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This analysis shows that divergence issues in QFT can be resolved without mass and charge
renormalization by postulating a two-component theory of the vacuum whose net energy and charge
are zero. For the free �elds, the quantum vacuum is uniformly homogeneous and isotropic, but
interacting �elds break the uniformity as vacuum energy is redistributed. For an irreducible self-
interaction amplitude Ω, in�nite �eld actions divide the vacuum into positive and negative self-
energy components such that the net vacuum energy correction to a scattering process is �nite in
the presence of external �elds, but vanishes for free particles. For each particle mass in a loop,
two mass states dressed with vacuum energy, are constructed for fermion and boson self-energy
processes. For electroweak interactions, the stabilized amplitude Ω̂ = Ω − Ω includes a correction
for a vacuum energy de�cit within an in�nitesimal near-�eld (INF) region, where Ω is given by an
average of Ω over dressed mass levels. For QCD, strong interactions redistribute vacuum energy so
that there is a surplus in the INF with a corresponding de�cit in the surrounding far-�eld resulting
in a sign reversal of Ω̂ relative to QED and asymptotic freedom. Stabilized amplitudes are shown
to agree with renormalization for radiative corrections in Abelian and non-Abelian gauge theories.

I. INTRODUCTION

A long-standing enigma in particle physics is how an elementary charged particle such as an electron can be stable in
the presence of its own electromagnetic �eld [1, 2]. Critical accounting for system stability is essential since radiative
corrections in quantum �eld theory (QFT) involve self-interactions that appear to change the mass and charge of a
particle. In this analysis we propose a physical mechanism that stabilizes a particle such that its mass and charge
retain their physically observed values in radiative processes.
The agreement between renormalization theory and experiment con�rms the e�ect of vacuum �uctuations on

the dynamics of elementary particles to astounding accuracy. For example, electron anomalous magnetic moment
calculations currently agree with experiment to about 1 part in a trillion [3, 4]. This achievement is the result of
more than seven decades of e�ort since the relativistically invariant form of the theory took shape in the works of
Feynman, Schwinger, and Tomonaga; see Dyson's uni�ed account [5, 6]. The agreement leaves little doubt that QFT
predictions are correct; however, the renormalization technique [7�9] used to overcome divergence issues in radiative
corrections o�ers little insight into the underlying physics behind charge stability in the high-energy regime. Recall
that divergent integrals occur in scattering amplitudes for self-energy processes and arise in sums over intermediate
states of arbitrarily high-energy virtual particles. This stymied progress until theoretical improvements were melded
with renormalization to isolate the physically signi�cant parts of radiative corrections by absorbing in�nities into the
electron mass and charge.
Although the renormalization method used to eliminate ultraviolet divergences yields predictions in remarkable

agreement with experiments, early investigators including developers of the theory: Dirac, Feynman, and Schwinger
[10�13] expressed concerns about the method. Largely due to elegant and persuasive renormalization group arguments
[14�16], many workers in the �eld no longer believe that the divergences in QFT and the renormalization procedure
used to overcome them are issues requiring further consideration.
The basic �aw in the theory that is �xed up by renormalization is simply this: Standard QFT does not specify a

source for the energy required to create ultrahigh-energy virtual particles in radiative corrections, and the scattering
amplitude does not account for the change in that source. Renormalization eliminates the in�nities, but it can hardly
be regarded as a fundamental solution since it did not identify and address this �aw.
The purpose of this analysis is to develop an alternative to renormalization in QFT for the free and interacting

�elds. A minimal requirement for this proposal is that it reproduce the successes of the accepted theory: These include
the successful higher-order multiloop calculations of quantum electrodynamics (QED), and the modern understanding
of QED as a part of non-Abelian electroweak theory [17�19], and asymptotic freedom predictions [20, 21] in quantum
chromodynamics (QCD). We de�ne an energetically stable system (charge plus vacuum) and develop a stabilized am-
plitude applicable to all radiative processes and particles of the Standard Model. Our primary results for electroweak
and QCD scattering amplitudes are presented in Sections III C and IIID: Scattering matrix corrections for stability
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are simply constructed using unrenormalized (core) amplitudes from the literature. General arguments are given to
demonstrate that net S-matrix corrections in QFT for vacuum polarization, fermion self-energy, and vertex processes
are �nite and agree with renormalization theory.

II. VACUUM ASSUMPTIONS AND SYNOPSIS

Ordinarily, the vacuum |0⟩ is de�ned to be the lowest energy state having no observable particles; however, as
is well known, it's not empty. From a classical point of view, it's natural to assume that the vacuum is a ground
state having zero energy since observed particles have positive energy. Physically, one expects the fermion vacuum
|0f ⟩ to be electrically neutral; however, according to Dirac's relativistic electron theory [22], the existence of a stable
positive energy electron implies an in�nite sea of negative energy electrons, for example. Similarly, the quantized
radiation �eld exhibits an in�nite zero-point energy [23] since the �eld consists of an in�nite number of quantum
mechanical oscillators, each having a positive ground state energy. At the submicron level, zero-point �uctuations
of the radiation �eld result in an attractive force between closely spaced parallel conducting plates �rst predicted
by Casimir [24, 25], and subsequently con�rmed by experiments [26�28]. Although ground state energies are not
unexpected in quantum mechanics, an in�nite vacuum energy strongly suggests that the theory is missing something.
In QFT only energy di�erences are considered signi�cant, and one can just shift the energy. However, gravity accounts
for all mass-energy contributions, and vacuum energy impacts the accelerated expansion of the universe through the
cosmological constant. In contrast to calculations for a typical quantum �eld, astronomical measurements suggest a
vacuum energy density of only 4.8GeV/m3 in the space between galaxies: This is the cosmological constant paradox
discussed by Weinberg [29].
Standard QFT eliminates divergent ground state energies by introducing in�nite renormalization constants [30, 31].

For the free �elds, this is equivalent to a subtraction or a normal ordering of operators in the Hamiltonian and current
density [32]: This uniquely de�nes a vacuum whose net energy and charge vanish. If we suppose that the in�nity
arising from �eld quantization and the renormalization constant have physical signi�cance, then the vacuum must
include two components for each particle of the Standard Model that oppose one another such that its net energy
and charge are zero. For the fermion �eld this suggests that |0f ⟩ includes positive energy antifermions in addition to
Dirac's negative energy sea; similarly for bosons, we have a dual sea of positive energy bosons and negative energy
antibosons comprising the boson vacuum |0b⟩. Since the amplitude to create a negative energy state is zero for both
fermions and bosons, negative energy particles are con�ned to the vacuum and unobservable; see Equations (A10)
and (A22) in Appendix A. Ordinary matter exclusive of dark matter and |0f ⟩ form a stable system; for example,
a positive energy electron can not annihilate a positron in the vacuum since that would expose (create) a negative
energy electron in the Dirac sea for which no observable state exists. While individual vacuum components are
in�nitely uncertain, the ground state energy of the complete vacuum is certain � it is zero in this physical model in
agreement with renormalization of the free �elds. In the absence of interactions, the quantum vacuum is assumed to
be homogeneous, isotropic, and unique.
The physical resolution of these in�nities follows simply from conservation laws. From classical mechanics, any

agent or process that does work or creates particles requires a source of energy: Uncompensated in�nities in QFT
are a direct result of neglecting this basic principle that ensures conservation of energy. Quantization is a process
that e�ectively does work to create a sea of vacuum particles in QFT. For bosons, a positive energy sea is created
during quantization of the free �elds. The question that must be answered is this: Where did the energy to create this
positive energy sea of oscillators come from? Since it is a vacuum energy, and the only known source of an in�nite
amount of energy is the vacuum, we are compelled to conclude that its source is the vacuum, and there must exist a
de�cit consisting of negative energy antibosons such that the net energy and charge (for W-bosons) of |0b⟩ are zero.
Similarly, Dirac's sea of charged negative energy fermions is created during quantization, so if we assume that the
source of the energy required to create Dirac's sea is the vacuum itself, then there must exist a sea of positive energy
antifermions if energy and charge conservation hold. Antifermions are locked up in the vacuum; consequently, they
are rare in the observed universe. Therefore, we have a two-component vacuum for both bosons and fermions that
has a well-de�ned physical signi�cance since it is comprised of known particles in the Standard Model (SM). The
complete vacuum including all SM particles is de�ned in Equation (A37).
According to QFT, boundary conditions in the Casimir experiment reduce the number of positive energy radiation

modes between the plates. From a mechanical point of view, negative work is done to bring the plates together
from in�nity, so there must be an opposing positive energy in the region exterior to the plates; therefore, energy is
redistributed. The singularity that occurs in the Casimir calculation arises from �eld quantization, and its subtraction
to obtain the �nite result of physical interest accounts for the negative energy modes and ensures that the net energy
of the vacuum remains zero.
For radiative corrections in QFT, an unrenormalized (core) scattering amplitude corresponding to an irreducible
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Feynman diagram contains a �nite part of physical interest and a divergent self-energy (SE) part [6, 33, 34]. To
isolate the �nite part of the amplitude, renormalization introduces counter-terms that eliminate the SE part in the
core amplitude such that the net amplitude is �nite in the presence of external �elds, but vanishes for free particles.
The method of counter-terms [35, 36] is equivalent to ultra-near-�eld mass or charge corrections for fermion and boson
self-energy diagrams, respectively.
For an irreducible radiative correction, the desired �nite scattering amplitude may be obtained without renormaliza-

tion by including a correction to the amplitude which represents a self-energy de�cit (SED). To create ultrahigh-energy
virtual particles in electroweak interactions, for example, charges in radiative corrections borrow energy locally from
the vacuum leaving a self-energy de�cit (SED). Again, we have two physically signi�cant vacuum components, the
borrowed SE and the SED. Vacuum energy is redistributed, but its net energy and charge remain zero.
In summary, quantization of the free �elds and radiative corrections are singular processes that create in�nite

amounts of vacuum energy/charge for which we make the following assumptions:
Assumption 1. The net energy and charge of the vacuum are zero.

Assumption 2. Singular processes in QFT borrow energy/charge from the vacuum leaving a de�cit.

III. FORMULATION � INTERACTING FIELDS

Stability conditions, a complete set of mass states including vacuum energy, and stabilized scattering amplitudes
are derived for fermions and bosons.

A. Physical model for fermions

Regarding an electron as a point particle [37], the classical electrostatic self-energy e2/2a ≡ αΛ◦ diverges linearly
as the shell radius a → 0, or energy cuto� Λ◦ → ∞, where −e is the charge and α = e2/4π is the �ne-structure
constant. However, Weisskopf [38, 39] showed using Dirac's theory [22] that charge is e�ectively dispersed over a
region comparable in size to the Compton wavelength of the electron, λc (m) = 1/m in natural units, due to pair
creation in the vacuum, and the self-energy only diverges logarithmically. Feynman's calculation [33] in covariant
QED yields an electromagnetic mass

m+
em =

3αm

2π

(
ln

Λ◦

m
+

1

4

)
, (1)

where m = gev/
√
2 is the observed mechanical mass generated via interaction between the fermion and Higgs �elds

in electroweak theory, ge is a coupling constant, and v is the ground state vacuum energy. In the absence of a
compensating negative energy, equation (1) signals an energetically unstable electron. This is the fermion self-energy
(FSE) problem, whose general resolution will suggest a solution for boson self-energy (BSE) processes as well resulting
in �nite amplitudes for all radiative corrections. In this section we derive a vacuum stability condition and a complete
set of mass states for an electron.
Renormalization theory posits that a negatively in�nite �bare� mass m◦ must exist to counterbalance m+

em such
that the mass in�nity is eliminated

m◦ +m+
em = m . (2)

For lack of physical evidence, negative matter is naturally met with some skepticism; see Dirac's discussion [40] of the
classical problem, for example. Nevertheless, energies that stabilize a charge must be negative to conserve energy, and
we can understand their origin by �rst considering the source for the electrical energy required to assemble a classical
charge from in�nitesimal parts in the rest frame. Since the agents that do the work must draw energy E+

em from an
external energy source (well), the well's energy is depleted and the total energy

E = m+ E+
em + Ew (3)

of the system including matter, electromagnetic �eld E+
em, and energy well Ew is constant.
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Assume that the depleted energy well is part of the vacuum, elementary charges are inherently stable, and consider
an electron and its neighboring vacuum as two distinct systems that can act on one another. In particular, we suppose
that an electron borrows energy locally from the vacuum to create its electrostatic �eld with a vacuum energy de�cit

Ew → E−
em = −E+

em (4)

located in an in�nitesimal near-�eld (INF) region. This corresponds to a redistribution of vacuum energy into positive
and negative energy parts such that equation (3) is satis�ed for a free particle; therefore, we have a stability condition

m+
em +m−

em = 0 , (5)

where E±
em = m±

em in natural units. Thus, an electrically charged particle e�ectively acts as a sink for negative energy,
and the de�cit must be taken into account to uphold energy conservation.
In addition to the experimental (core) mass m, equation (5) suggests that a stable electron includes two electro-

magnetic masses m±
em that are assumed large in magnitude, but �nite, until the �nal step of the development. We

can think of m±
em as components of an electromagnetic vacuum (zero net energy) which are tightly bound to the core

mass and inseparable from the core and each other, at least for �nite �eld actions. From equation (3), either mass can
be associated with m. Considering all non-vanishing masses constructed from the set {m, m+

em, m
−
em}, we de�ne a

complete set of mass levels m+λM , where λ = {0, ±1} and M ≡ |m±
em|. For λ = ±1, an electromagnetically dressed

core mass (DCM) refers to a composite particle with mass levels

md = m+ λM . (6)

For a particle of four-momentum p, the dressed momentum is pd = p+ λPM , where PM is the momentum of M .
Dressed mass states are important for radiative corrections because they provide additional degrees of freedom

needed to compute INF corrections to scattering amplitudes which stabilize the system. Introduction of a bare mass
or charge in renormalization theory does not account for all possible mass states in radiative processes; consequently,
the underlying physics is concealed, and the theory is rendered more complicated: For example, introducing a bare
mass only results in an asymmetry which requires wave �eld renormalization in the electron self-energy problem.
Consider a free particle state |p, m⟩ satisfying p2 = m2. Spin is omitted in |p, m⟩ since it is inessential to the

subsequent development, and the rest mass is included because it is the fundamental particle characteristic which
becomes dressed with vacuum energy in stability corrections to the S-matrix discussed in Section III C. For radiative
corrections, assume that dressed states |pd , md⟩ may be created with equal probability in intermediate states with
in�nitesimally small lifetimes ∆t ≃ ℏ/

(
mdc

2
)
in accordance with Heisenberg's uncertainty principle [41]. Scattering

amplitudes for low-energy processes are una�ected because the energies are insu�cient to excite dressed states in
|pd , md⟩. In fact, we will see that �nite parts of radiative corrections vanish in the limit η ≡M/m→ ∞.

