
SEVENTH FRAMEWORK PROGRAMME
FP7-ICT-2009-6

BlogForever
Grant agreement no.: 269963

D4.8: Final BlogForever Platform

Editor: J. Garćıa Llopis, R. Jiménez Encinar

Revision: First Version

Dissemination Level: Public

Author(s): J. Garćıa Llopis, R. Jiménez Encinar, Ş. Postacı, A.
Çınar, G. Gkotsis, M. Rynning, M. Gulliksen, E. Banos,
N. Naziridis, P. Chatzikamaris, I. Trochidis

Due date of deliverable: May 31, 2013

Actual submission date: September 14, 2013

Start date of the project: March 01, 2011

Duration: 30 months

Lead beneficiary name: European Organization for Nuclear Research (CERN)

Abstract:

This report presents the integration of the two components, the final weblog Spider and
the final webblog digital Repository, fully functional and communicating optimally with
each other, resulting in the Final BlogForever Platform. The implementation activities
carried out during the last period as well as a detailed documentation of both components
are provided.



D4.8: Final BlogForever Platform September 14, 2013

Project co-funded by the European Commission within the Seventh
Framework Programme (2007-2013)

The BlogForever Consortium consists of:

Aristotle University of Thessaloniki (AUTH) Greece

European Organization for Nuclear Research (CERN) Switzerland

University of Glasgow (UG) UK

The University of Warwick (UW) UK

University of London (UL) UK

Technische Universitat Berlin (TUB) Germany

Cyberwatcher Norway

SRDC Yazilim Arastrirmave Gelistrirmeve Danismanlik Ticaret Limited
Sirketi (SRDC)

Turkey

Tero Ltd (Tero) Greece

Mokono GMBH Germany

Phaistos SA (Phaistos) Greece

Altec Software Development S.A. (Altec) Greece

BlogForever Consortium ii



D4.8: Final BlogForever Platform September 14, 2013

Revision History

Version Description of Change Author Date
0.2 First partial draft J. Garćıa Llopis, R.

Jiménez Encinar
20/08/2013

0.5 First draft J. Garćıa Llopis, R.
Jiménez Encinar

26/08/2013

0.6 Second draft (Implementation
descriptions addition)

J. Garćıa Llopis, R.
Jiménez Encinar, Ş.
Postacı, A. Çınar

27/08/2013

0.7 Third draft (Updates on In-
troduction, Conclusions, Future
Work, added contributions from
CW and UW)

J. Garćıa Llopis, R.
Jiménez Encinar, G.
Gkotsis, M. Rynning,
M. Gulliksen

28/08/2013

0.8 Fourth draft (General updates) J. Garćıa Llopis, R.
Jiménez Encinar,

29/08/2013

1 First version (Submitted) J. Garćıa Llopis, R.
Jiménez Encinar,

31/08/2013

1.1 Revision (Description of the
open source blog spider imple-
mentation)

E. Banos, N.
Naziridis, P. Chatzika-
maris, I. Trochidis,

11/09/2013

BlogForever Consortium iii



Table of Contents

ExecutiveSummary 1

1 Introduction 2

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Communication Mechanisms 5

2.1 Spider Communication Mechanisms . . . . . . . . . . . . . . . . . . . 5

2.2 Repository Communication Mechanisms . . . . . . . . . . . . . . . . 7

2.2.1 Data transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.1.1 Passive crawler . . . . . . . . . . . . . . . . . . . . . 7

2.2.1.2 Active crawler . . . . . . . . . . . . . . . . . . . . . 8

2.2.2 Data insertion into the repository . . . . . . . . . . . . . . . . 9

3 Spider Repository Integration 11

3.1 Repository-Spider Direction . . . . . . . . . . . . . . . . . . . . . . . 12

3.2 Spider-Repository Direction . . . . . . . . . . . . . . . . . . . . . . . 13

4 Implementation Updates 24

4.1 Spider Implementation Updates . . . . . . . . . . . . . . . . . . . . . 24

4.2 Open Source Spider Implementation . . . . . . . . . . . . . . . . . . 24

4.2.1 Software Architecture . . . . . . . . . . . . . . . . . . . . . . . 25

4.2.2 Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.3 Repository Implementation Updates . . . . . . . . . . . . . . . . . . 28

4.3.1 Newly implemented features . . . . . . . . . . . . . . . . . . . 29

4.3.2 Updated features . . . . . . . . . . . . . . . . . . . . . . . . . 36

iv



D4.8: Final BlogForever Platform September 14, 2013

5 Future Work 60

6 Conclusions 63

References 64

A Final Repository Implementation Descriptions 66

A.1 Features already in Invenio . . . . . . . . . . . . . . . . . . . . . . . . 67

A.2 List of implementation descriptions . . . . . . . . . . . . . . . . . . . 68

A.3 Features not retained . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

B Final Spider Implementation Descriptions 144

B.1 List of implementation descriptions . . . . . . . . . . . . . . . . . . . 145

B.2 Features not retained . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

C Spider API Documentation 168

D Deployment Instructions 174

D.1 Repository Deployment Instructions . . . . . . . . . . . . . . . . . . . 174

D.1.1 Software Requirements . . . . . . . . . . . . . . . . . . . . . . 174

D.1.2 Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

D.2 Spider Deployment Instructions . . . . . . . . . . . . . . . . . . . . . 178

D.2.1 Software Requirements . . . . . . . . . . . . . . . . . . . . . . 178

D.2.2 Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

BlogForever Consortium v



List of Figures

1.1 BlogForever platform overview . . . . . . . . . . . . . . . . . . . . . . 2

2.1 Common front-end, separate spiders . . . . . . . . . . . . . . . . . . . 6

2.2 Common front-end, some shared spider . . . . . . . . . . . . . . . . . 6

2.3 Passive crawler diagram . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4 Active crawler diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.5 Ingestion workflow diagram . . . . . . . . . . . . . . . . . . . . . . . 9

3.1 Ingestion workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2 MARC extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.3 Cleaning HTML process . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.4 Record and submission ID addition . . . . . . . . . . . . . . . . . . . 17

3.5 Attached files addition . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.6 Parent blog record ID addition . . . . . . . . . . . . . . . . . . . . . . 19

3.7 Parent blog visibility addition . . . . . . . . . . . . . . . . . . . . . . 20

3.8 Parent blog topics addition . . . . . . . . . . . . . . . . . . . . . . . . 21

3.9 Language addition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.10 Ingestion of original METS file in mongoDB database . . . . . . . . . 23

vi



List of Tables

4.1 Implementation Description: RF14 . . . . . . . . . . . . . . . . . . 30

4.2 Implementation Description: RF34 . . . . . . . . . . . . . . . . . . 30

4.3 Implementation Description: RF36 . . . . . . . . . . . . . . . . . . 32

4.4 Implementation Description: RF46 . . . . . . . . . . . . . . . . . . 34

4.5 Implementation Description: RF78 . . . . . . . . . . . . . . . . . . 35

4.6 Implementation Description: RF87 . . . . . . . . . . . . . . . . . . 35

4.7 Implementation Description: RF89 . . . . . . . . . . . . . . . . . . 36

4.8 Implementation Description: RF1 . . . . . . . . . . . . . . . . . . . 38

4.9 Implementation Description: RF2 . . . . . . . . . . . . . . . . . . . 42

4.10 Implementation Description: RF3 . . . . . . . . . . . . . . . . . . . 43

4.11 Implementation Description: RF29 . . . . . . . . . . . . . . . . . . 44

4.12 Implementation Description: RF52 . . . . . . . . . . . . . . . . . . 47

4.13 Implementation Description: RF62 . . . . . . . . . . . . . . . . . . 54

4.14 Implementation Description: RF65 . . . . . . . . . . . . . . . . . . 56

4.15 Implementation Description: RF73 . . . . . . . . . . . . . . . . . . 59

A.1 Implementation Description: RFID . . . . . . . . . . . . . . . . . . 66

A.2 Implementation Description: RF1 . . . . . . . . . . . . . . . . . . . 69

A.3 Implementation Description: RF2 . . . . . . . . . . . . . . . . . . . 73

A.4 Implementation Description: RF3 . . . . . . . . . . . . . . . . . . . 74

A.5 Implementation Description: RF4 . . . . . . . . . . . . . . . . . . . 75

A.6 Implementation Description: RF6 . . . . . . . . . . . . . . . . . . . 77

A.7 Implementation Description: RF9 . . . . . . . . . . . . . . . . . . . 78

A.8 Implementation Description: RF12 . . . . . . . . . . . . . . . . . . 79

vii



D4.8: Final BlogForever Platform September 14, 2013

A.9 Implementation Description: RF14 . . . . . . . . . . . . . . . . . . 80

A.10 Implementation Description: RF17 . . . . . . . . . . . . . . . . . . 80

A.11 Implementation Description: RF22 . . . . . . . . . . . . . . . . . . 82

A.12 Implementation Description: RF23 . . . . . . . . . . . . . . . . . . 82

A.13 Implementation Description: RF24 . . . . . . . . . . . . . . . . . . 83

A.14 Implementation Description: RF25 . . . . . . . . . . . . . . . . . . 84

A.15 Implementation Description: RF26 . . . . . . . . . . . . . . . . . . 85

A.16 Implementation Description: RF28 . . . . . . . . . . . . . . . . . . 86

A.17 Implementation Description: RF29 . . . . . . . . . . . . . . . . . . 86

A.18 Implementation Description: RF31 . . . . . . . . . . . . . . . . . . 90

A.19 Implementation Description: RF32 . . . . . . . . . . . . . . . . . . 91

A.20 Implementation Description: RF34 . . . . . . . . . . . . . . . . . . 92

A.21 Implementation Description: RF35 . . . . . . . . . . . . . . . . . . 93

A.22 Implementation Description: RF36 . . . . . . . . . . . . . . . . . . 94

A.23 Implementation Description: RF40 . . . . . . . . . . . . . . . . . . 95

A.24 Implementation Description: RF41 . . . . . . . . . . . . . . . . . . 96

A.25 Implementation Description: RF45 . . . . . . . . . . . . . . . . . . 97

A.26 Implementation Description: RF46 . . . . . . . . . . . . . . . . . . 98

A.27 Implementation Description: RF47 . . . . . . . . . . . . . . . . . . 100

A.28 Implementation Description: RF48 . . . . . . . . . . . . . . . . . . 101

A.29 Implementation Description: RF52 . . . . . . . . . . . . . . . . . . 104

A.30 Implementation Description: RF53 . . . . . . . . . . . . . . . . . . 105

A.31 Implementation Description: RF54 . . . . . . . . . . . . . . . . . . 106

A.32 Implementation Description: RF57-58-61 . . . . . . . . . . . . . . . 107

A.33 Implementation Description: RF59 . . . . . . . . . . . . . . . . . . 108

A.34 Implementation Description: RF62 . . . . . . . . . . . . . . . . . . 115

A.35 Implementation Description: RF64 . . . . . . . . . . . . . . . . . . 116

A.36 Implementation Description: RF65 . . . . . . . . . . . . . . . . . . 118

A.37 Implementation Description: RF66 . . . . . . . . . . . . . . . . . . 119

BlogForever Consortium viii



D4.8: Final BlogForever Platform September 14, 2013

A.38 Implementation Description: RF67 . . . . . . . . . . . . . . . . . . 120

A.39 Implementation Description: RF70 . . . . . . . . . . . . . . . . . . 129

A.40 Implementation Description: RF71 . . . . . . . . . . . . . . . . . . 134

A.41 Implementation Description: RF72 . . . . . . . . . . . . . . . . . . 136

A.42 Implementation Description: RF73 . . . . . . . . . . . . . . . . . . 139

A.43 Implementation Description: RF78 . . . . . . . . . . . . . . . . . . 140

A.44 Implementation Description: RF87 . . . . . . . . . . . . . . . . . . 141

A.45 Implementation Description: RF88 . . . . . . . . . . . . . . . . . . 141

A.46 Implementation Description: RF89 . . . . . . . . . . . . . . . . . . 142

B.1 Implementation Description: SFID . . . . . . . . . . . . . . . . . . 144

B.2 Implementation Description: SF1 . . . . . . . . . . . . . . . . . . . 146

B.3 Implementation Description: SF2 . . . . . . . . . . . . . . . . . . . 147

B.4 Implementation Description: SF3 . . . . . . . . . . . . . . . . . . . 149

B.5 Implementation Description: SF4 . . . . . . . . . . . . . . . . . . . 150

B.6 Implementation Description: SF5 . . . . . . . . . . . . . . . . . . . 151

B.7 Implementation Description: SF6 . . . . . . . . . . . . . . . . . . . 152

B.8 Implementation Description: SF7 . . . . . . . . . . . . . . . . . . . 152

B.9 Implementation Description: SF8 . . . . . . . . . . . . . . . . . . . 153

B.10 Implementation Description: SF10 . . . . . . . . . . . . . . . . . . 154

B.11 Implementation Description: SF11 . . . . . . . . . . . . . . . . . . 156

B.12 Implementation Description: SF12 . . . . . . . . . . . . . . . . . . 157

B.13 Implementation Description: SF13 . . . . . . . . . . . . . . . . . . 157

B.14 Implementation Description: SF14 . . . . . . . . . . . . . . . . . . 158

B.15 Implementation Description: SF15 . . . . . . . . . . . . . . . . . . 159

B.16 Implementation Description: SF16 . . . . . . . . . . . . . . . . . . 160

B.17 Implementation Description: SF17 . . . . . . . . . . . . . . . . . . 161

B.18 Implementation Description: SF18 . . . . . . . . . . . . . . . . . . 162

B.19 Implementation Description: SF19 . . . . . . . . . . . . . . . . . . 163

B.20 Implementation Description: SF20 . . . . . . . . . . . . . . . . . . 164

BlogForever Consortium ix



D4.8: Final BlogForever Platform September 14, 2013

B.21 Implementation Description: SF21 . . . . . . . . . . . . . . . . . . 165

B.22 Implementation Description: SF22 . . . . . . . . . . . . . . . . . . 166

BlogForever Consortium x



D4.8: Final BlogForever Platform September 14, 2013

Executive Summary

This document presents the work conducted for the integration of the final Weblog
Digital Repository Component presented in D4.7: Final Weblog Digital Repository
Component [1] and the final Weblog Spider Component presented in D4.6: Final
Weblog Spider Component [2].

The communication capacities of each component are described in Chapter 2.
Chapter 3 shows how those mechanisms have been used during the integration
process which allow the communication between the Spider component and the
Repository component. The latest implementation work done for each component
is described in Chapter 4. Finally, Chapter 5 presents a set of suggestions to further
extend the functionality of the BlogForever platform.

A demo of the latest Weblog Digital Repository version is available at:
https://blogforever.cern.ch

BlogForever Consortium 1

https://blogforever.cern.ch


D4.8: Final BlogForever Platform September 14, 2013

Chapter 1

Introduction

The BlogForever project goal was to develop solutions for aggregating, preserving,
managing and disseminating blogs. To achieve this goal, the BlogForever
project aimed to develop a software platform that enables real-time harvesting
and preservation of blog entities to facilitate extensive search and exploration
functionalities of the archived blogs.

The BlogForever platform consists of two main software components: the Spider
and the digital Repository. The Spider is responsible for crawling all the necessary
blog data and characteristics designated for preservation while the Repository is
responsible for long term archiving, preservation and management of the blogs, as
well as providing facilities for further analysis and reuse of the content.

Figure 1.1: BlogForever platform overview

This deliverable intends to describe the integration between the two components:
the weblog Spider and the digital Repository.

Finally note that, in the following text, the words weblog and blog will be used to
describe the same concept, as well as spider and crawler.

BlogForever Consortium 2



D4.8: Final BlogForever Platform September 14, 2013

1.1 Background

The BlogForever Description of Work (DoW) describes the objectives of the
digital repository component as “being responsible for weblog data preservation.
The digital repository will ensure weblog proliferation, safeguard their integrity,
authenticity and long-term accessibility over time, and allow for better sharing and
re-using of contained knowledge” [3].

Developing such a comprehensive archiving system from scratch is rather difficult
and time consuming, and therefore avoided since there are many open-source
archiving solutions. In this respect, the archiving system was selected as basis
of the digital repository component was the Invenio1 software suite developed at
CERN2, which is also one of the partners involved in the BlogForever project.

In order to define how Invenio ought to be extended and modified, a list of require-
ments gathered from DoW, a weblog survey and 26 semi-structured interviews,
were presented in D4.1: User Requirements and Platform Specifications [4]. Based
on these requirements, 89 repository features, to be built on top of Invenio, were
defined in D4.4: Digital Repository Component Design[5] as part of the design of
the repository, in order to develop a complete digital repository for blogs. These fea-
tures follow the metadata structure and preservation recommendations previously
given by WP2 (Weblog Structure and Semantics in D2.2: Weblog Data Model [6])
and WP3 (The BlogForever Policies in D3.1: Preservation Strategy Report [7]).

The main goal of Task 4.5: Implementation of the digital repository component
was to modify, to extend and to customize the vanilla Invenio source code by
implementing the set of 89 repository features defined, and hence, to fulfill the
BlogForever repository requirements.

In order to accomplish this goal, an initial prototype of the repository was delivered
in D4.5: Initial weblog digital repository prototype[8], and the final Repository
component was presented in D4.7: Final Weblog Digital Repository Component [1],
which extends the initial prototype with the implementation of not only new
features, but also updates to the existing ones.

Regarding the Spider, the BlogForever Description of Work (DoW) describes it as
“capable of searching, harvesting and analysing large volumes of weblogs” [3]. The
Spider design was presented in D4.2: Weblog spider component design[9] based on
the input from D2.4, D2.5 and D2.6. A first prototype was presented in D4.3: Initial
Weblog Spider Prototype[10] and the latest updates that the final version includes
were described in D4.6: Final Weblog Spider Component [2].

The integration of the final Repository and the final Spider components is the
outcome of the task T4.6: Integration and Standardization, as well as the purpose
of this deliverable, resulting in the final BlogForever prototype platform.

