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Abstract

A prime gap is the difference between two successive prime numbers.
Two is the smallest possible gap between primes. A twin prime is a prime
that has a prime gap of two. The twin prime conjecture states that there
are infinitely many twin primes. This conjecture has been one of the
great open problems in number theory for many years. In May 2013,
the popular Yitang Zhang’s paper was accepted by the journal Annals
of Mathematics where it was announced that for some integer N that
is less than 70 million, there are infinitely many pairs of primes that
differ by N. A few months later, James Maynard gave a different proof
of Yitang Zhang’s theorem and showed that there are infinitely many
prime gaps with size of at most 600. A collaborative effort in the Poly-
math Project, led by Terence Tao, reduced to the lower bound 246 just
using Zhang and Maynard results as the main theoretical background.
In this note, using arithmetic operations, we prove that the twin prime
conjecture is true. Indeed, this is a trivial and short note very easy to
check and understand which is a breakthrough result at the same time.

Keywords: Twin prime conjecture, Prime numbers, Prime gap

MSC Classification: 11A41 , 11A25

1 Introduction

Leonhard Euler studied the following value of the Riemann zeta function
(1734).
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Fig. 1 Roots of H2(x) [5]

Proposition 1 It is known that[1, (1) pp. 1070]:

ζ(2) =

∞∏
k=1

p2k
p2k − 1

=
π2

6
,

where pk is the kth prime number (We also use the notation pn to denote the nth
prime number.).

Franz Mertens obtained some important results about the constants B
and H (1874). We define H = γ − B such that B ≈ 0.2614972128 is the
Meissel-Mertens constant and γ ≈ 0.57721 is the Euler-Mascheroni constant [2,
(17.) pp. 54].

Proposition 2 We have [3, Lemma 2.1 (1) pp. 359]:
∞∑
k=1

(
log(

pk
pk − 1

)− 1

pk

)
= γ −B = H,

where log is the natural logarithm.

For x ≥ 2, the function u(x) is defined as follows [4, pp. 379]:

u(x) =
∑
pk>x

(
log(

pk
pk − 1

)− 1

pk

)
.

We use the following function:

Definition 1 For all x > 1 and a ≥ 0, we define the function:

Ha(x) = log(
x

x− 1
)− 1

x+ a
+ log(

x2 −
log(x)+1√

x

x2
).

We state the following Propositions:
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Fig. 2 Roots of H4(x) [6]

Proposition 3 For a sufficiently large positive value x, we have H2(x) < 0. Cer-
tainly, H2(x) is negative for all x ≥ 60000 since it is negative for x = 60000, strictly
decreasing for x ≥ 60000 (because its derivative is lesser than 0 for x ≥ 60000) and
its greatest root is between 50000 and 60000 (See Figure 1).

Proposition 4 For a sufficiently large positive value x, we have H4(x) > 0. Cer-
tainly, H4(x) is positive for all x ≥ 1.5 since it is positive for x = 1.5 and its unique
root is between 1.4 and 1.5 (See Figure 2).

The following property is based on natural logarithms:

Proposition 5 [7, pp. 1]. For x > −1:

log(1 + x) ≤ x.

Putting all together yields the proof of the main theorem.

Theorem 1 The twin prime conjecture is true.

2 Infinite Sums

Lemma 1
∞∑
k=1

(
1

pk
− log(1 +

1

pk
)

)
= log(ζ(2))−H.
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Proof We obtain that

log(ζ(2))−H = log(

∞∏
k=1

p2k
p2k − 1

)−H

=

∞∑
k=1

(
log(

p2k
(p2k − 1)

)

)
−H

=

∞∑
k=1

(
log(

p2k
(pk − 1) · (pk + 1)

)

)
−H

=

∞∑
k=1

(
log(

pk
pk − 1

) + log(
pk

pk + 1
)

)
−H

=

∞∑
k=1

(
log(

pk
pk − 1

)− log(
pk + 1

pk
)

)
−H

=

∞∑
k=1

(
log(

pk
pk − 1

)− log(1 +
1

pk
)

)
−

∞∑
k=1

(
log(

pk
pk − 1

)− 1

pk

)

=

∞∑
k=1

(
log(

pk
pk − 1

)− log(1 +
1

pk
)− log(

pk
pk − 1

) +
1

pk

)

=

∞∑
k=1

(
1

pk
− log(1 +

1

pk
)

)
by Propositions 1 and 2. □

Lemma 2
∞∑
k=1

(
log(

pk
pk − 1

)− log(1 +
1

pk+1
)

)
= log(ζ(2)) + log(

3

2
).

