facebook-comments-ajaxjavascript-content/4978
http://www.movabletype.org/documentation/developer/callbacks/
http://dbs.uni-leipzig.de/file/Xavi_Extraction.pdf
http://en.wikipedia.org/wiki/Hector_Garcia-Molina
http://www.vldb.org/conf/2004/RS15P3.PDF
http://www.vldb.org/conf/2004/RS15P3.PDF

D2.4 Report: Weblog Spider Prototype and
 Associated Methodology 22 October 2013

BlogForever Consortium Page 44 of 71

A. Appendix A – Weblog Spider Prototype Code Reference

A.1 Weblog Spider Prototype Documentation

RuleGenerator

RuleGenerator
* Summary: Class for creating a ruleset by matching wath is defined in a rss feed with the content

located on a webpage. It uses unsupervised learning by combining Levensthein string match and a

html dom structure (HtmlAgilityPack) to get the correct XPaths

RuleGenerator

GenerateRules(CW.Crawler.Library.RssData,CW.Crawler.Library.WebDocument)
* Summary: This is the first version of the rule generator

* Param: rssData: One rss item representing in this case a blogpost or a blog comment

* Param: webDocument: Webpage of the given rss data

* Returns: Returns a rule for extracting structured data from a webpage

Serialization

Serialization
* Summary: A helper class for xml serializing data to stream/file/string

Contracts

IPingServerMonitorHostContract
* Summary: Interface for the ping monitor service

Contracts

IPingServerMonitorHostContract.GetRecords(System.DateTime,System.DateTime)
* Summary: Returns statistic

* Param: min: Min date

* Param: max: Max date

* Returns:

Contracts

IPingServerMonitorHostContract.GetFilterByIds(System.Int32[])
* Summary: Returns an array of filters

* Param: id: Filter ids

* Returns: Array of filters

Contracts

IPingServerMonitorHostContract.GetFilterByParentId(System.Nullable{System.Int32})
* Summary: Returns filters where parent Id is predefined. If Id == null, all root filters will be

returned

* Param: id: Parent Id

* Returns: Array of filters

Contracts

IPingServerMonitorHostContract.UpdateFilter(CW.Crawler.Library.Core.Filter)
* Summary: Update a given filter

* Param: filter: Filter class as input

* Returns: If successfull, return true else false

Contracts

IPingServerMonitorHostContract.DeleteFilter(CW.Crawler.Library.Core.Filter)
* Summary: Deletes a filter

* Param: filter: Filter class as input

* Returns: If successfull, return true else false

Contracts

IPingServerMonitorHostContract.AddFilter(CW.Crawler.Library.Core.Filter)
* Summary: Adds a new filter to the system

* Param: filter: Filter class as input

Rule

Rule

D2.4 Report: Weblog Spider Prototype and
 Associated Methodology 22 October 2013

BlogForever Consortium Page 45 of 71

* Summary: Rule class represents how information should be extracted fromt the webpage using

xpath related structure (more compatible with html dom structures)

HtmlPath

HtmlPath
* Summary: Html path represents a object describing how to navigate a dom structure

HtmlPathItem

HtmlPathItem
* Summary: This class represents one element of the html path. E.g. div , span, id, class etc.

ID3

DecisionTreeNode
* Summary: ID3 Decisiontree, it uses entropy score to create the decisiontree

ID3

DecisionTreeNode.Match(System.Collections.Generic.IEnumerable{CW.Crawler.Library.ID

3.DataElement})
* Summary: A Function for matching data against the decision tree

* Param: dataSet: Dataset

* Returns: Returns either true, false or not found

ID3

DecisionTreeNode.CreateDecisionTreeNode(System.Collections.Generic.IEnumerable{CW.C

rawler.Library.ID3.DataSet},System.Int32[])
* Summary: Creates a decision tree from a dataset, where it is possible to force part of the selection

in the algorithm (Which columns should be analyzed first in the dataset)

* Param: sets: Dataset

* Param: columnOrder: Column order to analyze, can be null

* Returns: Returns the root tree node

ID3

DecisionTreeNode.RuleReduction(CW.Crawler.Library.ID3.DecisionTreeNode)
* Summary: A method for reducing the size of the descision tree

* Param: root:

Contracts

ICrawlerSystemContract
* Summary: The servicecontract between server and client

Contracts

ICrawlerSystemContract.AddWatchPoints(System.String[])
* Summary: Adds an array of urls which to generate rules and extract data from

* Param: watchPoints: An array of string url's

Contracts

ICrawlerSystemContract.GetHosts(System.String,System.Int32,System.Int32)
* Summary: Method for returning av array of hosts, using search filter and paging

* Param: filter: part of the host name (dns name)

* Param: pageSize: Default pagesize 10

* Param: pageId: Page id

* Returns: Returns an array of host descriptions

Contracts

ICrawlerSystemContract.GetWatchPoints(System.Int32)
* Summary: Returns descriptions of all the urls from a given host

* Param: hostId: Host id

* Returns: Array of descriptions

Contracts

ICrawlerSystemContract.GetEntity(System.Int32)
* Summary: Returns a blog entity, comment or blogpost

* Param: entityId: Entity id

* Returns: Returns a blogentity

Contracts

ICrawlerSystemContract.GetEntities(System.Int32,System.Int32)

D2.4 Report: Weblog Spider Prototype and
 Associated Methodology 22 October 2013

BlogForever Consortium Page 46 of 71

* Summary: Returns an array of blog entities from a given url/blog

* Param: watchPointId: Url id/blog id

* Param: takeCount: How many should be returned

* Returns: Array of blog entities

Contracts

ICrawlerSystemContract.GetLatestEntities(System.Int32)
* Summary: Returns the latest enteties found.

