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Fatal aspergillosis and evidence
of unrelated hearing loss in a
harbor porpoise (Phocoena
phocoena) from the German
Baltic Sea
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Detailed post-mortem investigations including the auditory pathway are

needed to advance our understanding of how underwater noise and other

stressors affect hearing in cetaceans. A 12-year-old female porpoise (Phocoena

phocoena) stranded alive in June 2021 at the German Baltic Sea coast and died

some hours later. The most significant pathological findings were lesions

caused by a severe aspergillosis that spread from the lung and pulmonary

lymph node to the cerebellum. Based on molecular sequencing, the fungus

was identified as Aspergillus fumigatus. Severe pyogranulomatous and

necrotizing inflammation was diagnosed in the lung and the associated

lymph node. In the left part of the cerebellum, focal, severe purulent and

necrotizing meningoencephalitis with intralesional fungal structures was

confirmed histologically. In addition, multifocal, severe, chronic,

granulomatous, and eosinophilic gastritis with intralesional parasite structures

was found in the stomach. Parallel stripes (linear skin markings) were detected

along the caudal part of both body sides, which have not been previously

described for harbor porpoises. Inner ear analysis revealed evidence of focal

loss of outer hair cells in several regions from 120 to 580 µm from the apex of

the right cochlea using immunofluorescence. The evidence of low-frequency
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hearing impairment was compatible with noise-induced hearing loss. This is

the first case of concurrent presumptive noise-induced hearing loss and

unrelated aspergillosis in a free-ranging harbor porpoise.
KEYWORDS

Aspergillus, Baltic Sea, noise-induced hearing loss, inner ear, hair cell, linear skin
markings (LSM)
Introduction

The harbor porpoise (Phocoena, Linneaus 1758) is the only

resident cetacean species in German waters, including the Baltic

Sea (Berggren, 1994; Christian Kinze et al., 2021). Previous

research has shown the existence of three subpopulations

inhabiting the Baltic (Huggenberger et al., 2002; Wiemann

et al., 2010; Galatius et al., 2012; Benke et al., 2014). Despite

potentially seasonally sharing habitat, it is assumed that these

subpopulations are separated from each other (Sveegaard et al.,

2011; Gallus et al., 2012; Sveegaard et al., 2015). Environmental

conditions probably lead to migratory behavior in harbor

porpoises, with peaks of recorded numbers along the Baltic

shorelines during the summer months (Kröger, 1986;

Koschinski, 2001). Overall, high porpoise densities in German

waters occurred in the area of “Kiel Bight,” along the western

part of the Baltic (Scheidat et al., 2008). Still, no reliable

population trends are available for the Baltic porpoise

populations due to limited survey data and non-uniform

methodology (e.g., Hammond et al., 2002; Hammond et al.,

2013; Viquerat et al., 2014; Unger et al., 2021).

Manifold conservation and protection efforts have been

undertaken for the Baltic porpoise populations (Scheidat et al.,

2006). Specifically, porpoises are listed under the European Habitats

Directive, Annex II and IV (European Union, 1992). As migratory

marine mammal species requiring cross-boundary management,

the porpoise is also included in the European Marine Strategy

Framework Directive (European Union, 2008). Conservation plans

have been implemented by the members of the Agreement on the

Conservation of Small Cetaceans of the Baltic, North East Atlantic,

Irish and North Seas (ASCOBANS) (ASCOBANS, 2002;

ASCOBANS, 2012) or the Baltic Marine Environment Protection

Commission (HELCOM) (HELCOM, 2018).

Despite being strictly protected and the lack of population

trend data, an overall decline among the Baltic porpoise

populations is assumed, based among others on the numbers

of porpoises found dead and accessible bycatch records (Kröger,

1986; Koschinski, 2001; Siebert et al., 2006; Benke et al., 2014;

Meinig et al., 2020; Siebert et al., 2020; Unger et al., 2021).

Similar to the North Sea (Nachtsheim et al., 2021), the Baltic Sea

represents an area highly used by humans, leading to multiple
02
anthropogenic stressors for wildlife (Koschinski, 2001; Dietz

et al., 2021). In many studies, the effects of pollutants on

harbor porpoises in the Baltic Sea have been investigated

(Bruhn et al., 1999; Siebert et al., 1999; Beineke et al., 2005;

Das et al., 2006; Sonne et al., 2020). PCBs were reported to cause

an onset of physiological effects (Kannan et al., 2000b; Jepson

et al., 2016) and potential reproductive failure (Murphy et al.,

2015) to profound reproductive failure in mammals (Helle et al.,

1976; Jepson et al., 2016), including harbor porpoises, when

exceeding certain thresholds. Noise pollution from marine

traffic, offshore windfarm construction (Tougaard et al., 2009;

Teilmann and Carstensen, 2012; Schaffeld et al., 2020), military

activities (Siebert et al., 2022), or seismic surveys (Lucke et al.,

2009) additionally affect harbor porpoises (Koschinski, 2001;

Wright et al., 2013).

There is an increasing concern on how anthropogenic

underwater noise exposure affects cetaceans and their hearing

capabilities (Simmonds et al., 2014; Erbe et al., 2018). Because

hearing is fundamental to cetaceans, changes to their auditory

capabilities may impact their ability to carry out vital activities,

such as navigation, feeding, and communication. Previous

studies have shown that the cochlea of the harbor porpoise, as

in terrestrial mammals, contains two types of auditory sensory

cells: the inner hair cells (IHCs) and the outer hair cells (OHCs)

(Morell et al., 2015; Morell et al., 2020; Morell et al., 2021; Morell

et al., 2022a). Within the organ of Corti (or hearing organ), the

sensory cells are arranged in one single row of IHCs and three

rows of OHCs. The disposition of supporting and sensory cells

in the apex of the cochlea (the tip of the spiral, where the lowest

frequencies are encoded) is variable in mammals. However, a

recent study has described the arrangement of sensory cells in

the apex of the harbor porpoise (Morell et al., 2022a), providing

baseline information on the common pattern in this species. As a

result of the high intensity and/or long duration of sound

exposure, ultrastructural alterations can be detected in the

sensory cells and type I afferent innervation (Bredberg et al.,

1972; Hu et al., 2000). These alterations include changes in the

stereocilia, the degeneration of sensory cells, and hair cell

apoptosis. These alterations can be confused by post-mortem

decomposition artifacts, except for the hair cell death and scar

formation (Morell et al., 2015). When a mammalian cochlear
frontiersin.org
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hair cell dies, the neighboring supporting cells actively

participate in hair cell elimination, resulting in a distinct scar

(Raphael and Altschuler, 1991). The presence of scars within

hair cell rows is an important criterion to assess for prior lifetime

noise-induced cochlear lesions (Morell et al., 2015; Morell

et al., 2017a).