B. General dressed mass states

This section generalizes DCM rules to all elementary particles and radiative processes of the electroweak Standard
Model; in particular, we derive a rule for dressing particles in BSE processes with vacuum energy.
External lines for processes in Fig. 1 involve (a) gauge bosons b ∈ {γ, W, Z ,H}, and (b,c) fermions f . Blobs in

Fig. 1 contain irreducible insertions, which in general, may involve photons and other particles in the Standard Model
mass set

M = {mf , mW , mZ , mH} .

On the mass shell, scattering amplitudes Σf (p) and Σb
(
k2
)
de�ne fermion and boson self-energy functions [42, 43]

Mf = Σf (p)
∣∣
�p=mf

, (7)

M2
b = Re

[
Σb(k2)

]
k2=m2

b

, (8)

where �p = γµpµ, and γ
µ are Dirac matrices. Masses Mf and Mb are assumed to represent energy borrowed from the

vacuum to create a con�guration of ultrahigh-energy virtual particles. To account for vacuum depletion and thereby
ensure energy and charge conservation, a general correction to the scattering amplitude valid for all three processes in
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Figure 1. Generic self-energy and vertex diagrams: (a) BSE, (b) FSE, and (c) vertex.

Fig. 1 is required. To de�ne this correction, we notice that equations (7) and (8) suggest additional mass states and
Feynman diagrams, where physical particle masses are dressed with vacuum energy as in equation (6) for fermions.
In general, DCM levels for fermions in FSE processes and massive bosons b ∈ {W, Z ,H} in BSE processes are

de�ned by requiring that averages of free �eld Lagrangian densities over dressed mass levels for each particle class give
the undressed value. Since Yukawa and Higgs densities, LYukawa

F (mf ) and LH

(
m2

b

)
in equations (C17) and (C11),

involve sums of terms linear in mf and m2
b , we have

1

2

∑
λ=±1

LY ukawa
F (mf + λMf ) = LY ukawa

F (mf ) , (9)

1

2

∑
λ=±1

LH

(
m2

b + λM2
b

)
= LH

(
m2

b

)
. (10)

De�ning a common scaling factor η such that Mf ≡ ηmf and Mb ≡ ηmb, dressed masses are generated by

mf → mf (1 + λη) , (11)

m2
b → m2

b

(
1 + λη2

)
. (12)

For the purpose of de�ning general stability corrections for radiative processes, we can focus on the mass dependence
of core amplitudes.
To ensure consistency when fermions and bosons mix in FSE and BSE processes, DCM levels for all m ∈ M in the

blobs of Fig. 1 are de�ned by the replacement

mn → mn
d = mn (1 + ληn) , (13)

where m = mf |mb, and

n =

{
1 FSE/vertex

2 BSE
(14)

for irreducible FSE, vertex, and BSE diagrams in electroweak theory. The regulation of infrared singularities for soft
photon emissions [33] provides a simple example: For FSE and vertex processes, a fermion mf and a small photon
mass µ mix in terms of form ln

mf

µ ; for consistency, we require

µ→ µ (1 + λη) , (15)

then ln
mf

µ is invariant under (11) and (15). External momenta �p = m + δ�pos and k2 = m2 + δk2os in Fig. 1 become

dressed in the blobs

�p→ �pd = md + δ�pos , (16)

k2 → k2d = m2
d + δk2os , (17)
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where δ�pos and δk2os are o�-shell terms which are arbitrary but stationary under (13), and they are zero for free
particles. With λ = ±1 in equation (13), (16) and (17) de�ne a complete set of dressed momentum states.
From Appendix C 1, vertex factors in equations (C19)-(C21) including the weak mixing angle (C10), charge (C23),

and neutral current coupling constants (C24) are all stationary under (13). However, propagators (C25)-(C27) in-
volving massive particles are not stationary under DCM transforms, and dressed amplitudes (20) constructed from
them are either driven to zero or a stabilizing correction for �nite tree or divergent loop processes, respectively.
Since m ∝ v in Higgs mass formulae, dressed mass levels correspond to vacuum displacements:

∆v = ληv , (18)

∆v2 = λη2v2 (19)

for FSE and BSE processes; see Appendix C 1 equations (C12)-(C14) and (C18). Averaging over λ, the mean vacuum
displacement is zero.

C. Electroweak scattering amplitude

Generally, if an irreducible radiative process represented by Ω borrows energy or charge from the vacuum creating
a de�cit, then an opposing amplitude is required to account for the de�cit. For the moment, assume dimensional
regularization is used to tame improper integrals. The total amplitude is de�ned by

Ω̂ = Ω (M)−Ω (M) , (20)

where Ω accounts for self-interaction e�ects involving physical masses in M, and

Ω (M) =
1

2
lim
η→∞

∑
λ=±1

Ω (Md = ηλM) (21)

is a subtrahend for vacuum depletion that includes all intermediate mass states dressed with vacuum energy; from
equations (13) and (14), we have

ηλ ≡
{

1 + λη FSE/vertex√
1 + λη2 BSE

. (22)

From equation (8), the depletion amplitude −Ω represents a squared mass de�cit in Ω̂ for BSE processes. In addition
to mb or mf , Ω depends on external momenta {k, p} for Feynman diagrams in Fig. 1 which may be on- or o�-shell.
For notational simplicity, any dependence on external momentum parameters has been suppressed during construction
of Ω because {k, p, q} are implicitly dependent on associated core masses.
In dimensional regularization we have a singular function [44, 45]

D (∆, σ) =
1

σ
− ln∆− γ , (23)

where σ = 2 − d/2 with spacetime dimension d ≲ 4; ∆ depends on M, momentum parameters external to the loop,
and integration variables. γ = 0.577 · · · is the Euler-Mascheroni constant. Divergent terms involving 1/σ cancel in
equation (20), and the net amplitude is well de�ned since it involves a factor − ln |∆/∆◦|, where

∆◦ = lim
η→∞

η−2
λ ∆(ηλM) (24)

from equation (D4). Four-momenta in ∆ go on-shell upon taking the limit in (24); see equation (D10).
If an energy cuto� Λ◦ is assumed in lieu of dimensional regularization, then we must include Λ◦ in the arguments

of Ω. If a particle of mass m probes energies up to Λ◦ in the core amplitude Ω, then a dressed particle with mass

md = ηλm (25)

probes energies with cuto�

Λd = ηλΛ◦ ; (26)
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that is, the cuto� scales in the same way as (25). For FSE/vertex and BSE processes, dressed momenta
(
pd, k

2
d

)
with

cuto�s
(
Λd, Λ

2
d

)
sample all mass states (λ = ±1) in equation (13), and go on on-shell in Ω such that the net amplitude

Ω̂ contains only physical masses and �nite terms of physical interest for all processes. Cuto� scaling is required for
a consistent de�nition of integrals in Ω and Ω: it synchronizes the cuto� to Λ◦, and yields a well de�ned limit as
η → ∞ in equation (21). Divergent integrals occurring in Ω and Ω are invariant under equations (25) and (26); for
electron self-energy, this is evident from the argument of the logarithm in equation (1), and again, divergent terms in
equation (20) cancel.
To obtain physical distances probed in high energy processes, assume η ≫ 1, and take the magnitude

|Λd| ≈ ηΛ◦ , (27)

then Ω and Ω probe in�nitesimal far-�eld (IFF) and in�nitesimal near-�eld (INF) distances

r◦ ≈ Λ−1
◦ IFF , (28)

rd (η) ≈ r◦/η INF . (29)

Therefore, vacuum energy is redistributed with a surplus in the far-�eld region r ≥ r◦ and a de�cit at the origin
rd (η → ∞) = 0 .
In contrast to the regulator technique of Pauli and Villars [46], the above method employs physically meaningful

dressed mass levels, albeit virtual only, and it applies to all radiative processes in QFT without introduction of
auxiliary constraints.
From the functional form in equation (21), Ω represents the same basic physical process as Ω, but it is distinguished

by sticky collisions between core masses and vacuum energy components. Since −Ω opposes Ω, it represents a negative
probability amplitude correction; thus, Feynman's conjecture [11] that negative probabilities might be used � · · · to
solve the original problem of in�nities in quantum �eld theory� appears well founded.

D. QCD scattering amplitude

The foregoing DCM rules apply to QCD as well since its Lagrangian is invariant under an average over dressed mass
states. As with electroweak, all vertex factors are independent of mass and are therefore DCM invariant. However,
two modi�cations are required:
First, the sign of Ω̂ must be reversed. Since the Callan-Symanzik [47, 48] beta function depends on coe�cients of

divergent terms only [49], the sign reversal is expected from opposing signs in the �rst two terms of equation (23).
However, the sign reversal admits a much more enlightening physical interpretation if one assumes, in contrast to an
electrical charge, that a color charge redistributes vacuum energy so there is a far-�eld de�cit which is balanced by
an INF surplus as depicted in Fig. 2: For an electric or color charge, we have a generalized stability condition(

E+ + E−)
vac

= 0 . (30)

Resulting colored quarks and gluons are enveloped in a negative energy color �eld which suggests that the quasi-
probability of observing them is likewise negative, at least for low energy probes. Since positive and negative energy
regions in Fig. 2 for color charges are interchanged relative to electrical charges, the stabilized amplitude in QCD is

Ω̂QCD = λsΩ̂ , (31)

where Ω̂ from equation (20) employs the usual Feynman rules, and

λs = −1 (32)

is a switching factor. For a physically meaningful interpretation of amplitudes, unobservable quark and gluon states
must have negative norm and spacelike momenta.
Second, for gluon self-energy diagrams in the pure gauge sector, we lack a mass reference; a solution is to introduce

a small gluon mass µg via k2 → k2 − µ2
g in gluon propagators when constructing amplitudes. De�ne

m2
d = µ2

g + λM2
g

∣∣
µg=0

(Mg ≡ ηµ◦) , (33)
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Figure 2. Intrinsically stable electrical and color charges {e, gs} e�ectively draw {negative, positive} energy from the vacuum
ϕ leaving an energy {surplus, de�cit} in surrounding (far-�eld) regions {A, B}.

where Mg is an INF energy surplus, and µ◦ is an arbitrary unit of mass measure: µ◦ can be related to a standard
reference mass Ms, usually chosen to be the Z-boson mass mZ , such that the polarization function vanishes on the
mass shell. An analytic expression

Ms =

√√√√ 1

nf

nf∑
f=1

m2
f (34)

is derived in Appendix F; see equation (F31). Evaluating equation (34) for nf = 6 quarks gives Ms = 70.65GeV/c2;
compare with mZ = 91.1876 GeV/c2. Introduction of mass terms of the form (33) does not break gauge invariance
since the sum over mass levels in the Yang-Mills Lagrangian is zero.

IV. VERIFICATION

This section brie�y justi�es rules (20) and (31) for computing stabilized amplitudes. The method given below
simpli�es the determination of �nite scattering amplitudes, and it is to be compared with renormalization approaches;
see Dyson [6], for example. Refer to Appendix B for a more detailed veri�cation.

A. Electroweak Interactions

For three classes of diagrams in Fig. 1, equation (20) is veri�ed for electroweak processes focusing on mass and
momentum external to the loop. An extensive set of Feynman diagrams and expressions for unrenormalized amplitudes
is given in [43] and cited references. Results below agree with [43, 50] as shown by a more detailed analysis in Appendix
G.
Depletion amplitudes −Ω for diagrams in Fig. 1 meet basic requirements for a vacuum energy de�cit: they have

negative energy localized at a point (in the limit η → ∞), and account for additional mass states (13).
For BSE processes in Fig. 1 (a), equation (20) gives

Σ̂b (s) = Σb (s)−Σ
b
(s) , (35)

where the dependence on s = k2 in included, and M is omitted to simplify notation. Applying equation (21), the
dressed amplitude

Σ
b
(s) = Σb

(
m2

b

)
+
∂Σb

∂s

∣∣∣∣
s=m2

b

(
s−m2

b

)
(36)

includes only the �rst two terms of a Taylor series expansion of Σb (s) after averaging over dressed mass states. In
the expansion of Σb (s), factors involving mass ratios are invariant under equation (13), s − m2

b is invariant under
(17), and dressed higher order derivatives vanish in the limit η → ∞. Since equation (35) satis�es expected mass shell
conditions [51]

Σ̂b
(
m2

b

)
= 0 , (37)
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and

∂Σ̂b (s)

∂s

∣∣∣∣∣
s=m2

b

= 0 , (38)

it is �nite and agrees with renormalization.

For FSE processes in Fig. 1 (b), we have

Σ̂f (p) = Σf (p)− Σ
f
(p) . (39)

Similarly to (36), the series expansion of Σf (p) yields a dressed amplitude

Σ
f
(p) = Σf (p)

∣∣
�p=mf

+
∂Σf

∂�p

∣∣∣∣
�p=mf

(�p−mf ) . (40)

In the expansion of Σf (p), �p−mf is invariant under equation (16), and dressed higher order derivatives again vanish
in the limit η → ∞. For a free particle

Σ̂f (p)
∣∣∣
�p=mf

= 0 , (41)

and

dΣ̂ (p)

d�p

∣∣∣∣∣
�p=mf

= 0 (42)

ensures that i =
√
−1 is the residue of the propagator pole. The second term in equation (40) eliminates any need

for wave �eld renormalization, and equation (39) is indeed the desired �nite amplitude.

Equation (20) is easily veri�ed for vertex diagrams in Fig. 1 (c): FromWard's identity [52], the vertex function Λµ (q)

is dimensionless; consequently, the dressed amplitude Λ
µ
(q) involves only the �rst (divergent) term in an expansion

of Λµ (q) about the origin since qd = q, and dressed derivatives vanish as η → ∞. Therefore, Λ
µ
(q) = Λµ (0), and

Λ̂µ (q)
∣∣∣
q=0

= 0 (43)

in agreement with renormalization.

Equations (37)-(38) for bosons and (41)-(43) for fermions represent free particle vacuum stability conditions for all
primitively divergent diagrams.

B. Strong Interactions

For non-Abelian QCD, Appendix F applies equation (31) to one-loop diagrams in Fig. 3. The arguments in
Section IVA are general: stabilized QCD amplitudes are �nite and agree with asymptotic freedom predictions [49, 53].