* Param: takeCount: How many items shold be returned

* Returns: Returns an array of blog entities

Core

Filter
* Summary: A Regular expression filter for removing unwanted noise. It is WCF compatible

Core

PingServerLog
* Summary: Log class containing data of a ping server data package

Core

PingServer
* Summary: Class representing a ping server

Core

PingServerMonitor
* Summary: This class keeps track of which ping server to download and process

Core

PingServerMonitor.ProcessPingServer(CW.Crawler.Library.Core.PingServer,CW.Crawler.

Library.Core.PingServerLog)
* Summary: Downloads data from a given ping server and extracts the ping information

* Param: pingServer:

* Param: log:

Core

TextBlock
* Summary: Represents a block of text with data mapped onto it by using start and stop indexes

Core

HostAnalyzer
* Summary: The host analyzer is a server component that creates a ruleset for a given rss feed by

comparing the content of the rss feed items with the original

Core

HostAnalyzer.AnalyzeHost(CW.Crawler.Library.Host,System.String[],CW.WCF.Communic

ation.RemoteEndpoint)
* Summary: Adds a job for the host analyzer

* Param: host: A class representing the host/domain

* Param: uris: Pages that should be analyzed

* Param: remoteEndpoint: Not in use

* Returns: Returns a job ID

Core

HostAnalyzer.ProcessData()
* Summary: Process method, is processed all the jobs listed in the queue

* Returns: If there is no more data, it will return false

Core

HostAnalyzer.DequeueProcessedItem()
* Summary: A method for dequeueing finished jobs

* Returns: Returns null if there are no data exists, or it returns the result of an host analysis

EntityElement

EntityElement
* Summary: Base class representing value, type, parent and start/stop index in the data

Entity

Entity

D2.4 Report: Weblog Spider Prototype and
 Associated Methodology 22 October 2013

BlogForever Consortium Page 47 of 71

* Summary: The rule sets creates entities with data extracted from a webpage, it contains start and

stop indexes from where the data has been extracted as well as the value

Entity

Identity
* Summary: If this property exists, it's because this entity is a root entity

EntityResult

EntityResult
* Summary: When structured data is extracted from page where there are dependencies /

connections to each other, we no longer work on a tree structure but instead a graph structure. This

class keeps track of all enteties defined as a root entity

Levenstein

StringToType(System.String)
* Summary: Converts a string into symbols

* Param: s: The string

* Returns: Array of symbols representing the string

Levenstein

StringToType2(System.String)
* Summary: Converts a string into symbols

* Param: s: The string

* Returns: Array of symbols representing the string

Levenstein

StringToType3(System.String)
* Summary: Converts a string into symbols

* Param: s: The string

* Returns: Array of symbols representing the string

Levenstein

ComputeDistance2D(System.String,System.String)
* Summary: A levensthein algoritm for matching data with several different formats. Exact, type,

type dependent of prev

* Param: s: First string

* Param: t: Second string

* Returns: Returns an array of distances

Levenstein

ComputeDistance(System.String,System.String)
* Summary: Returns the minimum distance between the two strings

* Param: s: First string

* Param: t: Second string

* Returns: Minimum distance

Levenstein

ComputeDistance(System.String,System.String,System.Int32)
* Summary: Computes the distance between two strings, if a max value has been reached, it will

return int.max

* Param: s: String s

* Param: t: string t

* Param: max: The threshold for error before it returns

* Returns: Returns the minimum distance between strings

RssDocument

RssDocument
* Summary: Class for mapping data from RSS and atom into one format

Core

EntityStorage
* Summary: A storage class for storing data onto the filesystem

Core

EntityStorage.GetEntity(System.Int32)
* Summary: Returns a specific blog entity

D2.4 Report: Weblog Spider Prototype and
 Associated Methodology 22 October 2013

BlogForever Consortium Page 48 of 71

* Param: entityId: Entity id

* Returns: Returns null or one blog entity

Core

EntityStorage.GetEntities(System.Int32,System.Int32)
* Summary: Returns entities from a given blog host

* Param: watchPointId: The owner of the blog post

* Param: takeCount: How many items should be returned

* Returns: Returns an array of blog entities

Core

EntityStorage.GetLatestEntities(System.Int32)
* Summary: Returns the last set of data found

* Param: takeCount: How may items should be returned

* Returns: Returns an array of blog entities

Core

HostStorage
* Summary: A storage class for storing host data onto the file system

Core

CrawlerSystem
* Summary: The main core performs several different tasks such as Queue for downloading new

content, Unsupervised learning of rules and Output storage

Core

CrawlerSystem.GetWatchPoints(System.Int32)
* Summary: Returns all the urs's associated to a given host, it is used by the WCF communication

* Param: hostId:

* Returns: Array of descriptions

Core

CrawlerSystem.GetEntity(System.Int32)
* Summary: Returns a blog entity of a given entityid, it is used by the WCF communication

* Param: entityId: Id of the entity

* Returns: Returns a blogentity

Core

CrawlerSystem.GetEntities(System.Int32,System.Int32)
* Summary: Returns blog entities from a give url, the method is used by the WCF communication

* Param: watchPointId:

* Param: takeCount:

* Returns:

Core

CrawlerSystem.AddWatchPoint(System.Uri[])
* Summary: Adds an array of uri's to be processed. It is used by the WCF communication

* Param: uris: Array of uri's

Core

CrawlerSystem.ProcessCreateRules()
* Summary: For each new url found and needs to be analyzed this method will call the hostanalyzer

to create a rule set for the given rss feed, either it's a post feed or a comment feed.