The exploitation of natural resources may lead to a severe

reduction or an actual loss of suitable prey species for harbor

porpoises (Reijnders, 1992; Koschinski, 2001). Still, accidental

bycatch in fisheries is probably the most serious threat to this

species, which is ongoing for decades (Kinze, 1988; Christensen,

1991; Berggren, 1994; Kock and Benke, 1996; Koschinski, 2001;

Siebert et al., 2001; Siebert et al., 2006; Scheidat et al., 2008;

Siebert et al., 2020). Secondary bacterial infections of the

respiratory tract after a parasitic coinfection are the main

natural cause of death for porpoises in the Baltic (Siebert et al.,

2001; Siebert et al., 2020). The endoparasitosis of various organs

and related alterations are common in porpoises (Lehnert et al.,

2005), whereas infections of the central nervous system remain

exceptional (Siebert et al., 2001; Siebert et al., 2020). Although

severe parasitic infections of low clinical relevance in the ears of

porpoises are common, infections of the inner ear structures

only occur sporadically (Morell et al., 2017b; Wohlsein et al.,

2019). When compared to more pristine ecosystems like the

Arctic, porpoises in the Baltic Sea suffer from overall higher

infection rates, which might be related to the elevated levels of

contaminants (Wünschmann et al., 2001) among other stressors.

However, even in comparison to the North Sea, infection rates in

the Baltic remain higher (Siebert et al., 2020). Kesselring et al.

(2017) gave evidence that Baltic porpoises die at an increasingly

young age, probably unable to reproduce, which adds to the

already-compromised population health status.

Aspergillus spp. are saprophytic fungi, and the main route of

infection among animals is the respiratory tract (Biberstein,

1999). Depending on the (compromised) immune response,

primary granulomatous pneumonia is common. Secondary

spread to other organs via blood vessels is typical in mammals

such as cetaceans, which often involves the brain (Biberstein,

1999; St. Leger et al., 2018; Reidarson et al., 2018). As proposed

by Geraci and Ridgway (1991), systemic aspergillosis is not

contagious and mammals represent dead-end hosts. A.

fumigatus is the most frequent pathogenic representative

among mammals (Biberstein, 1999; Seyedmousavi et al., 2015).

This also holds true for cetaceans, where further A. niger and A.

terreus occur (St. Leger et al., 2018). Overall, clinical aspergillosis

among this clade is believed to be underreported due to the lack

of clear symptoms in marine mammals (Reidarson et al., 2018),

as well as its hyphae can be difficult to detect in tissue (Dagleish

et al., 2006).

It is of utmost concern to investigate the natural and

anthropogenic causes of death of marine mammals, to further
Frontiers in Marine Science 03
assess the health status of the porpoise populations and

ecosystem (Bossart, 2011). Detailed post-mortem examinations

of stranded cetaceans and the diagnosis of infectious diseases,

such as potentially underreported aspergillosis, as well as

anthropogenic threats, such as noise-induced hearing loss, will

aid in determining the health status and supporting the

conservation of harbor porpoise populations inhabiting the

Baltic Sea. In this study, we describe the extensive

investigation of a live-stranded harbor porpoise from the

Baltic. Research included necropsy and gross morphological

investigations, histopathological investigations, molecular

screening for pathogens, and life history data, as well as

pollutant analysis and inner ear analysis to determine the

cause of death and ante-mortem health status.
Materials and methods

Aharborporpoise live-strandedonthe5thof June2021along the

beach of Heidkate, Kiel Bight, Schleswig-Holstein, Germany. The

animal reportedly swam upside down in the shallow water and died

around 10:00 p.m. on that same day. It was recovered the following

morning, 6thof June2021, aspart of the strandingnetworkcollecting

all marine mammals found dead along the coastlines of the German

federal stateofSchleswig-Holsteinand transported to the Institute for

Terrestrial and Aquatic Wildlife Research (ITAW, University of

Veterinary Medicine Hannover, Foundation) in Büsum, Germany,

for necropsy.
Necropsy

Necropsy followed national and international guidelines for

post-mortem investigations in cetaceans (Siebert et al., 2001;

IJsseldijk et al., 2019; Siebert et al., 2020), including the

assessment of biometrics, such as body weight and length. The

age and sex of the porpoise were determined using habitus, length,

weight, and primary and secondary sexual characteristics, among

others (Siebert et al., 2001; Kesselring et al., 2017). Teeth from the

lower jaw were taken for accurate cementum aging, following

Lockyer (1995). Based on the blubber thickness, the development

of certain parts of skeletal musculature, and the age of the animal,

the nutritional status was ascertained (Siebert et al., 2001). Each

organ was removed separately, weighed individually, and

investigated macroscopically. Air-filled and auditory organs,

such as the respiratory tract, the melon and acoustic fat around

the lower jaw, the tympano-periotic complex, and peribullar and

pterygoid sinuses were evaluated carefully during the dissection, as

described in Raverty et al. (2018) and IJsseldijk et al. (2019) to

assess potential gross lesions, as seen in cases of blast injury

(Siebert et al., 2022).
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Histopathology