Gluon loops (B) and (C) of Fig. 3 generate a clustering of like-gluons; consequently, as one probes a charged
gluon cloud, the e�ective color coupling decreases as expected from QCD anti-screening e�ects only if λs = −1; from
equation (F27),

αs (ρs) =
αs

1− λs
αs

4π

(
11− 2

3nf
)
ln ρs

(λs = −1) , (44)

where αs =
g2
s

4π is the strong coupling constant, nf is the number of quarks, and ρs = − k2

M2
s
with spacelike momentum

k.

Gluon loop insertions (B) into the quark/3-gluon vertex (C) of Fig. 3 enhances clustering of like-gluons.
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Figure 3. Feynman diagrams for strong interaction processes in QCD: (A) BSE, FSE, and vertex; (B) BSE for gluons in
pure gauge sector; and (C) quark/3-gluon vertex. For accretion amplitude Ω, particle lines between dots become dressed with
vacuum energy.

V. CONCLUSIONS

Evidence presented for QFT supports the hypothesis that singularities redistribute vacuum energy. For the free
�elds in QFT, renormalization itself together with simple conservation of energy arguments strongly suggest that the
quantum vacuum has two opposing components each consisting of known particles in the Standard Model. Quantum
�eld theoretic computations which claim that the zero-point energy of the entire vacuum is non-zero or in�nite do not
account for the energy of the opposing vacuum component. Antimatter only appears to be rare since it is normally
con�ned to the vacuum along with negative energy matter modes.

Generally, in�nite �eld actions split the vacuum into negative and positive energy components. For radiative
corrections involving electroweak or strong interactions, vacuum energy is redistributed such that the sum of the
self-energy and self-energy de�cit of a free particle is zero. The model was generalized to apply to all Standard Model
interactions by de�ning mass states dressed with both positive and negative vacuum energy for fermion and boson
self-energy processes: These new intermediate mass states have in�nitesimally short duration and are the key to
computing vacuum energy corrections which stabilize the theory. Concise rules for constructing stabilized S-matrix
corrections were developed and applied to resolve divergence issues in Abelian QED and non-Abelian QCD and
electroweak theories without renormalization.

In strong interactions, the dressed amplitude Ω corresponds to an accretion of vacuum energy in a pointlike near-
�eld interaction region of radius r ≪ Λ−1

◦ , and the physical masses are cloaked in the depletion part −Ω of the
stabilized amplitude. Compared to an electrical charge, a color charge acts on the vacuum to create a �eld of negative
energy surrounding quarks at distances r ≥ Λ−1

◦ . This suggests that particle observability may be a consequence
of how charges redistribute vacuum energy. Since negative energy particles are con�ned to the vacuum and have
no observable state, a positive energy quark surrounded by negative vacuum energy may be exceedingly di�cult to
isolate from its environment which is tantamount to con�nement.

For Abelian and non-Abelian theories, the stability method is expected to yield �nite results to all orders in
perturbation theory since it is applied repeatedly in any complex Feynman diagram to each irreducible radiative
correction working from the innermost loop outward; a detailed proof for Abelian QED is given in Appendix E 4.

In�nite mass, charge, and wave-�eld renormalizations are required in the standard (unstabilized) theory because
core amplitudes do not account for the source of energy required to create a con�guration of ultrahigh-energy virtual
particles; this violates conservation of energy. The in�nity in the core amplitude for an irreducible radiative correction
represents energy or charge borrowed from the vacuum within limits imposed by Heisenberg's uncertainty principle
[41]. In each case, there exists two physically signi�cant vacuum components, the borrowed energy and a de�cit, such
that the net vacuum energy and charge remain zero. Finite stabilized amplitudes account for the self-energy de�cit,
agree with renormalized QFT, and are uniquely determined in contrast to multiple renormalization schemes.

Assumptions almost identical to those in Section II have been successfully applied to the gravitational singularity
of a black hole to explain the origin of dark matter and dark energy [54]. In this theory, a black hole redistributes
vacuum energy by polarizing the vacuum creating a dark matter halo with a uniform background of dark energy.
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Appendix A: Two Component Quantum Vacuum

From physical assumptions in Section II, the vacuum consists of two components, a borrowed energy and an energy
de�cit, that oppose one another such that its net energy vanishes. This appendix de�nes the vacuum in QFT for the
free boson and fermion �elds without appealing to renormalization, and it addresses the matter-antimatter asymmetry
problem [55]. In a nutshell, any process that creates something out of nothing without an opposing process violates
conservation laws for energy, charge, or both.

1. Bosons

To achieve the desired physical result simply, we neglect polarizations and begin with the Klein-Gordon �eld. For
scalar bosons having mass µ, the Hamiltonian for the free �eld is [23]

H+
b =

∑
−→
k

ℏωkN (k) + E +
vac , (A1)

where

k =
(
k◦,

−→
k
) (

k◦ =
ωk

c

)
is a four-wave-vector for a real particle with energy

ℏωk =

√(
ℏ
−→
k
)2

+ (µc2)
2
, (A2)

N (k) = a† (k) a (k)

is the number operator, a (k) and a† (k) are annihilation and creation operators, and

E +
vac =

1

2

∑
−→
k

ℏωk (A3)

is the zero-point energy; here after, natural units are assumed: ℏ = c = 1. Upon quantizing the theory, positive
energy vacuum modes in Equation (A3) are created leaving a vacuum energy de�cit

E −
vac = −E +

vac (A4)

according to Assumption 2. The total Hamiltonian

Hb = H+
b + E −

vac (A5)

is �nite, and its vacuum expectation satis�es

⟨0|Hb |0⟩ = 0 . (A6)

For the complex Klein-Gordon �eld [56], we have a conserved charge associated with the �eld and particle-
antiparticle pairs. Again we have a ground state energy (A3) and vacuum de�cit (A4). However, in this case if
the E +

vac component has negative charge, the E −
vac component must have positive charge. For vector bosons, suppose

we generate a sea of negatively charged positive energy W− bosons from quantization; at a minimum, we need a
positively charged negative energy sea W+ to satisfy Equation (A6) and conserve charge when the �eld is quantized.
Therefore, assume that the general boson vacuum

|0b⟩ =
∣∣b+, b−〉 (A7)

includes two components: positive energy bosons b+ and negative energy antibosons b−. Negative energy antibosons
are not observed and must remain hidden in the vacuum; in consequence, the vacuum is conventionally de�ned by

a (k) |0b⟩ = 0 . (A8)
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Assuming that the destruction of a particle with momentum k is equivalent to the creation of a negative energy
antiparticle with momentum −k

a (k) ↔ a† (−k) , (A9)

the amplitude

a† (−k) |0b⟩ = 0 (A10)

to create an observable negative energy antiparticle is zero. Conversely, the creation of a particle with momentum k
is equivalent to the destruction of an antiparticle of opposing momentum −k in b−

a† (k) ↔ a (−k) ; (A11)

therefore, we can construct an observable boson state in two ways

|k⟩ = a† (k) |0b⟩ (A12)

= ā (−k) |0b⟩ . (A13)

Substituting Equations (A9) and (A11) in the commutation relation[
a (k) , a† (k′)

]
= δkk′ , (A14)

and setting the discrete k′ = k, we have

⟨0b|
[
a† (−k) , a (−k)

]
|0b⟩ = 1 . (A15)

Taking into account Equation (A10), we see that all the negative energy antiboson states are occupied in agreement
with Equation (A7) since Equation (A15) reduces to

⟨0b|N (−k) |0b⟩ = 1 , (A16)

where

N (−k) ≡ a† (−k) a (−k)

is the number operator for negative energy antiparticles.

2. Fermions

Upon quantization the Hamiltonian [57�59]

H −
f =

∑
−→p ,s

Ep

[
Ns (p) +Ns (p)− 1

]
(A17)

for the free Dirac �eld ψ, including the ground state energy, is given by a sum over �eld excitations with four-
momentum p = (Ep,

−→p ) and spin index s = ±1, where

Ep =
√−→p 2 +m2 ,

m is the particle mass,

Ns (p) = b†s (p) bs (p) ,

Ns (p) = b
†
s (p) bs (p)

are number operators for charged fermions and antifermions, and the particle operators obey anticommutation rela-
tions {

br (p) , b
†
s (q)

}
= δpqδrs , (A18){

br (p) , b
†
s (q)

}
= δpqδrs . (A19)
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To preclude observable negative energy states, the fermion vacuum |0f ⟩ must satisfy

bs (p) |0f ⟩ = 0 ; (A20)

for antifermions, we have

bs (p) |0f ⟩ = 0 (A21)

and the equivalent constraint

b†−s (−p) |0f ⟩ = 0 . (A22)

Since negative energy fermion states are forbidden by (A22), but present in the observable (A17), we conclude that
H −

f is incomplete.
Standard Dirac theory is symmetric in real particles and antiparticles, and laboratory experiments seem to sub-

stantiate this symmetry since particles and antiparticles are always created and annihilated in pairs. However, if
one de�nes the fermion vacuum as an assembly of equal numbers of negative energy fermions and positive energy
antifermions, then the symmetry is broken: We have

|0f ⟩ =
∣∣f−, f+〉 , (A23)

where f− is the usual Dirac sea, and f+ is a sea of positive energy antifermions. The fermion vacuum |0f ⟩ is assumed

stable and unique at least for electrons and positrons, for example. In Dirac's theory, Ns (p) counts holes in f−, but
neglects the bulk of antiparticles in f+.

To account for the energy of the companion sea f+, we supplement H −
f with a Hamiltonian for the antifermion sea

H+
fc ≡

ˆ
ψ

−
c (x)

(
−i−→γ ·

−→
∇ +m

)
ψ+
c (x) d3x , (A24)

where ψ+
c (x) and ψ

−
c (x) are the positive and negative frequency parts of charge conjugate �eld ψc, ψc = ψ†

cβ, and
γµ = (β,−→γ ) is a four-vector of Dirac matrices. Utilizing the expansion

ψ+
c (x) =

∑
−→p ,s

√
m

V Ep
cs (p)us (

−→p ) e−ipx , (A25)

involving spinors us (
−→p ), Equation (A24) reduces to

H+
fc =

∑
−→p ,s

EpN
c
s (p) , (A26)

where the occupation number

N c
s (p) = c†s (p) cs (p) ≡ 1 ,

and the complete Hamiltonian

Hf = H−
f +H+

fc (A27)

is �nite and counts observable particles only. For example, when a negative energy electron in f− is excited into
a positive energy state, the hole in f− exposes an already existing positron in f+. The negative vacuum energy
in (A17) arises from �eld quantization, and the positive energy vacuum modes in Equation (A26) are required to
conserve energy and charge.
To complete the argument, we note that the absence of an antifermion in |0f ⟩ would expose a negative energy

fermion of opposite spin, but that is precluded by Equation (A22). However, upon substituting

br (p) → b†−s (−p) ,

b
†
s (q) → b−s (−p)

into anticommutation relation (A19) and taking into account (A22), the vacuum expectation

⟨0f |
{
b†−s (−p) , b−s (−p)

}
|0f ⟩ = 1 . (A28)
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reduces to

⟨0f |N−s (−p) |0f ⟩ = 1 ; (A29)

where

N−s (−p) ≡ b†−s (−p) , b−s (−p) (A30)

is the number operator. Therefore, all the negative energy fermion states are occupied in agreement with (A23), but
unobservable.
From physical consideration of Equation (A23), we expect that in�nite vacuum currents will cancel as well: De�ning

the antifermion vacuum current by

jµc (x) = e ⟨0f |ψ
−
c (x) γµψ+

c (x) |0f ⟩ (A31)

= e
{
ψ

−
c (x) , γµψ+

c (x)
}

and using the anticommutation relations [45, 60]{
ψ+
c (x) , ψ

−
c (y)

}
= iS+ (z = x− y) , (A32){

ψ− (x) , ψ
+
(y)
}
= iS− (z) , (A33)

the net current

jµ (x) = jµc (x)− eψ (x) γµψ (x) (A34)

= −eN
(
ψ (x) γµψ (x)

)
+ e tr

[
γµS(1) (0)

]
= −eN

(
ψ (x) γµψ (x)

)
reduces to Wick's normal product [32], where S± (x) are singular functions for the Dirac �eld ψ,

S(1) (z) = i
[
S+ (z)− S− (z)

]
,

and the second term in line 2 of (A34) vanishes since S(1) (0) ∝ I (the identity matrix), and the Dirac matrix is
traceless. Therefore, vacuum expectations for the net energy

⟨0f |Hf |0f ⟩ = 0 (A35)

and current density

⟨0f | jµ (x) |0f ⟩ = 0 (A36)

vanish without ad hoc renormalizations. Schwinger [60] also obtained Equation (A36) using Heisenberg's commutator
[61, 62] for the current

jµ = −e
[
ψ (x) , γµψ (x)

]
/2 ,

but that de�nition does not pin point the asymmetry between matter and antimatter as do Equations (A23) and
(A34).
The two-component fermion vacuum is consistent with the absence of signi�cant antimatter in the known universe;

normally, positive energy antimatter is locked up in the vacuum in this model. Antimatter is only observed in
signi�cant quantities when high energy processes create particle-antiparticle pairs; for example, in the hot plasma of
the early universe [63, 64], where the vacuum may be completely ionized. If we suppose that the amount of matter
exceeds that of antimatter in the hot plasma; then when the plasma cooled, antimatter relaxed into the stable vacuum
leaving the original excess of matter over antimatter. The Alpha Magnetic Spectrometer (AMS) experiment [65] is
being used to determine the abundance of antimatter in the universe; so far, signi�cant antimatter has not been
detected.
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3. Conclusions

From current experimental results and the foregoing vacuum models, we conclude that vacua (A7) and (A23) are
necessary conditions that conserve energy and charge. The density of negative energy is assumed spatially uniform
since negative energy particles in the vacuum can not form stationary modes, but positive energy modes may be
excluded from a region by boundary conditions in the Casimir experimental setup, for example. The net energy and
charge of the complete vacuum

|0⟩ =
∏
b,f

|0b⟩ |0f ⟩ , (A37)

including all particles of the Standard Model, vanishes. With respect to energy, the state of the vacuum takes the
simple form

|0⟩ =
∣∣E +

vac,E
−
vac

〉
, (A38)

where the net vacuum energy

Evac = E +
vac + E −

vac (A39)

vanishes.
Vacuum energy may be spatially redistributed via several mechanisms including elementary electrical and color

charges plus Casimir e�ects: Evac = 0 is assumed to hold for all cases. No contribution to the cosmological constant
is expected from elementary charges or Casimir e�ects since vacuum energy is only redistributed locally.