Core

CrawlerSystem.ProcessPollWatchPoints()
* Summary: This method retreives a list of url's to download and extract the content and finally

storing it on the file system

Core

CrawlerSystem.ProcessUnknowns()
* Summary: For each url that is unknown and is not assosiated to any rules and blogs, it will be

downloaded to see what it is. Either a blog where the rss feed and rss comment feed is stored in the

header or it is the rss itself. When the url for the blog post and/or comments are found they will be

pushed to a host analyzer component for creating a rule set for extracting the structured data.

D2.4 Report: Weblog Spider Prototype and
 Associated Methodology 22 October 2013

BlogForever Consortium Page 49 of 71

Core

WatchPointDescription
* Summary: A description class representing a url that has a rule associated to it. It is used by the

WCF communication

Core

SystemHost
* Summary: Host representing a domain with several watchpoints/urls to be monitored

Core

SystemHostDescription
* Summary: A description class representing a host / dns name. It is used byte the WCF

communication

Core

BlogEntity
* Summary: Blog entity is the base class that represents data extracted from the blog.

Core

BaseBlogElement
* Summary: Blog base class representing a single dataelement assosiated with blogdata

D2.4 Report: Weblog Spider Prototype and
 Associated Methodology 22 October 2013

BlogForever Consortium Page 50 of 71

B. Appendix B – Weblog Spider Use Case

B.1 Use case

In order to evaluate the prototype, a dedicated server was setup in AUTH data center with the

following specifications:

 Operating System: Windows 2008 Server 64bit

 CPU: 2 Xeon CPUs 2.5Ghz

 RAM: 4 GB

 Hard Disk: 20GB (SAS) plus 60GB (SATA)

Remote access and networking were also established and the prototype application was installed

and tested continuously during the last stages of development from September 2011 to November

2011. The final test was conducted from the 22
nd

 to the 24
th
 of November 2011. A ping server with

high traffic was monitored during this time and 2 URL filters were set a) *blogspot.com/2011* and

b) *science*.

The resulting application statistics showed that 8 million pings were evaluated during this time and

36.000 distinct blogs were selected for crawling based on the URL filters. Additionally, 25.000

posts were already processed; resulting in the creation of the corresponding XML files and another

197.000 were queued for processing. For the record, the size of the XML files containing extracted

blog data was approximately 1 GB.

Figure 11 - While ping server is feeding the prototype spider with thousands of updates every minute –

the user only wants a few selective updates. In the ping server section, two search filters are set. First

requesting only blog hosts and blog posts from blogs

D2.4 Report: Weblog Spider Prototype and
 Associated Methodology 22 October 2013

BlogForever Consortium Page 51 of 71

Figure 12 - In addition to science blogs and blogspotter blogs – the user would like the spider to capture

all new updates regarding a qualified blog host: http://www.pharmacistplace.com

Figure 13 - The spider processes all URLs received from the ping server, matching it with the requested

blog hosts – blogspotter 2011 and sources named “science”. In addition the scheduler crawls the

manual added blog host Pharmacistplace to process this accordingly. As soon as they are analysed and

blog posts are captured, the blog host will appear in the blog database – and chronologically be listed in

the Source List section of the Spider Portal.

D2.4 Report: Weblog Spider Prototype and
 Associated Methodology 22 October 2013

BlogForever Consortium Page 52 of 71

Figure 14 - After the blog host has been analysed and included in the Blog source database; all content

elements are included and parsed – the output can be found in the Spider portal output section as

shown above.

Figure 15 - Through the output section – all captured data becomes available in XML, or through the

linked FTP server. The XML files from FTP looks as below.

Example of XML file from the FTP-server

<?xml version="1.0" encoding="utf-8"?>

<ArrayOfBlogEntity>

 <BlogEntity>

 <ExtensionData />

 <Date>2011-11-24T11:20:44.1679687+02:00</Date>

 <Elements>

 <BaseBlogElement d4p1:type="BlogElement"

xmlns:d4p1="http://www.w3.org/2001/XMLSchema-instance">

 <ExtensionData />

D2.4 Report: Weblog Spider Prototype and
 Associated Methodology 22 October 2013

BlogForever Consortium Page 53 of 71

 <Type>Author</Type>

 <Value>RapidEye</Value>

 </BaseBlogElement>

 <BaseBlogElement d4p1:type="BlogElement"

xmlns:d4p1="http://www.w3.org/2001/XMLSchema-instance">

 <ExtensionData />

 <Type>Link</Type>

 <Value>http://www.sliceofscifi.com/2011/11/22/remembering-anne-mccaffrey/comment-

page-1/#comment-2522516</Value>

 </BaseBlogElement>

 <BaseBlogElement d4p1:type="BlogElement"

xmlns:d4p1="http://www.w3.org/2001/XMLSchema-instance">

 <ExtensionData />

 <Type>Publishdate</Type>

 <Value>Wed, 23 Nov 2011 14:24:06 +0000</Value>

 </BaseBlogElement>

 <BaseBlogElement d4p1:type="BlogElement"

xmlns:d4p1="http://www.w3.org/2001/XMLSchema-instance">

 <ExtensionData />

 <Type>Title</Type>

 <Value>Comment on Remembering Anne McCaffrey by RapidEye</Value>

 </BaseBlogElement>

 </Elements>

 <Id>23289</Id>

 <ParentId>-1</ParentId>

 <Type>Comment</Type>

 <Uri>http://www.sliceofscifi.com/2011/11/22/remembering-anne-mccaffrey/comment-page-

1/#comment-2522516</Uri>

 <Value>Thanks for all of the great stories and memories Ann....