Last but not least, implementation activities performed in WP4 are evaluated in
WP5. To be more specific, implemented features are tested and validated during

1https://invenio-software.org/
2http://www.cern.ch/

BlogForever Consortium 3



D4.8: Final BlogForever Platform September 14, 2013

Task 5.2: Implementation of the case studies based on the 6 case studies designed
in D5.1: Design and Specification of Case Studies [11]. Since the implementation
phase adopts an agile approach, testing phase adopts as well principles of agile
testing which require testing to be an integral part of the software development.
Moreover, feedback retrieved from both, internal and external testers, is used to
improve the initial prototype towards the final digital repository component.

BlogForever Consortium 4



D4.8: Final BlogForever Platform September 14, 2013

Chapter 2

Communication Mechanisms

Both components, the spider and the repository, have been designed in a way that
avoids mutual dependency. They have communication mechanisms that let them
work together but at the same time makes them flexible. In this Chapter the
spider API and how any other repository could use it will be described. Also the
repository’s plugin mechanisms that let it communicate potentially with any spider.

How these communication mechanisms of both components have been used in the
specific case of the BlogForever platform is detailed in Chapter 3.

2.1 Spider Communication Mechanisms

The Spider component is designed to have one front-end that serves as a management
tool and a common spider communication endpoint, and have one or multiple spider
installations. Because of this structure it is easy to scale up with more back-
end when time comes. The communication between the front-end and the spider
uses WCF1 (Windows Communication Foundation) which is a service-oriented
architecture principle to support distributed computing when services have remote
consumers. Each service exposes its contract via one or more endpoints. An
endpoint has an address and binding properties that specifies how the data will
be transferred. It supports the following:

• Http binding

• Msmq binding

• Net Named Pipe binding

• Net Peer binding

• Net TCP binding

• UDP binding

• Web Http binding

• WSDual Http binding

1http://msdn.microsoft.com/en-us/library/ms731082.aspx

BlogForever Consortium 5



D4.8: Final BlogForever Platform September 14, 2013

• WS Http binding

There is no security mechanism attached to the communication between the front-
end and the spiders. The same communication is used between the front-end and
the world but with an extra security layer attached. These are the possible spider
setups:

1. Common front-end, separate spiders

Figure 2.1: Common front-end, separate spiders

2. Common front-end, shared spiders

Figure 2.2: Common front-end, shared spider

The workflow of the spider is as following:

1. Startup

2. External client inserts one or more links

3. The system processes all unknown URLs and classifies them as

BlogForever Consortium 6



D4.8: Final BlogForever Platform September 14, 2013

(a) Blog

(b) Unknown

(c) Invalid

4. For each blog that has been classified create a rule set on how the given blog
should processed.

5. For each blog that has been analyzed, perform extraction of content and store
the result within a local search engine (Lucene2)

6. Repeat the process.

7. Client connects to the search engine and gets the latest crawled entities
(blog/post/comment and binaries).

One of the methods is built in such a way that it converts the internal representation
of the different objects (Blog, Post and Comment) into XML using XML serialization
and XSLT transformation. The output from this method can be rewritten using the
XSLT transformation to convert it to the appropriate format.

2.2 Repository Communication Mechanisms

The Repository component is very flexible regarding the communication with the
crawler. It supports a system based on plugins that allow it to be customized in
order to adapt it to any crawler. In the ingestion workflow we can differentiate
2 main stages: The first one is getting the crawler data to the repository servers
(tagged as (1) in 2.3 and 2.4) It will be discussed in 2.2.1. The second one is
inserting this data into the repository database (tagged as (2) in 2.3 and 2.4). It
will be discussed in 2.2.2. For each of these 2 stages the repository supports the
usage of custom plugins.

2.2.1 Data transfer

Depending on the mechanism chosen for the first stage, the crawlers can be
categorized in 2 groups: passive crawlers and active crawlers. The repository is
able to communicate with both kinds of crawlers.

2.2.1.1 Passive crawler

The crawler offers some kind of querying mechanism that allows the repository to
take control of the data download. The repository would be responsible of fetching
the newly crawled data, download it to the repository servers and launch the inges-
tion task. In Figure 2.3, both (1) and (2) are blue because it is the repository who

2http://lucene.apache.org/

BlogForever Consortium 7



D4.8: Final BlogForever Platform September 14, 2013

controls both stages. Note that the fetcher is also part of the repository.

In this case, a fetcher component is needed. This fetcher would use the crawler’s
querying mechanisms to identify which files should be downloaded and will manage
this download. The best way to implement such a fetcher in the repository would
be using a tasklet. Tasklets are plugins that benefit from all the scheduling options
that daemons have in Invenio. By writing a simple tasklet (Python code plugin)
the developers are able to schedule the execution periodically, set the hours of the
day when the tasklet is allowed to run, set its priority in the tasks queue and get a
complete log of the tasklet execution, among other facilities.

Figure 2.3: Passive crawler diagram

2.2.1.2 Active crawler

The crawler is able to push data to the repository servers (via FTP, for example).
The repository would only be responsible of launching the ingestion task for the
newly received data. Note that in Figure 2.4 (1) has the same color than the spider
because it is the spider who pushes the crawled data.

In this case, the data transfer stage and its management are completely transparent
to the repository. The administrators would need to configure the BatchUpload
functionality of the repository. This tool, available in the Invenio code, checks
periodically the file system and launches the BibUpload tasks. The BibUpload
tasks will be introduced in the next subsection 2.2.2.

BlogForever Consortium 8



D4.8: Final BlogForever Platform September 14, 2013

Figure 2.4: Active crawler diagram

2.2.2 Data insertion into the repository

The second stage inserts the data from the file system into the repository database
and therefore creates Invenio-like records. The upload of records into Invenio is
performed by BibUpload. Since the data coming from the fetcher may not be
compatible with BibUpload, 2 different plugins have been added to the repository
at this stage. They are of course optional and are part of the BibUpload task.
Therefore, the workflow of the second stage of the ingestion, the data upload into
the repository, results in the following 5 steps. The numeration corresponds to the
numbers in Figure 2.5.

Figure 2.5: Ingestion workflow diagram

1. File system: Initially the files are stored in the file system, regardless how
they arrived there during the first stage. It is recommended to use a multi-level
directory structure for better scalability — the number of files to store for each
record might be high and storing all the files in the same directory would slow
down the process.

2. BibUpload task submission: The BibUpload task is submitted into the
repository task queue scheduler: BibSched. The submission can be done by
BatchUpload or by the fetcher itself. When calling to BibUpload, on top of

BlogForever Consortium 9



D4.8: Final BlogForever Platform September 14, 2013

the rest of the options, 2 extra arguments can be passed. They are the names
of the pre- and post-ingestion plugins to be used.

3. Pre-ingestion: This plugin can be used to transform the data and metadata
coming from the crawler into an Invenio record that the repository can
understand. Also, considering that any later modification of the metadata
will result in a new BibUpload task being launched, it is recommended to do
all the transformation and metadata enrichment before the upload. This will
save many later BibUpload calls and will avoid overloading BibSched — the
queue manager.

4. Upload: The record metadata is inserted into the repository database. Also
the attached files are uploaded to the repository own file management system:
BibDocFile.

5. Post-ingestion: This plugin can be used to perform tasks that only make
sense if the upload has been successful. It can also be used to clean up the file
system of downloaded files once they have been inserted into the repository.

BlogForever Consortium 10



D4.8: Final BlogForever Platform September 14, 2013

Chapter 3

Spider Repository Integration

The purpose of T4.6: Integration and Standardization, is “to develop the
BlogForever prototype platform, ensuring interoperability and comprising the final
weblog Spider component and the final weblog digital Repository component, fully
functional and communicating optimally with each other” [3].

The mechanisms defined with the aim of letting both components of the platform —
the Spider and the Repository — communicate each other, were explained in detail
in Chapter 2. Since this is clear, now is time to explain how these communication
mechanisms have been used within the specific BlogForever’s use case.

The communication between the Spider and the Repository components was
designed in the deliverable D4.4[5] to allow this process to occur in both directions:
the Repository sends to the spider the new blog URLs submitted by users
(repository-spider direction), and the Repository retrieves the newly crawled content
by the Spider as well as ingests it into the repository database (spider-repository
direction).

The ingestion workflow (represented in Figure 3.1) has as a starting point the
Repository. Blog URLs can be inserted into the system through the submission web
interface, and also by running a command-line tool (just available for administrators)
that allows the submission of a batch of new URLs. Once the submission of a blog
URL has taken place, the blog URL is sent to the Spider by using the spider web
service API (1), so it can start crawling the content of the specific blog, and a new
empty record is created and stored into a special hidden collection named Provisional
Blogs (2). This collection contains all the empty blog records that have been created
after the submission of the corresponding blog URLs.

BlogForever Consortium 11



D4.8: Final BlogForever Platform September 14, 2013

Figure 3.1: Ingestion workflow

In parallel with the submission procedure and the push action to the Spider, the
Repository is periodically querying the Spider to check if there is any new content
available to be downloaded (3). If so, once a blog URL has been processed by the
Spider, the Repository fetches all the content associated to this blog URL (including
the blog record itself)(4), the empty blog record that belongs to the Provisional Blogs
collection and has the same URL is enriched with the metadata of the blog record
retrieved from the Spider, and becomes part of the Blogs collection instead of the
Provisional Blogs collection (5). Therefore, the Repository is also the component
where the ingestion workflow ends.

3.1 Repository-Spider Direction

As mentioned in the introduction of this Chapter, the ingestion workflow has as a
starting point the Repository. Blog URLs can be inserted into the system through
both ways, the submission web interface and by running a command-line tool named
BlogUploader (just available for administrators) that allows the submission of a
batch of new URLs.

Once a blog URL is submitted through one of the two mechanisms mentioned above,
the blog URL is directly sent to the Spider by using the spider web service API.
The spider web service method that is invoked at this step is:

BlogForever Consortium 12



D4.8: Final BlogForever Platform September 14, 2013

AddWatchPoints(xs:string apiKey, ns7:ArrayOfstring watchPoints)

The Repository will be constantly checking the status of the submitted blog URLs
in the spider side. This will be explained in more detail in the following Section
3.2.

3.2 Spider-Repository Direction

As mentioned in Chapter 2, the crawlers can be categorized in 2 different groups:
passive and active. For the BlogForever specific use case, the crawler is passive,
being the repository the active component.

The ingestion process carried out by the Repository is done in 2 different phases.
In the first phase, the content is fetched from the Spider component, while in the
second phase, the retrieved content is inserted into the repository database.

In order to accomplish the objective of the first phase (to retrieve the content crawled
by the Spider) a new tasklet called bst fetch records from spider.py has been
implemented, which allows the Repository to fetch content from the Spider by using
its web service API (see Appendix C for more details). Note that, in the following
text, we would also refer to this tasklet as fetcher, following the terminology used
in Chapter 2.

The parameters defined to be recognized by this tasklet are described as follows:

• api key: This is the API key needed to connect to a specific Spider instance.

• url: This parameter corresponds to the url of the spider web service API we
are accessing to.

• constant set: This is the number of records that will be fetched and processed
at once.

• id max: This is the maximum record id to be fetched from the Spider which
corresponds to the maximum value for a 32-bit signed integer (2147483647).

The steps that the fetcher follows to achieve its goal are:

1. To establish connection with the Spider using the API key provided and
the corresponding web service URL. By default the tasklet will use the
API key and the URL specified in the variables CFG SPIDER API KEY and
CFG SPIDER WEBSERVICE URL.

2. To check the status of the submitted blog URLs in the spider side. The set of
possible values is: new (URL still not processes), unknown (failed, we do not
know what the URL is), processing (just wait), invalid (failed, page was not
found), entity (success, WatchPoint created), forward (same as entity but the
submitted URL was forwarded to another entity), queued (same as processing),
finished (success), failed (temporarily not working, status will eventually change

BlogForever Consortium 13



D4.8: Final BlogForever Platform September 14, 2013

to entity, forward or invalid). The spider web service method that the fetcher
invokes to get the status of the URLs is:

GetUriState(xs:string apiKey, xs:string uri)

If the status is unknown, invalid or failed, then the corresponding blog will be
deleted from the Provisional Blogs collection since the Spider will never crawl
this blog and the content will never come to the Repository. If the status is
forward, the URL of the corresponding blog will be updated with the new one.

3. To retrieve the id of the last record that was fetched in the last execution of the
tasklet in order to start downloading records from there.

4. To download the list of spider records crawled since the last execution of the
fetcher. At this step the fetcher retrieves a set of records, for each record gets the
METS file, as well as all its attached files (snapshot, css, html. . . ), and validates
the content of each of them. All the files are stored in temporary directories
of the file system and the METS file is sent to the BibUpload task, which will
carry out the transformation of the MARC embedded in the METS file into
an Invenio-like MARC record, as well as the ingestion of the record into the
repository database.

The spider web service methods that the fetcher invokes at this step are:

SearchEntities(xs:string apiKey, ns4:SearchRequest request)

GetDocumentAsMets(xs:string apiKey, xs:int documentId)

GetDocumentStorage(xs:string apiKey, xs:int documentId)

GetDocument(xs:string apiKey, xs:int documentId, xs:string filename)

As mentioned above, the fetcher invokes the BibUpload task so start uploading
records to the repository database, taken as input the METS file retrieved from the
Spider. This action corresponds to the second phase of the ingestion process.

In Chapter 2 it was mentioned that BibUpload has been extended with two new
plugins with the objective of pre- and post-processing the records retrieved from the
Spider to make them compatible with Invenio, as well as for preservation purposes.
These two implemented plugins are described below.

The pre-ingestion plugin has been implemented as bp pre ingestion.py. The tasks
performed at this stage are:

• Extracts the MARC from the METS received from the Spider. This MARC
will be used as base to create an Invenio record into the Repository and it will
be also enriched with new metadata as it is explained below.

BlogForever Consortium 14



D4.8: Final BlogForever Platform September 14, 2013

Figure 3.2: MARC extraction

• The HTML included in MARC as text content is cleaned for 2 reasons: to
remove tags that might affect the repository rendering style, and to scape the
remaining tags so they do not affect the validity of the document when it is
exported to MARCXML.

BlogForever Consortium 15



D4.8: Final BlogForever Platform September 14, 2013

Figure 3.3: Cleaning HTML process

• The record ID and the submission ID are added in the corresponding MARC
tags. First, the code checks whether the record already exists in the Repository.
In this case, the existing record ID will be added and the rest of the process
will know that this is an update of an existing record. If it does not exist,
a new record ID is created. The submission ID is the identifier used by the
Spider.

BlogForever Consortium 16



D4.8: Final BlogForever Platform September 14, 2013

Figure 3.4: Record and submission ID addition

• The attached files are also included in the Invenio record. With this purpose,
FFT1 tags are used to attach not just the files fetched from the Spider (images,
etc.) but also the original METS file, and the HTML and CSS files crawled
from the original web page.

1http://invenio-demo.cern.ch/help/admin/bibupload-admin-guide#3.6

BlogForever Consortium 17



D4.8: Final BlogForever Platform September 14, 2013

Figure 3.5: Attached files addition

• In the case of Posts and Comments, they have a blog parent or a post parent
record, respectively. The record ID of the parent blog or parent post is located
and used to populate the corresponding MARC tag. This makes much simpler
and quicker to perform usual tasks in the Repository, like retrieving the list of
all the Posts of a Blog, or all the Comments of a Post.

BlogForever Consortium 18



D4.8: Final BlogForever Platform September 14, 2013

Figure 3.6: Parent blog record ID addition

• At submission time, the user decides the visibility of the blog (public,
restricted, private). It is at pre-ingestion time when Posts and Comments
inherit the visibility of the parent blog.

BlogForever Consortium 19



D4.8: Final BlogForever Platform September 14, 2013

Figure 3.7: Parent blog visibility addition

• At submission time, the user selects which topic/s the blog belongs to. It is at
pre-ingestion time when Posts and Comments inherit the topic/s of the parent
blog.

BlogForever Consortium 20



D4.8: Final BlogForever Platform September 14, 2013

Figure 3.8: Parent blog topics addition

• The language in which the records are written is not provided by the Spider
so this is the moment, at pre-ingestion time, to detect the language of the
records and to add it to the MARC in the corresponding tag. The language is
needed in order to be able to translate the content of the record to a different
language.

BlogForever Consortium 21



D4.8: Final BlogForever Platform September 14, 2013

Figure 3.9: Language addition

Once the record is ready, it is inserted into the repository database by BibUpload.
If this action ends with success, the post-ingestion plugin will be executed and will
store the original METS file into the mongoDB for preservation purposes. It has
been implemented as the BibUpload plugin named bp post ingestion.py. The
tasks performed at this stage are:

• Gets the original METS file as it comes from the pre-ingestion plugin.

• Creates an XML tree from the METS file and extracts the record type (Blog,
Post, Comment, Page).

• Identifies the Invenio record that corresponds to the METS file.

• The BibIngest module stores the original METS file in the submission database
(mongoDB) using the record ID as identifier.

BlogForever Consortium 22



D4.8: Final BlogForever Platform September 14, 2013

Figure 3.10: Ingestion of original METS file in mongoDB database

BlogForever Consortium 23



D4.8: Final BlogForever Platform September 14, 2013

Chapter 4

Implementation Updates

During the last period of the project — since the submission of D4.6[2] and D4.7[1]
— the development tasks have continued. This Section presents the implementation
descriptions of the newly implemented features and the ones that have been
fixed/updated during the last period.

The BlogForever project has used an iterative development for WP4 development
processes. According to the DoW: “The design of Task 4.4 will be implemented
through iterations. During these iterations, a new modification or add-on will be
implemented, tested and documented each time” [3]. This continuous feedback from
WP5 has been used to improve the stability and usability of the platform. WP4
has taken into consideration every suggestion and bug report coming from WP5
and addressed them one-by-one. All the bugs reported have been marked as solved
in the bug tracking system used to communicate WP4 and WP5 and most of the
usability suggestions have been implemented and are now part of the user interface.