Various organ samples were taken for histopathology

(tongue, tonsils, retropharyngeal lymph node, esophagus,

thyroid gland, diaphragm, lung, pulmonary lymph node, heart,

aorta, rete mirabile, liver, pancreas, gastric compartments,

spleen, kidneys, adrenal glands, intestines, mesenteric lymph

node, urinary bladder, reproductive tract, mammary glands,

skeletal muscle, skin, blubber, brain, pituitary gland, spinal

cord, bone marrow, eye, acoustic fat around the lower jaw,

melon, and nasal sacs). Formalin-fixed and paraffin-embedded

slides were prepared and stained with hematoxylin and eosin,

according to Siebert et al. (2001) and Wohlsein et al. (2019). For

selected tissue sections, additional stainings including periodic

acid–Schiff (PAS) reaction and Grocott´s methenamine silver

impregnation were applied.
Microbiology

Swabs (swab set, sterile, Amies Medium; Covetrus DE

GmbH, Hamburg, Germany) were taken from the uterus,

cervix, and brain of the animal and stored at +4°C until

analysis. The tissue samples of the liver, kidneys, spleen, lungs,

pulmonary lymph node, intestines, mesenteric lymph node,

brain, and reproductive tract were stored at -20°C until

analysis. Cultivation of bacteria and fungi was carried out at

the Justus-Liebig University, Giessen, Germany and followed the

methods of Siebert et al. (2017). Only moderate to severe levels

of bacterial and fungal growth were taken into account. The

fungal isolate was identified morphologically, as well as

molecularly based on partial sequence of beta-tubulin.

Methods of DNA extraction and polymerase chain reaction

(PCR) amplification have been described previously (Walther

et al., 2021). The tissue samples of the kidneys, lung, intestines,

and mesenteric lymph node were sampled and stored at -70°C

until analysis. Investigations were performed at the University of

Veterinary Medicine Hannover, Foundation, Germany. All

organs were analyzed by PCR for the presence of influenza A

virus, morbillivirus, herpesvirus, and pestivirus (van Devanter

et al., 1996; Verna et al., 2017; Jo et al., 2019; Shin et al., 2019), as

also described in Siebert et al. (2022).
Parasitology

Parasites were collected during necropsy, washed with water,

and stored in 70% ethanol. The level of parasite infection was

determined macroscopically and semiquantitatively as mild,

moderate, or severe, as described in Siebert et al. (2001). After

preparation with lactophenol, the parasites were identified
Frontiers in Marine Science 04
following morphological characteristics according to scientific

literature (Arnold and Gaskin, 1975).
Pollutant analysis

Blubber and liver samples were homogenized by cryogenic

grinding with an oscillating mixer mill (MM 400, Retsch, Haan,

Germany). The homogenized tissues were extracted according to

the modified method II by Jensen et al. (2003), as described by

Wernicke et al. (2022). Briefly, 10 mg of blubber and 215 mg of

liver were extracted in three steps with different mixtures of 2-

propanol, diethyl ether, and hexane. The collected and combined

solvent extracts were blown down to a constant weight, and the

extracted lipid mass was determined. The lipid was redissolved

in acetonitrile and submitted to a non-destructive cleanup on

Captiva EMR-Lipid cartridges [Agilent Technologies, USA, Muz

et al. (2021)], in combination with a primary secondary amine

(PSA) sorbent (Agilent Technologies, Santa Clara, CA, USA)

and dried magnesium sulfate. The extracts were then evaporated

to dryness, and the residue was redissolved in ethyl acetate,

containing 100 ng ml-1 of the following stable isotope-labeled

internal standards: 13C12-PCBs 28, 52, 101, 118, 153, 138, 180

(Wellington Laboratories, Guelph, Ontario, Canada). The

extracts were analyzed for PCB congeners 28/31, 52, 101, 118,

153, 138 and 180 by gas chromatography-high-resolution

Orbitrap mass spectrometry [GC-HRMS QExactive, Thermo

Fisher Scientific, Waltham, MA, United States, Muz et al.

(2021)], based on method-matched calibrations. The obtained

data were processed, and the peak areas of the above-mentioned

PCBs were integrated using the software TraceFinder V 5.1. The

results of the pollutant analysis are given as the sum of seven

PCB congeners: ∑PCB7, i.e., summed-up lipid-normalized

concentrations of the seven so-called ‘indicator’ PCBs 28, 52,

101, 118, 138, 153, and 180.
Ear analysis

At necropsy, the left tympano-periotic complex was fixed by

immersion with 10% neutral-buffered formalin while the right

inner ear was perfused with 4% paraformaldehyde in phosphate-

buffered saline (PBS, pH 7.3) around 16 h post-mortem,

following a previously optimized protocol for cetaceans

(Morell and André, 2009; Raverty et al., 2018).

CT scan
The left tympano-periotic complex was examined by high-

resolution peripheral quantitative computed tomography (HR-

pQCT, XtremeCT II® , Scanco Medical, Brüttisellen,

Switzerland, voxel size 42 mm) at the Department of Osteology

and Biomechanics (University Medical Centre Hamburg-
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Eppendorf, UKE, Germany). This technique allows detailed

imaging and quantification of bone microarchitecture.

Histopathology
The left tympano-periotic complex was completely

decalcified using 14% EDTA (ethylenediaminetetraacetic acid)

tetrasodium salt (pH 7.4) for 147 days at room temperature,

changing the media every 7–10 days. The endpoint of the

decalcification process was confirmed by digital contact

radiography using a Faxitron X-ray cabinet (Faxitron X-ray

Corp., Wheeling, IL, USA) at the UKE Hamburg.

The ears were then sectioned transversely on six levels while

immersed in PBS (Figure 1). The tissue sections were placed in

cassettes, rinsed in 50% ethanol, and routinely embedded in

paraffin. The 3µm-thick sections were prepared from the paraffin

blocks, stained routinely with hematoxylin and eosin, and evaluated

microscopically at the Department of Pathology (University of

Veterinary Medicine Hannover, Foundation, Germany).

Immunofluorescence
The right periotic bone was decalcified with 14% EDTA (see

above) for 45 days at room temperature. Then, the bone was

removed, and the cochlea was dissected using the whole-mount

technique, following the method described in Morell et al.