Hickerson, there was a FPM interview with Ann a few years back, with her son, if I recall correctly

- don't remember if it was Dragon Page or SoSF. You guys should try and fish that out and drop it

in the feed in memorial.</Value>

 <WatchPointId>89</WatchPointId>

 </BlogEntity>

</ArrayOfBlogEntity>

D2.4 Report: Weblog Spider Prototype and
 Associated Methodology 22 October 2013

BlogForever Consortium Page 54 of 71

C. Appendix C – Weblog Spider Prototype Instruction Manual

This section contains weblog spider prototype installation and usage instructions.

C.1 Installation

Figure 16 - Download and installation instruction file for the Blogforever Prototype Spider

The prototype spider can be downloaded and run from a single server at any location. The current

download location is http://bf2.csd.auth.gr/BFCrawler.rar.

The download solution contains 3 applications:

1. CrawlerApp

2. Ping ServerMonitor

3. CrawlerWeb

Read through System Requirements before installing the system onto a server.

Installation

There are no install files in this setup. The only thing needs to be done is the following:

1.CrawlerWeb

a. Copy the CrawlerApp folder to a desired location on your HD.

b. Open the CW.CrawlerSystem.ConsoleApp.exe.config located in the folder with e.g.

notepad or similar.

c. Modify the EntityStorage value to a storage area for where blog enteties should be stored

d. Modify the SourceStorage value to a storage area for where source data should be stored

2.Ping ServerMonitor

a. Copy the PingServerMonitor folder to a desired location on your HD.

3.CrawlerWeb

a. Copy the CrawlerWeb folder into IIS's web folder e.g.C:\inetpub

b. Open IIS Manager

i. Navigate to the CrawlerWeb folder

ii. Convert the folder to a web application that uses .Net 4.0

http://bf2.csd.auth.gr/BFCrawler.rar

D2.4 Report: Weblog Spider Prototype and
 Associated Methodology 22 October 2013

BlogForever Consortium Page 55 of 71

Run

1. Navigate to the CrawlerApp folder and execute the executable

CW.PingServerMonitor.ConsoleApp.exe in Administrator modus (Right click and "run as

administrator"). When the command overview is visible the application is ready.

2. Navigate to the PingServerMonitor folder and execute the executable

CW.PingServerMonitor.ConsoleApp.exe in Administrator modus (Right click and "run as

administrator").

a. Enter "start" in the console window and hit enter to execute

b. Enter "enable" in the console window and hit enter to execute to start downloading from

pingserver(s)

c. Enter "disable" in the console window and hit enter to execute to stop downloading from

pingserver(s)

Reset

1.CrawlerApp

a. Terminate the CrawlerApp by typing "q" in the console and the press "y".

b. When the application has terminated navigate to the storage folder defined earlier and

delete everything

c. Start the application as described in the Run section

1.PingServerMonitor

a. This application seldom needs to reset because it is accessible through the web interface.

To reset the application terminate the console window either by typing "q" in the console and the

press "y" or clicking on the close button located upper right corner of the window.

System Requirements

• Microsoft .NET Framework Version 4.0 is required.

• Minimum Hardware Requirements:

◦ 2 GB of memory,

◦ Dual core CPU 1.6 GHz

◦ 10 GB of free hard disk space

• Recommended Hardware Requirements

◦ 8 GB of memory,

◦ Dual core CPU 2.4 GHz

◦ 10 GB of free hard disk space

CrawlerApp

The CrawlerApp is the core server application for crawling and processing html blog data. While

executing it is using 2 TCP ports for communication:

• 47001 is used for application management (start, stop etc)

• 47000 is used for communication between CrawlerApp and CrawlerWeb and between

CrawlerApp and PingServerMonitor

This process has up to 5 threads that will consume as much CPU as possible for:

• Creating rules

• Identifying page type

• Downloading content

• Scheduling

PingServerMonitor

D2.4 Report: Weblog Spider Prototype and
 Associated Methodology 22 October 2013

BlogForever Consortium Page 56 of 71

The main purpose of the PingServerMonitor is to download xml feeds from ping servers and

delegate the result back to the CrawlerApp. It is opening TCP/IP port 47002 which can be used for

application management (start, stop etc).

The system uses regular expressions for filtering the feed. When the system is up and running for

the first time, the user should not enable the server in the console until the right filter has been set.

A ping server can produce 2-3 million records pr 5 min and therefore it is important in the

beginning to set up a strict filter.

CrawlerWeb

The web interface of the application contains the following tabs:

• Add blog hosts

◦ The user can manually add blog's for monitoring. Please Remember to add http:// in front

of the URL

• Ping Server

◦ The user can add/remove and update regular expressions for filtering the ping server data

• Source List

◦ All the sources that the system has registered.