4.1 Spider Implementation Updates

The weblog Spider was finalized by 1st May 2013. This final component was
documented in the deliverable D4.6 [2]. There has been no additional features
included after this implementation.

The last remaining 4 months the Spider has been used for several case studies and
run on separate servers for CERN and AUTH.

This operation has resulted in some minor debugging and investigations of more
type of blogs.

4.2 Open Source Spider Implementation

In this section, we present the open source BlogForever spider software architecture
and operation.

BlogForever Consortium 24



D4.8: Final BlogForever Platform September 14, 2013

This software is developed in parallel with the proprietary BlogForever spider
designed [9] and implemented [2] as part of the original project description of
work [3]. This implementation was necessary for two reasons. First, to be able
to implement the BlogForever Business Exploitation Plan [12], which includes the
provision of support services for the BlogForever downloadable open source software.
Second, to experiment with the Spider - Repository Integration possibities [5] and
the development of multiple spiders which communicate in the same standard way
with the BlogForever repository component.

In general, the features of the open source spider are implemented according to the
BlogForever spider design as specified at D4.2: Weblog spider component design [9].
The difference between the open source spider and the proprietary spider is that
the former uses python and open source technologies whereas the latter uses the
proprietary .NET framework.

The first version of the open source weblog spider was finalised by the end of August
2013, but its development continues beyond the context of the BlogForever project.

4.2.1 Software Architecture

The development and operation of the open source spider was performed using
debian linux 6. The software requirements of the open source spider are:

• Python 2.6 : The version of python available in debian stable. It is also the
version of python used in the BlogForever Repository.

• python-lxml : Standard python library to manipulate XML and HTML
documents.

• python-greenlet : Python library necessary to implement lightweight in-process
concurrent programming. This is necessary for the architecture of the spider.

• libevent-dev : An event notification library to execute callback functions when
specific events occur on a file descriptor or after a timeout has been reached.

• python-mysqldb: Standard python library to implement mysql communication.

• virtualenv : A tool to implement isolated development environments. This
is necessary to handle dependencies and versions, and indirectly permissions,
during development and deployment.

• Mysql 5+: Database server

• Redis 2.6+: Nosql, advanced key-value store used for queue management.

The main modules of the open source spider are the following:

• blog manager module handles all blog related operations. Including talking to
the database and coordinating all subsequent manager classes to process blogs.

• blogpost manager module contains all methods related to the processing of
posts and post content. Those methods are exposed using a class called

BlogForever Consortium 25



D4.8: Final BlogForever Platform September 14, 2013

blogpost manager which wraps around the complex process of downloading
and caching the post content.

• database manager module contains the ORM classes that are used throughout
the spider project to communicate with the database. It is based on
SQLAlchemy.

• entity metadata is a module that handles the gathering of metadata from an
entity page and local cache content. It accepts a dictionary of rules in the form
of { metadata key name : XPath to value } where the XPath is a valid XPath
string defining how can we get to the value given an entity’s html markup
code.

• filesystem manager is a module that manages all operations related to the local
cache and filesystem.

• logger factory module is an auxilliary class that builds logging.logger objects
using a uniform log format and handler. It also contains a runtime patch for
the logging library, so that every logger built after the patching, can have new
log methods. For the purposes of the BlogForever Spider, the new method
implemented is the logger.update() method.

• metadata manager module handles the collection of metadata from the content
of a specific entity. It makes use of a generic system that is described in rules.py.
In short, it accepts a dictionary of XPath rules that are used to identify the
blog engine. And after the engine becomes known, then rules, specific to the
blog engine, are used to retrieve possible metadata.

• ping server monitor module monitors the pingservers provided and returns
all the blogs both present in the fresh pingserver results and in the spider’s
database.

• policy module implements a configurable policy system for the update of the
blogs in the BlogForever spider database.

• rss autodetector is a class that handles the detection of rss feed links given
the HTML markup code of a blog. It uses feedparser, python’s universal feed
parser to detect if a given link is a valid feed or not.

• rss manager is a module that handles the detection, validation and updating of
rss feed links, extracted from blog sites. The methods of the class are exposed
by a class called rss manager.

• rss update monitor is the class that handles the monitoring of rss feeds. It will
tell if a feed has been updated with a post or comment.

• urlops module is a collection of function related to the processing and
validation of URLs and remote resources. It contains methods to normalize
URLs and download their targets.

• xml manager module is responsible for building the necessary information for
the implementation of the SOAP methods. It can build the responses for:
SearchEntities, GetDocumentAsMets, GetFileStorageInfo and GetDocument
API commands.

The file organisation of the software can be summarised as follows:

BlogForever Consortium 26



D4.8: Final BlogForever Platform September 14, 2013

Folder structure:

• spider/ : all the python source code. Note that in all source code files, there
are docstrings describing them.

• storage/ : all blog entities content is saved in this folder (tree structure created
using sha1 of the entity url (basically, the entity id)

• venv/ : virtual environment

• log/ : all log files

Executables:

• launcher.sh spawns the workers

• soap.py runs the SOAP server

• update.py runs the spider (updates all blogs)

Configuration files:

• settings.py : universal configuration file

• rqworker configuration.py : rqworkers are background workers running tasks,
this configuration is used when they are invoked.

• rules.py : metadata extraction rules for entities

4.2.2 Operation

The basic steps to operate the software are the following:

1. Install all required software as described in the previous section. Debian linux
is the preferred operating system.

2. Download and extract the open source spider from the blogforever.eu website
1.

3. Create mysql database and account.

4. Edit configuration files (settings.py and rqworker configuration.py).

5. execute launcher.sh. This spawns the rqworkers and traps the SIGINT so you
can shut them down in batch. In the next versions, the launcher.sh script will
run everything from the SOAP service to the update script.

6. To add and remove blog(s), use the cli tool blog manage.py:

(a) -[-a]dd : it accepts a list of blog urls separated by space and adds them
to the spider blog list. Usage:
./blog manage.py –add http://url.1.com http://url.2.com ...
cat bloglist.txt — ./blog manage.py –add

1http://blogforever.eu

BlogForever Consortium 27

http://blogforever.eu


D4.8: Final BlogForever Platform September 14, 2013

(b) -[-r]emove : it accepts a list of blog urls and if found in the spider’s blog
list, it removes them. (Note: the blogs are assigned the status ’deleted’,
but are not removed from the database.

7. To update the blogs in the spider, you can run (or schedule) the update.py
script which handles it.

8. To raise the SOAP service you can run the soap.py script. Note that the SOAP
service is compliant with the BlogForever repository - spider communication
protocol.

The internals of the weblog harvesting process can be summarised as follows:

• There are three different actions in harvesting

1. New entity (blog, post, comment)

2. Update entity (blog, post, comment)

3. Download content (blog, post, comment)

• In general, data are stored in mysql tables and job queues are stored in Redis.
Job queues are populated with any type of the aforementioned actions. Job
queues are based on Python RQ.

• RQ workers monitor continuously the queues continuously and execute the
jobs. As soon as a job is finished, the relevant database tables and files in
storage are updated. More specifically:

1. New Entity: This process involves the registration of new entities to
process.

(a) A new blog is defined by the user (add blog functions) or by the SOAP
Service request (Add blog methods).

(b) A new post / comment is idenfied by parsing the blog feeds.

(c) As soon as a new entity is detected proceed to Action 3. Download
content is invoked.

2. Update entity: Check blog feeds to identify new items to be processed.
If a new entity is detected, then Action 1. New Entity, is invoked. This
Action is executed periodically via RQ-scheduler.

3. Download content:

(a) Using wget, mirror all entity web content (html, css, js, images, etc.)
and extract relevant metadata from downloaded files.

(b) Finally, generate the METS XML and store it in mets content
database table.

4.3 Repository Implementation Updates

This Section presents the latest development work done whitin the Repository, which
includes the implementation descriptions of the newly implemented features as well
as the updates done on the already implemented ones.

BlogForever Consortium 28



D4.8: Final BlogForever Platform September 14, 2013

4.3.1 Newly implemented features

In Chapter 2 of D4.7[1] a set of postponed features was listed. All these 8 features
have been implemented and their implementation descriptions can be found in this
subsection.

While the other 7 are features that were postponed, the feature RF87 - The
archive transforms the SIPS received from the spider to AIPs is a different case
since its design was updated in D4.7[1] according to the feedback received from
WP3. The current design and implementation of this feature fulfills the preservation
recommendations coming from D3.1[7] and hence enhances the OAIS compliance of
the Repository.

The list of the newly implemented features and their implementation descriptions
can be found below:

• RF14 - Descriptive statistics are offered by records

• RF34 - The archive displays and suggests similar records to the user

• RF36 - The archive identifies and stores the topic of blogs and blog posts to
let users navigate through the archive by topic

• RF46 - Users can create personal collections of their favourite blogs

• RF56 - The archive provides a journal view of the new blog

• RF78 - The archive displays content after filtering it with user preferences

• RF87 - The archive transforms the SIPS received from the spider to AIPs

• RF89 - The archive carries out the normalization and/or migration of the
media attachments

Feature ID RF14 (Repository Feature 14)
Name Descriptive statistics are offered by record
Effort Spent 4 Days
Modules Af-
fected / Created

WebSearch

Description of the new feature

Enabled the “statistics” tab in the detailed view of a record. The information
offered is “People who viewed this page also viewed”, “People who downloaded
files from this page also viewed” and “Download history graph”

Implementation details

The logging of file downloads (rnkDOWNLOADS) and page views (rnkPAGEVIEWS)
have been enabled.

BlogForever Consortium 29



D4.8: Final BlogForever Platform September 14, 2013

Using this information, the record usage.py code is able to show “People
who viewed this page also viewed”, “People who downloaded files from this
page also viewed” and a “Download history graph” using the WebStat module.

Implemented By CERN
Table 4.1: Implementation Description: RF14

Feature ID RF34 (Repository Feature 34)
Name The archive displays and suggests similar records to the

user
Effort Spent 1 Week
Modules Af-
fected / Created

WebSearch, WebInterface

Description of the new feature

Extended Invenio’s record similarity functionality to consider blog records as
a special case. To determine the similarity of two blogs, the level of similarity
between their posts is first calculated and then aggregated to come up with a
score.

Implementation details

Added an function step before blog extend bibrank in search engine.py

called blog extend bibrank. Given one blog, it will get all the posts, get the
similar posts for all of them, then aggregate the results to get the most similar
posts for the blog in general, and finally group them by parent blog. The final
outcome is a list of blogs similar to the blog given as an argument.

Implemented By CERN
Table 4.2: Implementation Description: RF34

Feature ID RF36 (Repository Feature 36)
Name The archive identifies and stores the topic of blogs and blog

posts to let users navigate through the archive by topic
Effort Spent 2 Days
Modules Af-
fected / Created

WebSubmit, WebBlog

BlogForever Consortium 30



D4.8: Final BlogForever Platform September 14, 2013

Description of the new feature

At submission time users can select the topic/s the blog belongs to. After
this, at pre-ingestion time, the selected topic/s are propagated to the
descendants of the blog, so if users search for a specific topic, the search will
return the blog and also all its descendants.

Implementation details

A new config variable has been added named CFG BLOG TOPICS which
define the list of topics that the repository offers to users. This list can be edit
by the administrator.

A new field has been added to the submission form as a multiple select to be
able to select more than one topic.

The user can navigate through the topics by clicking on the drop menu
displayed in the main page,

BlogForever Consortium 31



D4.8: Final BlogForever Platform September 14, 2013

or also by clicking on the tags displayed with each record.

Implemented By CERN
Table 4.3: Implementation Description: RF36

Feature ID RF46 (Repository Feature 46)
Name Users can create personal collections of their favourite blogs
Effort Spent Days
Modules Af-
fected / Created

WebBasket

Description of the new feature

With this feature blogs can be added to user personal baskets with their blog
posts.

BlogForever Consortium 32



D4.8: Final BlogForever Platform September 14, 2013

When deleting a blog from a personal basket, user is asked to select which
blog posts of that blog s/he also wants to delete.

When deleting a blog post from a personal basket, checks if the blog of that
blog post is also in the same basket. If so, user is asked to select which blog
posts of that blog s/he also wants to delete.

Implementation details

• perform request add function of webbasket.py is modified to add
the blog posts of the blog when the user adds a blog to personal basket.

• modify method of WebInterfaceYourBasketsPages class is
modified to check if there are any other records user may want to delete
when removing a blog or blogpost from a personal basket.

• perform request confirm delete is added to webbasket.py to
display the list of related blogs and blog posts with the selected record.

• tmpl delete related record confirmation method is introduced in
Template class of WebBasket module, which constructs the page
containing the list of the records which the user may also want to remove.

• confirm delete method is introduced in
WebInterfaceYourBasketsPages class, which deletes the selected
blogs and blog posts.

• get basket recids is added to webbasket dblayer.py that returns
the list of the record IDs of given basket.

• Two new functions are added into webblog utils.py :

– extend with blog posts : Extends the list of blog IDs with their
blog post IDs.

BlogForever Consortium 33



D4.8: Final BlogForever Platform September 14, 2013

– get related records in basket : Returns the IDs of the blog and
blog posts related with the given record from the given basket.

Implemented By Alper Çınar (SRDC)
Table 4.4: Implementation Description: RF46

Feature ID RF78 (Repository Feature 78)
Name The archive displays content after filtering it with user

preferences
Effort Spent 2 Days
Modules Af-
fected / Created

WebSearch

Description of the new feature

The repository offers to users the possibility of personalizing their searches
with some options such as: the collections where users wish to search and the
number of records to be displayed per page.

Implementation details

The search user preferences has been enriched with a multiselect where the
user can select the collections that will be taken into account in his searches.

Also the file websearch blueprint.py has been amended in order to propagate
the selected preferences.

Implemented By CERN

BlogForever Consortium 34



D4.8: Final BlogForever Platform September 14, 2013

Table 4.5: Implementation Description: RF78

Feature ID RF87 (Repository Feature 87)
Name The archive transforms the SIPS received from the spider

to AIPS
Effort Spent 2 Weeks
Modules Af-
fected / Created

BibArchive

Description of the new feature

New module to archive the AIP (Archival Information Package) of a record.
A daemon checks periodically for new or modified records, creates an AIP and
stores it in a dedicated database. In the web interface, the detailed view of a
record offers the user a link to download the AIP.

Implementation details

A new module called BibArchive has been implemented: The database used is
MongoDB. It supports versioning, but the old versions of an AIP can only be
retrieved from the command-line interface. The AIP is wrapped using BagIt
and then zipped. The zipped file is stored in the db directly. It includes:

• The MARC and METS xml files of the record

• All the attached files (mostly images)

• The available metadata and md5 checksums of each file

A new tasklet has been created to update the database. The administrator
can decide how often this tasklet runs (depending on the upload/modification
rates, a value between 30 mins and 1 day is recommended). When it runs, it
first retrieves then list of records that have been created or modified since the
last time it run. Then, for each them, an AIP is created using BagIt and the
content mentioned above and inserts it in the archival database.

Implemented By CERN
Table 4.6: Implementation Description: RF87

BlogForever Consortium 35



D4.8: Final BlogForever Platform September 14, 2013

Feature ID RF89 (Repository Feature 89)
Name The archive carries out the normalization and/or migration

of the media attachments
Effort Spent 2 Weeks
Modules Af-
fected / Created

BibSched

Description of the new feature

New tasklet that creates new version of the file of a record, migrating them
from one format to another. It accepts plugins to transform the files

Implementation details

A new plugin system has been implemented allowing the administrators to
implement their own format conversion code and place the files under
modules/bibdocfile/lib/format migration plugins/ Then, the variable
CFG FORMAT MIGRATION PLUGINS MAPPING has to be updated to reflect which
plugin is desired to be used for each format.

A new tasklet has been implemented to migrate the format of attached files. It
retrieves the list of records uploaded or modified since the last time the tasklet
run and applies the appropriated conversion plugin according to the variable
CFG FORMAT MIGRATION PLUGINS MAPPING. Finally, it uploads the new file into
the record as a new format of the same file, without replacing it.

Implemented By CERN
Table 4.7: Implementation Description: RF89

4.3.2 Updated features

The following implementation descriptions describe the features that were imple-
mented during previous development iterations, but have been modified since then
because, they have just been fixed or improved, or because they have been ported to
the Invenio next branch. These implementation descriptions should be considered
as an update to the ones that can be found in Chapter 3 of D4.5[8] and Chapter 3
of D4.7[1].

• RF1 - Customizable user dashboard

• RF2 - “Your History” box as part of the user dashboard

BlogForever Consortium 36



D4.8: Final BlogForever Platform September 14, 2013

• RF3 - “Share” option in“Your History” box

• RF29 - The archive alerts the user when there are software updates

• RF52 - Users can tag archived records with personal tags

• RF62 - Export records as PDF and JPEG

• RF65 - The archive analyzes blog links and stores the connections between
them separately

• RF73 - The archive recommends blogs to users based on the ratings and
preferences

BlogForever Consortium 37



D4.8: Final BlogForever Platform September 14, 2013

Feature ID RF1 (Repository Feature 1)
Name Customizable user dashboard
Effort Spent Days
Modules Af-
fected / Created

WebSession

Description of the new feature

The layout of the dashboard is re-organized. Floating layout has become
3-column layout so that each column become independent from each other.

Each box in user dashboard has become collapsible. They can be collapsed by
clicking ’x’ symbol on top right corner of the box.

The list of the collapsed boxes takes place on top of the dashboard. A
collapsed box can be retrieved back by clicking on its name.

Implementation details

• To change the layout of the user dashboard webaccount display.html
is modified and webaccount widget.html is created.

• The index endpoint of webaccount blueprint.py is modified to
display the dashboard boxes in proper column.

• To expand the collapsed boxes in user dashboard, loadwidget
endpoint is introduced in webaccount blueprint.py .