Appendix B: Detailed Veri�cation

The main purpose of this appendix is to show that the stability method agrees with renormalization theory and
therefore with experiment for speci�c radiative corrections in QFT; in particular, rules (20) and (31) for computing
stabilized amplitudes in QED, QCD, and electroweak theories are veri�ed. Standard Model nomenclature is de�ned
in Appendix C.
In Appendix D, we evaluate divergent integrals in Ω for dressed mass states in Feynman diagrams, and show how

they reduce to mass shell renormalization conditions.
For Abelian QED in Appendix E, stabilized amplitudes agree with renormalization theory for vacuum polarization,

fermion self-energy, and vertex processes to all orders in perturbation theory. Accounting for vacuum depletion
eliminates all divergences: In particular, opposing currents associated with dressed fermion states stabilize the photon
self-energy without charge renormalization, and neither mass nor wave �eld renormalization is required for the fermion
self-energy.
For non-Abelian QCD in Appendix F, we apply the stability method to a collection of one-loop diagrams using

a modi�ed renormalization formula to derive an e�ective color charge (F14) and running coupling constant (F27)
with an energy scale signature consistent with QCD's prediction of asymptotic freedom [49, 53] and its agreement
with experimental results [66]. However, the crucial di�erence is that �nite stabilization parameters replace in�nite
renormalization constants. The results show that the switching factor λs = −1 in (F14) is essential; physically, this
means that dressed particles in Ω are associated with positive energy in the in�nitesimal near-�eld, and physical
masses in the depletion part −Ω are cloaked in negative energy in the in�nitesimal far-�eld. Also, an analytical
expression for the reference mass Ms in QCD is derived which gives Ms = 70.65GeV/c2; see (F31).
Generally, fundamental couplings are well de�ned only on the mass shell, where bosons mediating the interaction

are free, and stabilized boson self-energy functions vanish; therefore, the elementary charge used in the Feynman
rules is a rock-solid constant. An e�ective running coupling includes energy dependent vacuum polarization e�ects for
screening or anti-screening, which can otherwise can be associated with modi�cations to �eld propagation functions.
For one-loop electroweak corrections in Appendix G, we verify that stabilized boson self-energy corrections including

∆r, fermion self-energies, and vertex processes are �nite and agree with renormalization [43, 50]. Electroweak depletion
amplitudes for boson and fermion self-energy processes are reduced by expanding core amplitudes in a Taylor series
and applying (21): The resulting stabilized amplitudes (G14) and (G39) are unique and yield stability conditions
that agree with only one renormalization scheme. While the electrical charge (C23) is invariable according to (G29),
couplings

{
g2W , g2Z

}
and θW can vary due to �nite on-shell mass shifts

{
δm2

W , δm2
Z

}
derived from stabilized W� and

Z�boson self-energy corrections; see (G53) and (G54). Therefore, resulting ∆r corrections (G30) to BSE amplitudes
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for W� and Z�bosons are a simple consequence of the constancy of the electrical charge, a stability result. Finally,
we verify that muon decay with ∆r corrections yields expected results without renormalization.
For non-Abelian electroweak and QCD theories, the stability method is expected to yield �nite results to all orders

in perturbation theory since it is applied to each irreducible radiative correction in any complex Feynman diagram.
Numerical results are presented in Appendix G6 for electroweak boson and fermion self-energy pro�les. Stabilized

results for γ − Z mixing, Z�boson, and W�boson polarization pro�les di�er from and update those given in [43, 67].

Appendix C: Standard Model nomenclature

This appendix summarizes required machinery of the Standard Model utilizing references [43, 51]. Natural units
are assumed; that is, ℏ = c = 1.

1. Electroweak theory

The electroweak Lagrangian

LEW = LG + LH + LF (C1)

for the physical particles includes gauge, Higgs, and fermion parts. Gauge �xing and ghost terms are omitted in (C1)
since it is only necessary to consider physical particles for this development. The gauge part, based on a Yang-Mills
prototype (C29), is given by

LG = −1

4
W a

µνW
a,µν − 1

4
BµνB

µν , (C2)

where the �eld strength tensors

W a
µν = ∂µW

a
ν − ∂νW

a
µ + gW εabcW

b
µW

c
ν , (C3)

Bµν = ∂µBν − ∂νBµ

are expressed in terms of derivatives of the gauge �elds: a triplet W a
µ , a = 1, 2, 3 of vector bosons and a singlet Bµ

which transform according to SU (2) and U (1) symmetry groups [17], respectively. In (C3), gW is the non-Abelian
SU(2) gauge coupling constant, and εabc is the Levi-Civita tensor representing the structure constants of SU (2).
The Higgs part is given by

LH = (DµΦ)
†
(DµΦ)− V (Φ) , (C4)

where

Φ (x) =
1√
2

(
0

v + h(x)

)
(C5)

is an isospin doublet in a unitary gauge, h (x) is the real Higgs �eld which �uctuates about a vacuum v =
√
−µ2

Φ

λΦ
,

V (Φ) = µ2
ΦΦ

†Φ+ λΦ
(
Φ†Φ

)2
(C6)

is the Higgs potential, that with λΦ > 0 and µ2
Φ < 0 for symmetry breaking, leads to the stable ground state (C5).

The Higgs doublet Φ is coupled to the gauge �elds via the covariant derivative

Dµ = ∂µ − igWTaW
a
µ − igB

Y

2
Bµ , (C7)

where
−→
T = −→σ /2 are weak isospin generators, −→σ are Pauli matrices satisfying the SU(2) algebra [σi, σj ] = 2iεijkσk,

and gB is the Abelian coupling constant. Φ carries hypercharge Y = YΦ ≡ 1 and a third component of isospin
T3Φ = − 1

2Φ. In terms of the gauge �elds, the physical �elds for charged W�bosons, neutral Z, and photon Aµ are

W±
µ =

1√
2

(
W 1

µ ∓W 2
µ

)
, (C8)
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Zµ

Aµ

)
=

(
cos θW sin θW
− sin θW cos θW

)(
W 3

µ

Bµ

)
, (C9)

where the weak mixing angle θW is de�ned by

cos θW =
gW
gZ

(C10)

=
mW

mZ
,

where gZ =
√
g2W + g2B . Omitting higher-order non-mass terms, the Higgs part expressed in terms of the physical

�elds is given by

LH ≃ 1

2
∂µh ∂

µh+m2
WW−

µ W
+µ +

1

2
m2

ZZµZ
µ − 1

2
m2

Hh
2 , (C11)

where

mW =
1

2
gW v , (C12)

mZ =
1

2
gZ v (C13)

are vector boson masses generated via the Higgs mechanism [18, 19, 68]. The scalar boson mass (Higgs) is

m2
H = 2λΦv

2 , (C14)

where the quartic self-interaction parameter λΦ may be determined using the identity

v2 =
m2

W sin2 θW√
πα

(C15)

and experimental values [69] for mW , sin2 θW , and mH .
Suppressing the color attribute for quarks, the fermion part of the Lagrangian is given by

LF =
∑
j

ψ
j

Liγ
µDµψ

j
L +

∑
jσ

ψ
jσ

R iγµDµψ
jσ
R + LYukawa

F (C16)

for each lepton or quark doublet (j), where γµ are Dirac matrices,

ψj
L =

(
ψ j+
L

ψ j−
L

)
is a left-handed fermion doublet with component index σ = ±, and ψ jσ

R is a right-handed singlet for a fermion f
indexed by jσ. The Yukawa interaction part of LF is given by a sum of terms

LYukawa
F (mjσ) = gjσ

[(
ψ

j

LΦ
)
ψ jσ
R + ψ

jσ

R

(
Φ†ψ j

L

)]
(C17)

= −mjσ

[
ψ

j−
L ψ jσ

R + ψ
jσ

R ψ j−
L

]
,

where gjσ are coupling constants, and masses generated from the interaction between the fermion and Higgs �elds are

mjσ =
1√
2
gjσ (v + h)

∣∣∣∣
h=0

. (C18)

We will also need vertex factors and propagators below for later reference; these, along with propagators for the
Higgs, ghost �elds, and vertex factors for SU(N) theories may be found in the literature and [51]. For fermions
coupling to the W , Z, and γ; vertex factors are
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W±

}
feDf ′

= i
e√
2 sw

γµ
1

2
(1− γ5) , (C19)

Z

}
feD

= ieγµ (vf − afγ5) , (C20)

γ

}
feD

= ieQγµ , (C21)

where (f = jσ , σ = ± , f ′ = jσ′ , σ′ = ∓), charge operator Q is de�ned by the Gell-Mann-Nishijima relation

Q = T3 +
Y

2
(C22)

with third component of isospin T3 and hypercharge Y speci�c to the fermion, electrical charge e satis�es

e ≡ gW sin θW = gB cos θW , (C23)

and the vector and axial vector coe�cients

vf =
T f
3 − 2s2wQ

2swcw
, (C24)

af =
T f
3

2swcw

are neutral current (NC) coupling constants with {sw ≡ sin θW , cw ≡ cos θW }.
The fermion propagator [70] is

f

pF = SF (p,mf ) =
i

�p−mf + iε
, (C25)

where �p = γµpµ, and anti-fermions are denoted by f̄ . The vector boson propagator is

α

kg
β
= Dαβ

F (k) =
−igαβ

k2 −m2
b + iε

(C26)

in the Feynman-'t Hooft gauge [71], where the metric tensor gαβ = gαβ has non-zero components

g00 = −g11 = −g22 = −g33 = 1 ,

and b ∈ {W, Z, γ}. For the Higgs, we have

kh =
i

k2 −m2
H + iε

. (C27)

Finally, unphysical particles including gauge �xing Higgs {ϕ±, χ} and unitarity preserving Faddeev-Popov ghosts{
u±, uZ , uγ

}
occur in loop corrections discussed in Appendix G.

2. QCD theory

Quantum Chromodynamics is a Yang-Mills theory involving nf = 6 quarks interacting with ng = 8 massless gluons.
Quarks carry color charge and belong to the fundamental representation of the color group G = SU(3), and the gluons
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are in the adjoint representation r = G. Omitting gauge �xing and Faddeev-Popov ghost terms, the QCD Lagrangian
is

LQCD =

nf∑
f=1

ψ̄j
f

(
iγµD

µ
jk −mfδjk

)
ψk
f + LYM , (C28)

Dµ
jk = δjk∂

µ − igs

(−→
t ·

−→
Aµ
)
jk
,

LYM = −1

4
F a
µνF

µν
a , (C29)

F a
µν = ∂µA

a
ν − ∂νA

a
µ + gs f

abcAb
µA

c
ν ,

where ψk
f is a Dirac spinor for the quark �eld with �avor f and color state k ∈ {R, G, B}, gs is the color charge,

t a = λa/2 , a = 1, . . . , ng are generators represented by 3 × 3 Gell-Mann matrices λa, Aa
µ are color-charged gluon

�elds, and f abc are structure constants of G. The t-matrices, which occur in a quark/gluon vertex

g

}
feD

= igsγ
µta , (C30)

rotate the quark in color space and generate the Lie algebra for G[
t a, t b

]
= if abct c . (C31)

The structure constants occur in three- and four-gauge-boson vertices and satisfy

f acdf bcd = C2 (G) δ
ab , (C32)

where C2 (G) = N is an eigenvalue of the quadratic Casimir operator. The gluon propagator is

a,µ

kg
b,ν
=

−igµνδab
k2 + iε

. (C33)

Appendix D: Divergent integrals

Here we develop integration formulae required for evaluation of stability corrections using cuto� and dimensional
regularization. In the p-representation, loop diagrams involve four-dimensional integrals over momentum space, and
the real parts of scattering amplitudes contain integrals of the form [34]

D (∆) =
1

iπ2

ˆ
d4p

(p2 −∆)
n =

(−1)
n

π2

ˆ
d4pε

(p2ε +∆)
n , (D1)

where ∆ depends on the core mass m, momentum parameters external to the loop, and integration variables. On the
right side of (D1), a Wick rotation has been performed via a change of variables p = (ip◦ε, p⃗ε), so that the integration
can be performed in Euclidean space where p2ε = p◦εp

◦
ε + p⃗ε · p⃗ε. Integrals for the divergent case (n = 2) must be

regulated such that they are consistently de�ned for core and dressed core masses. For m, D is regularized using a
cuto� Λ◦ on s = |pε|. In four-dimensional polar coordinates, we have

D (∆,Λ◦) =
1

π2

ˆ
dΩ

ˆ Λ◦

0

ds
s3

[s2 +∆]
2 . (D2)

For dressed masses, ∆ depends on md, and the domain of integration in equation (D2) must be scaled according to
(26); consequently, we need to evaluate

Dd = D [∆ (md) , Λd] .
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With a change of variables s = ηλt and taking the limit η → ∞, we obtain

Dd = D (∆◦,Λ◦) , (D3)

where

∆◦ = lim
η→∞

η−2
λ ∆(ηλm) . (D4)

For example, the standard divergent integral [34]

D◦ ≡ D
(
∆ = m2,Λ◦

)
(D5)

= ln
Λ2
◦

m2
− 1 +O

(
m2

Λ2
◦

)
is manifestly invariant under scaling rules (25) and (26); that is,

D◦ = D
(
m2

d,Λd

)
. (D6)

Note that the average of equation (1) over dressed masses is stationary due to (D6); this ensures that the FSE in
QED is �nite as shown in detail in Appendix E 2.
In contrast to the cuto� method, dimensional regularization evaluates a Feynman diagram as an analytic function

of spacetime dimension d. For n = 2 and d4p→ ddp in (D1), D may be evaluated using [44, 45]

D (∆, σ) = π−σΓ (σ)∆−σ (D7)

=
1

σ
− ln∆− γ +O (σ) ,

where σ = 2− d/2, and γ = 0.577 · · · is the Euler-Mascheroni constant. For σ ̸= 0, the limit Λ◦ → ∞ may be taken
since σ regulates the integral. For dressed particles, Dd must yield consistent results for both cuto� and dimensional
regularization methods. Considering the requirements used to derive (D3) and employing appendix formulae in [44],
we conclude

Dd = D (∆◦, σ) . (D8)

For the processes in Fig. 1, the argument ∆ in (D7) has the form

∆(m,µ) = am2 + bℓ2 + cµ2 , (D9)

where m = mb|mf , ℓ
2 = k2 | p2| q2, {a, b, c} depend on Feynman parameters, and c = 0 for BSE processes. Applying

equation (D4) to (D9) taking into account (16) and (17), the momenta go on-shell upon computing lim
η→∞

η−2
λ ℓ2d; that

is,

k2 → m2
b BSE

p2 → m2
f FSE

q2 → 0 Vertex
, (D10)

which we recognize as on-shell renormalization conditions. For the vertex, the dressed momentum transfer is

qd = q + λ (P ′
M − PM ) (D11)

= q ,

where PM is momentum of M , and�PM =M ; therefore, lim
η→∞

η−2
λ q2d = 0. The case where particle masses internal and

external to the blob in Fig. 1 (a) are both zero occurs for BSE processes in the pure-gauge sector of QCD. For this
case, where ∆ = bk2, choose a = 1 and introduce a small gluon mass m→ µg, then using (F9), evaluate

∆◦ = lim
η→∞

η−2
λ ∆(ηλµ◦) = µ2

◦ (D12)
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with ηλ =
√
λ η. Thus for all m ≥ 0, the net S-matrix amplitude computed from (20) is well de�ned since it involves

a factor

Γ (σ)

∆σ
− Γ (σ)

∆σ
◦

= − ln

∣∣∣∣ ∆∆◦

∣∣∣∣ . (D13)

The second term on the left side of (D13) is associated with an opposing vacuum energy required for system stability.
In addition to a divergent part, Ω in (21) may include a �nite part, a constant, that cancels a like term in Ω.

