Disks, Planets, and Planetary System Architectures with Asgard/BIFROST @ VLTI

University of Exeter

BIFROST team: S. Chhabra, D. Mortimer, T. Gardner, I. Codron, Y. Lu, O. Snaith (Exeter), N. Anugu (CHARA), J. Monnier (Michigan), Andrea Bianco, Michele Frangiamore (INAF), Philipp Huke (Emden)

Asgard partners: M. Ireland, B Courtney-Barrer, D. Brodrick (ANU), B. Norris, P. Tuthill (Sydney),
S. Gross (Macquarie U.), F. Martinache, M. N'Diaye, N. Cvetojevic (OCA), D. Defrere, M.-A. Martinod,
R. Laurier, M. Salman, K. Missaen, G. Garreau, A. Bigioli, S. Verlinden, G. Raskin (Leuven),
J. Loicq, C. Dandumont, A. Mazzoli (CSL), L. Labadie, A. Sanny (Cologne)

Disks and Planets workshop ESO Garching, 2022 December 2

Asgard Suite of VLTI Instruments						
	HEIMDALLR Fringe tracker Dual K band Pls: Mike Ireland, F	Baldr Lab-AO system J or H band rantz Martinache	BIFROST Short-wavelength, high spectral resolution, off-axis interferometry YJH bands R=50, 1000, 5000, 25000 PI: Stefan Kraus			
NO High L ba R=2 Pi: L	TT n-contrast nuller and 0, 400, 2000 Denis Defrère	erc				

BIFROST Optical Design

BIFROST Operations: Legacy from CHARA

Established framework from MIRCX+MYSTIC:

- Optical Design
- Sync. Dual-Arm Operation
- Operational Software
- Data Reduction Software

Why shorter wavelengths at VLTI?

Why shorter wavelengths at VLTI?

New Molecules

→ Atmosphere composition, Vertical Structure, Clouds, ...

Kraus+ 2012a

Why shorter wavelengths at VLTI?

Why spectral resolution R=25,000?

BIFROST: Science cases on DISKS + EXOPLANETS

(1) Accretion & Ejection

(2) Orbit Obliquities

(3) Exoplanet Spectroscopy & Circumplanetary Disk kinematics

How are stars forming?

What determines architecture of star & planetary systems?

How are planets forming?

Kraus+ 2020a+b, Romanova+ 2016, Chilcote+ 2007

Science case #1: Accretion & Ejection

Hone+ 2017; Hone+, in prep.; Romanova+ 2016

Science case #1: Accretion & Ejection

How is angular momentum transport facilitated in disks?

- → Launching of MHD winds/jets
- → Accretion geometry

Rossiter-McLaughlin effect allows measuring spin-orbit alignment ("obliquity") for transiting systems

Albrecht+ 2012; Romanova+ 2013

Measuring spin-orbit alignment for wide-separation systems decisive test on formation + dynamical evolution Liska+ 2019; Livingston

DISK fragmentation

Companions form in coplanar circumstellar disk through fragmentation

CLOUD fragmentation

Stars form separately and undergo star-disk encounter to form tight binary

CLOUD fragmentation

cloud-collapse SPH simulation

BIFROST's R=25000 mode

- → Spin-orbit alignments for smaller stars & slow rotators
- → Higher astrometric precision from accessing atomic lines

- <u>β Pic:</u> 3-D obliquity angle 3±5°
- Spin / planet orbit / debris disk well aligned

Kraus+ 2020b; ESO/Lagrange/SPHERE; Nicholls+ 2017

Science case #3: Exoplanets & Circumplanetary Disks

Science case #3: Exoplanets & Circumplanetary Disks

 β Pic b retrieval (GRAVITY collab. 2020)

Fit performed	Т (К)	$\log(g/g_0)$	Metallicity [Fe/H]	C/O ratio	Mass (M_{Jup})
GRAVITY data only GRAVITY + GPI <i>YJH</i> band data	1847 ± 55 1742 ± 10	$3.3^{+0.54}_{-0.42}\\ 4.34^{+0.08}_{-0.09}$	$-0.53^{+0.28}_{-0.34}\\0.68^{+0.11}_{-0.08}$	$\begin{array}{c} 0.35\substack{+0.07\\-0.09}\\ 0.43\substack{+0.04\\-0.03}\end{array}$	$1.4^{+3.94}_{-0.87}$ $15.43^{+2.91}_{-2.79}$

BIFROST wavelength range (1-1.7 μm) complements GRAVITY+:

- surface gravity
- cloud particle sizes
- new molecules

\rightarrow Formation location

from volatile abundances / isotopologues (C/O, ¹²CO/¹³CO, ...)

Science case #3: Exoplanets & Circumplanetary Disks

Observability of PDS70b CPD with BIFROST:

planet mass: <10 M_J separation from star: 19 au = 0.19"

 $L_{Pa\beta}/L_{\odot}$:

star: 19 au = 0.19''2.7 × 10⁻⁸ (Aovama+ 2021 model pre

Line width: Integration time: 2.7×10^{-8} (Aoyama+ 2021 model prediction) 100 km/s FWHM 5.9 hrs for 3σ detection

Asgard Suite of VLTI visitor instruments

YJ/H band:	BIFROST	high spectral resolution + off-axis
H band:	Balldr	adaptive optics
K band:	Heimdallr	fringe tracker
L band:	NOTT	nuller

(1) Mass accretion & Ejection

(2) Orbit Obliquities

(3) Exoplanet Spectroscopy & Circumplanetary Disks

How are stars forming?

How are planets forming?

What determines architecture of star & planetary systems?