(2020). The organ of Corti was labeled with an anti-prestin

antibody (courtesy of Dr. Zheng, ref. NW958, 1:1,000 overnight)

that is specific for OHC basolateral membrane labeling

(Matsuda et al., 2004) and with Alexa Fluor™ 488 Phalloidin

(Invitrogen A12379, 1:100 for 2 h) that labels F-actin. Type I

afferent innervation was labeled with anti-neurofilament H

antibody (Millipore ref. AB5539, 1:5,000). Nuclei were

counterstained with DAPI (40, 6-diamidino-20-phenylindole,

dihydrochloride; Thermo Scientific™, 62247, 1:1,000). As

secondary antibodies we used Alexa Fluor® Plus 555 donkey
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anti-rabbit IgG (A32794, 1:400), and Alexa Fluor® 633 donkey

anti-chicken IgY (Sigma-Aldrich ref. SAB4600127, 1:400). The

whole mounts were blocked for 1 h with 5% normal donkey

serum, incubated overnight with anti-prestin and anti-

neurofilament H primary antibodies at 4°C, rinsed with PBT

(0.1% triton-X 100 with 2 mg/l bovine serum albumin in PBS,

three times, 10 min each), incubated with secondary antibodies,

DAPI and phalloidin 2 h in the dark, rinsed with PBS (three

times, 10 min each), and mounted individually on a glass slide

with 0.1% N-propyl gallate in 90% glycerol. Two small

subsegments were processed as controls: 1) control for the

non-specific binding of the secondary antibodies (the

subsegment was incubated without the primary antibodies but

with the same concentrations of the secondary antibody and

DAPI as used on experimental segments) and 2) control for

autofluorescence (no primary and no secondary antibodies

were used).

The right cochlea was observed in an optic fluorescence

microscope (Kern OBN-14) at the facilities of ITAW and a

confocal microscope Leica SP8 at UKE Hamburg Microscopy

Imaging Facility. The micrographs of the two controls were

taken using the same settings as their respective treatments (i.e.,

same magnification and same intensity of the four lasers).
Image processing

Maximum projections from confocal images were prepared

with ImageJ software and three-dimensional reconstructions via

segmentation of the lesions with Bitplane Imaris software. The

brightness and contrast of images were adjusted in Adobe

Photoshop 2021 (San Jose, CA, USA) and ImageJ software.

Identical treatments were conducted for control and experimental

segments.
Results

Life history

The porpoise measured 144 cm in total length, but the body

weight of 43.8 kg was not accurate, as the carcass was

incomplete. By the time it was recovered from the beach,

parallel stripes were already recorded bilaterally on the flanks

of the animal. It was identified as a 12-year-old female, based on

cementum aging. The porpoise was lactating and showed

prominent teats as signs of reproductive activity. The left

uterine horn was enlarged and a corpus luteum was present

on the left ovary, indicating that the porpoise had recently given

birth. Stranding occurred within the known breeding season for

porpoises in German Baltic waters (Kesselring et al., 2017), but

no calf was observed nearby neither directly nor in the following

days. According to the location of the stranding, the individual
FIGURE 1

Sectioning planes of the left tympano-periotic complex. The
background was manually removed from the image.
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most likely belonged to the Belt Sea subpopulation

(Huggenberger et al., 2002; Wiemann et al., 2010; Teilmann

et al., 2011; Galatius et al., 2012; Benke et al., 2014). However, no

genetic analysis was yet performed to confirm the subpopulation

that this individual belonged to.
Pathological findings

The porpoise was classified as decomposition condition code

1 (i.e., freshly dead). A larger area along the left cranial part of

the body was scavenged, tissue was missing, and the left eye was

damaged. Based on the blubber thickness of 1.2–2.5 cm, the

absence of visceral fat, and the well-developed musculature

along the spine, the animal was in moderate nutritional

condition. Along the caudal part of the body, bilateral, vertical,

linear marks of grayish color in parallel order were present on

the skin and not elevated above the skin level (Figure 2). All

marks were of 5 mm width and 5–16 cm long. On the left side of
Frontiers in Marine Science 06
the body, seven marks from 7 to 16 cm long were present. On the

right side, five marks from 5 to 10 cm long were detected.

Histologically, the undulating surface of the epidermis without

cellular reaction was observed in those skin marks.

Severe pyogranulomatous and necrotizing pneumonia was

diagnosed in the lung, which presented a dark-red color and

granulomas up to 10 cm in diameter, with necrotic content

(Figures 3A, B). Similarly, severe pyogranulomatous and

necrotizing lymphadenitis was diagnosed in the pulmonary

lymph node. Intralesional faintly stained, light-brownish

fungal spherules were detected, mostly in the cytoplasm of

macrophages and multinucleated giant cells. They stained

intensely positive using the PAS reaction and Grocott’s

methenamine silver impregnation. The fungal structures

consisted of round-to-oval or lemon-shaped often-empty

spherules with thick, refractile walls with a diameter of 5–20

µm, occasionally with some basophilic finely granular content.

The fungal elements were often arranged in short rows. Rarely

septated swollen hyphal structures with parallel walls or hyphae
FIGURE 2

(A) Right lateral view of the investigated porpoise. (B) Vertical, parallel stripes on the left caudal part of the body of the porpoise. (C) Histological
image of the unchanged skin. (D, E) Linear skin markings histologically, showing an undulating pattern in the stratum corneum.
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with an arborizing growth pattern and dichotomous branching

at acute angles were observed (Figures 3C–E). In the left part of

the cerebellum, an area of approximately 1.5 cm in diameter,

caseous texture, and brownish-to-yellowish color was found in

the neuroparenchyma (Figure 4A), which was histologically

diagnosed as granulomatous meningoencephalitis with

necrotizing arteritis and intralesional fungal structures similar

to those in the lung and pulmonary lymph node (Figures 4B, C).

In addition, multifocal, mild-to-moderate perivascular bleedings

were seen in the brain and spinal cord. In the proventricular part

of the stomach, diffuse, elongated erosions of the gastric mucosa

of up to 1 cm in length were seen. A poorly demarcated nodule

of approximately 3 cm in diameter was located in the

proventricular part (Figures 5A, B). The nodule was round

shaped, elevated above the mucosal surface and with a central

porus, surrounded by the hyperplastic epithelium and presented

a creamy yellowish and fluid blackish content when cut.