• Output List

◦ Lists the latest blog entities stored to disk.

Downloading requests: technical@cyberwatcher.com

C.2 Usage instructions

Spider Portal – web interface overview

The Spider Portal is the web interface of the Spider, enabling easy inserting of new blogs onto the

Spider - for monitoring. There are two different ways of including blogs into the Spider

1. Manually inserted – pasting a list of relevant blog URLs

2. Automatically through ping server – write a filter keyword which will be used to find

relevant blog URLs and automatically add this into the source list of monitored blogs

All found blogs (blog hosts) through these two Input-processes, will be added to the Source List.

D2.4 Report: Weblog Spider Prototype and
 Associated Methodology 22 October 2013

BlogForever Consortium Page 57 of 71

Figure 17 - Spider portal for adding blogs manually; by pasting in URLs

Add blog hosts – manual inserting blogs

This method enables the user to paste a list of blogs sites to be crawled. The list shall be URLs to

blog sites with listed blog posts. The list can be inserted from a spreadsheet, or comma separated

list.

The blog hosts URLs shall be inserted into this form and then submit insert:

Figure 18 - Add blogs manually – through inserting URLs as above

Steps:

1. Put together a list of URLs separated with semicolons, or one line each or a row in Excel

2. Make sure all URLs includes http://

D2.4 Report: Weblog Spider Prototype and
 Associated Methodology 22 October 2013

BlogForever Consortium Page 58 of 71

3. Paste the list into the field shown in the ―add Blog hosts‖ section

4. Click insert

In order to know if the blog hosts are being successfully processed – a status can be tracked at the

section ―Source list‖.

Ping server – adding new blogs automatically

This alternative enables the end user to insert potentially relevant blogs – even though the user

doesn’t have a specific list of blogs.

This function enables to utilize ping servers which collect and allow distribution of millions of

URLs with recent blog updates. The Spider subscribes to a named ping server giving such access

24/7. Even though the Spider has no knowledge about content on each of these blogs – it can filter

upon information in the named URL.

In the Spider Portal tab – ―Ping server‖ – the end user can insert keywords that are relevant to types

of blogs wanted to be captured.

Create new

Insert keywords to tracking for new blogs

1. Write words consisting of minimum 3 letters. (Too long words are neither likely to be

matched)

2. Words should be fairly generic in order to get matches

3. English Words have by far most chance to match

4. Max 2 words – each word will be checked individually (as ANY in Boolean query)

5. Insert end of URL-string – as of getting blogs related to the first part of the URL (see

example \blogspot\.com/2011/)

6. Save the filters by clicking Save

View the list of ping server filters that is used to find new blogs to be included by the Spider

D2.4 Report: Weblog Spider Prototype and
 Associated Methodology 22 October 2013

BlogForever Consortium Page 59 of 71

Figure 19 - ping server section – automatically indexing new blogs according to filters defining what is

relevant.

The Spider is now actively and ongoing track the named ping server – to detect and insert relevant

blogs.

To pause tracking for new blogs, click limit ping server to source list only. To reactivate please

click “tracking for new blogs”.

These options define how the Spider monitors for new blog posts or blog comments from blog

hosts. By limit ping server to source list – there will be no new sources added and only updates

from listed blog sources will be processed as an XML output – in the Exporter, FTP section.

Source database – listing captured blogs

This part of the Spider portal lists latest blog host found and processed.

D2.4 Report: Weblog Spider Prototype and
 Associated Methodology 22 October 2013

BlogForever Consortium Page 60 of 71

Figure 20 - Source list section where all latest blog sources included is listed

This table show:

 Latest blog post added is listed with automatic detected Blog host name, and an internal ID.

 Created date show when the source was first included into the Spider and added to the

source list

 Last polled data shows recent update. The blog on top of the list should be todays date – as

long as there are ongoing activities in the Spider.

 Last found – would normally be one, the latest new blog post or blog comments.

 Total found shows volume of all blog posts or blog comments captured by the Spider since

it was included in the Spider and the source list.

 Link is the URL link to the RSS from where the blog host is feeding updates to the Spider.

 Detail is a link to explore further about content captured

A search function enables searching through the source list to list already included blogs.

Details – content captured per each blog host

D2.4 Report: Weblog Spider Prototype and
 Associated Methodology 22 October 2013

BlogForever Consortium Page 61 of 71

Figure 21 - Details linked from any of indexed sources – can display crawled XML, and link to actual

HTML.

Details – enables to see fulltext of the actual captured content, from a list of all the latest blog posts

or comments captured.

Three options are available to view the content:

A tagged text version of the content View Post

XML fulltext View as XML

The live HTML version Link to post

Exporter – FTP output with stored files of XML

Output is a view in the Spider Portal, where all indexed content is listed chronological.

The output view found in top right corner of the portal also link to the FTP-section for exporting all

captured blog content.File Transfer Protocol (FTP) is a standard network protocol used to transfer

files from one storage to another.

FTP holds all the latest captured content, stored for the user to export it and integrate it with another

application or repository. From the FTP the user shall download latest files and delete the copied

file, which is a standard FTP procedure.

The Spider will hold the file for 24 hours – and then delete older files not removed by user. The

delete procedure is necessary to avoid storage overload.