Proof We obtain that

log(ζ(2)) + log(
3

2
) = log(ζ(2))−H +H + log(

3

2
)

=

∞∑
k=1

(
1

pk
− log(1 +

1

pk
)

)
+H + log(

3

2
)

=

∞∑
k=1

(
1

pk
− log(1 +

1

pk
)

)
+

∞∑
k=1

(
log(

pk
pk − 1

)− 1

pk

)
+ log(

3

2
)

=

∞∑
k=1

(
1

pk
− log(1 +

1

pk
) + log(

pk
pk − 1

)− 1

pk

)
+ log(

3

2
)

=

∞∑
k=1

(
log(

pk
pk − 1

)− log(1 +
1

pk
)

)
+ log(

3

2
)

=

∞∑
k=1

(
log(

pk
pk − 1

)− log(1 +
1

pk+1
)

)
by Lemma 1. □
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3 Partial Sums

Lemma 3 ∑
pk≤x

(
1

pk
− log(1 +

1

pk
)

)
= log(

∏
pk≤x

p2k
p2k − 1

)−H + u(x).

Proof We obtain that

log(
∏

pk≤x

p2k
p2k − 1

)−H + u(x) =
∑
pk≤x

(
log(

p2k
(p2k − 1)

)

)
−H + u(x)

=
∑
pk≤x

(
log(

p2k
(pk − 1) · (pk + 1)

)

)
−H + u(x)

=
∑
pk≤x

(
log(

pk
pk − 1

) + log(
pk

pk + 1
)

)
−H + u(x)

=
∑
pk≤x

(
log(

pk
pk − 1

)− log(
pk + 1

pk
)

)
−H + u(x)

=
∑
pk≤x

(
log(

pk
pk − 1

)− log(1 +
1

pk
)

)
−
∑
pk≤x

(
log(

pk
pk − 1

)− 1

pk

)

=
∑
pk≤x

(
log(

pk
pk − 1

)− log(1 +
1

pk
)− log(

pk
pk − 1

) +
1

pk

)

=
∑
pk≤x

(
1

pk
− log(1 +

1

pk
)

)
by Propositions 1 and 2. □

Lemma 4∑
pk<pn

(
log(

pk
pk − 1

)− log(1 +
1

pk+1
)

)
= log(

3

2
)+log(

∏
pk≤pn−1

p2k
p2k − 1

)−log(1+
1

pn
).

Proof We obtain that

log(
3

2
) + log(

∏
pk≤pn−1

p2k
p2k − 1

)− log(1 +
1

pn
)

= log(
3

2
) + log(

∏
pk≤pn−1

p2k
p2k − 1

)−H + u(pn−1) +H − u(pn−1)− log(1 +
1

pn
)

= log(
3

2
) +

∑
pk≤pn−1

(
1

pk
− log(1 +

1

pk
)

)
+H − u(pn−1)− log(1 +

1

pn
)

= log(
3

2
) +

∑
pk≤pn−1

(
1

pk
− log(1 +

1

pk
)

)
+

∑
pk≤pn−1

(
log(

pk
pk − 1

)− 1

pk

)
− log(1 +

1

pn
)
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= log(
3

2
) +

∑
pk≤pn−1

(
1

pk
− log(1 +

1

pk
) + log(

pk
pk − 1

)− 1

pk

)
− log(1 +

1

pn
)

= log(
3

2
) +

∑
pk≤pn−1

(
log(

pk
pk − 1

)− log(1 +
1

pk
)

)
− log(1 +

1

pn
)

=
∑

pk<pn

(
log(

pk
pk − 1

)− log(1 +
1

pk+1
)

)
by Lemma 3. □

4 Main Insight

Lemma 5∑
pk≥pn

(
log(

pk
pk − 1

)− log(1 +
1

pk+1
)

)
= log(1 +

1

pn
) + log(

∏
pk≥pn

p2k
p2k − 1

).