Histologically, a multifocal-to-coalescing, severe, chronic,

granulomatous and eosinophilic, mural gastritis with

intralesional parasite structures and severe, perifocal fibrosis

was found (Figure 5C). In the melon, a focal, moderate acute

hemorrhage was found histologically (Figure 6).
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Microbiology

A severe growth of Aspergillus sp. was detected in both the

lung and the pulmonary lymph node. The isolate was identified

as A. fumigatus because its partial beta-tubulin sequence was

100% identical with the reference strain of this species CBS

133.61 (GenBank accession number AY685150). It is deposited

in the Jena Microbial Resource Collection with strain number

JMRC:NRZ:3861. No other bacteria or fungi were cultured from

the other investigated swabs and tissue samples including the

brain. PCRs for influenza A virus, morbillivirus, herpesvirus, and

pestivirus were negative.
Parasitology

Parasites were detected in both cranial sinuses (pterygoid and

peribullar), lung, heart, esophagus, stomach, and liver of the

harbor porpoise. The pterygoid and peribullar sinuses showed a

moderate infestation on the right and a severe infestation on the

left side with nematodes consistent with Stenurus minor. Both the

bronchi and blood vessels of both sides of the lung were severely
FIGURE 3

(A, B) Pyogranulomatous and necrotizing pneumonia in the lung of the porpoise. The background was manually removed from the image.
(C) Lung with severe necrosuppurative (bottom) and pyogranulomatous (lop left) inflammation; hematoxylin and eosin stain. (D) Lung with
severe granulomatous and necrotizing pneumonia and numerous intralesional germinating fungal spherules (arrows); periodic acid–Schiff (PAS)
reaction. (E) Lung with focal arborizing fungal growth and dichotomous branching at acute angles (arrows); Grocott’s methenamine silver stain.
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infected with Torynurus convolutus. In the heart, a mild amount of

nematodes were detected, which could be identified as lungworms

of the species T. convolutus. Both the esophagus and the first

compartment of the stomach were mildly infected with

nematodes of the family Anisakidae. In the liver, a mild amount

of trematodes was detected, which were morphologically

consistent with Campula oblonga.
Pollutant analysis

The ∑PCB7 was 1.640 mg/kg lipid in the blubber and 0.659

mg/kg lipid in the liver. The highest concentrations were

observed for the hydrophobic hexachlorinated PCB 153 (800

vs. 470 µg/kg lipid) and the lowest for the less bioaccumulative

tri- and tetrachlorinated PCBs 28 (4.63 vs. 1.53 µg/kg lipid) and

52, which showed 3.49 µg/kg lipid in blubber and was below the

method detection limit in the liver. Additional PCB congeners

were observed, in particular in the blubber tissue (PCBs 18, 44,

149, and 170) but partly also in the liver tissue (PCB 149).
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Ear analysis

Left ear: High-resolution peripheral
quantitative computed tomography scan
and histopathology

The HR-pQCT scan of the tympano-periotic complex did

not show apparent abnormalities (Figures 7A–C).

The histopathological evaluation of the tympano-periotic

complex revealed a moderate endoparasitosis in the tympanic

cavity with intraluminal adult and larval nematodes admixed with

few eosinophils and macrophages. In the subepithelial connective

tissue, a mild diffuse lymphohistiocytic and plasmacytic

inflammation with single eosinophilic granulocytes was present.

The epithelium showed partially a moderate to marked epithelial

hyperplasia (Figure 7D). In the peribullar sinus, a moderate

endoparasitosis with nematodes, mild eosinophilic and

lymphoplasmacytic inflammation, and segmental pseudosquamous

metaplasia of the respiratory epithelium was found. In the inner ear,

there were moderate acute hemorrhages in the scala tympani

(Figure 7E), but there was no evidence of the presence of parasites.
FIGURE 4

(A) Granuloma (arrow) in the left cerebellum of the porpoise. The background was manually removed from the image. (B) Cerebellum (cer) with
severe chronic granulomatous leptomeningitis (X) and necrotizing arteritis (arrow); hematoxylin and eosin stain. (C) Severe granulomatous and
necrotizing leptomeningitis with numerous, often-germinating fungal spherules (arrows); PAS reaction.
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FIGURE 5

(A, B) Nodule in the stomach at necropsy. (C) Focal severe granulomatous, mural gastritis (arrows), intralesional parasitic structure (P), and
perifocal fibrosis (F) in the stomach; hematoxylin and eosin stain.
FIGURE 6

(A) Gross image of the melon at necropsy. (B) Focal acute hemorrhage in the fatty tissue of the melon; hematoxylin and eosin stain.
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Right ear: Immunofluorescence
During the dissection of the cochlea, the round window niche

and the vein toward the cochlear aqueduct were subsampled for

histopathology. There was amoderate amount offibrous connective

tissue arranged in two tissue strands, in between a loosely arranged

fibrovascular tissue web with few capillaries in the round window

niche. In addition, there was a moderate amount of fibrous

connective tissue with severely hyperemic blood vessels attached

to bone in the vein toward the cochlear aqueduct. However, there

was no evidence of degenerative or inflammatory changes in any of

the two structures.

The immunofluorescence analysis of the right cochlea of this

individual revealed that there was a region in the apex of the

cochlea (region that encodes for low-frequency sounds) where

there was focal loss of OHCs (white arrows in Figure 8). There

was a first region of approximately 120 µm with one-to-two rows

of OHCs, considered as the normal morphological variability of

the apex. Following this first region, there were several regions

with the loss of OHCs from 120 to 150 µm, 170 to 200 µm, 250 to

290 µm, 435 to 465 µm, 495 to 545 µm, and 565 to 580 mm from

the begining of the apex. The three latter regions showed a total

loss of OHCs (Figures 8C–E). After 580 µm from the apex, there

was a transition zone of approximately 285 µm with a few
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missing OHCs, and, from 865 µm from the beginning of the