FTP login (if needed):

User name: bf

Password: bfever

D2.4 Report: Weblog Spider Prototype and
 Associated Methodology 22 October 2013

BlogForever Consortium Page 62 of 71

Figure 22 - Output section and link to FTP where all latest files with captured content, can be

retrieved.

D2.4 Report: Weblog Spider Prototype and
 Associated Methodology 22 October 2013

BlogForever Consortium Page 63 of 71

D. Appendix D – Prototype Semantic Data Extractor

Application Code Reference

The prototype application consists of three main classes ExtractionInput, Microformat Extractor &

Extract. the application are described in the following section.

Class ExtractionInput

This class represents the input of the extraction process in an abstract sense. Internally keeps the

html documents as a DOM tree. This DOM tree used to extract semantic data by running

sequentially Any23 extractors for each supported format. Also keeps information about the

document, such as document's uri, charset, mime type, etc, and provides convenience access to

them.

The constructor of ExtactionInput class just creates an instance of it without any associated html

document. To associate an instance with a specific html document use one of the setInput()

methods. There are five setInput() methods to support the following types of html input: URL,

String, byte array, File and Document.

 setInput(URL input)

This method uses the URL of a document. First fetch it from the web using the Apache

HttpClient library. Second parse the fetched document to obtain the dom tree and various

information about it.

 setInput(String input, String documentURI)

Use this method when the html code of a document is available as a String. The method

also parses the html to get the DOM tree representation and information associated with it.

Except the string representation of the html code, the URI of the document must be passed

to the method. The URI it's very important to be an absolute URI (not null, empty or

relative) as it's used at the extraction process.

 setInput(byte[] input, String documentURI)

This method is similar to setInput(String input, String documentURI) but in this case the

html document is available as a byte array.

 setInput(File input, String documentURI)

Use this method when the html document is stored as file in the local disk.

 setInput(Document input, String documentURI)

Use this method when the DOM representation of the html document is already available.

Using this method helps us avoid the extra cost of parsing the input. The input is passed

as org.w3c.dom.Document.

ExtactionInput class has also a set of methods used to get various information of the underlying

html document.

 Document getDom()

Returns the documents as org.w3c.dom.Document

 InputStream getInputStream()

Returns an InputStream associated with the content of the html document.

 String getEncoding()

D2.4 Report: Weblog Spider Prototype and
 Associated Methodology 22 October 2013

BlogForever Consortium Page 64 of 71

Returns the document encoding (i.e. UTF-8) if available.

 MIMEType getMIMEType()

Returns the document mime type as an org.deri.any23.MIMEType. It's used in the

extraction process and it's always text/html.

 String getLanguage() Returns the document language (i.e en or el) for documents in

English or Greek respectively.

 URI getDocumentURI()

Returns the document URI.

Example of ExtractionInput class:

String documentURI = ―http://www.flixster.com/user/flixsterman/friends‖;

// Parse input ang get the dom tree

DOMParser parser = new DOMParser();

parser.parse(new URL(documentURI).openStream());

Document dom = parser.getDocument();

// Create an ExtractionInput instance and connect in with the dom tree

ExtractionInput input = new ExtractionInput();

input.setInput(dom, documentURI);

Class MicroformatExtractor

This class acts as a facade of the extraction process over an ExtractionInput input format. It is

thread-safe as the same instance can used from multiple threads. It Supports various RDF formats

as output, such as Turtle[11] , RDF/XML[12] and Ntriples[14]. There are three methods, one for

each supported output format.

 extractToRDFXML(ExtractionInput input, OutputStream output)
This method extracts all semantic data from the input document in rdf/xml and sends them

to the specific OutputStream.

 extractToTurtle(ExtractionInput input, OutputStream output)

This method extracts all semantic data from the input document in Turtle format and sends

them to the OutputStream.

 extractToNTriples(ExtractionInput input, OutputStream output)
This method extracts all semantic data from the input document as a set of triples and sends

them to the OutputStream.

Example of MicroformatExtractor class:

// Create a MicroformatExtractor instance and run extreactToRDFXML()

// method over an ExtractionInput.

MicroformatExtractor extractor = new MicroformatExtractor();

extractor.extractToRDFXML(input, System.out);

Sample output of the extraction result for http://www.flixster.com/user/flixsterman/friends

Class Extract

This class offers a simple command line tool used to extract microformats from a html document.

The input is a local file or an url. The extraction result can be stored as a local file or can be printed

http://www.flixster.com/user/flixsterman/friends

D2.4 Report: Weblog Spider Prototype and
 Associated Methodology 22 October 2013

BlogForever Consortium Page 65 of 71

on stdout. The default out format is rdf/xml. A sample out of the extraction results for

http://www.flixster.com/user/flixsterman/friends is listed below.

http://www.flixster.com/user/flixsterman/friends

D2.4 Report: Weblog Spider Prototype and
 Associated Methodology 22 October 2013

BlogForever Consortium Page 66 of 71

E. Appendix E – HTML Aware prototype applications

For the purposes of evaluating HTML Agility Pack and Beautiful Soup, two small prototypes were

developed in order to learn the specifics of implementation and gain experience in using these two

libraries. First of all, an Access database was created with the following tables:

 Links: This table holds the links that are used for the evaluation.

 Elements: Which elements to use for the evaluation, one row per element.