Implemented By Alper Çınar (SRDC)
Table 4.8: Implementation Description: RF1

BlogForever Consortium 38



D4.8: Final BlogForever Platform September 14, 2013

Feature ID RF2 (Repository Feature 2)
Name “Your History” box as part of the user dashboard
Effort Spent Weeks
Modules Af-
fected / Created

WebSession

Description of the new feature

“Your Activities” page is re-constructed while porting this feature to next.
This page includes the user’s history in reverse chronological order with 15
main categories:

• Adding into basket

• Basket creation/subscription

• Notes on baskets

• Votes

• Page views

• Searches

• Subscriptions

• Downloads

• Messages

• Alerts

• Discussions

• Reviews

• Reports

• Groups

• Payments

RF2 - A sample item on “Your Activities” page

By default, the most recent 10 activities are displayed on “Your Activities”
page. User may load older activities through “Load older activities” link on
the bottom of the page.

RF2 - The link to display older activities.

A filter is created to filter the categories that are displayed on “Your
Activities” page.

BlogForever Consortium 39



D4.8: Final BlogForever Platform September 14, 2013

RF2 - Filter panel

The new box for “Your Activities” is created in the user dashboard. It consists
of last 10 activities of the user.

Implementation details

• HistoryElement class is introduced to represent each history item in
the “Your Activities” page. It has only one constructor and the following
instance variables:

– date : Date of the history element.

– entry : Database entry corresponds to that history element.

– id : ID of the entry.

– history type : Type of the history.

– icon : Icon that is displayed near the activity message on the web
interface.

– msg : Message that is displayed on the web interface.

• HistoryCollector abstract class is introduced to create History
Collectors for each category. It has the following instance variables and
methods:

– icon : Icon for collected HistoryElement s.

– label : Label to filter this collector.

– check : Returns the most recently fetched HistoryElement s.
(This method should not be overridden in its child classes)

BlogForever Consortium 40



D4.8: Final BlogForever Platform September 14, 2013

– use : Fills the required attributes of the most recently fetched
HistoryElement and returns it. (This method should not be
overridden in its child classes)

– get user history : Fetches and returns entries from database.

– get id (static): Returns the ID of the given entry.

– get date (static): Returns the date of the given entry.

– get message (static): Returns the message displayed on web
interface.

• 15 new classes are inherited from HistoryCollector class to collect
user history. These are:

– PaymentHistory

– AlertHistory

– BasketCreationHistory

– BasketNoteHistory

– BasketAddHistory

– DiscussionHistory

– ReportHistory

– ReviewHistory

– SubscriptionHistory

– VoteHistory

– MessageHistory

– DownloadHistory

– SearchHistory

– RecordViewHistory

– GroupHistory

• HistoryManager class introduced to collect the user history from
registered HistoryCollector s. It has the following methods:

– get user history : Fetches and returns the list of the user history.

– has mote history : Returns if the user has more LHistoryElements
to fetch.

– get user history json : Returns the user history as JSON format.

• webhistory index.html is introduced to display “Your Activities”
page.

• webhistory blueprint.py is introduced and it has the following
endpoints:

– index : Constructs the “Your Activities” page.

– filteractivities : Filter the activities according to the filter panel of
the user interface.

– getmore : Returns the most recent activities that are not displayed
in “Your Activities” page.

BlogForever Consortium 41



D4.8: Final BlogForever Platform September 14, 2013

• webhistory user settings.py is introduced to add “Your Activities”
box to the user dashboard.

• webhistory config.py is introduced. It keeps the following
configurations:

– CFG WEBHISTORY MSGS : Keeps the messages to display
user activities.

– CFG WEBHISTORY DATEPICKER DATETIME : Format
of the date picker of the filter in “Your Activities” page.

– CFG WEBHISTORY JSON DATE FORMAT : Date format
when using the dates of the activity in JSON objects.

– CFG WEBHISTORY JSON TIME FORMAT : Time format
when using the dates of the activity in JSON objects.

– CFG WEBHISTORY JSON DATETIME FORMAT :
Concatenation of the date format and time format.

• CFG WEBHISTORY DATETIME FORMAT , which keeps the
format of the datetime displayed in “Your Activities” page and box, is
added to invenio.conf

• The type of the date creation column of UserQueryBasket is
changed from Date to DateTime .

• Two new columns creation date and action code are added into
UserBskBASKET table. webbasket dblayer.py is updated to
accommodate these changes.

Implemented By Şenan Postacı(SRDC)
Table 4.9: Implementation Description: RF2

Feature ID RF3 (Repository Feature 3)
Name “Share” option in “Your History” box
Effort Spent Days
Modules Af-
fected / Created

WebSession, WebMessage

Description of the new feature

To share an activity, a tiny icon is added near each activity in the “Your
Activities” pages.

RF3 - A sample item on “Your Activities” page with sharing option

BlogForever Consortium 42



D4.8: Final BlogForever Platform September 14, 2013

By clicking this icon, users may share their activities through a modal window.
This modal window contains a form to send the activity to users.

Implementation details

• serialized instance variable is added to HistoryElement to generate
messages for shared activities.

• New methods are added to HistoryCollector to create and share user
activities:

– serialize (static): Serializes given database entry as list to use it
for constructing message of the shared activity.

– get share message (static): Converts serialized database entry to
message.

• share endpoint is introduced in webmessage blueprint.py to
perform sharing an activity.

• view endpoint of webmessage blueprint.py and
webmessage view.html are updated to display messages of shared
activities.

• getsharemessage endpoint is introduced in
webhistory blueprint.py to get the message of given shared activity.

• Scripts of the webmessage add.html is moved to
webmessage common js.html to reuse them in
webhistory index.html while sharing an activity message.

• hstSHARE table is introduced to keep the shared activities.
webmessage query.py is also updated accordingly.

• CFG SHARE MSGS , which keeps the messages for shared activities,
is added into webhistory config.py .

Implemented By Şenan Postacı(SRDC)
Table 4.10: Implementation Description: RF3

BlogForever Consortium 43



D4.8: Final BlogForever Platform September 14, 2013

Feature ID RF29 (Repository Feature 29)
Name The archive alerts the user when there are software updates
Effort Spent Days
Modules Af-
fected / Created

WebSession

Description of the new feature

The archive checks and informs the administrators via user dashboard when
there are software updates.

RF29 - The alert displayed on the user dashboard when there are software
updates

Implementation details

• The index endpoint of webaccount blueprint.py is modified to
check if there are any software updates.

Implemented By Alper Çınar (SRDC)
Table 4.11: Implementation Description: RF29

Feature ID RF52 (Repository Feature 52)
Name Users can tag archived records with personal tags
Effort Spent 3 Weeks
Modules Af-
fected / Created

WebTag

Description of the new feature

Users are able to assign personal tags to the records. With these tags, the
user is able to organize the records in personal collections according to their
preferences.

Users are able to create and delete tags, as well as attach and detach them
from records.

BlogForever Consortium 44



D4.8: Final BlogForever Platform September 14, 2013

Implementation details

The functionality is provided by a new module called WebTag. The module
utilizes infrastructure provided by Invenio Next.

Database Backend
WebTag defines a set of classes which are translated into database tables using
SQL Alchemy ORM:

• WtgTAG : A named tag object owned by a user. The tag’s name
cannot contain non-alphanumeric characters.

• WtgTAGRecord : Association between a WtgTAG and a record (class
Bibrec ).

• WtgTAGUsergroup : Describes the permissions given by the owner to
a group of users. This mechanism is not yet implemented, but we plan
adding group and public tags later.

User Interface
WebTag defines an InvenioBlueprint . The user interface consists of:

• Tag Cloud mode of viewing tags (/yourtags/display/cloud)

• Table mode of viewing tags (/yourtags/display/list): this view allows
users to create and delete tags as well as display them ordered by
different parameters.

BlogForever Consortium 45

/yourtags/display/cloud
/yourtags/display/list


D4.8: Final BlogForever Platform September 14, 2013

• List of tags in document search and detailed view: for logged-in users, a
list of tags is displayed when viewing a document.

• Tag editor: in document view, users can open the editor to attach and
detach tags from a record. It can also create new tags and attach them.
The editor uses javascript and commits all changes immediately to the
server by AJAX requests.

• List of records associated with a tag (/yourtags/tag/〈id tag〉/records):
Displays all records associated with the selected tag.

• User Settings widget in Your Account page presents statistics about tags
as well as links to other parts of the module’s user interface.

All information sent to the server is validated using WTForms validators in
order to maintain name restrictions and check users’ permissions.

The list of tags in document view is implemented with the template context
function bfn webtag record tags . The function can be used in various
templates which allows easy customization of application interface.

Configuration
The configuration variables are located inside webtag config.py :

BlogForever Consortium 46

/yourtags/tag/<id_tag>/records


D4.8: Final BlogForever Platform September 14, 2013

• CFG WEBTAG NAME MAX LENGTH : maximum length of tag
name.

• CFG WEBTAG NAME REPLACEMENTS SILENT : list of
regular expression replacements applied before saving a tag name.

• CFG WEBTAG NAME REPLACEMENTS BLOCKING : list
of regular expression replacements applied on a tag name. If a match is
found, the name is considered invalid. The expressions are used to
suggest a similar valid name.

• CFG WEBTAG ACCESS NAMES and
CFG WEBTAG ACCESS RIGHTS : permission levels for group
and public tags. Currently not used.

File structure
The module’s files:

• lib/* : Application logic in Python and Javascript.

• etc/templates/* : Jinja2 templates for generating HTMLs. Files
without base.html suffix are provided to simplify interface
customizations.

Implemented By CERN
Table 4.12: Implementation Description: RF52

Feature ID RF62 (Repository Feature 62)
Name Export records as PDF and JPEG
Effort Spent Months
Modules Af-
fected / Created

BibFormat

Description of the new feature

PDF and JPEG are added as new export options:

PDFs are created by LaTeX templates. First, the record is converted from
HTML to LaTeX, then it is converted from LaTeX to PDF.

BlogForever Consortium 47



D4.8: Final BlogForever Platform September 14, 2013

JPEGs are created by taking snapshots of the records.

Implementation details

BlogForever Consortium 48



D4.8: Final BlogForever Platform September 14, 2013

• LaTeX TeX Live distribution is used for creating PDF files.
“install-texlive” target is added to Makefile.am to install required
packages.

• PhantomJS is used for taking snapshot of the pages to create JPEG files.
“install-phantomjs-64bits” and “install-phantomjs-32bits” targets are
added to Makefile.am to install required packages.

• Default HTML actions.bft is modified to add PDF and JPEG as an
exporting option.

• Four new output formats are introduced:

– JPEG.bfo : Output format to construct the page for taking
snapshot.

– JPEGB.bfo : Like JPEG.bfo but less detailed.

– PDF.bfo : Output format to construct LaTeX template.

– PDFB.bfo : Like PDF.bfo but less detailed.

• The following format templates are introduced to create LaTeX
documents and the page to take snapshot for exporting as JPEG:

– JPEG.bft

– BlogJPEG.tpl

– CommentJPEG.tpl

– Comment JPEG brief.tpl

– PostJPEG.tpl

– Post JPEG brief.tpl

– LaTeX.bft

– BlogLaTeX.tpl

– CommentLaTeX.tpl

– Comment LaTeX brief.tpl

– PostLaTeX.tpl

– Post LaTeX brief.tpl

• The following BibFormat elements are introduced for creating LaTeX
documents:

– bfe latex abstract.py

– bfe latex authors.py

– bfe latex begin.py

– bfe latex blog posts.py

– bfe latex blog url link.py

– bfe latex comment header.py

– bfe latex default.py

– bfe latex end.py

– bfe latex post comments.py

– bfe latex record body.py

BlogForever Consortium 49



D4.8: Final BlogForever Platform September 14, 2013

– bfe latex record dates.py

– bfe latex snapshot.py

– bfe latex tags.py

– bfe latex title.py

• The following BibFormat elements are modified to create the page and
take snapshot for exporting as JPEG:

– bfe blog posts.py

– bfe post comments.py

– bfe record dates.py

– bfe snapshot.py

• The following templates are created to export as JPEG and PDF.

– footer jpeg.html : Footer used for exporting as JPEG.

– header jpeg.html : Header used for exporting as JPEG.

– page jpeg.html : The base page to inherit format templates for
exporting as JPEG.

– page latex.tpl : The base page to inherit format templates for
exporting as PDF.

– record jpeg.html : Default template to export as JPEG.

• To get the export requests for PDF and JPEG, index endpoint of
websearch blueprint.py and print records function in
search engine.py is modified.

• create pdf and create jpeg functions are introduced in
bibformat.py to create PDF and JPEG files, respectively.

• summary endpoint is introduced in record blueprint.py to
construct the page for taking snapshot to export as JPEG.

• jpeg render script.js is introduced to use on taking snapshot of the
page by PhantomJS.

• latexutils.py and latexutils image.py is created to keep common
functions to creating LaTeX document. The following functions are in
latexutils.py :

– begin document : Initialization codes for a LaTeX document.

– end document : Finalization codes for a LaTeX document.

– remove escape chars : Returns LaTeX representation of special
LaTeX characters.

– format raw text : Formats given text as LaTeX.

– format latex field : Formats given name and value to display as
BibTeX field.

– html to latex : Converts HTML to LaTeX document.

The following functions are in latexutils image.py :

BlogForever Consortium 50



D4.8: Final BlogForever Platform September 14, 2013

– get image path : Returns the path of given image. If the image
does not exist in file system, downloads it to an available location.

– get unique file path : Returns a unique path to save the image
temporarily.

• To convert HTML to LaTeX, bibformat pdf with latex template.py
module is created. It has the following classes:

– PdfWithLatexTemplateHtmlParser class is inherited from
HTMLParer class.

– LatexConverter : Converts HTML to LaTeX. Possible LaTeX
commands are mapped from dictionaries in
bibformat pdf with latex config.py module. Only a few HTML
tags are needed extra effort. The methods defined to handle them
are called from PdfWithLatexTemplateHtmlParser class. It
has the following methods:

∗ get latex text : Returns concatenation of definitions and latex
codes.
∗ handle latex commands : Adds given data to one of the

buffers holding LaTeX template according to state of HTML
tags.
∗ handle raw data : Main controller for inserting HTML

elements’ content.
∗ insert raw data : Handles LaTeX special characters, maps

special HTML characters (e.g. &hellip) with their LaTeX
equivalences and adds the content to latex code buffer.
∗ trivial tag start : Handles start tags.
∗ tag end : Pops end values until popped element’s type is given

tag. Until an HTML tag is found, CSS related values are added
to buffer. For table related elements extra effort is needed.
∗ br start : Applies new line only after text.
∗ font start : Handles attributes of font tag.
∗ anchor start : Handles attributes of anchor tag.
∗ img start : Handles img tag based on parameters in config

module. If
CFG BIBFORMAT LATEX USE LOCAL IMAGES is
not set, then the image is downloaded from src attribute value.
If the image extension is not supported by LaTeX, converts
image into specified format.
∗ table start : Handles start tag of table.
∗ table end : Handles end tag of table.
∗ table row start : Handles start tag of tr.
∗ table row end : Handles end tag of tr.
∗ table cell start : Handles start tag of td or th.
∗ flush end stack : If there is not any problem with the HTML

content, all HTML tags are successfully matched. If there are
any element for style rules, pops them and adds ’end’ values to
LaTeX text.

BlogForever Consortium 51



D4.8: Final BlogForever Platform September 14, 2013

∗ add style : Adds style related LaTeX codes based on current
tag’s CSS rules. Most of the CSS declarations are mapped from
dictionary. However, some needs extra effort (e.g. font-size,
color, border, etc.)
∗ search style in external css : In all possible selectors’ CSS

rules, searches given property.
∗ extract style : Finds all possible CSS declarations.
∗ find style selectors : Checks current HTML element’s parents

and their ids, class names to construct CSS selectors possibly
containing more than one identifier (e.g. “.class name >#id”,
“div div img”, “div.class name >p”, etc.)

– CssParser : Parses the CSS rules and converts into dictionary. It
has the following methods:

∗ parse : Finds each CSS declaration and selectors of CSS rules.
∗ parse inline style : Rather than whole css file data, runs on

only inline CSS.
∗ extract css declarations : Converts style rule declarations

in str form to dictionary.
∗ read css files :Reads CSS file. This method is called when

the data is supplied as file names.

• Configurations for converting HTML to LaTeX take place in
bibformat pdf with latex template config.py . It has the following
configurations:

– CFG BIBFORMAT EXPORT DIR : The directory to keep files
of exported record.

– CFG BIBFORMAT LATEX TEMP DIR : The directory to
keep temporary files when creation PDF from LaTeX.

– CFG BIBFORMAT PATH PDF CONVERTER : The path
of xelatex tool.

– CFG BIBFORMAT LATEX KEEP FILE EXTENSIONS :
The file extensions which will be kept in
CFG BIBFORMAT EXPORT DIR after pdflatex ends its job.

– CFG BIBFORMAT CSS FILES : The paths of the CSS files
used when converting HTML to LaTeX template.

– CFG BIBFORMAT IMG SRC URL : Regular expression to
check src attribute of img whether it is a local path or a URL.

– CFG BIBFORMAT LATEX HEADER : The first line of the
LaTeX document.

– CFG BIBFORMAT LATEX PAGE SETTINGS : Options for
page layout.

– CFG BIBFORMAT LATEX BEGIN DOC : The begin tag of
the LaTeX document.

– CFG BIBFORMAT LATEX END DOC : The end tag of the
LaTeX document.

BlogForever Consortium 52



D4.8: Final BlogForever Platform September 14, 2013

– CFG BIBFORMAT LATEX PACKAGES : The packages that
are used in LaTeX document.

– CFG BIBFORMAT LATEX SPECIAL CHARS REGEX :
Regular expression to identify special characters in LaTeX.

– CFG BIBFORMAT LATEX SPECIAL CHARS LIST : The
list of special characters in LaTeX.