apex and onwards, the typical pattern of three rows of OHCs was

observed. Thus, the OHCs of the organ of Corti of the rest of the

spiral did not show evidences of lesions (Figure 9). The IHCs

showed post-mortem decomposition artifacts and were in

reasonably good condition for diagnosis in several regions of

the apical and middle turn. In those locations where the IHCs

were present, there were no evidences of lesions (Figures 8, 9). In

addition, there was no apparent degeneration of the spiral

ganglion neurons in any region of the cochlear spiral. The

controls were negative (Figure 9B).
Discussion

Summary

In this study, a live stranded female harbor porpoise that

recently had given birth was investigated. It died due to infection

with A. fumigatus. The evidence of non-related hearing loss was

present in the inner ears, which was compatible with noise

exposure. Linear skin markings represented unusual yet

additional findings with no clinical relevance for the animal.
FIGURE 7

3D reconstruction of the tympano-periotic complex (A, B) and the middle ear ossicles (C) showing an apparent normal morphology. (D) Middle
ear with moderate-to-marked epithelial hyperplasia (X) and diffuse mild subepithelial inflammation (arrows), hematoxylin and eosin stain.
(E) Moderate acute hemorrhage (X) in the scala tympani (ST); SG: spiral ganglion cells; hematoxylin and eosin stain.
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Fatal aspergillosis

Detailed post-mortem investigations determined that the

porpoise in this study died due to severe aspergillosis.

Aspergillosis is considered a sporadic infection in cetaceans

(St. Leger et al., 2018). Despite occurring as coinfection

together with various morbilliviruses in immunocompromised

individuals (Domingo et al., 1992a; Cassle et al., 2016; St. Leger
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et al., 2018), infections with morbilliviruses and thus

coinfections are rare in harbor porpoises (Kennedy et al., 1991;

Jepson et al., 2000). So far, only a few cases of aspergillosis have

been detected in harbor porpoise stranding schemes: Kapetanou

et al. (2020) found 11 out of 754 porpoises (i.e., 1.5%) from the

Dutch North Sea to be infected. In contrast, a higher frequency

of aspergillosis (9/61, 14.7%) was detected by van Elk et al.

(2019) in porpoises from Dutch, Belgian, and German
FIGURE 8

Maximum projections (up to 289 planes each 0.3–3 mm, depending on the magnification) from confocal microscope images of the beginning of
the apex of the right cochlea of the harbor porpoise at 10× (A), 20× (B), and 63× (C) magnification. The white arrows highlight the regions with
evidence of outer hair cell loss. (D, E) 3D reconstruction of the region of the cochlea in (C) from the vestibular (D) and tympanic (E) scala. The
apical turn of the cochlea was labeled with anti-prestin (red) and anti-neurofilament H (yellow) antibodies; phalloidin (green) and nuclei were
counterstained with DAPI (blue).
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coastlines, whereas all those animals died during attempted

rehabilitation, which might have favored infection (Kapetanou

et al., 2020). There were 14 additional cases of mycotic infections

in harbor porpoises recorded by the stranding network covering

the coastline of Northern Germany between 1995 and 2019. This

includes Aspergillus sp. (n = 2, mild growth), A. niger (n = 2,

single colonies), Mucor sp. (n = 2, single colonies) and Rhizopus

sp. (n = 8, single colonies, moderate growth). All other

documented cases of aspergillosis (n = 4) known to the

authors originated from the UK (Dagleish et al., 2006; Prahl

et al., 2011; St. Leger et al., 2018) and Denmark (Seibel

et al., 2010).

Primary viral or bacterial infections and an impaired

immune status may facilitate the spread of otherwise

commensal fungi in cetaceans, which can then lead to

secondary infection (Geraci and Ridgway, 1991; Domingo

et al., 1992b; Jepson et al., 2000; Cassle et al., 2016; Reidarson

et al., 2018; St. Leger et al., 2018). In the herein-presented case,

the investigated porpoise had a moderate nutritional condition

and an empty stomach, indicating that the animal had not eaten

recently before death [for example, Wisniewska et al. (2016), but

see also Hoekendijk et al. (2018)]. Even though this is not

indicative for reduced immunity itself, an empty stomach

might be a sign of general poor health condition, as porpoises

usually constantly feed to meet high energetic demands (Gaskin,

1978; Kastelein et al., 1997; Wisniewska et al., 2016; Hoekendijk

et al., 2018).

Pregnancy can lead to a changed immune response and

therefore facilitate the spread of pathogens (Bridwell et al., 2019;

Rohner et al., 2020). Together with the severe parasitosis of the

lung and evidence of low-frequency hearing loss, an overall
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reduction of the immune system functioning therefore seems

possible. In addition, nematode infections of harbor porpoise

lungs are positively correlated with bronchopneumonia (Lehnert

et al., 2005), which may facilitate the entrance and maintenance

of secondary infections, like aspergillosis. The suspected route of

infection for Aspergillus spp. is usually via the respiratory tract,

and, later on, transmission via the blood vessel system is

common (Prahl et al., 2011; St. Leger et al., 2018; van Elk

et al., 2019). This was most likely also the case in the study

animal, which suffered from severe pyogranulomatous and

necrotizing pneumonia and, likewise, lymphadenitis of the

associated lymph node, caused by A. fumigatus. Whereas van

Elk et al. (2019) also proposed the ears as a possible port of entry

in cases of aspergillosis in porpoises, Prahl et al. (2011) endorsed

the respiratory tract as primary location of infection in their

investigated case of A. terreus infection in the ear of a harbor

porpoise. Since we did not find evidences of fungal elements in

the ears of the porpoise studied here, a spread from the lungs and

pulmonary lymph nodes to the cerebellum was most likely the

pathway of infection.

