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Eva Feillet1, Grégoire Petit1,2 Adrian Popescu1, Marina Reyboz3, Céline Hudelot4
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1. Implementation details

All our experiments are run with PyTorch. For each al-
gorithm, we point to the original repository on which our
implementation is based. Except otherwise stated, we used
the method-specific hyperparameters presented in the orig-
inal articles (e.g. the temperature scalar in LUCIR). Our
complete code containing image lists, algorithms, hyperpa-
rameters and network architectures will be published in a
dedicated repository.

1.1. Class-incremental learning algorithms

• SIW. Our implementation is based on the original
repository of [2]1.

• DeeSIL. Our implementation is based on the original
repository of [1]2.

• LUCIR. Our implementation is based on the original
repository of [4]3. LUCIR has initially been proposed as a
learning algorithm with memory of past examples. In prac-
tice, as we focus on examplar-free class-incremental learn-
ing, we set the size of LUCIR’s memory buffer to zero.

• SPB. We use the SPB-M version [7], which uses a data
augmentation procedure based on image rotations. Our im-
plementation is based on LUCIR’s implementation, with a
modified loss function and SPB-M’s data augmentation pro-
cedure.

• DSLDA. Our implementation is based on the original
repository of [3]4.

1https://github.com/EdenBelouadah/
class-incremental-learning/tree/master/siw

2https://github.com/EdenBelouadah/
class-incremental-learning/tree/master/deesil

3https://github.com/hshustc/CVPR19_Incremental_
Learning

4https://github.com/tyler-hayes/Deep_SLDA

• FeTrIL. Our implementation of FetrIL [5] is available
on a public repository 5.

To choose the learning hyperparameters of each neural
network, we used the values listed in Table 1 for a hyperpa-
rameter search.

Hyperparameter Range of values
nbr. epochs {70, 100}

learning rate (lr) {0.005, 0.01, 0.05, 0.1}
momentum {0.75, 0.80, 0.85, 0.90, 0.95}

weight decay {0.0001, 0.0005}
lr stratifier factor 0.1
lr stratifier steps {30, (30, 50), 40, (40, 60), 50}

batch size {32, 64}

Table 1: Range of values for hyperparameter tuning

2. Datasets
We summarize in Table 2 key information about each

of the datasets used in our experiments. Note that all our
datasets contain 100 classes. Regardless of their initial res-
olution, all images are resized to 224x224 RGB pixels when
processed by a neural network.

2.1. Backbone networks

Width and depth multipliers. Neural networks are
commonly represented as a sequence of layers, with rep-
etitions of specific layer subsequences, which are called
blocks. We use convolutional neural networks of various
sizes and control their size using two hyperparameters.

• A depth multiplier d determines the number of blocks and
therefore the depth of the network.

• A width multiplier w determines the number of convolu-
tional filters of each block and therefore the width of the
5https://github.com/GregoirePetit/FeTrIL
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Name Source
Nbr train
images

Nbr test
images Example classes

R
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en

ce
da

ta
se

ts
INFauna ImageNet 340 60 creepy-crawly, lemon shark, sparrow
INFlora ImageNet 340 60 wood anemone, clove-pink, fescue grass
INFood ImageNet 340 60 yolk, lentil soup, aqua vitae
INRand0 ImageNet 340 60 hand-held computer, hush puppy, satchel
INRand1 ImageNet 340 60 poteen (strong Irish alcohol), carriageway

Te
st

da
ta

se
ts INRand2 ImageNet 340 60 Exmoor (English moorland region), mango

LAND100 Google Landmarks v1 375 in average 20 New York stack exchange (USA), Colosseum (Italy)
INAT100 iNaturalist 300 10 mushroom species, insect species, orcal
FOOD100 FOOD101 750 250 beef tartare, waffles, sashimi

Table 2: Key information about the datasets used in our experiments.

network.

We implemented neural networks based on the PyTorch im-
plementation of ResNet18 6, that of Mobilenetv2 (x1.0) 7

and that of Shufflenetv2 (x1.0) 8. In the code, each of these
neural networks is an instance of a dedicated class, to which
we added a width multiplier argument and a depth multi-
plier argument to control its size. We round the result of
multiplications by d to obtain an integer greater or equal to
1 (no deletion of a type of block). We round the result of
multiplications by w to obtain a number of convolutional
filters divisible by 8.