 Results: This table holds the results of the evaluation (Library used, Link, Element,

Attribute, Attribute value, InnerHtml) with a separate row for each change in any of

Link/Element/Attribute.

Figure 23 – HTML Database structure

A small application has been developed for each library that does the following:

 Reads the links from the Link table in the MsAccess database.

 Reads the elements (tags) form the Elements table in the MsAccess database.

 For each link it sends an HTTP request against this link and for each element that was read

from the database it loops through this element’s attributes collection and writes the value of

each attribute, along with the name of the attribute, in the Results table. It also gets the

InnerHtml of the element and writes this too.

Queries to group the results by Library/Element/Attribute and return the count have also been

created in the database in order to facilitate the comparison of the results.

Both of these applications were tested with various blogs and their results were evaluated without

defining a clear winner.

Table 6 - HTML Agility Pack prototype

Imports HtmlAgilityPack

Imports System.Data

Imports System.Data.OleDb

Partial Class _Default

 Inherits System.Web.UI.Page

 Function getCon() As OleDbConnection

 Dim connectionString As String

 connectionString = "Provider=Microsoft.ACE.OLEDB.12.0;Data Source=" &

HttpContext.Current.Server.MapPath("~/App_Data") & "\WebDataExtractionEval.accdb;"

 Dim con As New OleDbConnection(connectionString)

 con.Open()

 Return con

D2.4 Report: Weblog Spider Prototype and
 Associated Methodology 22 October 2013

BlogForever Consortium Page 67 of 71

 End Function

 Protected Sub Button1_Click(ByVal sender As Object, ByVal e As System.EventArgs) Handles

Button1.Click

 'On Error Resume Next

 Dim webGet As New HtmlWeb

 Dim document As HtmlDocument

 Dim vElementName As String

 Dim con As OleDbConnection

 con = getCon()

 Dim CmdSelectLinks As New OleDbCommand("SELECT Link FROM Links", con)

 Dim vLinksReader As OleDbDataReader = CmdSelectLinks.ExecuteReader()

 If vLinksReader.HasRows Then

 While vLinksReader.Read()

 'MsgBox(vLinksReader.GetString(0))

 document = webGet.Load(vLinksReader.GetString(0)) ' "F:\Data\DevIT\b\tmp\vm4.html"

 'Dim metaTags As HtmlNodeCollection =

document.DocumentNode.SelectNodes("//meta")

 Dim CmdSelectElements As New OleDbCommand("SELECT Element FROM

HtmlElements", con)

 Dim vElementReader As OleDbDataReader = CmdSelectElements.ExecuteReader()

 While vElementReader.Read()

 vElementName = vElementReader.GetString(0)

 'MsgBox(vLinksReader.GetString(0))

 Dim vElements As HtmlNodeCollection = document.DocumentNode.SelectNodes("//"

& vElementName)

 If vElements Is Nothing Then

 'MsgBox(vLinksReader.GetString(0))

 Exit While

 End If

 For Each vElement As HtmlNode In vElements

 If vElement.Attributes.Count > 0 Then

 For Each vAttribute As HtmlAttribute In vElement.Attributes

 vAttribute.Name = Replace(vAttribute.Name, "'", "''")

 vAttribute.Value = Replace(vAttribute.Value, "'", "''")

 Dim CmdSelectResults As New OleDbCommand("INSERT INTO

Results(Tool,Link,Element,Attribute,AValue) VALUES('HtmlAgility','" &

vLinksReader.GetString(0) & "','" & vElementName & "','" & vAttribute.Name & "','" &

vAttribute.Value & "')", con)

 CmdSelectResults.ExecuteNonQuery()

 Next vAttribute

 Else

 If String.IsNullOrEmpty(vElement.InnerHtml) = False Then

 vElement.InnerHtml = Replace(vElement.InnerHtml, "'", "''")

 Dim CmdSelectResults As New OleDbCommand("INSERT INTO

Results(Tool,Link,Element,Attribute,InnerHtml) VALUES('HtmlAgility','" &

vLinksReader.GetString(0) & "','" & vElementName & "','','" & vElement.InnerHtml & "')", con)

 CmdSelectResults.ExecuteNonQuery()

 End If

D2.4 Report: Weblog Spider Prototype and
 Associated Methodology 22 October 2013

BlogForever Consortium Page 68 of 71

 End If

 Next vElement

 End While

 End While

 End If

 MsgBox("End")

 con.Close()

 End Sub

End Class

Table 7, BeautifulSoup prototype application

import urllib

import win32com.client

from BeautifulSoup import BeautifulSoup

def main():

 soup = BeautifulSoup(urllib.urlopen("http://blog.asmartbear.com/"))

 #soup = BeautifulSoup(urllib.urlopen("http://www.huffingtonpost.com/rep-bernie-sanders/why-i-

voted-no-on-the-def_b_919461.html?ir=Yahoo"))

 conn= win32com.client.Dispatch("ADODB.Connection")

 db = r"C:\Users\John\eclipse\workspace\BeautiSoupEval\WebDataExtractionEval.accdb"

 print db

 #DSN="Provider=Microsoft.Jet.OLEDB.4.0;Data Source=" + db

 DSN="Driver={Microsoft Access Driver (*.mdb, *.accdb)};DBQ=" + db

 conn.Open(DSN)

 rsLinks = win32com.client.Dispatch("ADODB.Recordset")

 rsLinks.Open("Links", conn, 1, 3)

 rsElements = win32com.client.Dispatch("ADODB.Recordset")

 rsResults = win32com.client.Dispatch("ADODB.Recordset")

 rsLinks.MoveFirst

 while not rsLinks.EOF:

 soup = BeautifulSoup(urllib.urlopen(rsLinks.Fields.Item(1).Value))

 rsElements.Open("HtmlElements", conn, 1, 3)

 while not rsElements.EOF:

 for element in soup.findAll(rsElements.Fields.Item(1).Value):

 try:

 if element.attrs:

 for attribute, value in element.attrs:

 #print attribute , " - ", value

D2.4 Report: Weblog Spider Prototype and
 Associated Methodology 22 October 2013

BlogForever Consortium Page 69 of 71

 vValue=value.replace("'","''")

 rsResults.Open("INSERT INTO Results(Tool,Link, Element, Attribute, Avalue)

VALUES('Beautiful Soup','" + rsLinks.Fields.Item(1).Value + "','" +

rsElements.Fields.Item(1).Value + "','" + attribute + "','" + vValue + "')", conn,1,3)

 else:

 innerHtml = "".join([str(x) for x in element.contents])

 vInnerHtml =innerHtml.replace("'","''")

 rsResults.Open("INSERT INTO Results(Tool,Link, Element, Attribute, InnerHtml)

VALUES('Beautiful Soup','" + rsLinks.Fields.Item(1).Value + "','" +

rsElements.Fields.Item(1).Value + "','" + attribute + "','" + vInnerHtml + "')", conn,1,3)

 except Exception:

 continue

 rsElements.MoveNext()

 rsElements.Close()

 rsLinks.MoveNext()

 print "The end"

if __name__ == '__main__':

 main()

D2.4 Report: Weblog Spider Prototype and
 Associated Methodology 22 October 2013

BlogForever Consortium Page 70 of 71

F. Appendix F - Glossary

Anything To Triples (any23) is a library, a web service and a command line tool that extracts

structured data in RDF format from a variety of Web documents. Currently it supports the following

input formats:

•RDF/XML, Turtle, Notation 3

•RDFa with RDFa1.1 prefix mechanism

•Microformats: Adr, Geo, hCalendar, hCard, hListing, hResume, hReview, License, XFN

and Species

•HTML5 Microdata: (such as Schema.org)

•CSV: Comma Separated Values with separator autodetection.

Document Object Model (DOM) is a cross-platform and language-independent convention for

representing and interacting with objects in HTML, XHTML and XML documents. Objects in the

DOM tree may be addressed and manipulated by using methods on the objects. The public interface

of a DOM is specified in its application programming interface (API).

File Transfer Protocol (FTP) is a standard network protocol used to transfer files from one host to

another host over a TCP-based network, such as the Internet. FTP

Microformats are small patterns of HTML to represent commonly published things like people,

events, blog posts, reviews and tags in web pages. Microformats enable the publishing of higher

fidelity information on the web; and make it easier to capture and index the information for

semantic search and analysis.

Ping server is an XML-RPC-based push mechanism by which a weblog notifies a server that its

content has been updated. An XML-RPC signal is sent to one or more "ping servers", which can

then generate a list of blogs that have new material. Today, most blog authoring tools automatically

ping one or more servers each time the blogger creates a new post or updates an old one.

RDFa (Resource Description Framework – in – attributes) is a W3C Recommendation that adds a

set of attribute-level extensions to XHTML for embedding rich metadata within web documents.

The RDF data model mapping enables its use for embedding RDF subject-predicate-object

expressions within XHTML documents, and also enables the extraction of RDF model triples by

compliant user agents.

RSS (Really Simple Syndication) is a family of web feed formats used to publish frequently

updated works—such as blog entries, news headlines, audio, and video—in a standardized format.

An RSS document includes full or summarized text, plus metadata such as publishing dates and

authorship

Splogs are blogs where the articles are fake, and are only created for search engine spamming. To

spam in blogs, conversely, is to include random comments on the blogs of innocent bystanders, in

which spammers take advantage of a site's ability to allow visitors to post comments that may

include links. In fact, one of the earliest uses of the term "splog" referred to the latter.

XML (Extensible Markup Language) is a set of rules for encoding documents in machine-readable

form.

D2.4 Report: Weblog Spider Prototype and
 Associated Methodology 22 October 2013

BlogForever Consortium Page 71 of 71

XML-RPC is a spec and a set of implementations that allow software running on disparate

operating systems, running in different environments to make procedure calls over the Internet. It's

remote procedure calling using HTTP as the transport and XML as the encoding. XML-RPC is

designed to be as simple as possible, while allowing complex data structures to be transmitted

processed and returned.

Web spider is a computer program that browses the World Wide Web in a methodical, automated

manner. Other terms for web spiders are crawlers, ants, automatic indexers, bots. Many sites, in

particular search engines, use crawling as a means of providing up-to-date data. Web crawlers are

mainly used to create a copy of all the visited pages.

WHATWG (Web Hypertext Application Working Group) is a community of people interested in

evolving HTML and related technologies. The WHATWG was founded by individuals from Apple,

the Mozilla Foundation and Opera Software in 2004. Since then, the editor of the WHATWG

specifications, Ian Hickson, has moved to Google. Chris Wilson of Microsoft was invited but did

not join, citing the lack of a patent policy to ensure all specifications can be implemented on a

royalty-free basis.