Appendix E: QED veri�cation

Let us apply the foregoing theory with integration formulae given above to verify that net amplitudes for second
order radiative corrections in Abelian QED are convergent and agree with results obtained via renormalization. Cuto�
and dimensional regularization approaches are used to illustrate the method.

1. Vacuum polarization

The photon self-energy associated with Fig. 4 (a) results in a propagator modi�cation [6]

D′αβ
F = Dαβ

F +Dαµ
F

(
iΠ̂µν

)
Dνβ

F , (E1)

where

Π̂µν ≡ Πµν −Πµν

is a polarization tensor generalized to include the stability correction, and

Πµν (k, m) = − ie2

(2π)
4

ˆ
d4p tr [γµSF (p,m)γνSF (p− k,m)] (E2)

follows from the Feynman-Dyson rules [5, 33]. In consequence of Lorentz and gauge invariance [8] or by direct
calculation, it factors into

Πµν (k, m) = Π
(
k2, m2

) (
gµνk

2 − kµkν
)
. (E3)

As is well known, the contribution from terms kµkν vanishes due to current conservation upon connection to an
external fermion line. For a massless photon, k2 is invariant under a DCM transform, and we need only focus on the
scalar function Π

(
k2,m2

)
.

Since the scattering amplitude is in general a complex analytic function, it follows from Cauchy's formula that the
real and imaginary parts are related by a dispersion relation [72]. The imaginary part is divergence free and may be
obtained by replacing Feynman propagators with cut propagators on the mass shell according to Cutkosky's cutting
rule [73] or, alternatively, via calculation in the Heisenberg representation as shown in [74]. In particular for vacuum
polarization, the real part is given by

Π
(
k2, m2

)
=

1

π

ˆ 4Λ2
◦

4m2

ds
g
(

4m2

s

)
s− k2

(E4)

with imaginary part

g (w) = −α
3

√
1− w (1 + w/2) .

Applying (21) using (25) and (26) and performing a change of variables s =
(
1 + λη2

)
t in (E4), we have

Π =
1

2
lim
η→∞

∑
λ=±1

Π
(
k2, m2 + λη2m2

)
(E5)

=
1

2π
lim
η→∞

∑
λ=±1

ˆ 4Λ2
◦

4m2

dt
g
(

4m2

t

)
t− (1 + λη2)

−1
k2

.



24

Figure 4. Baseline radiative corrections in QED: (a) photon self-energy, (b) fermion self-energy, and (c) vertex involve the core
mass only in internal fermion lines. Two additional diagrams, obtained by replacing the core mass with electromagnetically
dressed mass levels, are required for each radiative process to account for vacuum depletion and ensure stability.

Letting η → ∞, we see that (E5) is equivalent to a core amplitude evaluated on the light cone

Π = Π(k2 = 0, m2) . (E6)

Combining (E4) and (E5), we obtain a once-subtracted dispersion relation

Π̂
(
k2
)

= Π
(
k2, m2

)
−Π

(
0, m2

)
(E7)

=
k2

π

ˆ ∞

4m2

ds
g
(

4m2

s

)
s (s− k2)

in agreement with renormalized QED. For massless photons, Π̂ (0) = 0 represents a stability condition for vacuum
polarization.
For an in�nite sum of 1PI insertions, the generalized photon propagator is

kgpg = g+gcg+gcgcg+ · · · (E8)

= − igµν
k2

Ẑ3

(
k2
)
,

where the �nite stabilization parameter

Ẑ3

(
k2
)
=

1

1− Π̂ (k2)
(E9)

modi�es the free photon propagator. Alternatively, one can de�ne a running coupling constant

α
(
k2
)
= Ẑ3

(
k2
)
α◦ ; (E10)
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in this interpretation, the measured
(
α◦ = e2

4π

)
and e�ective couplings are equivalent on the light cone

Ẑ3 (0) = 1 . (E11)

Since a stationary state for a photon only exists on the light cone, the fundamental coupling is well de�ned there, and
the stabilized photon self-energy vanishes.
In terms of an external current jextµ (x), the observable current is given by

jobsµ (x) = jextµ (x) + δjµ (x) , (E12)

where

δjµ (x) =
1

(2π)
4

ˆ
d4k eikxjextµ (k)

[
Π(k2)−Π(0)

]
(E13)

is the induced current. In standard renormalization theory (SRT), the last term in brackets is associated with a
correction to a divergent bare charge (e◦), but here, we assert that the correction is a stability requirement associated
with opposing vacuum currents involving dressed fermions in the loop. Physical and bare charges in SRT are related
by

e2 =

(
Z3 =

1

1−Π(0, m2)

)
e2◦ , (E14)

where
√
Z3 is the charge renormalization constant. Charge renormalization in SRT is a consequence of neglecting

vacuum depletion in violation of the law of conservation of energy.

2. Fermion self-energy

The fermion self-energy operator corresponding to the Feynman diagram in Fig. 4 (b) is

pFfyff = −iΣ (p,m) , (E15)

where

Σ (p,m) = − e2

(2π)
4

ˆ
d4k γµ SF (p− k,m) γµ

1

k2 − µ2
. (E16)

After standard reduction and dimensional regularization, Σ simpli�es to

Σ (p,m) =
α

2π

{
S1 +

ˆ 1

0

dx [2m− �px+ σ (�px−m)] D (∆, σ)

}
, (E17)

where D (∆, σ) is given by equation (D7) with

∆ = (1− x)
(
m2 − xp2

)
+ xµ2 .

The integral expression in equation (E17) is equivalent to a form given in [51], while the term

S1 = −1− σ

4 �p

follows from appendix formulae in [34] and represents a surface contribution arising from a term linear in k during
reduction of equation (E16).
Evaluation of Σ using (21) reduces to negating equation (E17) and replacing ∆ → ∆◦ according to equation (D8);

we obtain

Σ (p,m) =
α

2π

{
S1 +

ˆ 1

0

dx [2m− �px+ σ (�px−m)] D (∆◦, σ)

}
, (E18)
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where

∆◦ = m2 (1− x)
2
+ xµ2

follows from equation (D10). Terms involving [(λPM , λM) ; M = ηm] have canceled in the average over DCM levels
yielding a function of the observable mass and momentum only. The net correction, including all three mass levels in
Fig. 4 (b), is given by (cf. [33])

Σ̂ (p) = Σ− Σ (E19)

=
α

2π

ˆ 1

0

dx (2m− �px) ln

[
m2 (1− x)

2
+ xµ2

(m2 − xp2) (1− x) + xµ2

]
,

where the limit σ → 0 has been taken to recover four-dimensional spacetime. With a change of variables x = 1 − z,
equation (E19) is seen to be identical to the renormalized result given in [75].
The processes in Fig. 4 (b), including iterations in the series

pFpf =F+ffyff+ffyfffyff+ · · · (E20)

yields a modi�ed propagator [5, 6]

S′
F = SF + SF

(
−iΣ̂ (p)

)
S′
F (E21)

=
i

�p−m− Σ̂ (p) + iε
,

which has the desired pole at �p = m since equation (E19) vanishes on the mass shell

Σ̂ (p)
∣∣∣
p2=m2

= 0 . (E22)

Using the general expression for the stabilized fermion self-energy

Σ̂ (p) = Σ (p)−Σ (m)− ∂Σ

∂�p

∣∣∣∣
�p=m

(�p−m) , (E23)

which is derived in Appendix G2, we see that

dΣ̂ (p)

d�p

∣∣∣∣∣
�p=m

= 0 , (E24)

and the residue of the propagator pole is i =
√
−1. For later use, we write equation (E21) in the form

pFpf =
i

�p−m+ iε
Ẑ2 (�p) , (E25)

where

Ẑ2 ≡

(
1− Σ̂ (�p)

�p−m+ iε

)−1

(E26)

is a �nite stabilization parameter modifying the free �eld fermion propagator, and is analogous to the renormalization
constant Z2 in SRT relating the bare and renormalized �elds via ψ◦ =

√
Z2ψ.

Upon identifying

m+
em = Σ (�p = m, µ = 0) , (E27)

m−
em = −Σ (�p = m, µ = 0) , (E28)
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we see that equation (E22) is equivalent to the FSE stability condition (5). Reverting to cuto� Λ◦ using equation
(D1), it follows that (E27) reduces to Feynman's result (1).
In the language of renormalization theory, the bare mass m◦ in the propagator [45]

S′
F =

i

�p−m◦ − Σ+ iε
(E29)

must be renormalized using (2) with (E27); moreover, wave-�eld renormalization is required.

3. Vertex

A second-order correction to a corner (C21) involves a replacement

ieγµ → ieΓµ , (E30)

where

Γµ = γµ + Λµ (E31)

= γµF1

(
q2
)
+
iσµνqν
2m

F2

(
q2
)
,

and σµν = i
2 [γ

µ, γν ] are spin matrices. Complete expressions for the form factors F1 and F2 can be found in [51].

For small q2, the vertex function Λµ for λ = 0 in Fig. 4 (c) is given by the approximation [33]

Λµ (q,m) = γµL+ a(2)
iσµνqν
2m

+O

(
q2

m2

)
, (E32)

where

L =
α

4π

(
D◦ +

11

2
− 4 ln

m

µ

)
(E33)

is a divergent constant. Note that L = α
2π r, where r is given by equation (23) in [33]. The coe�cient a(2) = α

2π
is the second-order contribution to the anomalous magnetic moment �rst derived by Schwinger [76] and veri�ed
experimentally by [77].
Inserting equation (E32) into (21), using

µ→ µ (1 + λη) , (E34)

and accounting for the invariance of D◦ (D6) under scaling rules (25) and (26), the depletion correction is

Λ
µ
= γµL , (E35)

where �nite terms in equation (E32) of order O
(

q
m

)
involving replacements

m→ m (1 + λη)

vanish in the limit η → ∞ as we argued in Appendix D; therefore, the total vertex function

Λ̂µ (q) = Λµ − Λ
µ

(E36)

is convergent, and Λµ satis�es the usual renormalization condition for a vertex

Λ̂µ
∣∣∣
q2=0,�p=�p

′=m
= 0 . (E37)

This completes veri�cation that lowest-order S-matrix corrections are �nite without renormalization.
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4. Generalization to higher orders

Our next task is to show that stabilized higher-order radiative corrections in QED are �nite and agree with renor-
malization. The proof closely follows arguments in references cited below and [34]; therefore, we keep our remarks
brief highlighting required modi�cations and di�erences of interpretation.
Irreducible (skeleton) diagrams include second-order self-energy (SE) and vertex (V) parts discussed above plus

in�nitely many higher-order primitively divergent V-parts. Using Dyson's expansion method [6], second-order SE-
and V-part operators for the core mass are

Σ = mA− (�p−m)B + Σ̂ , (E38)

Π = C + Π̂ , (E39)

Λµ = γµL+ Λ̂µ , (E40)

where {A, B ,C , L} are logarithmically divergent coe�cients depending on D◦. Higher-order primitively divergent
V-parts are also of the form (E40) since the degree of divergence [6, 78]

K = 4− 3

2
fe − be

is zero (logarithmic), where fe (be) are the number of external fermion (boson) lines; in this case, L (D◦) is a power
series in α.
Applying equation (21) with (D6), we have

Σ = mA− (�p−m)B , (E41)

Π = C , and (E42)

Λ
µ

= γµL , (E43)

then stabilized second-order amplitudes (E7), (E19), and (E36)

Σ̂
(
p2 = m2

)
= 0 , (E44)

Π̂
(
k2 = 0

)
= 0 , (E45)

Λ̂µ
(
q2 = 0

)
= 0 (E46)

vanish on the mass shell. In renormalization theory, the term involving B in equation (E38) is eliminated by wave
�eld renormalization. Higher-order primitively divergent V-parts also satisfy equation (E46) since dressed stabilized
amplitudes vanish for on-shell conditions. In this way, equation (20) yields unique �nite results

Σ̂ = Σ − Σ , (E47)

Π̂ = Π −Π , (E48)

Λ̂µ = Λµ − Λ
µ

(E49)

for all irreducible diagrams; therefore, SE-part insertions

SF → SF + SF

(
−iΣ̂

)
SF , (E50)

Dαβ
F → Dαβ

F +Dαµ
F

(
igµνk

2Π̂
)
Dνβ

F (E51)

into lines, and V-part insertions

γµ → γµ + Λ̂µ (E52)

into corners of a skeleton diagram yield no additional divergences.
For reducible vertex diagrams, the V-part resolves into a skeleton along with stabilized SE- and V-part insertions.

With replacements (E50), (E51), and (E52) in the skeleton, the vertex operator again reduces to the form (E40), where
L → Ls is the skeleton divergence. In general, Ls depends on multiple functions D◦ corresponding to all possible
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Figure 5. Gluon/quark self-energies and vertex diagrams

charged fermion masses arising from photon self-energy insertions which may in turn contain SE- and V-parts. Since
each D◦ is invariant under equation (D6), (E46) holds, and (21) yields

Λ
µ

s = γµLs (E53)

similarly to equation (E43); therefore, the complete reducible V-part given by equation (E49) is convergent.