• ResNet18. The architecture of ResNet18 is illustrated
in Table 3. It is based on the repetition of blocks containing
convolutional layers, called BasicBlocks in its PyTorch im-
plementation. We introduce a depth multiplier which con-
trols the number of times this building unit is repeated, and
a width multiplier w which controls the number of convo-
lutional filters contained in each BasicBlock. By applying
the multipliers w = 0.5 and d = 0.5 to the initial architec-
ture of ResNet18, we obtain a smaller network composed
of one BasicBlock with 32 convolutional filters instead of
two BasicBlocks with 64 convolutional filters in conv 2,
one BasicBlock with 64 convolutional filters instead of two
BasicBlocks with 128 convolutional filters in conv 3, etc.

• MobileNetv2. This architecture has been proposed
with a parameter to control its width [6]. It uses inverted
residual blocks and bottleneck layers. A network is defined
by a quadruplet (t, c, n, s) where t is called the expansion
factor and controls the size of a bottleneck layer, c is the
number of output channels for convolutional layers, n is the
number of repetitions of building blocks and s is the stride.
In practice, we apply our depth multiplier to n and our width
multiplier to c. The original architecture of MobileNetV2 is

6https://pytorch.org/vision/0.8/_modules/
torchvision/models/resnet.html#resnet18

7https://pytorch.org/vision/0.8/_modules/
torchvision/models/mobilenet.html#mobilenet_v2

8https://pytorch.org/vision/0.8/_modules/
torchvision/models/shufflenetv2.html#shufflenet_
v2_x1_0

described in Table 4 and contains 3.5M parameters. In our
experiments, we use for example w = 1.4 and d = 0.2,
which corresponds to a network containing 4.0M parame-
ters distributed across blocks as described in Table 4.

• ShuffleNetv2. The original ShuffleNetv2 contains
2.3M parameters and is implemented as follows. A list,
called stages repeats, controls the number of rep-
etitions for each type of block. An argument called
stages out channels defines the number of output
channels. In practice, we apply the depth multiplier to
the list stages repeats, and the width multiplier to
stages out channels. For example, with w = 3.0
and d = 0.1, we obtain a network containing 4.3M param-
eters, distributed across layers as described in Table 5.

3. Scaling experiments

We consider the scaling of ResNet18, MobileNetv2 and
ShuffleNetv2, for two examples of small memory budgets
(2.5M and 5.0M parameters). In Figures 1, 2 and 3 we
report the average incremental accuracy of scaled models
trained using a memory-free version of the LUCIR algo-
rithm. The classification problem consists in learning one
hundred classes from the INRand0 dataset, equally dis-
tributed over ten states. For a given backbone network and
the two memory budgets, the performances of different con-
figurations (w, d), including the initial architecture (in red)
and the one recommended by our heuristic (in green) are
presented.

4. Experiments using reference configurations

On average across all scenarios, the classification per-
formances of datasets INFood, INFlora and INFauna, that
correspond to fine-grained classifications, are lower than
the classification performances of datasets INRand0 and
INRand1, that correspond to coarser classifications. This
is illustrated in Figure 4 where classification performances
corresponding to experiments corresponding to the set of
reference configurations are displayed in a boxplot by
dataset.
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layer name output size ResNet18 (w = 1.0, d = 1.0) Example (w = 0.5, d = 0.5)

Image 224 x 224 - -

conv 1 112x112 7x7, 64, stride 2 7x7, 64, stride 2

conv 2 56x56 3x3, maxpool, stride 2 3x3, maxpool, stride 2[
3 x 3, 64
3 x 3, 64

]
x2

[
3 x 3, 32
3 x 3, 32

]
x1

conv 3 28x28
[

3 x 3, 128
3 x 3, 128

]
x2

[
3 x 3, 64
3 x 3, 64

]
x1

conv 4 14x14
[

3 x 3, 256
3 x 3, 256

]
x2

[
3 x 3, 128
3 x 3, 128

]
x1

conv 5 1x1
[

3 x 3, 512
3 x 3, 512

]
x2

[
3 x 3, 256
3 x 3, 256

]
x1

avgpoof, fc, softmax avgpoof, fc, softmax

Nbr. params. 100 classes 11.7M 1.5M

Table 3: Architectures of ResNet18 and of scaled version of it. The building blocks are indicated in brackets. Each block
is indicated with its number of repetitions in the network. The depth multiplier d is applied to the number of blocks (pink).
The width multiplier w is applied to the number of convolutional filters in each block (blue). Down-sampling is performed
by conv 3, conv 4, and conv 5 with a stride of 2. The number of parameters is computed for 100 classes.