– CFG BIBFORMAT LATEX MATH FORMULAS : Regular
expression to find patterns of math formulas which are in already
LaTeX format.

– CFG BIBFORMAT LATEX ONLY TEXT : Regular
expression to split content into pieces according to start and end of
math formulas.

– CFG BIBFORMAT LATEX LONG WORDS : Regular
expression to find words containing symbols more than provided
number.

– CFG BIBFORMAT MATHJAX ENABLED : Set to 1 to seek
LaTeX formulas in text. If it is set to 0, then
CFG BIBFORMAT MATHJAX DELIMITERS is ignored.

– CFG BIBFORMAT MATHJAX DELIMITERS : Delimiter
characters for formulas.

– CFG BIBFORMAT CSS
PARSER REGULAR EXPRESSIONS : Regular expressions
used for parsing CSS.

– CFG BIBFORMAT CSS SELECTOR COMPONENTS :
Regular expression to identify the components of a CSS selector.

– CFG BIBFORMAT LATEX CSS SELECTORS : Complex
selector types for which CSS rules will be applied.

– CFG BIBFORMAT LATEX STYLE FIRST TAGS : The list
of the tags to apply CSS rules before handling.

– CFG BIBFORMAT LATEX NON END TAGS : The tags
that may not have ’/’ character indicating end of tag.

– CFG BIBFORMAT LATEX
EXCEPTIONAL COMMANDS : List of commands after which
an environment can not be initialized.

– CFG BIBFORMAT LATEX DEFAULT IMG FORMAT :
Default image format for LaTeX.

– CFG BIBFORMAT LATEX SUPPORTED IMG EXTS :
The list of supported image types.

– CFG BIBFORMAT LATEX PX CM SCALE : Cm value that
corresponds to 1 pixel.

– CFG BIBFORMAT LATEX A4 SCALE : Amount of scale for
A4 paper dimensions.

– CFG BIBFORMAT LATEX DEFAULT IMG SCALE : The
rate to scale the image.

BlogForever Consortium 53



D4.8: Final BlogForever Platform September 14, 2013

– CFG BIBFORMAT LATEX DEFAULT FONT SIZE :
Default font size for LaTeX document.

– CFG BIBFORMAT LATEX KB FILE : The path of the
latex-to-unicode.kb file.

– CFG BIBFORMAT LATEX
SPECIAL CHARS EQUIVALANCES : Representations of
special LaTeX characters.

–
CFG BIBFORMAT LATEX COMMAND CONSTRAINTS
: Constraints for LaTeX tags.

– CFG BIBFORMAT LATEX ALIGNMENTS : LaTeX
representations of HTML alignment options.

– CFG BIBFORMAT LATEX COMMANDS : LaTeX
commands used for rather than tag and CSS mappings.

– CFG BIBFORMAT LATEX
REPRESENTATION OF HTML TAGS : HTML tags and
their LaTeX representations.

– CFG BIBFORMAT LATEX
REPRESENTATION OF CSS RULES : CSS declarations and
their LaTeX representations for possible values.

– CFG BIBFORMAT HTML SPECIAL CHARS BY NUM :
Unicode numbers of special HTML chars and their LaTeX
representations.

– CFG BIBFORMAT HTML
SPECIAL CHARS BY NAME : Special HTML chars and their
LaTeX representations.

Implemented By Şenan Postacı(SRDC)
Table 4.13: Implementation Description: RF62

Feature ID RF65 (Repository Feature 65)
Name The archive analyzes blog links and stores the connections

between them separately
Effort Spent 4 weeks
Modules Af-
fected / Created

-

Description of the new feature

A network consists of nodes and links between the nodes. Three kinds of
networks are extracted from the archived blogosphere:

BlogForever Consortium 54



D4.8: Final BlogForever Platform September 14, 2013

• Blog-Citation network

– Nodes: All Blog objects in the archived blogosphere.

– Links: A link is created when a hyperlink in a post references
another post or a blog. The link goes from the parent blog of the
sending post to the parent blog of the receiving post or the receiving
blog.

• Author-Citation network

– Nodes: All authors in the archived blogosphere.

– Links: A link is created when a hyperlink in a post or in a comment
references another post or comment. Sending and receiving posts or
comments must have an author.

• Author-Co-Citation network

– Nodes: All author objects in the archived blogosphere.

– Links: A link is created if two or more posts or comments reference
the same address through a hyperlink.

The Blog-Citation network and the Author-Citation network consider only
links that direct to an object that is archived in the repository. The
Author-Co-Citation network considers all kind of links (external and internal).

The implementation of the feature differs from the feature design: Links are
not differentiated between Citations, BlogRoll, and Pingback/Trackback
because these information can not be identified by the spider.

RF65 - GUI of the feature. The main steps in the network generating process
are (a) to choose the input, (b) to choose the network type, and (c) to choose

the output format and location

Implementation details

BlogForever Consortium 55



D4.8: Final BlogForever Platform September 14, 2013

The feature is implemented as java application together with the repository
feature RF72 which visualizes the extracted network. It has been also ported
to Python and this is the version that has been integrated into the repository.

Nodes are represented as objects that have an ID and a maximum of five
details. Links are an aggregation of one or more Linkevents. A linkevent has
one sender, one or more recipients, a timestamp, and a maximum of five
details. The distinction of Linkevents with timestamps allows representing and
analysing the network evolvement over time.

The application accepts as input a collection of blog, post, and comment
objects in MARCXML from the repository. The objects in the collection are
analyzed and the network extracted by the Java class tub.BFMarcXMLReader
and stored in the Java objects

• tub.dataElements.Network

• tub.dataElements.Node

• tub.dataElements.Linkevent

Currently, the two output formats CMX-XML and GEXF are provided.

• With CMX-XML, the extracted network can be further analysed and
explored with the Commetrixa software. The Java class
tub.CMXXMLWriter transforms the extracted network into CMX-XML.
The CMX-XML preserves the structure of link events, and, therefore,
Commetrix facilitates dynamic and static analysis.

• GEFX can be analysed with Gephib, an open-source tool to visualize and
analyse networks. The Java class tub.GEXFWriter transforms the
extracted network into GEXF. Thereby, the linkevents has to be
aggregated to edges due to the limitations of the GEXF format.
Therefore, the Gephi tool facilitates only static analysis.

For each of these two output formats a BibFormat template has been created:
format records cmx.tpl and format records gexf.tpl

The Java class tub.BFNetworkGenerate contains the GUI for the Network
Generator application.

ahttp://www.commetrix.de/
bhttps://gephi.org/

Implemented By TUB
Table 4.14: Implementation Description: RF65

BlogForever Consortium 56



D4.8: Final BlogForever Platform September 14, 2013

Feature ID RF73 (Repository Feature 73)
Name The archive recommends blogs to users based on the ratings

and preferences
Effort Spent 1 Week
Modules Af-
fected / Created

BibRank, WebSearch

Description of the new feature

This feature introduces a new ranking method to rank the records by their
weighted averages.

A portalbox which shows the Top Rated Records has been added into main
page.

RF73 - Portalbox displaying top rated records

A portalbox which shows last added records has been added into main page.

RF73 - Portalbox displaying recently added records

BlogForever Consortium 57



D4.8: Final BlogForever Platform September 14, 2013

Implementation details

• Portal boxes have become associated with ranking methods.

– bibrank portalbox table, which keeps which ranking method is
related with which portal box, has been inserted into database.

– update bibrank portalbox and drop bibrank portalbox
functions have been added into bibrank record sorter.py .

∗ update bibrank portalbox function updates the portal
boxes when bibrank is run.
∗ drop bibrank portalbox function removes the entries related

to given bibrank method when either the ranking method is
deleted or the variable keeping the number of records shown in
portalbox is set to 0 .

– For portalboxes bibrank portalbox.html template is added.

• Ranking with “Weighted Average” has been introduced.

– To rank the records by their weighted average,
bibrank weighted average indexer.py module has been
created. This module contains the function
weighted average to index which calculates the weighted
average with “Bayesian estimate” which is the following formula:

N

N + m
∗ A +

m

N + m
∗G

where

∗ N: the number of reviews of corresponding record
∗ m: minimum number of reviews required to calculate the rank

of the record
∗ A: Average score of corresponding record
∗ G: Average score of all of the records

– bibrank weigted average template.cfg containing the
parameters for the ranking method has been created. These
parameters are:

∗ show relevance : 1 to show the score on search page, 0
otherwise.
∗ minimum review number : minimum number of reviews

required to be ranked
∗ display on portalbox count : the number of the records will

be displayed on the portalbox. If it is 0 , portalbox disappears
and entries related to that ranking method is removed from
database.

• Archived content indexer has been added as a ranking method to create
“Recently Added Records” portalbox.

BlogForever Consortium 58



D4.8: Final BlogForever Platform September 14, 2013

– bibrank archived content indexer.py has been introduced to
rank the records in a time interval.

– template recently archived content.cfg containing the
parameters for the ranking method. These parameters are:

∗ latest records number : the number of the lastly added
records, if 0 , ranks all of them.
∗ date type : creation for ranking by creation date,

modification for ranking by modification date.
∗ start date : the beginning of the time interval.
∗ end date : the end of the time interval.
∗ interval : the sql like time interval. (i.e. 3 HOUR , 1 DAY )
∗ display on portalbox count : the number of the records will

be displayed on the portalbox. If it is 0 , portalbox disappears
and entries related to that ranking method is removed from
database.

• Some modifications have been occurred in bibrank.py and
bibrank tag based indexer.py to accommodate new ranking method.

Implemented By SRDC
Table 4.15: Implementation Description: RF73

BlogForever Consortium 59



D4.8: Final BlogForever Platform September 14, 2013

Chapter 5

Future Work

The platform designed and developed by the WP4 team is complete and presents
a set of features that satisfy the requirements of the DoW and the requirements of
the stakeholders interviewed in D4.1[4]. However, some features were not included
in the Repository given that the complexity of the topic is falling out of scope of
blog archiving platform. These features could be integrated with the blog archive
in later stages of development using already existing solutions or developing blog-
specific solutions to live within the BlogForever platform code. This possibility was
already pointed out in Section 3.3 of D4.7[1]. These features are:

• RF42 - The archive extracts bibliographic metadata from content embedded in
blogs : The BlogForever archive would extract bibliographic metadata (e.g.
Title, Author) from PDF documents, LaTeX files and image files that are
attached to blogs, or embedded in the post of a blog. The extracted metadata
would be stored in the database and used to populate an index. Users would
be able to search and browse the metadata for the attachments, using a special
web interface.

• RF68 - The archive provides information diffusion analysis mechanisms :
Memetracking and trend detection. The archive would provide the user with
a set of tools that allow detecting the provenance of various topics, phrases
and memes. In addition to their provenance, the archive would provide the full
history of a given meme, allowing for the user to adjust the time of content and
study the spread and the diffusion of information in the archive. The archive
would detect influential memes and would process them according to time.

• RF75 - The archive can do sentiment analysis on the content : To give the
users an idea about the blog post’s attitude, sentiments of the post should be
analyzed. Sentiment analysis would be run by the administrator. The user
would be able to see the sentiment scores of the contents. The users would be
able to add a search criteria that ranks the results based on their sentiment
scores.

BlogForever Consortium 60



D4.8: Final BlogForever Platform September 14, 2013

On top of these features, there is a number of items where an extra development
effort would push the platform one step higher in terms of data quality and user
interface completeness.

• Parallel ingestion: In order to speed-up the ingestion throughput, the
ingestion plugins could be extended to support the upload of multiple records
in the same task. This would increase the scalability in terms of the number
of daily new posts that the Repository is able to ingest without the need of a
multi-server infrastructure.

• Repository sharing: In order to scale repository to cover the use cases of tens
of millions of records, a repository sharing technique can be considered. This
feature has been developed recently by the core Invenio team [13]. This would
provide additional scalability complement to the above mentioned parallel
ingestion. (Horizontal vs vertical scaling.)

• Metadata curation daemon: When Post records are inserted into the
Repository, there is a search to retrieve the parent Blog record identifier.
This way, the post-blog relationship is recorded in the metadata. This parent
blog lookup sometimes fails leaving an orphan post record. Developing a
daemon that goes over orphan records and fixes their metadata would not
just contribute to better metadata but also would permit parallel ingestion
of records without the need of checking if the parent record has already been
inserted into the repository.

• Pages: Enhance the Spider component for better detection of Comments and
specially Pages (the pages of a blog that are not entries, like the “about” page).

• Topic detection: We have implemented a prototype for topic detection.
The prototype is based on the state-of-the-art approach of Latent Dirichlet
Allocation (LDA). LDA typically takes as input a corpus of documents and
a fixed number of topics to be induced. The output is the topics, which is
provided as a collection of terms-words for each topic. Furthermore, during
the training process, a model is generated which can then be fed with a new
document in order to classify the latter based on the topics generated. In
general, in order to produce a good model and have satisfying results, a fairly
big collection of documents (in the scale of tens of thousands) must be used
and a good estimation on the expected number of topics must be made.

Our prototype is developed using Python and is integrated to consume Invenio
API calls. More specifically, the core library is gensim1 along with some
required modules (logging, numpy, scipy). In addition to the above, a language
detection module (langid) was chosen, in order to generate distinct models (and
topics) for each language.

In our experiments, gensim library showed promising results. This is inline to
the findings of project ARCOMEM (deliverable 3.22), where the authors claim
that LDA should yield meaningful topics. In their approach, they report poor
results, mainly due to the content of HTML documents not being cleaned
up and not having boilerplate text removed. In our experiments, we have

1http://radimrehurek.com/gensim/
2http://www.arcomem.eu/wp-content/uploads/2012/05/D3 2.pdf

BlogForever Consortium 61

http://radimrehurek.com/gensim/
http://www.arcomem.eu/wp-content/uploads/2012/05/D3_2.pdf


D4.8: Final BlogForever Platform September 14, 2013

managed to extract3 the main content of blog posts and have applied LDA on
them. Finally, an issue worth discussing, which was not fully addressed in our
implementation, is the presentation and visualisation of the topics themselves.
As provided by the gensim library, LDA is actually describing the topics with a
long list of terms/words; in our approach we would have preferred to describe
the topics with fewer words. Therefore, further tuning and customisation of
the implemented solution is proposed. Furthermore, we expect that when
deployed on a real-world dataset, some experimentation with the number of
topics should take place.

• Statistics: The repository databases implicitly keep many statistics that could
be extracted and used to enrich the statistics tab of the detailed view of a record
with interesting information.

• Highlight share: The highlighting feature is very nice, allowing a user to
highlight part of the text content using different colors and add notes to them.
According to the feedback received from the testers a good add-on would be
the possibility of sharing these highlights and annotations with other users of
the platform.

• Invenio code updates: Since the Repository is based on Invenio it inherits
all its good features, but it might also get some small bugs. The Invenio team
works hard to minimize them, so rebasing the repository code against the latest
Invenio code is highly recommended. This way, the BlogForever Repository
will benefit from the latest Invenio features and the possible bugs would be
fixed.

3BlogForever has implemented a “main content” extraction technique - See D2.6 for more details.

BlogForever Consortium 62



D4.8: Final BlogForever Platform September 14, 2013

Chapter 6

Conclusions

The aim of this report was to present the integration of the Weblog Digital
Repository Component and the Weblog Spider Component as the final outcome
of the BlogForever project — and WP4 in particular. It presents the final
BlogForever Software Infrastructure that culminates the work of gathering the
requirements and specifications described in D4.1[4]; design and implementation
of the Spider component described in D4.2[9], D4.3[10] and D4.6[2]; and design
and implementation of the Repository component described in D4.4[5], D4.5[8] and
D4.7[1].

The ability of both components to communicate with other pieces of software has
been exposed in Chapter 2. While the Spider Component offers an API to manage
the list of blog URLs to monitor and to download the crawled data, the Repository
Component supports a plugin system that lets potential developers to write the
bridge they need to communicate with any crawler or blog data provider. This
shows that although both components work nicely together they are not depending
on each other.

Chapter 3 presents the specific way in which the spider-repository communication
has been implemented using the mechanisms introduced in Chapter 2. The chapter
reflects the use of the Spider API by the repository to submit and monitor new blog
URLs and the fetcher used to retrieve data, as well as the tasks performed in the
pre-ingestion and post-ingestion plugins.

The latest development is presented in Chapter 4. While the Spider component has
not suffered any notable modifications, the Repository new features and updates
have been reported, including their implementation description. The development
has worked in close collaboration with the testing performed by WP5, gathering
valuable feedback and applying it to the code in order to improve both stability and
usability.

Finally, a series of suggestions on how to further improve the platform has been
pointed out in Chapter 5.

BlogForever Consortium 63



References

[1] J. Garćıa Llopis, R. Jiménez Encinar, S. Postacı, A. Çınar, H.Kalb, and
T. Šimko, “D4.7: Final Weblog Digital Repository Component,” work package,
European Organization for Nuclear Research (CERN), May 2013. Work
Package Four Deliverables.

[2] M. Rynning, “D4.6: Final Weblog Spider Component,” work package,
CyberWatcher, Apr. 2013. Work Package Four Deliverables.

[3] “Blogforever,” tech. rep., 2011.

[4] H. Kalb, N. Kasioumis, J. Garćıa Llopis, S. Postaci, and S. Arango-Docio,
“D4.1: User Requirements and Platform Specifications Report,” work package,
B. Consortium (Ed.): Technische Universität Berlin, Dec. 2011. Work Package
Four Deliverables.

[5] J. Garćıa Llopis, R. Jiménez Encinar, et al., “D4.4: Digital Repository
Component Design,” work package, European Organization for Nuclear
Research (CERN), Nov. 2012. Work Package Four Deliverables.

[6] K. Stepanyan, M. Joy, A. Cristea, Y. Kim, E. Pinsent, and S. Kopidaki,
“D2.2: Weblog Data Model,” work package, B. Consortium (Ed.): University
of Warwick (UW), Oct. 2011. Work Package Two Deliverables.