For reducible self-energy diagrams, a skeleton with SE insertions is handled in the same way as reducible vertex
diagrams. However, vertex insertions into fermion and photon SE skeletons involve overlapping divergences that
require further analysis [52, 79]. Integration of Ward's identities yields expressions of the same form as equations
(E38) and (E39); in this case, the coe�cients {A, B ,C} are all power series in α depending on D◦, and vertex
insertions in SE-parts are convergent upon including stability corrections (E41) and (E42). We conclude that in�nite
�eld actions excite dressed mass levels uniformly in all connected fermion lines internal to overlapping loops; for a
speci�c example, apply (20) to calculate the real part of the fourth-order vacuum polarization kernel [80] using the
dispersion method given in Appendix E 1. Therefore, a diagram with overlapping divergences is not a special case for
implementation of stability corrections.

The complete propagators, replacing fermion and photon lines in a skeleton diagram, follow from equations (63)
and (64) of [6]; one obtains

S′
F (p) =

i

�p−m− Σ̂∗ + iε
, (E54)

D′αβ
F (k) =

−igαβ

k2
[
1− Π̂∗

]
+ iε

, (E55)

where
{
Σ̂∗, Π̂∗

}
are given by sums over all proper SE-parts. Similarly, the most general vertex replacing a corner in

a skeleton diagram is given by a sum over all proper V-parts. Since both core and stability corrections are included
in each sub-diagram, the complete propagators and vertices are well de�ned (convergent).

Appendix F: QCD veri�cation

In the examples below, we focus on a key subset of one-loop diagrams [49, 53] that occur in the SU(3) Yang-Mills
theory; see Appendix C 2 for nomenclature.

For diagrams in Fig. 5, core amplitudes di�er from QED only by group factors and switching factor λs from (32);
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therefore, �nite S-matrix amplitudes (31), including stability corrections, are

Π̂ab
1 = λstr

(
t at b

)
Π̂ [QED] , (F1)

Σ̂aa = λst
at aΣ̂ [QED] , and (F2)

Λ̂a,µ
1 = λst

bt at bΛ̂µ [QED] . (F3)

Group factors are given by

tr
(
t at b

)
= C (r) δab ,

t at a = C2 (r) ,

t bt at b =

[
C2 (r)−

1

2
C2 (G)

]
t a ,

where C(N) = 1
2 and C2 (N) = N2−1

2N = 4
3 are normalization and quark color charge factors, respectively.

In addition to the fermion (quark) loop diagram in Fig. 5 (a), gluon self-energy corrections in Fig. 6 yield [51]

[Fig. 6] = iTµν
(
k2
)
δabΠ2

(
k2
)
, (F4)

Tµν
(
k2
)
= gµνk

2 − kµkν ,

Π2

(
k2
)
=
αsC2 (G)

4π

ˆ 1

0

dx
Γ (σ)

∆σ

[
(σ − 1) (1− 2x)

2
+ 2
]
, (F5)

where αs = g2s/4π is the strong coupling constant, ∆ = −k2x (1− x), and x is a Feynman parameter. While individual
gluons are massless to ensure gauge invariance of LYM , systems of gluons depicted in Fig. 6 are expected to have a
non-zero mass de�ned by (8) with self-energy function

Σ g ∼ k2Π2 . (F6)

The generation of such systems redistributes vacuum energy as indicated in Fig. 2. Consequently, we need to include
a stability correction involving DCM states, but for this we need a mass term in ∆. If we appeal to massive Yang-
Mills theories [81], we get unwanted particles and ghosts, and it might seem that we have an impasse. While gauge
invariance demands that mass be acquired via a Higgs mechanism, introduction of dressed masses in (C29) yielding

L′
YM → LYM − 1

2

∑
λ=±1

[
µ2
g + λM2

g

]
µg=0

(
Aa

µ

)2
(F7)

does not break gauge invariance of LYM since its sum is zero. Therefore, let us temporarily assign a small mass µg

to the gluon, then propagators in the loops are modi�ed

1

p2 − µ2
g

1

(p+ k)
2 − µ2

g

=

ˆ 1

0

dx

[P 2 −∆(µg)]
2 , (F8)

where the usual change of variables P = p+ xk has been made for loop integration parameter p, and

∆(µg) = µ2
g − k2x (1− x) .

To evaluate the stability contribution, let Mg = ηµ◦, where µ◦ is an arbitrary unit of mass measure. Substituting

µ2
g →

[
µ2
g + λη2µ2

◦
]
µg=0

(F9)

in ∆(µg) and using equation (D12), we have ∆◦ = µ2
◦. Negating equation (F5), replacing

1

∆σ
→ 1

∆σ
◦
,
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Figure 6. Gluon self-energy corrections in pure-gauge sector: (a) gluon loop, (b) four-gluon vertex, and (c) ghost loop.

and using (31), the net amplitude

Π̂2

(
k2
)
= −λs

αsC2 (G)

4π

ˆ 1

0

dx ln

[
−k2x (1− x)

µ2
◦

] [
2− (1− 2x)

2
]

(F10)

is �nite. If we de�ne a reference mass Ms by

5

3
ln

(
µ2
◦

M2
s

)
≡
ˆ 1

0

dx ln [x (1− x)]
[
2− (1− 2x)

2
]
,

then

Π̂2

(
ρs ≡ − k2

M2
s

)
= −λs

αsC2 (G)

4π

5

3
ln ρs (F11)

vanishes at spacelike k2 = −M2
s . For physically meaningful interpretation of the amplitudes, unobservable quark and

gluon states must have negative norm and spacelike momenta.
In the stabilized theory, it is invalid to neglect quark massesmf in the calculations since they are required for de�ning

dressed amplitudes, but QCD calculations in the usual theory often omit mf in processes where the momentum
transfer q is presumed much larger than physical masses involved in the problem. Therefore, following [51], but
assuming m ≡ mf ̸= 0, the stabilized integral for the quark/three-gluon vertex shown in Fig. 7 is

Λ̂a,µ
2 = iλs

g2sC2 (G) t
a

(2π)
4

ˆ
dxdydz δ (x+ y + z − 1)∆Iµ , (F12)

where (x, y, z) are Feynman parameters; keeping only leading logarithmic terms,

∆Iµ ≃ Iµ − I
µ

= 3iπ2γµ ln
∆

∆◦
,

Iµ = −3iπ2γµ
Γ (σ)

∆σ
,

∆ = m2z + (px+ p′y)
2 − p2x− p′2y + µ2 (1− z) ,

I
µ

= −3iπ2γµ
Γ (σ)

∆σ
◦

,
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and

∆◦ = m2z2 + µ2 (1− z)

follows from equation (D4). Assuming p is on mass shell and −q2 ≫ m2 ≫ µ2, ∆ ≃ −q2y (1− y) and ∆◦ ≃ m2z2;
therefore,

∆Iµ ≃ 3iπ2γµ ln
−q2

m2
+ H.O.T. .

Higher order terms in ∆Iµ integrate to O (1) in (F12), and we have

Λ̂a,µ
2 = −λs

αs

4π

3

2
C2 (G) t

aγµ ln
−q2

m2
. (F13)

It remains to show that the stabilized theory agrees with standard renormalization theory and experimental data
[66] ; in particular, an e�ective weakening of the strong coupling for high energies consistent with asymptotic freedom
predictions [20, 21]. Well known formulae from SRT are used, where renormalization constants are replaced with
stabilized amplitude parameters

Zi → Ẑi , i = 1, 2, 3 .

Leading terms of stabilized amplitudes for the asymptotic case of high energy yield an e�ective color charge

gs (ρs) = gs
Ẑ1

Ẑ2

√
Ẑ3

≃ gs

[
1 + λs

αs

8π

(
11− 2

3
nf

)
ln ρs

]
, (F14)

where

Ẑ−1
1 = 1 + Λ̂1 (ρs) + Λ̂2 (ρs) , (F15)

Ẑ−1
2 = 1− dΣ̂

d�p

∣∣∣∣∣
ρ=ρs

, and (F16)

Ẑ−1
3 = 1−

[
Π̂1 (ρs) + Π̂2 (ρs)

]
(F17)

are �nite running stabilization parameters that modify the vertex (C30), fermion �eld propagator (C25), and gluon
�eld propagator (C33), respectively. For loops including quarks, asymptotic amplitudes involve spacelike momenta ℓ
in quadratic energy ratios

ρ = − ℓ2

m2
f

≫ 1 ; ℓ2 ∈
{
k2, p2, q2

}
, (F18)

where we have reinstated mf = m. Setting p2 = q2 = k2 across diagrams and neglecting O (1) terms in

ln ρ = ln ρs +O (1) (F19)

≃ ln ρs ,

where ρs = −k2/M2
s , the sum over fermions in Fig. 5 (a) becomes trivial, and we have

nf∑
f=1

{
[Fig. 5(a)] =

a,µ

kg fcg
b,ν

}
≃ iTµν

(
k2
)
δab
[
Π̂1 (ρs) ≡ λs

αs

3π
nf C (r) ln ρs

]
, (F20)

[Fig. 5(b)] ≃ −i
[
Σ̂ (�p, ρs) ≡ λs

αs

4π
C2 (r) (�p− 4mf ) ln ρs

]
, (F21)

[Fig. 5(c)] ≃ igst
aγµ

{
Λ̂1 (ρs) ≡ −λs

αs

4π

[
C2 (r)−

1

2
C2 (G)

]
ln ρs

}
, (F22)

[Fig. 6] = iTµν
(
k2
)
δab
[
Π̂2 (ρs) ≡ −λs

αs

4π
C2 (G)

5

3
ln ρs

]
, and (F23)

[Fig. 7] ≃ igst
aγµ

[
Λ̂2 (ρs) ≡ −λs

αs

4π
C2 (G)

3

2
ln ρs

]
. (F24)
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Figure 7. Quark/three-gluon vertex.

With the approximation −k2 ≫ m2
f , Π̂1 in equation (F20) follows from (F1) using (E7). Similarly, Σ̂ in equation

(F21) is obtained from (F2) using (E19), and Λ̂1 in equation (F22) is derived using (F3) with (E36). The stabilization

parameters Ẑ1, Ẑ2, and Ẑ3 are de�ned similarly to their SRT counterparts. Ẑ−1
1 is the coe�cient of igsγ

µta for the
sum of proper vertex diagrams in equation (C30), Fig. 5 (c), and Fig. 7:

g

}
feD

·
(
1 + Λ̂1 + Λ̂2

)
≡ igsγ

µtaẐ−1
1 . (F25)

Using equation (E26) or (F16) and assuming −p2 ≫ m2
f , we have

Ẑ−1
2 = 1− λs

αs

4π
C2 (r) [ln ρ = ln ρs +O (1)] . (F26)

For Ẑ3, equation (E9) is used with Π̂ = Π̂1 + Π̂2, (F20), and (F23).
Finally, using (F14), the e�ective coupling constant is reduces to

αs (ρs) =
αs

1− λs
αs

4π

(
11− 2

3nf
)
ln ρs +O

(
ln2 ρs

) . (F27)

Neglecting terms of O
(
ln2 ρs

)
for ρs near one and requiring λs = −1, (F27) reduces to the expected result for

asymptotic freedom. The corresponding [47, 48] beta function is

βQCD = 2
∂ αs

∂ ln ρs

∣∣∣∣
ρs=1

= λs
α2
s

2π

(
11− 2

3
nf

)
. (F28)

The foregoing results are consistent with Fig. 2 and in complete agreement with standard QFT. The e�ective color
charge in equation (F14) is de�ned relative to a stable value gs de�ned at ρs = 1, where the gluon polarization

function (F11) vanishes; for ρs > 1, Π̂2 (ρs) goes positive. In contrast, low energy electron scattering processes probe
the far-�eld (positive energy) region, and a stable value for the electric charge is de�ned in the free particle limit:

k2 = 0, where the polarization function Π̂
(
k2
)
vanishes; refer to equations (E7)-(E11).

An estimate of Ms may be obtained by synchronizing ρ in equation (F18) across diagrams in Fig. 5 (a) with that
for ρs in equation (F11) for Fig. 6: Let k → ℓ in Fig. 5 (a), and require

ℓ2

m2
f

=
k2

M2
s

. (F29)

Noting that Π̂ [QED] is a function of ρ only from equation (E7) and using (F29), the sum over fermions is given by

nf∑
f=1

a,µ

ℓg fcg
b,ν

=

 1

nf

nf∑
f=1

m2
f

M2
s

 ≡ 1

nf
a,µ

kg fcg
b,ν

. (F30)
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The condition in brackets is obtained by factoring

Tµν
(
ℓ2
)
=
m2

f

M2
s

Tµν
(
k2
)

and comparing with (F20), then we have

M2
s =

1

nf

nf∑
f=1

m2
f (F31)

for the reference mass. Evaluating (F31) for quarks gives Ms = 70.65GeV/c2; compare with Z�boson mass given in
Appendix G6: Table II.

Appendix G: Electroweak veri�cation

We compute �nite electroweak amplitudes using dimensionally regularized radiative corrections for unrenormalized
(core) functions [43, 67, 82]. One-loop self-energy functions include Σab for bosons, where

ab ∈ {γγ, γZ, ZZ, WW}

de�nes particles external to the loop, Σf for fermions (f = jσ for doublet j and component σ = ±), and vertex Λγf
µ .

For repeated indices a = b, we abbreviate Σb ≡ Σbb with b ∈ {γ, Z, W}; in general formulae applicable to γ − Z

mixing, we admit b = γZ as well for brevity. A subscript �sa� is appended to a stabilized amplitude Σ̂b ≡ Σ̂b
sa when

it is necessary to distinguish it from a corresponding renormalized amplitude Σ̂b
ra.