The observed granulomatous and necrotizing meningo

encephalitis with arteritis and intralesional fungal structures in the

study animal most likely represented hematogenous metastatic

spread of A. fumigatus. Similar pathology was suspected in a

previous case of a porpoise from the UK with an intracranial

granuloma due to A. fumigatus infection, even though no infection

of the lung could be observed (Dagleish et al., 2006). Noteworthy,

Dagleish et al. (2006) further hypothesized that asporogenic

Aspergillus spp. might be overlooked during sampling as they are

located deep in the respective tissue, which could explain the lack of

corresponding pneumonia in their case. In the Netherlands, the
FIGURE 9

Maximum projections (up to 424 planes each 0.3–1 mm, depending on the magnification) from the confocal microscope images of the apical
turn (A), middle turn (C), and extreme basal turn or hook (D) of the right cochlea of the harbor porpoise. (B) Secondary (control for the non-
specific binding of the secondary antibodies) and autofluorescence controls were taken with the same settings as the apical region (Figure 8C).
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respiratory tract was the most affected organ system in a study on

mycotic infections in porpoises, whereas only one individual with

pulmonal aspergillosis also showed encephalitis (Kapetanou et al.,

2020). Another study with animals from Dutch, Belgian, and

German coastlines found a similar pattern, with also only one

porpoise showing both pneumonia and dissemination to the brain

(van Elk et al., 2019). Fatal mycotic encephalitis due to A. fumigatus

infection originated in the respiratory tract of a Northern bottlenose

whale (Hyperoodon ampullatus) (Dagleish et al., 2008), closely

resembling the observed pathology in this study animal.

Interestingly, Reidarson et al. (2018) considered the A. fumigatus

mycoses of the central nervous system asmore characteristic among

cetaceans, including aberrant neurological signs and acute death.

This perception coincides with the observed behavioral disorder in

the study animal, which reportedly swamupside down before it died

shortly after its initial live-stranding.MostlyA. fumigatus but alsoA.

terreus and A. niger are isolated from marine mammals, such as

cetaceans (St. Leger et al., 2018). To date, there is only one other

reported case of mycotic infection of the central nervous system in a

harbor porpoise from the Baltic Sea, but, contrarily to this study, the

phenomenon was caused by Rhizopus sp. (Wünschmann

et al., 1999).

Low-frequency hearing loss

Inner ear analysis by immunofluorescence revealed evidence of

focal OHC loss in several regions from 120 to 580 µm from the apex

of the right cochlea. This pattern of OHC loss differs from previous

descriptions of the normal anatomy of the organ of Corti in harbor

porpoises using several imaging techniques (Morell et al., 2015;

Morell et al., 2020; Morell et al., 2022a). The lack of OHCs

(especially OHCs from the third row) can be considered part of

the normal apical variability in harbor porpoise and othermammals

(Morell et al., 2022a). However, because the ratio of hair cells and

supporting Deiters cells is 1:1 (Morell et al., 2022a), there was strong

evidence of scars as a result of OHC death by apoptosis in our case,

rather than artefact or normal anatomic variation, as observed in

the first 120 µm from the apex. OHC death in mammals results in

permanent hearing loss for the associated frequencies (Saunders

et al., 1991; Kujawa and Liberman, 2019; Burton et al., 2020). The

selection of antibodies used for this sample was optimal for

discriminating between newly formed lesions and old ones

(Morell et al., 2020). Phalloidin was selected as it is able to

identify lesions up to 9 h postexposure and the anti-prestin

antibody up to 9–10 days postexposure to noise or ototoxic

drugs, according to the rate of scar formation in terrestrial

mammals (Raphael and Altschuler, 1991; Abrashkin et al., 2006).

In the cases of recent noise-induced hearing loss in guinea pigs,

clumps of the protein prestin were found in the cytoplasm of the

supporting cells up to 9–10 days postexposure (Abrashkin et al.,

2006). Presuming a similar rate of scar formation occurs in harbor

porpoises, the loss of hair cells from the right ear of this individual

was not associated with recent injury.
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Permanent hearing loss can be caused by several factors,

including exposure to noise, ototoxic drugs, pollutants such as

PCBs, age, barotrauma, blast injury, congenital or

immunological disorders, and other infections (Johnsson and

Hawkins, 1972; Black et al., 1976; Lim and Dunn, 1979; Sun,

1987; Crofton et al., 2000; Cho et al., 2013).

Mycotic infections of the inner ear have only rarely been

reported in humans (Meyerhoff et al., 1979; Lyos et al., 1993) and

are found especially in immunocompetent patients (Cho et al.,

2007). While the main routes of fungal infection in the inner ear

are assumed to be through the middle ear, meningogenic and

hematogenic (Meyerhoff et al., 1979), little is known on the

specific characteristics of the pathophysiology of fungal

infections in the cochlea. Prahl et al. (2011) described the

lesions in the middle and inner ear of a porpoise with a severe

infection of A. terreus. The sensory and supporting cells of the

organ of Corti were replaced by (or dedifferentiated by) normal

epithelial cells, forming a cuboidal epithelium. Only a few inner

and outer pillar cells were left towards the apical region. The

types of lesions described after Aspergillus spp. infection are

different from the lesions observed in the porpoise of our study,

where there were no apparent degenerated spiral ganglion

neurons, nor OHC loss at the base of the cochlea. Pathogenic

impacts of sensorineural hearing loss have been described to

affect the entire hearing range uniformly in humans and

terrestrial mammals, or result in hearing loss predominantly in

the high frequencies, which are encoded at the cochlear base

(Sheridan, 1964; Chandrasekhar et al., 2000; Cureoglu et al.,

2004; Cohen et al., 2014). At present, there are no recognized

pathogens exclusively and focally affecting the apex of the

cochlea, to the best of our knowledge. Therefore, based on the

location and pattern of OHC loss in this case, an infectious

etiology is unlikely.

Presbycusis (age-related hearing loss), barotrauma, and

ototoxic drug exposure primarily affect high frequencies

(Johnsson and Hawkins, 1972; Sun, 1987; Houser and

Finneran, 2006; Houser et al., 2008; Wang and Puel, 2018).

However, there were no apparent lesions in the sensorineural

epithelium at the base of the cochlea that were consistent with

presbycusis, ototoxic drug exposure, or barotrauma.