[7] Y. Kim, S. Ross, K. Stepanyan, E. Pinsent, P. Sleeman, S. Arango-Docio,
H. Kalb, et al., “D3.1 Preservation Strategy Report,” work package, Y. Kim
& S. Ross (Eds.): University of Glasgow, Sept. 2012. Work Package Three
Deliverables.

[8] S. Postacı, A. Çınar, G. B. Laleci, J. Garćıa Llopis, R. Jiménez Encinar,
V. Banos, and A. P. and, “D4.5: Initial Weblog Digital Repository Prototype,”
work package, SRDC Yazilim Arastirma ve Gelistirme ve Danismanlik Ticaret
Limited Sirketi, Jan. 2013. Work Package Four Deliverables.

[9] H. Kalb, P. Lazaridou, and M. Trier, “D4.2: Weblog spider component design,”
work package, B. Consortium (Ed.): Technische Universität Berlin (TUB), June
2012. Work Package Four Deliverables.

[10] M. Rynning, “D4.3: Initial Weblog Spider Prototype,” work package,
CyberWatcher, Sept. 2012. Work Package Four Deliverables.

[11] S. Arango-Docio, P. Sleeman, E. Pinsent, G. Gkotsis, T. Farrell, S. Kopidaki,
and M. Rynning, “D5.1: Design and Specification of Case Studies,” work
package, University of London, June 2012. Work Package Five Deliverables.

64



D4.8: Final BlogForever Platform September 14, 2013

[12] T. all BlogForever project partners, “D6.5: Business and exploitation plan,”
work package, Tero Ltd, Aug. 2013. Work Package Six Deliverables.

[13] V. C. Venkatraman, “Enhancing Scalability of Invenio - Digital Library

Software,” tech. rep., École Polytechnique Fédérale de Lausanne (EPFL), May
2013.

BlogForever Consortium 65



D4.8: Final BlogForever Platform September 14, 2013

Appendix A

Final Repository Implementation
Descriptions

One of the objectives of this deliverable is to present the implementation activities
of the whole suite of repository features defined in D4.4[5] In order to include the
description of the features along with its implementation details, the same template
that was created in D4.5[8] will be used.

Feature ID RFID (Repository Feature ID)
Name One sentence clear enough to make someone who has

already read the specification remember the description
Effort Spent Actual implementation time (Possible values: Days/Week-

s/Months)
Modules Af-
fected / Created

Name of the Invenio modules either modified or introduced

Description of the new feature

High level description of the feature. How Invenio is extended or what kind of
functionality is introduced, is described here. A general screenshot indicating
the general execution of the new feature may be included here.

Implementation details

Technical details of the implementation activities are described here. All the
files and modules that are exposed to modifications (i.e adding/ altering
classes/methods, introducing new fields into configuration files, new user
interfaces, etc) and how they are modified are explained in detail. Screenshots
of new functionalities are provided here.

Implemented By Person or partner who implemented the feature
Table A.1: Implementation Description: RFID

BlogForever Consortium 66



D4.8: Final BlogForever Platform September 14, 2013

Section A.1 lists the features that Invenio already provides and fulfills our needs,
Section A.2 presents the implementation descriptions of the whole list of repository
features that were defined in D4.4[5], and Section A.3 lists those repository features
that was decided not to implement, as well as the reasons why this decision was
taken.

A.1 Features already in Invenio

As mentioned earlier, Invenio is a comprehensive software for digital library
management. Therefore, it already supports 34 of the repository features. However,
some of these features needed to be configured in order to meet the requirements of
the final BlogForever platform. These features are listed as follows:

• RF5 - The web interface provides harmonized access and ensures compatibility
with major browsers

• RF7 - Export data using the OAI-PMH protocol

• RF8 - Export data using Dublin Core Schema

• RF10 - Archive user passwords are stored encrypted in the database

• RF11 - The archive web interface is available in many different languages

• RF13 - UTF is used as the default character encoding in the archive

• RF15 - Option to disseminate archive content in major social web platforms

• RF16 - The archive offers an RSS channel of its latest updates and/or users can
receive notification when new content of their interest is added to the archive

• RF18 - The archive detects duplicated content and keeps only one copy

• RF19 - The archive can be indexed by external search engines

• RF20 - The archive’s statistics are exported as CSV

• RF21 - The archive offers the option to login using SSO / LDAP

• RF27 - The archive displays a unique URL (DOI) for each record

• RF29 - The archive alerts the user when there are software updates

• RF33 - The archive can display only the very core information for each record

• RF37 - The archive restricts the access to its content to specific IP ranges

• RF38 - Users can communicate within the archive sharing and exchanging
resources

• RF39 - Free open-source archive software

• RF43 - For each record the archive stores the search keywords used to find
them

• RF44 - The archive enables pingback/trackback services

• RF51 - The archive is able to search within external sources external
collections, hosted collections

BlogForever Consortium 67



D4.8: Final BlogForever Platform September 14, 2013

• RF55 - The archive provides advanced APIs for use by developers to interact
with the archive’s content

• RF60 - The archive can export all its content, database entries and file system
for migration

• RF69 - The archive facilitates searching by providing fuzzy indexing and
stemming

• RF74 - The archive enables/disables certain functionalities based on the
content rights

• RF77 - The archive provides a mobile version

• RF79 - The archive can handle a very large number of content and users

• RF80 - The archive provides mechanisms to control data redundancy

• RF81 - The archive is built based on a modular service-oriented architecture

• RF82 - The archive can be deployed using a range of different database server
technologies

• RF83 - The archive provides multiple different views of the archive for each
user

• RF84 - The archive offers a complete range of search options to the user

• RF85 - The archive provides support for OpenURL

• RF86 - The archive offers functions to edit metadata

A.2 List of implementation descriptions

In this Section the final set of implementation descriptions of the final repository
features is presented.

Feature ID RF1 (Repository Feature 1)
Name Customizable user dashboard
Effort Spent Days
Modules Af-
fected / Created

WebSession

Description of the new feature

The layout of the dashboard is re-organized. Floating layout has become
3-column layout so that each column become independent from each other.

Each box in user dashboard has become collapsible. They can be collapsed by
clicking ’x’ symbol on top right corner of the box.

BlogForever Consortium 68



D4.8: Final BlogForever Platform September 14, 2013

The list of the collapsed boxes takes place on top of the dashboard. A
collapsed box can be retrieved back by clicking on its name.

Implementation details

• To change the layout of the user dashboard webaccount display.html
is modified and webaccount widget.html is created.

• The index endpoint of webaccount blueprint.py is modified to
display the dashboard boxes in proper column.

• To expand the collapsed boxes in user dashboard, loadwidget
endpoint is introduced in webaccount blueprint.py .

Implemented By Alper Çınar (SRDC)
Table A.2: Implementation Description: RF1

Feature ID RF2 (Repository Feature 2)
Name “Your History” box as part of the user dashboard
Effort Spent Weeks
Modules Af-
fected / Created

WebSession

Description of the new feature

“Your Activities” page is re-constructed while porting this feature to next.
This page includes the user’s history in reverse chronological order with 15
main categories:

• Adding into basket

• Basket creation/subscription

• Notes on baskets

• Votes

BlogForever Consortium 69



D4.8: Final BlogForever Platform September 14, 2013

• Page views

• Searches

• Subscriptions

• Downloads

• Messages

• Alerts

• Discussions

• Reviews

• Reports

• Groups

• Payments

By default, the most recent 10 activities are displayed on “Your Activities”
page. User may load older activities through “Load older activities” link on
the bottom of the page.

RF2 - The link to display older activities.

A filter is created to filter the categories that are displayed on “Your
Activities” page.

RF2 - Filter panel

The new box for “Your Activities” is created in the user dashboard. It consists
of last 10 activities of the user.

BlogForever Consortium 70



D4.8: Final BlogForever Platform September 14, 2013

Implementation details

• HistoryElement class is introduced to represent each history item in
the “Your Activities” page. It has only one constructor and the following
instance variables:

– date : Date of the history element.

– entry : Database entry corresponds to that history element.

– id : ID of the entry.

– history type : Type of the history.

– icon : Icon that is displayed near the activity message on the web
interface.

– msg : Message that is displayed on the web interface.

• HistoryCollector abstract class is introduced to create History
Collectors for each category. It has the following instance variables and
methods:

– icon : Icon for collected HistoryElement s.

– label : Label to filter this collector.

– check : Returns the most recently fetched HistoryElement s.
(This method should not be overridden in its child classes)

– use : Fills the required attributes of the most recently fetched
HistoryElement and returns it. (This method should not be
overridden in its child classes)

– get user history : Fetches and returns entries from database.

– get id (static): Returns the ID of the given entry.

– get date (static): Returns the date of the given entry.

– get message (static): Returns the message displayed on web
interface.

• 15 new classes are inherited from HistoryCollector class to collect
user history. These are:

– PaymentHistory

– AlertHistory

– BasketCreationHistory

– BasketNoteHistory

– BasketAddHistory

– DiscussionHistory

– ReportHistory

– ReviewHistory

– SubscriptionHistory

– VoteHistory

BlogForever Consortium 71



D4.8: Final BlogForever Platform September 14, 2013

– MessageHistory

– DownloadHistory

– SearchHistory

– RecordViewHistory

– GroupHistory

• HistoryManager class introduced to collect the user history from
registered HistoryCollector s. It has the following methods:

– get user history : Fetches and returns the list of the user history.

– has mote history : Returns if the user has more LHistoryElements
to fetch.

– get user history json : Returns the user history as JSON format.

• webhistory index.html is introduced to display “Your Activities”
page.

• webhistory blueprint.py is introduced and it has the following
endpoints:

– index : Constructs the “Your Activities” page.

– filteractivities : Filter the activities according to the filter panel of
the user interface.

– getmore : Returns the most recent activities that are not displayed
in “Your Activities” page.

• webhistory user settings.py is introduced to add “Your Activities”
box to the user dashboard.

• webhistory config.py is introduced. It keeps the following
configurations:

– CFG WEBHISTORY MSGS : Keeps the messages to display
user activities.

– CFG WEBHISTORY DATEPICKER DATETIME : Format
of the date picker of the filter in “Your Activities” page.

– CFG WEBHISTORY JSON DATE FORMAT : Date format
when using the dates of the activity in JSON objects.

– CFG WEBHISTORY JSON TIME FORMAT : Time format
when using the dates of the activity in JSON objects.

– CFG WEBHISTORY JSON DATETIME FORMAT :
Concatenation of the date format and time format.

• CFG WEBHISTORY DATETIME FORMAT , which keeps the
format of the datetime displayed in “Your Activities” page and box, is
added to invenio.conf

• The type of the date creation column of UserQueryBasket is
changed from Date to DateTime .

BlogForever Consortium 72



D4.8: Final BlogForever Platform September 14, 2013

• Two new columns creation date and action code are added into
UserBskBASKET table. webbasket dblayer.py is updated to
accommodate these changes.

Implemented By Şenan Postacı(SRDC)
Table A.3: Implementation Description: RF2

Feature ID RF3 (Repository Feature 3)
Name “Share” option in “Your History” box
Effort Spent Days
Modules Af-
fected / Created

WebSession, WebMessage

Description of the new feature

To share an activity, a tiny icon is added near each activity in the “Your
Activities” pages.

RF3 - A sample item on “Your Activities” page with sharing option

By clicking this icon, users may share their activities through a modal window.
This modal window contains a form to send the activity to users.

Implementation details

• serialized instance variable is added to HistoryElement to generate
messages for shared activities.

• New methods are added to HistoryCollector to create and share user
activities:

– serialize (static): Serializes given database entry as list to use it
for constructing message of the shared activity.

– get share message (static): Converts serialized database entry to
message.

• share endpoint is introduced in webmessage blueprint.py to
perform sharing an activity.

• view endpoint of webmessage blueprint.py and
webmessage view.html are updated to display messages of shared
activities.

BlogForever Consortium 73



D4.8: Final BlogForever Platform September 14, 2013

• getsharemessage endpoint is introduced in
webhistory blueprint.py to get the message of given shared activity.

• Scripts of the webmessage add.html is moved to
webmessage common js.html to reuse them in
webhistory index.html while sharing an activity message.

• hstSHARE table is introduced to keep the shared activities.
webmessage query.py is also updated accordingly.

• CFG SHARE MSGS , which keeps the messages for shared activities,
is added into webhistory config.py .

Implemented By Şenan Postacı(SRDC)
Table A.4: Implementation Description: RF3

Feature ID RF4 (Repository Feature 4)
Name Bibformat output templates to display blogs and blog posts

differently
Effort Spent 3 Weeks
Modules Af-
fected / Created

WebAccess, WebSearch, Bibformat

Description of the new feature

A different collection has been created to host the different types of records.
The collection information is stored in te MARC tag 980 a in Invenio. The
possible values of the tag and the collection display names are the following:

Tag content Collection name
BLOG Blogs
POST Posts
COMMENT Comments
PAGE Pages

There are BibFormat Templates defined for each type of record, as well as all
the necessary BibFormat Elements. This way, the repository will follow the
rules also defined to choose which BibFormat Templates to use for each record,
depending on the collection they belong to.

BlogForever Consortium 74



D4.8: Final BlogForever Platform September 14, 2013

Implementation details

The file democfgdata.sql configures these collections by default when the
demo site is created. In the same way, the BibFormat Templates, BibFormat
Templates, and output format rules are configured by default.

Implemented By Raquel Jiménez, Jaime Garćıa (CERN)
Table A.5: Implementation Description: RF4

Feature ID RF6 (Repository Feature 6)
Name Latest posts are displayed sorted by posted date
Effort Spent 1 Week
Modules Af-
fected / Created

WebSearch, BibSort

Description of the new feature

Posts are always offered sorted chronologically by the date in which they were
posted on their blog.

• Latest posts page: page displayed when the user clicks on Posts collection

BlogForever Consortium 75



D4.8: Final BlogForever Platform September 14, 2013

• Search posts results: results displayed when the user search within the
Posts’ collection

• “More posts in this blog” menu: menu offered within the post template
with the rest of posts which belong to the same blog

• “Posts in this blog” section: section offered within the blog template
with all the posts belonging to the same blog

BlogForever Consortium 76



D4.8: Final BlogForever Platform September 14, 2013

Implementation details

• A new sorting method called posted date has been added to the set of
BibSort methods in order to sort records by the date given in the MARC
tag 269 c. Also a new washer called ( sort transform format date has
been implemented to transform the format of the date provided by the
spider to the standard format %Y/%m/%d %H:%M:%S.

• A new property called latest additions has been added to the
Collection class, which will contain the list of recids of each collection
sorted by the selected sorting method.

• The blueprint websearch blueprint.py has been extended to
propagate to the search the sorting parameters introduced to sort the
latest additions.

• A new config variable
CFG WEBSEARCH INSTANT BROWSE AND SEARCH
SAME SORTING has been added in order to enable or disable the
option to display the search results in the same order than the one
selected to display the latest additions

Implemented By CERN
Table A.6: Implementation Description: RF6

BlogForever Consortium 77



D4.8: Final BlogForever Platform September 14, 2013

Feature ID RF9 (Repository Feature 9)
Name The archive stores and displays accordingly all record

metadata received from the spider
Effort Spent 2 Weeks
Modules Af-
fected / Created

BibUpload

Description of the new feature

The BibUpload module has been extended to allow that a script can run
before and/or after the upload as a plugin. A pre-ingestion plugin has been
developed to transform the metadata coming from the spider to the format
that BibUpload and Invenio can understand.
After the records have been inserted in the repository, the techniques
described in RF4 and RF5 are used to display the metadata.

Implementation details

The bibupload command has been extended to accept extra arguments for
pre- and post- ingestion plugins. In BlogForever, the command to be used to
upload a new record coming from the spider would be ’bibupload batchupload
–replace metadata to insert.xml –pre-plugin=bp pre ingestion
–post-plugin=bp post ingestion’. The file bp pre ingestion.py will be run
before the upload takes place, transforming the METS file coming from the
spider into MARCXML. The METS content is parsed in order to extract the
MARCXML that contains. The metadata is also enriched in several aspects:

• FFT tags are inserted with references to every attached file downloaded
from the spider.

• Metadata tags are inserted linking each record to other existing records,
like the parent record

• The parent record license and visibility are propagated to the being
uploaded record.

Implemented By Raquel Jiménez, Jaime Garćıa (CERN)
Table A.7: Implementation Description: RF9

BlogForever Consortium 78



D4.8: Final BlogForever Platform September 14, 2013

Feature ID RF12 (Repository Feature 12)
Name The archive can import METS
Effort Spent 1 Week
Modules Af-
fected / Created

BibUpload

Description of the new feature

The archive is able to process METS files. For this propose, a pre-ingestion
plugin is implemented to manage the METS files retrieved from the spider.
One of the goals of this plugin is to parse the METS file, to extract the MARC
living inside and to transform and to enrich it with the corresponding tags.

Implementation details

The pre-ingestion plugin is defined in
modules/bibupload/lib/preprocess/bp pre ingestion.py file. The
Python module xml.dom.minidom is used to parse the given METS file. For
more information about the pre-ingestion plugin see RF9.

Implemented By Jaime Garćıa (CERN)
Table A.8: Implementation Description: RF12

Feature ID RF14 (Repository Feature 14)
Name Descriptive statistics are offered by record
Effort Spent 4 Days
Modules Af-
fected / Created

WebSearch

Description of the new feature

Enabled the “statistics” tab in the detailed view of a record. The information
offered is “People who viewed this page also viewed”, “People who downloaded
files from this page also viewed” and “Download history graph”.

BlogForever Consortium 79



D4.8: Final BlogForever Platform September 14, 2013

Implementation details

The logging of file downloads (rnkDOWNLOADS) and page views (rnkPAGEVIEWS)
have been enabled.
Using this information, the record usage.py code is able to show “People
who viewed this page also viewed”, “People who downloaded files from this
page also viewed” and a “Download history graph” using the WebStat module.