In Hollik's notation [43], the basic singular function

∆κ =
1

σ
− γ − ln

m2
κ

µ2
+ ln 4π , (G1)

involving a mass scale µ, di�ers from (D7) by �nite terms. For consistency, the input momentum to a loop is k with
s ≡ k2 for both bosons and fermions. Abbreviations for squared boson masses

z = m2
Z , w = m2

W , and h = m2
H

are used. In addition to (G1), core amplitudes involve �nite functions

B◦ (s,m1,m2) = −
ˆ 1

0

dx ln

[
x2s− x

(
s+m2

1 −m2
2

)
+m2

1 − iϵ

m1m2

]
, (G2)

F (s,m1,m2) = −1 +
m2

1 +m2
2

m2
1 −m2

2

ln
m1

m2
+B◦ (s,m1,m2) , (G3)

B1 (s,m1,m2) = −1

4
+

m2
1

m2
1 −m2

2

ln
m1

m2
+
m2

2 −m2
1 − s

2s
F (s,m1,m2) , (G4)

and singular expressions

B◦ (s,m1,m2) =
1

2
(∆m1 +∆m2) +B◦ (s,m1,m2) , (G5)

B1 (s,m1,m2) = −1

2

(
∆m2

+
1

2

)
+B1 (s,m1,m2) . (G6)

Scalar one-loop integrals, including (G2), are de�ned in [83].
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1. Boson self-energy corrections

For these corrections, it is useful to expand the boson self-energy

Σb (s) = Σb
(
m2

b

)
+

∞∑
n=1

∂nΣb

∂sn

∣∣∣∣
s=m2

b

(
s−m2

b

)n
. (G7)

From core amplitudes, it can be seen by inspection and dimensional analysis that averages of Σb
(
m2

b

)
and ∂Σb

∂s

∣∣∣
s=m2

b

over DCM levels in equation (21) are stationary. For mass set

{mκ} ⊆ {mf , mW , mZ , mH} ,

the DCM transform (12) is {
m2

κ

}
→
{
m2

κ

}
·
(
1 + λη2

)
. (G8)

On the mass shell, the self-energy function has the general form

Σb
(
m2

b

)
=
∑
κ

αb
κm

2
κ , (G9)

where αb
κ are dimensionless coe�cients which may depend on invariant mass ratios. Therefore, under (G8)

Σb
(
m2

b

)
→
(
1 + λη2

)
Σb
(
m2

b

)
, (G10)

and the average

Σ
b (
m2

b

)
=

1

2

∑
λ=±1

(
1 + λη2

)
Σb
(
m2

b

)
(G11)

= Σb
(
m2

b

)
over dressed states is stationary. Since the derivative ∂Σb

∂s

∣∣∣
s=m2

b

is dimensionless, it is invariant under (G8). Finally,

higher order derivatives are either zero outright, or

∂nΣb

∂sn

∣∣∣∣
s=m2

b

∼
(
m2

b

)1−n → O
(
η2(1−n)

)
(G12)

vanishes under (G8) as η → ∞ for n ≥ 2. Therefore, we have

Σ
b
(s) = Σb

(
m2

b

)
+
∂Σb

∂s

∣∣∣∣
s=m2

b

(
s−m2

b

)
. (G13)

Since the o�-shell factor s −m2
b = δk2os is stationary from (17), the entire expression (G13) is stationary under an

average over DCM levels similarly to (G11). The net stabilized amplitude

Σ̂b (s) = Σb (s)−Σ
b
(s) (G14)

satis�es stability conditions

Σ̂b
(
m2

b

)
= 0 , (G15)

∂Σ̂b (s)

∂s

∣∣∣∣∣
s=m2

b

= 0 . (G16)

Taking the real part of (G15) and (G16) yields renormalization conditions [50], which di�er from those given in
[43]. For stabilized amplitude (G14), (G15) and (G16) yield a propagator residue of unity so there is no need for
external wave function corrections as in the on-shell renormalization scheme proposed by [84]; however, inclusion of
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∆r corrections [42] discussed in Appendix G4 leads to �nite wave �eld corrections. Splitting o� singular terms (G1),
the boson self-energy can be expressed in the form

Σb (s) =
∑
κ

[
αb
κs∆κ + βb

κm
2
κ∆κ

]
+Σb

finite (s) , (G17)

where
{
αb
κ, β

b
κ

}
are constant coe�cients. Singular terms involving

{
s∆κ, m

2
κ∆κ

}
in Σ

b
cancel those in Σb, and (G14)

reduces to

Σ̂b (s) = Σb
finite (s)−Σb

finite

(
m2

b

)
−
∂Σb

finite

∂s

∣∣∣∣∣
s=m2

b

(
s−m2

b

)
. (G18)

For a free boson, the squared mass shift

δm2
b ≡ Re

[
Σb

finite

(
m2

b

)]
(G19)

represents the residual boson self-energy of the core amplitude after divergent parts of Σ
b (
m2

b

)
have canceled those

in (G17). For later reference, the polarization function is

Π̂b (s) =
Σ̂b (s)

s−m2
b

=
Σb (s)−Σb

(
m2

b

)
s−m2

b

− ∂Σb

∂s

∣∣∣∣
s=m2

b

. (G20)

Neglecting ∆r corrections, mixing angle functions cw = cos θW and sw = sin θW from equation (C10), and neutral
current constants (C24) are invariant under equation (G8). See equations (G30) and (G31) for inclusion of ∆r.
Application of (G14) to photon self-energy corrections shown in Fig. 8 yields

Σ̂γ (s) = Σγ (s)− Σ
γ
(s) (G21)

=
α

4π

4

3

∑
f

Q2
f

[(
s+ 2m2

f

)
F (s,mf ,mf )−

s

3

]

− (3s+ 4w)F (s,mW ,mW ) +
2

3
s

 ,

Σγ (s) =
α

4π

4

3

∑
f

Q2
f

[
s∆f +

(
s+ 2m2

f

)
F (s,mf ,mf )−

s

3

]
(G22)

− 3s∆W − (3s+ 4w)F (s,mW ,mW )

 ,

Σ
γ
(s) = Σγ (0) +

∂Σγ

∂s

∣∣∣∣
s=0

s , (G23)

where

Σγ (0) = 0 ,

∂Σγ

∂s

∣∣∣∣
s=0

=
α

4π

4

3

∑
f

Q2
f∆f − 3∆W − 2

3

 ,

and the sum over fermions includes color for the case of quarks. Both Σ̂γ (s) and Π̂γ (s) vanish in the Thomson limit
s → 0, and physically meaningful corrections in equation (G21) are due to incomplete cancellation for s = k2 ̸= 0.

Singular terms in Σ
γ
exactly cancel those in Σγ for all s, and there remains a term[

Σ
γ
]
finite

= −
(
δαfinite ≡

α

6π

)
s (G24)
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Figure 8. Photon self-energy and photon-Z mixing diagrams.

in the vacuum response, where δαfinite is the �nite part of renormalization constant δZγ
2 in the usual theory.

For γ − Z mixing corrections also represented in Fig. 8, we have

Σ̂γZ (s) = ΣγZ − Σ
γZ

(G25)

=
α

4π

−4

3

∑
f

Qfvf

[(
s+ 2m2

f

)
F (s,mf ,mf )−

s

3

]

+
1

cwsw

[(
3c2w +

1

6

)
s+

(
4c2w +

4

3

)
w

]
F (s,mW ,mW )− s

6cwsw

(
4c2w +

4

3

) ,

ΣγZ (s) =
α

4π

−4

3

∑
f

Qfvf

[
s∆f +

(
s+ 2m2

f

)
F (s,mf ,mf )−

s

3

]
(G26)

+
1

cwsw

[(
3c2w +

1

6

)
s+ 2w

]
∆W

+
1

cwsw

[(
3c2w +

1

6

)
s+

(
4c2w +

4

3

)
w

]
F (s,mW ,mW ) +

s

9cwsw

 ,

Σ
γZ

= ΣγZ (0) +
∂ΣγZ

∂s

∣∣∣∣
s=0

s , (G27)

where

ΣγZ (0) =
α

4π

{
2w

cwsw
∆W

}
,

∂ΣγZ

∂s

∣∣∣∣
s=0

=
α

4π

−4

3

∑
f

Qfvf∆f +
1

cwsw

[(
3c2w +

1

6

)
∆W +

1

6

(
4c2w +

4

3

)
+

1

9

] ,

and ΣγZ (0) ̸= 0 is due to non-Abelian boson loops in Fig. 8.
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Figure 9. Z-boson self-energy.

Renormalization starts with a bare charge e◦, and the correction [67]

δe
(
Πγ , ΣγZ

)
= e◦

[
δZγ

1 − 3

2
δZγ

2

]
(G28)

= e◦

[
1

2
Πγ (0)− sw

cw

ΣγZ (0)

m2
Z

]
renormalizes the charge e = e◦ + δe, where

δZγ
1 = −Πγ (0)− sw

cw

ΣγZ (0)

m2
Z

,

δZγ
2 = −Πγ (0)

are the charge and photon �eld renormalization constants, respectively. In the usual theory, arguments on the left in
equation (G28) are core functions

{
Πγ , ΣγZ

}
; however, in the stabilized theory, we utilize the complete amplitudes

(G21) and (G25) to obtain

δe
(
Π̂γ , Σ̂γZ

)
= 0 . (G29)

Therefore, e = e◦, and there is no charge renormalization.
Self-energy diagrams for the Z− and W−bosons are tabulated in Figs. 9 and 10, respectively. Due to their

complexity, analytic expressions for the unrenormalized amplitudes [43] are omitted here, but the stabilized amplitudes

are easily evaluated using (G13) and analytic expressions for partials ∂Σb

∂s . Plots of these functions are given in
Appendix G6.
Self-energies for diagrams with b ∈ {γZ, Z, W} require adjustments

Σ̂b (s) → Σ̂b (s) +
(
s−m2

b

)
∆rb (b =W,Z) , (G30)

Σ̂γZ (s) → Σ̂γZ (s) + s∆rγZ (G31)

for ∆r corrections [42] which account for variations of {gW , gZ} with respect to mW and mZ ; we have{
∆rγZ , ∆rZ , ∆rW

}
=

{
− cw
sw
,
c2w − s2w
s2w

,
c2w
s2w

}(
δm2

Z

m2
Z

− δm2
W

m2
W

)
, (G32)
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Figure 10. W-boson self-energy.

wherein �nite-on-shell-mass shifts from (G19) are

δm2
Z = Re

[
ΣZ

finite

(
m2

Z

)]
, (G33)

δm2
W = Re

[
ΣW

finite

(
m2

W

)]
. (G34)

In Appendix G4, we derive ∆rb using stability arguments. Values for squared mass ratios

{
δm2

Z

m2
Z

,
δm2

W

m2
W

}

and ∆r are given in Table II in Appendix G6.

Net amplitudes for boson self-energies are �nite and satisfy required mass shell conditions (G15) and (G16) for

b ∈ {γ, γZ, Z, W}. Amplitude Σ̂γ agrees with the result given in [43]; however,

{
Σ̂γZ , Σ̂Z , Σ̂W

}
including ∆r corrections, di�er from Hollik's results in two respects:

a) A small �nite charge renormalization α
6π = 3.87× 10−4 from (G24) is absent in

{
Σ̂Z , Σ̂W

}
, and

b) they include polarization derivative shifts in (G20) � �nite parts are given in Appendix G6: Table II.
As regards item a), inclusion of any charge renormalization would be inconsistent with the stability approach and result

(G29) in particular. For item b), �nite parts di�er depending on the renormalization scheme, and
{
Σ̂γZ , Σ̂Z , Σ̂W

}
are consistent with the scheme given in [50]; moreover, all four boson self-energies are uni�ed under the same formula
(G14). Numerical results for boson polarization functions are given in Appendix G6.
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2. Fermion self-energy corrections

For fermion self-energy corrections, we again expand the core amplitude

Σf (k) = Σf (mf ) +
∂Σf

∂�k

∣∣∣∣
�k=mf

(
�k −mf

)
+H.O.T. . (G35)

From (11), the DCM transform is

{mκ} → {mκ} · (1 + λη) , (G36)

where the mass set {mκ} ⊆ {mf , mW , mZ , µ} corresponds to terms in (G41). Upon applying equation (21) to (G35)

and noting that
{
Bi

(
m2

f ,m1,m2

)
; i = 0, 1

}
occurring in equation (G41) are invariant under (G36) applied to all

mass arguments, we obtain

Σ
f
(k)
∣∣∣
�k=mf

= Σf (mf ) . (G37)

From arguments similar to those for boson self-energies above, �k − mf is stationary from equation (16), and its
dimensionless coe�cient (�rst partial) in (G35) is invariant under (G36). The �rst partial involves derivatives of B◦
and B1 in equations (G5) and (G6), respectively. Finally, higher-order terms in equation (G35) vanish under (G36),
and we have

Σ
f
(k) = Σf (mf ) +

∂Σf

∂�k

∣∣∣∣
�k=mf

(
�k −mf

)
; (G38)

compare with (G13). The net amplitude

Σ̂f (k) = Σf (k)−Σ
f
(k) (G39)

satis�es the expected mass shell condition

Σ̂f (k)
∣∣∣
�k=mf

= 0 . (G40)

For the corrections shown in Fig. 11, we have [67]

Σf (k) = �kΣ
f
V

(
k2
)
+ �kγ5Σ

f
A

(
k2
)
+mfΣ

f
S

(
k2
)
, (G41)

where

Σf
V = − α

4π

{
Q2

f

[
2B1

(
k2;mf , µ

)
+ 1
]
+
(
v2f + a2f

) [
2B1

(
k2;mf ,mZ

)
+ 1
]

+
1

4s2w

[
2B1

(
k2;mf ,mW

)
+ 1
]}

,

Σf
A = − α

4π

{
2vfaf

[
2B1

(
k2;mf ,mZ

)
+ 1
]
− 1

4s2w

[
2B1

(
k2;mf ′ ,mW

)
+ 1
]}

, and

Σf
S = − α

4π

{
Q2

f

[
4B◦

(
k2;mf , µ

)
− 2
]
+
(
v2iσ − a2iσ

) [
4B◦

(
k2;mf ,mZ

)
− 2
]}

.

Substituting vector
(
V = �kΣ

f
V

)
, axial

(
A = �kγ5Σ

f
A

)
, and scalar

(
S = mfΣ

f
S

)
parts of equation (G41) into (G38),

we obtain

Σ
f
(k) = V (k) +A (k) + S (k) , (G42)
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where

V = �kΣ
f
V

(
m2
)
+ 2m2

f

∂Σf
V

∂k2

∣∣∣∣∣
k2=m2

f

(
�k −mf

)
,

A = −γ5�kΣf
A

(
m2

f

)
, and

S = mfΣ
f
S

(
m2
)
+ 2m2

f

∂Σf
S

∂k2

∣∣∣∣∣
k2=m2

f

(
�k −mf

)
.