Proof We obtain that∑
pk≥pn

(
log(

pk
pk − 1

)− log(1 +
1

pk+1
)

)

=

∞∑
k=1

(
log(

pk
pk − 1

)− log(1 +
1

pk+1
)

)
−
∑

pk<pn

(
log(

pk
pk − 1

)− log(1 +
1

pk+1
)

)

= log(ζ(2)) + log(
3

2
)− log(

3

2
)− log(

∏
pk≤pn−1

p2k
p2k − 1

) + log(1 +
1

pn
)

= log(1 +
1

pn
) + log(

∏
pk≥pn

p2k
p2k − 1

)

by Lemmas 2 and 4. □

5 Proof of Theorem 1

Proof Suppose that the twin prime conjecture is false. Then, there would exist a
sufficiently large prime number pn such that for all prime gaps starting from pn, this
implies that they are greater than or equal to 4. First, we need prove that

log(1 +
1

pn
) + log(

∏
pk≥pn

p2k
p2k − 1

) +
∑

pk≥pn

log(
p2k − log(pk)+1√

pk

p2k
) ≤ 0

when pn is large enough. That is the same as

log(1 +
1

pn
) + log(

∏
pk≥pn

p2k
p2k − 1

) ≤
∑

pk≥pn

log(
p2k

p2k − log(pk)+1√
pk

).

That is equivalent to

pn + 1

pn
·
∏

pk≥pn

p2k
p2k − 1

≤
∏

pk≥pn

p2k

p2k − log(pk)+1√
pk

.
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So,

pn + 1

pn
·
∏

pk≥pn

p2k
p2k − 1

≤
∏

pk≥pn

p2k

p2k − (
log(pk)+1√

pk)
log(pk)

log(pk)

which is
pn + 1

pn
·
∏

pk≥pn

p2k
p2k − 1

≤
∏

pk≥pn

p2k

p2k −
log(pk)+1
log(pk)

√
e

since x
1

log x = e for x > −1. Hence, it is enough to show that∏
pk≥pn

p2k
p2k − 2.71828

≤
∏

pk≥pn

p2k

p2k −
log(pk)+1
log(pk)

√
e

for a sufficiently large prime number pn. Indeed, we see that

(pn + 1) ·
∏

pk≥pn

p2k
p2k − 1

≤ pn ·
∏

pk≥pn

p2k
p2k − 2.71828

trivially holds for large enough pn since

pn · (pn − 1)

p2n − 2.71828
> 1− 1

pn
>

1

e
2

pn

, because of
2

pn
>

e
2

pn

pn
≥ log(1 +

e
2

pn

pn
)

where
∏

pk>pn

p2
k−1

p2
k

≥ 1

e
2

pn

≥
∏

pk>pn

p2
k−2.71828

p2
k−1

[8, Lemma 3.2 pp. 4]. Conse-

quently, we can assure that

log(1 +
1

pn
) + log(

∏
pk≥pn

p2k
p2k − 1

) +
∑

pk≥pn

log(
p2k − log(pk)+1√

pk

p2k
) ≤ 0

whenever pn is large enough. In this way, we have∑
pk≥pn

(
log(

pk
pk − 1

)− log(1 +
1

pk+1
)

)
+
∑

pk≥pn

log(
p2k − log(pk)+1√

pk

p2k
) ≤ 0

by Lemma 5. We verify that∑
pk≥pn

(
log(

pk
pk − 1

)− log(1 +
1

pk+1
)

)
+
∑

pk≥pn

log(
p2k − log(pk)+1√

pk

p2k
)

≥
∑

pk≥pn

(
log(

pk
pk − 1

)− 1

pk+1

)
+
∑

pk≥pn

log(
p2k − log(pk)+1√

pk

p2k
)

since − log(1 + 1
pk+1

) ≥ − 1
pk+1

by Proposition 5. Under our assumption, we notice

that∑
pk≥pn

(
log(

pk
pk − 1

)− 1

pk+1

)
+
∑

pk≥pn

log(
p2k − log(pk)+1√

pk

p2k
) ≥

∑
pk≥pn

H4(pk)

since − 1
pk+1

≥ − 1
pk+4 . However, we know that∑

pk≥pn

H4(pk) > 0

due to Proposition 4. Hence, the inequality

log(1 +
1

pn
) + log(

∏
pk≥pn

p2k
p2k − 1

) +
∑

pk≥pn

log(
p2k − log(pk)+1√

pk

p2k
) ≤ 0

would not hold by transitivity. For that reason, we obtain a contradiction under the
supposition that the twin prime conjecture is false. By reductio ad absurdum, we
prove that the twin prime conjecture is true. □
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