Implemented By CERN
Table A.9: Implementation Description: RF14

Feature ID RF17 (Repository Feature 17)
Name The archive displays a disclaimer about the originality of

the content
Effort Spent 2 Days
Modules Af-
fected / Created

BibFormat

Description of the new feature

A disclaimer is displayed in every detailed record page saying that the
corresponding blog, post, page or comment, is just an archived copy of the
original one.

Implementation details

This is implemented in the webstyle template.py file using HTML and
Python. The disclaimer says that the presented content is just an archived
copy, not the original. A link to the original element is also offered.

RF17 - Disclaimer

Implemented By Raquel Jiménez Encinar (CERN)
Table A.10: Implementation Description: RF17

BlogForever Consortium 80



D4.8: Final BlogForever Platform September 14, 2013

Feature ID RF22 (Repository Feature 22)
Name “Your Preferences” box as part of the user dashboard
Effort Spent 1 Week
Modules Af-
fected / Created

WebSearch, WebSession

Description of the new feature

A new box containing recommended records based on user search criteria has
been added into “Your Account” page.

Implementation details

• Two new database tables, query term and user query term are
introduced. Moreover, log query terms function is added into
search engine.py to keep history of the search terms used by each user.

• webrecommend.py module that contains functions to recommend the
records to the users are developed. These functions are:

– get unread records : Returns the record ID’s that are not viewed
by the user.

– get query terms : Returns the list of the query terms that have
been used by the user

– get recommended content : Returns the unread records based
on word similarity with the query terms used by the user.

• Three configuration parameters have been added into
websession config.py :

– CFG RECOMMENDATION RANK METHOD : The name
of the word similarity ranking method

– CFG RECOMMENDED CONTENT NUMBER : The
number of records recommended in “Your Account” page.

– CFG MOST FREQUENT TERM NUMBER : The number
of most frequent terms considered in recommendation.

BlogForever Consortium 81



D4.8: Final BlogForever Platform September 14, 2013

• webrecommend user settings.py is introduced to add
“Recommended for you” box to “Your account” page.

Implemented By SRDC
Table A.11: Implementation Description: RF22

Feature ID RF23 (Repository Feature 23)
Name The archive stores the comments of blog posts and displays

them as part of the blog posts
Effort Spent 3 Days
Modules Af-
fected / Created

BibFormat

Description of the new feature

Comments of blog posts are displayed to the user together with the specific
blog post. The two latest comments are displayed by default. If the user wants
to see all the comments needs to click on the “Show all comments” link.

Implementation details

A new BibFormat element called “bfe post comments” is created. HTML,
JavaScript and Python is used. This element is used in the BibFormat
template “PostHTML.bft”.

Implemented By Raquel Jiménez Encinar (CERN)
Table A.12: Implementation Description: RF23

Feature ID RF24 (Repository Feature 24)
Name Links to other sources within the blog posts and comments

are displayed separately
Effort Spent 1 Week
Modules Af-
fected / Created

WebBlog

BlogForever Consortium 82



D4.8: Final BlogForever Platform September 14, 2013

Description of the new feature

The repository displays in the detailed record page of a blog post a menu with
all the links used as references. If any of these links is pointing to a content
already stored into the archive, a link to the corresponding record is offered.
Reference links can be either provided by the spider or is the repository who
extracts them in case the spider does not provide them.

Implementation details

A new BibFormat element called “BFT LINKS MENU” is created for this
propose, which is used in the BibFormat template “PostHTML.bft”. This
element also displays the link to the archived content in case the reference link
is pointing to a content already stored in the archive.

Implemented By Raquel Jiménez Encinar (CERN)
Table A.13: Implementation Description: RF24

Feature ID RF25 (Repository Feature 25)
Name The archive displays the tags of a blogs and blog posts
Effort Spent 3 Days
Modules Af-
fected / Created

BibFormat

BlogForever Consortium 83



D4.8: Final BlogForever Platform September 14, 2013

Description of the new feature

Tags associated with blogs and blog posts are displayed in the detailed record
page as links in such way that a search by the corresponding tag is triggered
by clicking on it. Tags are provided by the spider and the repository get and
display them using a BibFormat element.

Implementation details

The new BibFormat element “BFT TAGS” is created which is used in the
BibFormat templates “BlogHTML.bft”, “PostHTML.bft”

Implemented By Raquel Jiménez Encinar (CERN)
Table A.14: Implementation Description: RF25

Feature ID RF26 (Repository Feature 26)
Name BlogUploader command line to upload, update and delete

a list of blogs
Effort Spent 3 Weeks
Modules Af-
fected / Created

WebBlog

Description of the new feature

In order to let administrators to edit a list of blogs and to insert, delete or
update them into the repository, a new command line tool has been
implemented.

Implementation details

A new command line tool called “bloguploader” is implemented. The following
modes are offered:

BlogForever Consortium 84



D4.8: Final BlogForever Platform September 14, 2013

• Insert a blog (-i, –blog insert): This option let admins insert a list of
blogs in the archive. Each blog is represented by its url, title (optional),
topic and license.
E.g: http://blogforever.eu,BlogForever,topic1,license1
http://blogs.physicstoday.org/,,topic1,license3

• Delete a blog (-d, –blog delete): This option let admins delete a list of
blogs from the archive. Each blog is represented just by its url. E.g:
http://blogforever.eu
http://blogs.physicstoday.org/

• Update a blog (-U, –blog update): This option let admins update a list
of blogs in the archive. Each blog is represented by its url, title
(optional), topic and license.
E.g: http://blogforever.eu,BlogForever,topic2,license2
http://blogs.physicstoday.org/,Physicstoday,topic1,license2

The input file is a CSV file where the elements of each row (blog elements) are
separated by commas. The output file is a marcxml file that contains all the
records to be inserted, deleted or updated by BibUpload.

Implemented By Raquel Jiménez Encinar (CERN)
Table A.15: Implementation Description: RF26

Feature ID RF28 (Repository Feature 28)
Name The archive displays the author of blog posts and comments
Effort Spent 3 Days
Modules Af-
fected / Created

BibFormat

Description of the new feature

The author of blog posts and comments are displayed with them as a link in
such way that a search by author is triggered by clicking on it. The author is
displayed in both, the brief record and the detailed record.

Implementation details

The BibFormat templates “Post HTML brief.bft” and
“Comment HTML brief.bft” are enriched with the BibFormat element
“BFE AUTHORS”. On the other hand, the BibFormat templates
“PostHTML.bft” and “CommentHTML.bft” are enriched with the new

BlogForever Consortium 85

http://blogforever.eu
http://blogs.physicstoday.org/
http://blogforever.eu
http://blogs.physicstoday.org/
http://blogforever.eu
http://blogs.physicstoday.org/


D4.8: Final BlogForever Platform September 14, 2013

BibFormat elements “BFE POST AUTHOR” and
“BFE COMMENT AUTHOR” respectively.

Implemented By Raquel Jiménez Encinar (CERN)
Table A.16: Implementation Description: RF28

Feature ID RF29 (Repository Feature 29)
Name The archive alerts the user when there are software updates
Effort Spent Days
Modules Af-
fected / Created

WebSession

Description of the new feature

The archive checks and informs the administrators via user dashboard when
there are software updates.

RF29 - The alert displayed on the user dashboard when there are software
updates

Implementation details

• The index endpoint of webaccount blueprint.py is modified to
check if there are any software updates.

Implemented By Alper Çınar (SRDC)
Table A.17: Implementation Description: RF29

Feature ID RF31 (Repository Feature 31)
Name The archive offers a complete blog submission interface to

submit, modify and delete blogs/posts
Effort Spent 1 Month
Modules Af-
fected / Created

WebSubmit, WebBlog

BlogForever Consortium 86



D4.8: Final BlogForever Platform September 14, 2013

Description of the new feature

The archive offers a complete submission interface to let users and admins to
submit new blogs, to modify certain specific metadata of a blog, and to delete
either a blog (as result all its comments and blog posts will be deleted) or a
single blog post.

Implementation details

To offer a complete blog submission interface, two new document types has
been created:

• Blog Submission(BSI), which will be used by administrators. The
developed actions are:

– Submit a Blog: form to let admins submit a blog. Users should
provide the URL of the blog, title, license (see RF53) and topic. The
blog is submitted directly.

– Modify a Blog: form to let admins modify specific metadata of a
blog. Users should provide the URL of the blog and select the field/s
they want to modify. The blog is modified directly.

BlogForever Consortium 87



D4.8: Final BlogForever Platform September 14, 2013

– Delete a Blog: form to let admins delete a blog and all its
descendants. Users should provide the URL of the blog. The blog
and all its descendants are deleted directly.

– Delete a Post: form to let admins delete a post. Users should
provide the URL of the post. The post is deleted directly.

• Blog Submission (Refereed)(BSIREF), which will be used by users and
referees. The developed actions are:

– Submit a Blog: form to let users submit a blog. Users should
provide the URL of the blog, title, license (see RF53) and topic.
Users should wait for the referee’s decision.

– Approve Blog Submission: form to let referees approve or reject a
submitted blog.

– Modify a Blog: form to let users modify specific metadata of a blog.
Users should provide the URL of the blog and select the field/s they
want to modify. Users should wait for the referee’s decision.

BlogForever Consortium 88



D4.8: Final BlogForever Platform September 14, 2013

– Approve Blog Modification: form to let referees approve or reject
modifications on the metadata of a blog.

– Delete a Blog: form to let users delete a blog and all its descendants.
Users should provide the URL of the blog. Users should wait for the
referee’s decision.

– Approve Blog Deletion: form to let referees approve or reject the
deletion of a blog.

– Delete a Post: form to let users delete a post. Users should provide
the URL of the post. Users should wait for the referee’s decision.

– Approve Post Deletion: form to let referees approve or reject the
deletion of a post.

New websubmit functions have been also implemented in order to customize
the submission. Functions to send e-mails or to display messages to the user
after every action, functions to send e-mails to the referee giving him the
option to reject or approve an action, function to check the validation of a
particular URL, function to carry out the deletion of blogs and/or posts. All
the defined functions are: APM Mail Final Decision to User,
APM Print Success, APO Mail Final Decision to User, APO Print Success,
APP Mail Final Decision to User, APP Print Success,
APS Mail Final Decision to User, APS Print Success,
DBI Mail Approval Request to Referee, DBI Mail Blog Deleted to User,
DBI Mail Notification to User, DBI Print Success,
DPI Mail Approval Request to Referee, DPI Mail Notification to User,
DPI Mail Post Deleted to User, DPI Print Success,
MBI Mail Approval Request to Referee, MBI Mail Blog Modified to User,
MBI Mail Notification to User, MBI Print Success,
SBI Mail Approval Request to Referee, SBI Mail Blog Submitted to User,
SBI Mail Notification to User, SBI Print Success, Make Delete Records,
Check URL.

The new forms have been created through the WebSubmit admin interface.
Once this is done, all the code that has been written is dumped into a file and
the file democfgdata.sql is enriched with that code.

In addition of this, two options are offered in the detailed record page to delete
or to modify a record directly. These actions are “Ask for Deletion” and “Ask
for Modification”. In order to implement this, two new BibFormat elements
have been created: “bfe ask for deletion” and “bfe ask for modification”. By
clicking on these options the user is redirected to the WebSubmit interface to
performs the wished action. It goes to BSI if the user is admin, otherwise it
goes to BSIREF.

In order to manage submissions, two new restricted and hidden collections
have been created:

BlogForever Consortium 89



D4.8: Final BlogForever Platform September 14, 2013

• Provisional Blogs: contains all the submitted (approved) blogs

• Rejected Blogs: contains the blogs rejected by the referee

On the other hand, in order to manage the restrictions on the collections
mentioned above the file access control config.py has been amended
creating new roles, new authorizations and new restrictions.

Implemented By Raquel Jiménez Encinar (CERN)
Table A.18: Implementation Description: RF31

Feature ID RF32 (Repository Feature 32)
Name Users are able to remove their personal data
Effort Spent 3 Days
Modules Af-
fected / Created

WebSession, WebAccess

Description of the new feature

A user is able to disable his/her account. This service can be accessed from
https://<site-address>/youraccount/edit. Before confirmation, the user is
able to select an option to delete the personal data completely or keep it in the
database. If the former one is selected, all the user information except the
shared data related with groups, public baskets and messages is deleted from
database. The site administrator is able to enable/disable this selection.

To make sure that only authorized users are performing this operation, an
additional password affirmation is also needed.

If the user data is kept, the user is able to reactivate his/her account by signing
in with same email/nickname and password. If the user tries to register with
same credentials, s/he is encouraged to log in to reactivate his/her account.

BlogForever Consortium 90



D4.8: Final BlogForever Platform September 14, 2013

When the user reactivates his/her account, a “welcome message” appears and
the user can access his/her personal data.

Implementation details

• Since password confirmation is not possible for external login method,
users using external login are not able to remove their accounts until they
get new password.

•
CFG ACCESS CONTROL ENABLE SUSPENDED ACCOUNTS
parameter has been added in invenio.conf . It defines whether the user
accounts can be suspended or not. If this is not set to 1, deactivation
option is not provided.

• To distinguish suspended users from other user types, value 3 is set to
note column of the user table in database.

• In webuser.py , remove user and deactivate user functions
which handle database transactions have been implemented.

• To find tables with user data, tables with column id user or uid are
queried in remove user function. The query can be extended by
adding new column names to the query list in the same function.

• New message with key 21 that is related to reactivation has been
inserted to CFG WEBACCESS WARNING MSGS dictionary in
access control config.py .

• loginUser and registerUser functions in webuser.py have been
modified.

• In websession webinterface.py , delete method has been
reimplemented, login and register functions have been edited.

• In webaccount.py , perform delete function has been
reimplemented.

• In websession templates.py , tmpl user preferences and
tmpl account delete functions have been modified.

Implemented By Şenan Postacı(SRDC)
Table A.19: Implementation Description: RF32

BlogForever Consortium 91



D4.8: Final BlogForever Platform September 14, 2013

Feature ID RF34 (Repository Feature 34)
Name The archive displays and suggests similar records to the

user
Effort Spent 1 Week
Modules Af-
fected / Created

WebSearch, WebInterface

Description of the new feature

Extended Invenio’s record similarity functionality to consider blog records as
a special case. To determine the similarity of two blogs, the level of similarity
between their posts is first calculated and then aggregated to come up with a
score.

Implementation details

Added an function step before blog extend bibrank in search engine.py

called blog extend bibrank. Given one blog, it will get all the posts, get the
similar posts for all of them, then aggregate the results to get the most similar
posts for the blog in general, and finally group them by parent blog. The final
outcome is a list of blogs similar to the blog given as an argument.

Implemented By CERN
Table A.20: Implementation Description: RF34

Feature ID RF35 (Repository Feature 35)
Name The archive displays other blogs that were viewed by people

who also viewed the current blog
Effort Spent 2 Days
Modules Af-
fected / Created

BibRank

Description of the new feature

The repository displays in the tab “Usage statistics” of the detailed blog
record page, the list of blogs that were viewed by people who also viewed the
current blog. Each viewed blog will be showed with the number of different
people who had viewed it.

BlogForever Consortium 92



D4.8: Final BlogForever Platform September 14, 2013

Implementation details

The query located in the file bibrank downloads similarity.py in the
function “calculate reading similarity list()” is amended grouping the records
by blog collection, in order to get all the blogs that were viewed by people who
also read a specific blog. The final result offers the name of the blogs that were
viewed by people who also viewed the current blog with the number of users
who viewed each of those blogs.

Implemented By Raquel Jiménez Encinar (CERN)
Table A.21: Implementation Description: RF35

Feature ID RF36 (Repository Feature 36)
Name The archive identifies and stores the topic of blogs and blog

posts to let users navigate through the archive by topic
Effort Spent 2 Days
Modules Af-
fected / Created

WebSubmit, WebBlog

Description of the new feature

At submission time users can select the topic/s the blog belongs to. After
this, at pre-ingestion time, the selected topic/s are propagated to the
descendants of the blog, so if users search for a specific topic, the search will
return the blog and also all its descendants.

Implementation details

A new config variable has been added named CFG BLOG TOPICS which
define the list of topics that the repository offers to users. This list can be edit
by the administrator.

A new field has been added to the submission form as a multiple select to be
able to select more than one topic.

BlogForever Consortium 93



D4.8: Final BlogForever Platform September 14, 2013

The user can navigate through the topics by clicking on the drop menu
displayed in the main page,

or also by clicking on the tags displayed with each record.

Implemented By CERN
Table A.22: Implementation Description: RF36

BlogForever Consortium 94



D4.8: Final BlogForever Platform September 14, 2013

Feature ID RF40 (Repository Feature 40)
Name The archive validates the content received from the spider
Effort Spent 1 Day
Modules Af-
fected / Created

BibUpload, BibIngest

Description of the new feature

The module BibIngest described in RF87 provides a method that calculates
the md5 hash of every file fetched from the spider and compares it with the
md5 hash provided by the spider. This method is used in
bp pre ingestion.py in the pre-ingestion processing described in RF9.

Implementation details

See BibIngest module described in RF87.

Implemented By Nikolaos Kasioumis (CERN)
Table A.23: Implementation Description: RF40

Feature ID RF41 (Repository Feature 41)
Name The archive detects and eliminates spam content
Effort Spent 3 Weeks
Modules Af-
fected / Created

BibSpam, BibSched

Description of the new feature

BibSpam daemon is scheduled to run periodically and check all repository
records to identify spam content. Spam records are flagged with a special
MARC tag 911 s as spam with “SPAM” label.

Implementation details

BibSpam is based on URL blacklists such as SpamHaus a to identify spam.

The operation of the BibSpam module can be summarized as follows:

BlogForever Consortium 95



D4.8: Final BlogForever Platform September 14, 2013

1. The tasklet named bst spam detection.py, iterates over the list of records
the user provides, or over the new records that were ingested into the
repository since the last execution of the BibSpam tasklet.