Exposure to PCBs during developmental stages can result in

severe hearing loss with a corresponding mild-to-moderate loss

of OHCs in the apical and upper-middle turns in rats (Goldey

et al., 1995; Herr et al., 1996; Crofton et al., 2000). The animal of

our study had a total lipid-normalized ∑PCB7-concentration of

1.640 mg/kg in the blubber and 0.659 mg/kg in the liver. Levels

in the blubber and liver were below the currently known

thresholds considered to cause physiological effects in marine

mammals (Kannan et al., 2000a; Jepson et al., 2005; Murphy

et al., 2015). It is hence unlikely that overexposure to PCBs alone

was a plausible cause for the OHC death, although more studies

are needed on PCB levels in different types of tissues and fluids

and their effects on hearing. In addition, there are large numbers
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of other pollutants present in the environment that accumulate

to different degrees in biota tissues, possibly eliciting mixture

effects of both legacy and new, emerging pollutants that cannot

be fully assessed with the present methodologies.

Other causes in humans that are rarely reported, such as

developmental defects or immunological disorders, were

deemed unlikely for their extremely low prevalence [less than

1% of all cases of hearing impairment in humans (Mancini et al.,

2018)]. Morell et al. (2022b) recently described a case of

congenital hearing loss in a harbor seal, with selective IHC

loss while OHCs appeared normal, which is different from the

pathophysiology observed in the porpoise presented here.

The type of lesions seen in the cochlea of the individual in our

study are compatible with noise-induced hearing loss. The

location of noise-induced damage within the cochlea depends

on the frequency of the source. Previous research on marine and

terrestrial mammals exposed to high-intensity noise levels showed

that the frequency of maximum hearing loss was half an octave,

up to one octave, above the exposing tone (Davis et al., 1950;

Kastelein et al., 2014; Finneran, 2015; Reichmuth et al., 2019).

Future research on predicting the cochlear frequency maps (i.e.,

frequency distribution along the cochlear spiral) on harbor

porpoises based on morphological features is needed. These

frequency maps are important for determining the frequency

range that is impaired if lesions are found. In addition, in the cases

of noise-induced hearing loss, frequency maps can ultimately

provide key information on the frequency characteristics of the

causal sources of the damage in the cochlea. Although, at this

moment, we do not know the exact frequency range that is

impaired in this individual, it is likely that the low-frequency

hearing loss is outside the frequency band that porpoises use in

their acoustic repertoire, with a peak and centroid frequencies

ranging from 129 to 145 kHz (Villadsgaard et al., 2007). It is

challenging to assess the consequences of having a hearing loss in

the low frequencies for harbor porpoises. In part, this is due to the

difficulty to provide a large number of individuals whose ears can

be fixed rapidly after their death. To date, 3 out of 21 (14.3%)

harbor porpoise individuals that had the beginning of the apex in

a good preservation status for diagnosis, showed evidences of low-

frequency hearing loss (Morell et al., 2015; Morell et al., 2021;

Morell et al., 2022a; Ijsseldijk et al., 2022). However, this

prevalence may be underestimated since not all 21 individuals

had a complete information of the apex. Morell et al. (2021)

described a case of low-frequency hearing loss with unrelated

severe cerebral toxoplasmosis in a harbor porpoise. Together with

the individual of this study, evidence of hearing loss in porpoises

with unrelated severe infections may suggest that damage in the

auditory apparatus could ultimately reduce the immune system

functioning in affected animals. However, further research

combining ear analysis with pathological findings of other vital

organs in porpoises should be conducted to establish a potential

correlation between hearing impairment and vulnerability due to

the exposure of pathogens.
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Previous cases reported harbor porpoises from the North

and Baltic Seas with sublethal lesions in the middle or inner ears

(Morell et al., 2017b; Wohlsein et al., 2019; Morell et al., 2021;

Siebert et al., 2022), which highlighted the importance of

including the ear analysis in full post-mortem examinations.

Evidence of hearing loss was also reported in by-caught

porpoises, e.g., for one individual with a severe hemorrhage in

the inner ear, most likely caused by a parasitic infection (Morell

et al., 2017b), as well as otitis media (2 out of 16 individuals), and

a healed fracture of the tympanic bone in 1 out of 16 individuals

(Seibel et al., 2010; Wohlsein et al., 2019). Wohlsein et al. (2019)

concluded that damage to hearing structures may explain

starvation due to the impaired ability to catch prey or unusual

behavior such as entanglement in nets or stranding. There was

neither evidence of the dislocations of the middle ear ossicles and

hemorrhages, nor degeneration or death of sensory cells and

type I afferent innervation detected in the base of the cochlea in

this animal, which are indications of blast trauma (Cho et al.,

2013; Siebert et al., 2022). There were no hemorrhages, ruptures

of alveolar walls, or lacerations of larger parts of the lung. In

addition, myocardial, meningeal, and intracerebral hemorrhages

were described in the cases of blast injury in terrestrial mammals

(Clemedson, 1956). The hemorrhages into the tympanic scala at

the base of the cochlea and the perivascular hemorrhages in the

central nervous system were acute without the evidence of

resorptive reactions. They possibly represent agonal changes.

The moderate acute hemorrhage found in the melon in the

porpoise could be related to scavenging, rather than related with

blast injury.
Linear skin markings

The detected parallel stripes bilaterally on flanks of the study

animal resembled observations made in common bottlenose

dolphins (Tursiops truncatus) in Florida (Titcomb et al., 2020)

and, to a lesser extent, in Hawaii (Noren et al., 2011). The so-

called linear skin markings (LSMs) were thought to represent

stretch marks (Striae distensae) in humans (Schuck et al., 2020).

Notably, 85.1% of the affected study animals in Florida (N = 96)

showing LSMs were females that all had given birth at least once

before (Titcomb et al., 2020). However, the histological

investigations of the studied porpoise only found an

undulating surface without cellular reaction in the LSMs, while

scarred tissue is to be expected in human stretch marks (Salter

and Kimball, 2006). Despite the etiology remaining unclear in

this case, such LSMs have not been described for harbor

porpoises before, nor have they been documented in cetaceans

from the Baltic Sea, to the knowledge of the authors.

The rapid change in the marine environment and growing

anthropogenic influence may foster the occurrence of mycotic

infections, as well as infections of other etiologies, in marine

mammals (Kapetanou et al., 2020) in the future, in addition to
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increase the underwater noise levels. Full comprehensive post-

mortem examinations with extended sampling protocols,

including sound reception structures, are needed to

understand the effects of natural and anthropogenic stressors

and the combination of both on marine mammals.
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