The identity

∂Σf
J

∂�k
= 2�k

∂Σf
J

∂k2
(G43)

has been used to evaluate derivatives for J = {V, A, S}. For the derivative of A, we have replaced −�kγ5 = γ5�k so �k
stands to the right as required by equation (G38); one �nds

∂A

∂�k
= −γ5Σf

A , (G44)

where the symmetrized expression for the derivative

∂

∂�k

[
γ5Σ

f
A

]
=

1

2

∂

∂�k

[
γ5Σ

f
A +Σf

Aγ5

]
(G45)

=
∂Σf

A

∂k2
(
γ5�k + �kγ5

)
= 0

has also been employed. Collecting terms, the net amplitude (G39) reduces to

Σ̂f (k) = �kΣ̂V

(
k2
)
+ �kγ5Σ̂A

(
k2
)
+mf Σ̂S

(
k2
)
, (G46)

where

Σ̂V

(
k2
)

= Σf
V

(
k2
)
−Σf

V

(
m2

f

)
− 2m2

f

∂Σf
V S

∂k2

∣∣∣∣∣
k2=m2

f

,

Σ̂A

(
k2
)

= Σf
A

(
k2
)
−Σf

A

(
m2

f

)
,

Σ̂S

(
k2
)

= Σf
S

(
k2
)
−Σf

S

(
m2

f

)
+ 2m2

f

∂Σf
V S

∂k2

∣∣∣∣∣
k2=m2

f

,

and Σf
V S = Σf

V +Σf
S .

Using formulae in [43, 67], the renormalization constants are

δZV = −Σf
V

(
m2

f

)
− 2m2

f

∂Σf
V S

∂k2

∣∣∣∣∣
k2=m2

f

,

δZA = Σf
A

(
m2

f

)
,

δmf = mfΣ
f
S

(
m2

f

)
,

and it can be seen that the result (G46) agrees precisely with that obtained from renormalization. Numerical results
for fermion self-energy functions for an electron are given in Appendix G6: Fig. 17.

3. Vertex corrections

Consider the vertex corrections shown in Fig. 12; in the small fermion mass limit [82], only vector and axial vector
terms contribute, and the core amplitude is

Λγf
µ

(
k2,mf

)
= γµΛ

γf
V

(
k2,mf

)
− γµγ5Λ

γf
A

(
k2,mf

)
, (G47)
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Figure 11. Fermion self-energy.

Figure 12. Vertex corrections.

where k2 = (p′ − p)
2
. The functions

Λγf
V,A

(
k2,mf

)
= Λγf

V,A (0,mf ) + F γf
V,A

(
k2

m2
f

)
(G48)

involve singular parts at k2 = 0 and �nite form factors F γf
V,A which vanish at k2 = 0. Detailed expressions for the

functions are given in [43]. Applying equation (21) with (22), dressed form factors in equation (G48) vanish as η → ∞
in

mf (η) = mf (1 + λη) ;

therefore,

Λ
γf

µ = γµΛ
γf
V (0,mf )− γµγ5Λ

γf
A (0,mf ) , (G49)

and the net vertex amplitude from equation (20) reduces to the expected result from renormalization

Λ̂γf
µ = γµF

γf
V

(
k2

m2
f

)
− γµγ5F

γf
A

(
k2

m2
f

)
. (G50)
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4. Wave �eld renormalization and ∆r corrections

In the stabilized theory, ∆r factors for {W, Z} follow easily from the constancy of the electrical charge; squaring
equation (C23) and taking variations, we have

δe2 = δg2W s2w + g2W δs2w = 0 , (G51)

= δg2Bc
2
w + g2Bδc

2
w = 0 . (G52)

Employing equation (C10), the quadratic coupling deltas are

δg2W = −g2W∆rW , (G53)

δg2Z = δg2W + δg2B (G54)

= −g2Z∆rZ ,

where

δg2B = g2B

(
δm2

Z

m2
Z

− δm2
W

m2
W

)
.

For baseline couplings gW and gZ , free �eld propagators are modi�ed

1

k2 −m2
b

→ 1

k2 −m2
b

− 1

k2 −m2
b

Σ̂b
(
k2
) 1

k2 −m2
b

(b =W, Z) . (G55)

to include diagrams in Figs. 9 and 10. Accounting for coupling changes in equations (G53) and (G54) leads to small
departures of the propagator residue from unity according to

gb•g•gb =
g2b

k2 −m2
b

→ g2b
1−∆rb

k2 −m2
b

(G56)

which results in a replacement

Σ̂b
(
k2
)
→ Σ̂b

(
k2
)
+
(
k2 −m2

b

)
∆rb (G57)

in equation (G55), where small terms of O
(
∆rbΣ̂b

)
have been omitted.

For γ − Z mixing, Sirlin's variational method [42] yields a squared mass shift factor

δm2
γZ = −1

2
m2

Z∆r
γZ (G58)

in a Lagrangian density correction

δLγZ = δm2
γZAµZ

µ . (G59)

Taking into account equation (C13), (G58) suggests an e�ective coupling constant change δg2γZ ≡ −g2Z∆rγZ analogous

to equations (G53) and (G54). Similarly to equations (G55) and (G56), the free �eld propagator is modi�ed

1

k2 −m2
Z

→ 1−∆rγZ

k2 −m2
Z

− 1

k2
Σ̂γZ

(
k2
) 1

k2 −m2
Z

+O
(
∆rγZΣ̂γZ

)
,

and the Z�boson propagator

DZ
µν (k) ≃

−igµν
k2 −m2

Z

+ δDγZ
µν (k) (G60)

includes a correction for γ − Z mixing

δDγZ
µν (k) = igµν

{
1

k2

[
Σ̂γZ

(
k2
)
+ k2∆rγZ

] 1

k2 −m2
Z

}
(G61)
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in agreement with (G31) and equations (3.11 and 3.23) in [43].
Alternatively, standard renormalization theory (SRT) introduces mass and wave �eld renormalization constants to

construct �nite S-matrix elements and Green's functions. Renormalized amplitudes are given by [43]

Σ̂γ
ra

(
k2, Πγ

)
= Σγ

(
k2
)
+ k2δZγ ≡ k2

[
Πγ
(
k2
)
+ δZγ

]
, (G62)

Σ̂γZ
ra

(
k2, ΣγZ

)
= ΣγZ

(
k2
)
+

1

2

[
δZγZk

2 + δZZγ

(
k2 −m2

Z

)]
, (G63)

Σ̂Z
ra

(
k2, ΣZ

)
= ΣZ

(
k2
)
− δM2

Z + δZZ

(
k2 −m2

Z

)
, (G64)

Σ̂W
ra

(
k2, ΣW

)
= ΣW

(
k2
)
− δM2

W + δZW

(
k2 −m2

W

)
, (G65)

where δZZ and δZW are displacements of �eld renormalization constants

Zb = 1 + δZb (b = Z,W )

from unity, and {δZZγ , δZγZ} de�ne a correction to the γ − Z mixing propagator [85]

δDγZ
µν (k) = igµν

{
1

2

(
δZZγ

k2
+

δZγZ

k2 −m2
Z

)
+

1

k2
ΣγZ

(
k2
) 1

k2 −m2
Z

}
. (G66)

From �eld renormalization relations

W◦µ =

[
Z

1/2
W ≃ 1 +

1

2
δZW

]
Wµ , (G67)

B◦µ =

[
Z

1/2
B ≃ 1 +

1

2
δZB

]
Bµ , (G68)

and (C9), the physical �elds satisfy [
Z◦µ
A◦µ

]
=

[
1 + 1

2δZZ
1
2δZZγ

1
2δZγZ 1 + 1

2δZγ

] [
Zµ

Aµ

]
, (G69)

where subscripts '◦' denote bare quantities, and renormalization constants satisfy [84][
δZZ

δZγ

]
=

[
c2w s2w
s2w c2w

] [
δZW

δZB

]
,

δZZγ = −swcw (δZW − δZB)−∆rγZ , and

δZγZ = −swcw (δZW − δZB) + ∆rγZ .

Ordinarily, core amplitudes Σb are used in equations (G62)-(G65); however, with the stabilized amplitudes at our

disposal, we are free to replace Σb with Σ̂b
sa = Σ̂b from (G18) to more easily determine the constants. Applying mass

shell stability conditions 
Π̂γ

ra

(
0, Π̂γ

sa

)
Σ̂γZ

ra

(
0, Σ̂γZ

sa

)
Σ̂Z

ra

(
m2

Z , Σ̂
Z
sa

)
Σ̂W

ra

(
m2

W , Σ̂W
sa

)

 =
−→
0 , (G70)

only �nite wave �eld stability corrections for ∆r shown in Table I are non-zero; values for renormalization constants
from SRT are included for comparison.
Referring to (G66), the stability result δZZγ = 0 means that the photon propagator has no Z-component

δZZγ

k2
= 0 ; (G71)

consequently, there is no direct coupling between the photon and neutral current JNC for γ − Z mixing � not even
an in�nite one! On the other hand, an electromagnetic current couples to JNC via the Z with amplitude [85]

1

2
δZγZ = ∆rγZ . (G72)
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Table I. Stability and renormalization constants

Parameter Stability Renormalization

Σb Σ̂b
sa Σb

δM2
b (b = Z,W ) 0 Re

[
Σb

(
m2

b

)]
δZγ 0 −Πγ (0)

δZZγ 0 2ΣγZ(0)

m2
Z

δZγZ 2∆rγZ 2ΣγZ(0)

m2
Z

+ 2∆rγZ

δZZ ∆rZ −Πγ (0) + ∆rZ +
c2w−s2w
swcw

2ΣγZ(0)

m2
Z

δZW ∆rW −Πγ (0) + ∆rW + cw
sw

2ΣγZ(0)

m2
Z

5. Muon decay and ∆r corrections

In the Born approximation, the muon decay amplitude corresponds to a Feynman diagram
µ−fFνµ

W− }fν̄e

De−

in the Standard Model. The resulting decay rate [43]

Γ◦
µ =

α2

384π

m5
µ

s4wm
4
W

(
1− 8m2

e

m2
µ

)
, (G73)

when reconciled with the Fermi contact model prediction

ΓF
µ =

G2
Fm

5
µ

192π3

(
1− 8m2

e

m2
µ

)
, (G74)

yields the Fermi constant in lowest order

G◦
F =

πα√
2s2wm

2
W

. (G75)

With higher-order QED corrections [86, 87],

1

τµ
=
G2

Fm
5
µ

192π3
f

(
m2

e

m2
µ

)
(1 + ∆QED) (G76)

de�nes GF in terms of the precisely measured muon lifetime τµ, where

f (x) = 1− 8x− 12x2 lnx+ 8x3 − x4 , and

∆QED =
α

2π

(
25

4
− π2

)
+O

(
α2
)
.

In addition to the one-loop correction shown in ∆QED, O
(
α2
)
corrections for two-loops are also known [88�90]. These

QED corrections involve several renormalization schemes; however, the corresponding stabilized QED corrections are
�nite without renormalization as shown in Appendix E. Stability corrections for vacuum polarization involve a
subtraction of the form (E7) at k2 = 0 and are therefore equivalent to the on-shell renormalization scheme. For other
renormalization schemes; for example, the modi�ed minimal subtraction MS, ∆QED involves a coupling constant
renormalization. Ritbergen [88] gives a prescription

α (mµ) =
α

1− α
3π ln

m2
µ

m2
e

+O
(
α3
)

(G77)
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Table II. Numerical results for ∆r and derivative shifts.

Item γ γZ Z W

mb

(
GeV/c2

)
0 {0, mZ} 91.1876 80.379

δm2
b

m2
b

� � -0.1061 -0.0920

∆rb 0 0.0258 -0.0329 -0.0470

∂Σb

∂s

(
m2

b

)∣∣∣
finite

− α
6π

0.001165 -0.1142 -0.1252

relating theMS coupling constant α (mµ) to the on-shell (experimental) value α [69]. However, from equations (E11)
and (G29), the stabilized results are unique, and (G77) does not represent an intrinsic renormalization of electrical
charge in the stabilized theory.
Electroweak corrections to the muon lifetime involve ∆r corrections to the Fermi constant [42, 43, 91]

GF = G◦
F [1 + ∆r] , (G78)

where after renormalization

∆r = −∆rW − δm2
W

m2
W

+
Σ̂w (0)

m2
W

+∆r[vertex, box] , (G79)

∆r[vertex, box] =
α

4πs2w

(
6 +

7− 4s2w
2s2w

ln c2w

)
.

From a stability perspective, the �rst two terms of equation (G79) are due to �nite mass shifts (G33) and (G34);
taking into account equation (G29), variation of (G75) yields

δG◦
F = −G◦

F

[
∆rW +

δm2
W

m2
W

]
. (G80)

In standard renormalization theory, divergent bare parameters {α◦, s
◦
w, m

◦
w} replace those in equation (G75), and the

expression for ∆r includes a charge renormalization term δα◦ which is subsequently incorporated into a renormalized
coupling.

6. Numerical results

Code for generating the following numerical results is provided in Ref. [92]. Values for ∆r are tabulated in Table II
using sin2 (θW ) = 0.23122(4) and other physical constants [69].
Real parts of boson polarization functions (G20) are plotted in Figs. 13�16. Stability pro�les use amplitudes (G14)

or, equivalently, (G18) exclusive of ∆r. Results in Fig. 13 agree with those in Fig. 8 of [67] notwithstanding updated
physical constants [69]; QED results are added for comparison using an analytic result for equation (E7) given in
[93]. For numerical evaluation of photon self-energy and γ − Z mixing pro�les shown in Figs. 13�14, the stability

value at s = 0 is not represented; but analytically, Π̂γ (0) = Π̂γZ (0) = 0 from equation (G20). Di�erences between
′Stability +∆r′ pro�les shown in Figs. 14�16 and Figs. 9�11 of [67] are due to

1. ∆r impacts arising from updates to
{
ΣZ , ΣW

}
in [43] relative to [67],

2. derivative shifts in Table II, and

3. updated physical constants including a Higgs mass measurement 125.18± 0.16GeV/c2 [69].

Analytic expressions for F (s,m1,m2) given in [67] and its partials were veri�ed against numerical integration results

for all mass arguments m1 and m2 over the range 0 <
√

|k2| < 200GeV .

Electron self-energy function pro�les
{
Σ̂V , Σ̂A, Σ̂S

}
shown in Fig. 17 agree with those in Fig. 18a of [67].
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Figure 13. Stabilized electroweak photon polarization is compared with QED for electron, muon, and tau.
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Figure 14. Stabilized photon-Z mixing pro�les with/without adjustments for ∆r.
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Figure 15. Stabilized Z-boson polarization pro�les with/without adjustments for ∆r.
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Figure 16. Stabilized W-boson polarization pro�les with/without adjustments for ∆r.
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Figure 17. Electron self-energy coe�cients for vector, axial, and scalar contributions.