Network MobileNetV2 (w = 1.0, d = 1.0) Example (w = 1.4, d = 0.2)
layer name output size t c n s t c n s
Image 224 x 224 - 3 - - - 3 - -
conv2d 112 x 112 - 32 1 2 - 32 1 2
bottleneck 112 x 112 1 16 1 1 1 24 1 1
bottleneck 56 x 56 6 24 2 2 6 32 1 2
bottleneck 28 x 28 6 32 3 2 6 48 1 2
bottleneck 14 x 14 6 64 4 2 6 88 1 2
bottleneck 14 x 14 6 96 3 1 6 136 1 1
bottleneck 7 x 7 6 160 3 2 6 224 1 2
bottleneck 7 x 7 6 320 1 1 6 448 1 1
conv2d 1x1 7 x 7 - 1280 1 1 - 1280 1 1
conv2d 7x7 1x1x1280 - - 1 - - - - -
conv2d 1x1 100 - 100 - - - 100 - -
Nbr. params. 100 classes 3.5M 4.0M

Table 4: Architecture of MobileNetV2 and of its scaled version. The depth multiplier d is applied to the number of layers n
of bottleneck layers (pink). The width multiplier w is applied to the number of conv. filters c of bottleneck layers (blue).

Network ShuffleNetv2 (w = 1.0, d = 1.0) Example (w = 3.0, d = 0.1)
layer name output size repeat output channels repeat output channels
Image 224 x 224 - 3 - 3
Conv1 112 x 112
MaxPool 56 x 56 1 24 1 72

Stage2 28 x 28 1 1
28 x 28 3 116 1 352

Stage3 14 x 14 2 1
14 x 14 1 232 1 696

Stage4 7 x 7 1 1
7 x 7 3 464 1 1392

Conv5 7 x 7 1 1024 1 1024
GlobalPool 1 x 1 - - - -
FC - - 100 - 100
Nbr. params. 100 classes 2.3M 4.3M

Table 5: Architecture of ShuffleNetv2 and of its scaled version. The depth multiplier d is applied to the number of repetition
of the main layers (pink). The width multiplier w is applied to the number of convolutional filters c of these layers (blue).



As one could expect, for a given dataset, scenario, algo-
rithm and backbone network, performance increases as the
memory budget associated to the model increases. Aver-
aged values are presented in Figure 5.

With regard to the parameters of the scenarios, we ob-
serve the following trend : the higher the number of classes
in the initial step, the higher the final average incremental
accuracy. On the contrary, a greater number of steps and/or
a fewer number of classes per incremental step implies a
lower average incremental accuracy. This is illustrated by
Figure 6 where we see that on average across all datasets,
memory budgets, backbone networks and algorithms, the
greater the number of classes in the initial step, the higher
the classification performance of the final model.

5. Experiments using test configurations

Additional baselines We presented in the article three
baseline pairs, which are three fixed combinations: b1:
(FetrIL, ResNet), b2: (DSLDA, ShuffleNet) and b3: (SPB,
MobileNet). We give three supplementary baselines in Ta-
ble 7, namely b4: (DeeSIL, ResNet), b5: (LUCIR, Mo-
bileNet) and b6: (SIW, ResNet). Their corresponding mod-
els are called baseline models. These pairs were selected
according to their aggregated rank on reference datasets i.e.
for each algorithm, we selected the backbone correspond-
ing to the algorithm-backbone pair with the accuracy rank-
ing the highest on all reference experiments. In practice, we
present in Table 7 the classification performance of the six
baseline models and of the recommended model for eigh-
teen scenarios. Table 7 also shows how the recommended
algorithm and backbone network correlate with the mem-
ory budget and the other settings of an incremental learning
scenario.

Additional ablation experiments In Table 6 we show
the results obtained when only a single algorithm is avail-
able. Each column corresponds to the average classifica-
tion performance obtained with AdvisIL recommendations
when the set of reference configurations is reduced to con-
sider a single algorithm and multiple backbone networks.

Avg. Incr. Acc. — Fixed algorithms
AdvisIL ∆FT ∆DS ∆SPB ∆Dee ∆LU ∆SIW

50.88 -0.45 0.42 -9.74 -12.12 -16.79 -25,38

Table 6: Classification performances of AdvisIL and of
its variants which use a single possible algorithm, either
FeTrIL (FT), DSDLA (DS), SPB, DeeSIL (Dee), LUCIR
(LU) or SIW. Results are averaged over all test scenarios
and test datasets.

Figure 1: Scaling experiments using MobileNetv2 as initial
architecture (red marker). Green markers correspond to the
architecture given by our scaling heuristic for two different
memory budgets (2.5M parameters and 5.0M parameters).

Figure 2: Scaling experiments using ShuffleNetv2 as initial
architecture (red marker). Green markers correspond to the
architecture given by our scaling heuristic for two different
memory budgets (2.5M parameters and 5.0M parameters).



Figure 3: Scaling experiments using ResNet18 as initial ar-
chitecture (red marker). Green markers correspond to the
architecture given by our scaling heuristic for two different
memory budgets (2.5M parameters and 5.0M parameters).

Figure 4: Boxplot grouping by dataset the average incre-
mental accuracy (in percent) of all experiments computed
using the set of reference configurations.

Figure 5: Boxplot grouping by memory budget the average
incremental accuracy (in percent) of all experiments com-
puted using the set of reference configurations.

Figure 6: Boxplot grouping by initial step size the average
incremental accuracy (in percent) of all experiments com-
puted using the set of reference configurations.
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Combination
(a, b)

Mem. budget
m

CIL setting (k, α, β) avg(50, 2, 2) (25, 4, 4) (5, 20, 20) (13, 40, 5) (11, 50, 5) (6, 50, 10)
(SPB, MobileNet)

1.5M

12.46 19.87 44.60 48.80 52.46 55.71 38.98
(DSLDA, ShuffleNet) 12.77 18.12 45.43 59.72 61.84 61.24 43.19

(FetrIL, ResNet ) 10.62 27.75 53.00 58.20 61.60 62.30 45.58
(DeeSIL, ResNet) 6.51 17.97 50.27 41.83 44.07 53.98 35.77

(LUCIR, MobileNet) 9.76 16.26 46.00 30.63 34.65 45.58 30.48
(SIW, ResNet) 6.81 13.20 34.40 24.05 22.02 32.23 22.12

AdvisIL’s pair (a, b) 11.34 28.52 53.00 59.72 61.84 61.24 45.94
(DS, Res) (DS, Res) (FT, Res) (DS, Shu) (DS, Shu) (DS, Shu)

(SPB, MobileNet)

3.0M

13.78 22.09 48.57 51.47 55.10 58.45 41.58
(DSLDA, ShuffleNet) 22.81 35.18 55.93 63.71 65.47 64.88 51.33

(FetrIL, ResNet ) 22.08 34.58 55.42 60.70 61.85 62.50 49.52
(DeeSIL, ResNet) 10.38 22.31 52.50 44.24 45.16 54.70 38.21

(LUCIR, MobileNet) 10.73 18.30 50.09 33.27 38.34 49.85 33.43
(SIW, ResNet) 9.09 15.18 35.59 25.05 30.66 32.19 24.63

AdvisIL’s pair (a, b) 24.37 34.69 57.05 63.71 65.47 65.81 51.85
(DS, Res) (DS, Res) (DS,Shu) (DS, Shu) (DS, Shu) (DS, Mob)

(SPB, MobileNet)

6.0M

14.86 22.94 51.7 50.89 55.68 58.25 42.39
(DSLDA, ShuffleNet) 32.24 38.86 56.38 64.07 65.21 64.59 53.56

(FetrIL, ResNet ) 34.55 42.00 55.88 61.80 63.68 64.18 53.68
(DeeSIL, ResNet) 13.99 27.03 52.74 45.33 46.14 56.60 40.30

(LUCIR, MobileNet) 12.95 21.20 52.81 38.28 41.81 52.96 36.67
(SIW, ResNet) 10.83 16.62 37.14 35.20 37.86 36.10 28.96

AdvisIL’s pair (a, b) 34.55 42.00 57.18 64.25 65.89 65.29 54.86
(FT, Res) (FT, Res) (FT, Mob) (DS, Mob) (DS, Mob) (DS, Mob)

Table 7: Classification performance for the six baseline models and for the recommended model. Performance is averaged
over the four test datasets. For each scenario (m, k, α, β), the best result is in bold and the combination of algorithm (either
DSLDA (DS) or FetrIL (FT)) and backbone ( MobileNet (Mob) , ResNet (Res) or Shufflenet (Shu) ) recommended by
AdvisIL is provided.