2. For each of these records, it checks if metadata element 520 u exists
(URL). If not the record is skipped because the spam classification is
performed based on the record URL.

3. The spam classifier checks if the URL is spam. If so, The word “SPAM”
is written in 911 u tag.

After the daemon process has been completed, the admin should run BibIndex
and WebColl to see the changes in the records.

Configuration file: etc/BibSpam/BibSpam.cfg

Command line execution: sudo -u www-data
/opt/invenio/bin/BibSpam

ahttp://www.spamhaus.org

Implemented By Vangelis Banos (AUTH)
Table A.24: Implementation Description: RF41

Feature ID RF45 (Repository Feature 45)
Name The archive is able to inter-operate with federated search

engine dbwiz (SRU Server)
Effort Spent 3 Weeks
Modules Af-
fected / Created

BibFormat, WebSearch, WebStyle

Description of the new feature

SRU is a standard XML-focused search protocol for Internet search queries.
Support for the SRU protocol has been added in Invenio.

Implementation details

Any 3rd party software or web user can perform http requests in the SRU
server implemented at /sru URL endpoint. Results are formatted using XML
and the specific SRU schemas described in
http://www.loc.gov/standards/sru/resources/schemas.html.

BlogForever Consortium 96

http://www.loc.gov/standards/sru/resources/schemas.html


D4.8: Final BlogForever Platform September 14, 2013

Example request: http://bf3.itc.auth.gr/sru?version=1.1&operation=
searchRetrieve&query=information&maximumRecords=10&
recordSchema=dc

SRU 1.2 service. parameters:

• operation → (searchRetrieve, explain, scan, CQL)

• version → only 1.2 is supported

• query (search query)

• startRecord (int)

• maximumRecords (int)

• recordPacking (xml is default, other is string)

• recordSchema
→http://www.loc.gov/standards/sru/resources/schemas.html

• resultSetTTL → not supported

• stylesheet → Reference:http:
//www.loc.gov/standards/sru/specs/common.html#stylesheet

• extraRequestData → not supported

scan and CQL are not supported yet

Implemented By Apostolos Papadopoulos (ALTEC), Vangelis Banos
(AUTH)

Table A.25: Implementation Description: RF45

Feature ID RF46 (Repository Feature 46)
Name Users can create personal collections of their favourite blogs
Effort Spent Days
Modules Af-
fected / Created

WebBasket

Description of the new feature

With this feature blogs can be added to user personal baskets with their blog
posts.

When deleting a blog from a personal basket, user is asked to select which
blog posts of that blog s/he also wants to delete. When deleting a blog post
from a personal basket, checks if the blog of that blog post is also in the same
basket. If so, user is asked to select which blog posts of that blog s/he also
wants to delete.

BlogForever Consortium 97

http://www.loc.gov/standards/sru/resources/schemas.html
http://www.loc.gov/standards/sru/specs/common.html#stylesheet
http://www.loc.gov/standards/sru/specs/common.html#stylesheet


D4.8: Final BlogForever Platform September 14, 2013

Implementation details

• perform request add function of webbasket.py is modified to add
the blog posts of the blog when the user adds a blog to personal basket.

• modify method of WebInterfaceYourBasketsPages class is
modified to check if there are any other records user may want to delete
when removing a blog or blogpost from a personal basket.

• perform request confirm delete is added to webbasket.py to
display the list of related blogs and blog posts with the selected record.

• tmpl delete related record confirmation method is introduced in
Template class of WebBasket module, which constructs the page
containing the list of the records which the user may also want to remove.

• confirm delete method is introduced in
WebInterfaceYourBasketsPages class, which deletes the selected
blogs and blog posts.

• get basket recids is added to webbasket dblayer.py that returns
the list of the record IDs of given basket.

• Two new functions are added into webblog utils.py :

– extend with blog posts : Extends the list of blog IDs with their
blog post IDs.

– get related records in basket : Returns the IDs of the blog and
blog posts related with the given record from the given basket.

Implemented By Alper Çınar (SRDC)
Table A.26: Implementation Description: RF46

BlogForever Consortium 98



D4.8: Final BlogForever Platform September 14, 2013

Feature ID RF47 (Repository Feature 47)
Name Description of how to cite archived records is presented

prominently with each record
Effort Spent 3 Days
Modules Af-
fected / Created

BibFormat

Description of the new feature

A user needs to link and cite the content of the archive. Therefore, the way
how to link and how to cite a record is presented prominently in the detailed
view of the record by a format element.

Implementation details

A new format element called bfe citation box.py is created. This element
displays the description of how users should cite any content in the archive.
This description includes:

• For blogs:
“title”
Retrieved from the original blog“original url”
Date archived: (record creation date). Archived at “record url”

• For blog posts:
author. “title”. Blog: “blog title”
Date posted: (record posted date). Retrieved from the original post
“original url”
Date archived: (record creation date). Archived at “record url”

BlogForever Consortium 99



D4.8: Final BlogForever Platform September 14, 2013

• For comments:
author. Blog post: “blog title” Retrieved from the original comment
“original url”
Date archived: record creation date). Archived at “record url”

Implemented By Raquel Jiménez Encinar (CERN)
Table A.27: Implementation Description: RF47

Feature ID RF48 (Repository Feature 48)
Name The archive provides the option to translate its content on

demand
Effort Spent 2 Weeks
Modules Af-
fected / Created

BibFormat, WebComment, WebMessage, WebStyle

Description of the new feature

This feature enables users to translate the content of records, messages,
reviews and comments. The language used by the user determines the
language of the translation.

The user can translate the corresponding part by clicking “Translate” link over
the context. Moreover, the text of the “Translate” link appears in the
language of the user. In the sample below, the user using the platform in
English translates the message in German to English.

BlogForever Consortium 100



D4.8: Final BlogForever Platform September 14, 2013

The user is able to undo the translation by clicking “Show Original” link.

Implementation details

• Google translate gadget has been utilized for translation task.

• “Translate” link is added over the records, messages, reviews and
comments to translate the content.

• To add “Translate” link, webcomment comments.html ,
webcomment reviews.html , webmessage view.html and some of
the bibformat templates are modified, also a new bibformat element,
bfe translate.py , is created.

Implemented By SRDC
Table A.28: Implementation Description: RF48

Feature ID RF52 (Repository Feature 52)
Name Users can tag archived records with personal tags
Effort Spent 3 Weeks
Modules Af-
fected / Created

WebTag

BlogForever Consortium 101



D4.8: Final BlogForever Platform September 14, 2013

Description of the new feature

Users are able to assign personal tags to the records. With these tags, the
user is able to organize the records in personal collections according to their
preferences.

Users are able to create and delete tags, as well as attach and detach them
from records.

Implementation details

The functionality is provided by a new module called WebTag. The module
utilizes infrastructure provided by Invenio Next.

Database Backend
WebTag defines a set of classes which are translated into database tables using
SQL Alchemy ORM:

• WtgTAG : A named tag object owned by a user. The tag’s name
cannot contain non-alphanumeric characters.

• WtgTAGRecord : Association between a WtgTAG and a record (class
Bibrec ).

• WtgTAGUsergroup : Describes the permissions given by the owner to
a group of users. This mechanism is not yet implemented, but we plan
adding group and public tags later.

User Interface
WebTag defines an InvenioBlueprint . The user interface consists of:

• Tag Cloud mode of viewing tags (/yourtags/display/cloud)

• Table mode of viewing tags (/yourtags/display/list): this view allows
users to create and delete tags as well as display them ordered by
different parameters.

BlogForever Consortium 102

/yourtags/display/cloud
/yourtags/display/list


D4.8: Final BlogForever Platform September 14, 2013

• List of tags in document search and detailed view: for logged-in users, a
list of tags is displayed when viewing a document.

• Tag editor: in document view, users can open the editor to attach and
detach tags from a record. It can also create new tags and attach them.
The editor uses javascript and commits all changes immediately to the
server by AJAX requests.

• List of records associated with a tag (/yourtags/tag/〈id tag〉/records):
Displays all records associated with the selected tag.

• User Settings widget in Your Account page presents statistics about tags
as well as links to other parts of the module’s user interface.

All information sent to the server is validated using WTForms validators in
order to maintain name restrictions and check users’ permissions.

The list of tags in document view is implemented with the template context
function bfn webtag record tags . The function can be used in various
templates which allows easy customization of application interface.

Configuration
The configuration variables are located inside webtag config.py :

BlogForever Consortium 103

/yourtags/tag/<id_tag>/records


D4.8: Final BlogForever Platform September 14, 2013

• CFG WEBTAG NAME MAX LENGTH : maximum length of tag
name.

• CFG WEBTAG NAME REPLACEMENTS SILENT : list of
regular expression replacements applied before saving a tag name.

• CFG WEBTAG NAME REPLACEMENTS BLOCKING : list
of regular expression replacements applied on a tag name. If a match is
found, the name is considered invalid. The expressions are used to
suggest a similar valid name.

• CFG WEBTAG ACCESS NAMES and
CFG WEBTAG ACCESS RIGHTS : permission levels for group
and public tags. Currently not used.

File structure
The module’s files:

• lib/* : Application logic in Python and Javascript.

• etc/templates/* : Jinja2 templates for generating HTMLs. Files
without base.html suffix are provided to simplify interface
customizations.

Implemented By CERN
Table A.29: Implementation Description: RF52

Feature ID RF53 (Repository Feature 53)
Name The archive respects content licenses and displays useful

information about them
Effort Spent 2 Weeks
Modules Af-
fected / Created

WebSubmit, WebSearch, WebAccess

Description of the new feature

This feature can be split in 2 parts:

• In order to display the license information captured by the spider, a
BibFormat Element has been created that displays this information, and
that element has been used in the convenient BibFormat Templates.

• The administrators (or any user allowed to do it) submit a new URL to
be crawled using WebSubmit are asked for the visibility that the Blog
(and all the child records: posts, comments and pages) should have. The
three options are:

BlogForever Consortium 104



D4.8: Final BlogForever Platform September 14, 2013

– Public - Everybody will have access to the content.

– Restricted - Only registered users will have access to the content.

– Private - Only you will have access to the content.

These visibility options are propagated to the child records when they
are fetched from the spider (see RF9 for more details on pre-ingestion
processing). This information is stored in the MARC metadata in the
field 980 (collection) and used afterwards in the WebAccess
configuration, allowing the access to the content to the appropriate users.

Implementation details

See RF31 for more details on WebSubmit. The files democfgdata.sql and
access control config.py contain the default configuration that will be
installed, and the following collections RESTRICTEDCONTENT and
PRIVATECONTENT are included. If the content is not tagged with one of
these values in the 980 MARC tag it is considered to be Public.

Implemented By Raquel Jiménez, Jaime Garćıa (CERN)
Table A.30: Implementation Description: RF53

Feature ID RF54 (Repository Feature 54)
Name The archive keeps all the different versions of a record
Effort Spent 1 Week
Modules Af-
fected / Created

BibIngest

Description of the new feature

Versioning is enabled for every data object stored in the digital repository.
When any data object is modified, a new version of it is kept in the ingestion
database mongoDB. Therefore, the repository stores all the different versions
of all the data objects.

Implementation details

A new parameter called “version” is added to the usage settings of the module
BibIngest, which is keeping the last version of each record. A new config
variable called “CFG BIBINGEST VERSIONING” is also added in order to

BlogForever Consortium 105



D4.8: Final BlogForever Platform September 14, 2013

manage versions, if True, whenever an ingestion package is updated old
versions are kept.

Implemented By Nikolaos Kasioumis (CERN)
Table A.31: Implementation Description: RF54

Feature ID RF57-58-61 (Repository Feature 57-58-61)
Name The archive provides a ranking method based on the user

rating of content (RF57)
A user can rank archived content based on specific users’
content rating (RF58)
The archive ranks blogs based on their views and downloads
(RF61)

Effort Spent 1 Week
Modules Af-
fected / Created

BibRank

Description of the new feature

These three features have been implemented in the same development branch
and add two different ranking method templates to the existing ones: “Number
of Record Views” (record view) and “Average Review Score” (average score).

“Number of Record Views” ranking method calculates the number of the visits
to the record. Each visit to the same record is counted as 1 for the visits
occured within a minute.

“Average Review Score” calculates the average scores of the records.

Implementation details

• 2 new ranking templates are added: template average score.cfg and
template record view.cfg

• template record view.cfg has a parameter time interval that
decides the interval to delete consequent record views, i.e., it does not
matter how many times a user views a record in a given time interval, it
is counted only once.

• 4 new functions have been implemented in
bibrank tag based indexer.py :

BlogForever Consortium 106



D4.8: Final BlogForever Platform September 14, 2013

– record view : executes bibrank engine method for
record view ranking method

– record view exec : Ranks total number of record visits without
checking the user IP

– average score : executes bibrank engine method for
average score ranking method

– average score exec : Ranks average review score for records

• 2 new files have been created: bibrank record view indexer.py and
bibrank average score indexer.py

– bibrank record view indexer contains the functions that are
used for indexing visit counts of each record.

– bibrank average score indexer contains the function that are
used for indexing average review score of each record.

Implemented By SRDC
Table A.32: Implementation Description: RF57-58-61

Feature ID RF59 (Repository Feature 59)
Name Export data using XML (METS, MARC)
Effort Spent 2 Weeks
Modules Af-
fected / Created

BibUpload, MiscUtil

Description of the new feature

The repository already offers several formats to export content as XML, both
in the main search page and in the detail record page. A new output format to
export records is added: METS (Metadata Encoding & Transmission
Standard).

Implementation details

A new BibFormat element called “bfe mets” is created. This element retrieves
the METS of the corresponding record from the mongoDB and displays it to
the user. A new row is added into the “format” table in the database
corresponding to the METS output format, where:

BlogForever Consortium 107



D4.8: Final BlogForever Platform September 14, 2013

column name value
name METS
code xmets
description Metadata Encoding & Transmission Standard
content type text/xml

This is the result we get when we choose to export a record to METS format:

Implemented By Raquel Jiménez Encinar (CERN)
Table A.33: Implementation Description: RF59

Feature ID RF62 (Repository Feature 62)
Name Export records as PDF and JPEG
Effort Spent Months
Modules Af-
fected / Created

BibFormat

Description of the new feature

PDF and JPEG are added as new export options:

PDFs are created by LaTeX templates. First, the record is converted from
HTML to LaTeX, then it is converted from LaTeX to PDF.

BlogForever Consortium 108



D4.8: Final BlogForever Platform September 14, 2013

JPEGs are created by taking snapshots of the records.

Implementation details

BlogForever Consortium 109



D4.8: Final BlogForever Platform September 14, 2013

• LaTeX TeX Live distribution is used for creating PDF files.
“install-texlive” target is added to Makefile.am to install required
packages.

• PhantomJS is used for taking snapshot of the pages to create JPEG files.
“install-phantomjs-64bits” and “install-phantomjs-32bits” targets are
added to Makefile.am to install required packages.

• Default HTML actions.bft is modified to add PDF and JPEG as an
exporting option.

• Four new output formats are introduced:

– JPEG.bfo : Output format to construct the page for taking
snapshot.

– JPEGB.bfo : Like JPEG.bfo but less detailed.

– PDF.bfo : Output format to construct LaTeX template.

– PDFB.bfo : Like PDF.bfo but less detailed.

• The following format templates are introduced to create LaTeX
documents and the page to take snapshot for exporting as JPEG:

– JPEG.bft

– BlogJPEG.tpl

– CommentJPEG.tpl

– Comment JPEG brief.tpl

– PostJPEG.tpl

– Post JPEG brief.tpl

– LaTeX.bft

– BlogLaTeX.tpl

– CommentLaTeX.tpl

– Comment LaTeX brief.tpl

– PostLaTeX.tpl

– Post LaTeX brief.tpl

• The following BibFormat elements are introduced for creating LaTeX
documents:

– bfe latex abstract.py

– bfe latex authors.py

– bfe latex begin.py

– bfe latex blog posts.py

– bfe latex blog url link.py

– bfe latex comment header.py

– bfe latex default.py

– bfe latex end.py

– bfe latex post comments.py

– bfe latex record body.py

BlogForever Consortium 110



D4.8: Final BlogForever Platform September 14, 2013

– bfe latex record dates.py

– bfe latex snapshot.py

– bfe latex tags.py

– bfe latex title.py

• The following BibFormat elements are modified to create the page and
take snapshot for exporting as JPEG:

– bfe blog posts.py

– bfe post comments.py

– bfe record dates.py

– bfe snapshot.py

• The following templates are created to export as JPEG and PDF.

– footer jpeg.html : Footer used for exporting as JPEG.

– header jpeg.html : Header used for exporting as JPEG.

– page jpeg.html : The base page to inherit format templates for
exporting as JPEG.

– page latex.tpl : The base page to inherit format templates for
exporting as PDF.

– record jpeg.html : Default template to export as JPEG.

• To get the export requests for PDF and JPEG, index endpoint of
websearch blueprint.py and print records function in
search engine.py is modified.

• create pdf and create jpeg functions are introduced in
bibformat.py to create PDF and JPEG files, respectively.

• summary endpoint is introduced in record blueprint.py to
construct the page for taking snapshot to export as JPEG.

• jpeg render script.js is introduced to use on taking snapshot of the
page by PhantomJS.

• latexutils.py and latexutils image.py is created to keep common
functions to creating LaTeX document. The following functions are in
latexutils.py :

– begin document : Initialization codes for a LaTeX document.

– end document : Finalization codes for a LaTeX document.

– remove escape chars : Returns LaTeX representation of special
LaTeX characters.

– format raw text : Formats given text as LaTeX.

– format latex field : Formats given name and value to display as
BibTeX field.

– html to latex : Converts HTML to LaTeX document.

The following functions are in latexutils image.py :

BlogForever Consortium 111



D4.8: Final BlogForever Platform September 14, 2013

– get image path : Returns the path of given image. If the image
does not exist in file system, downloads it to an available location.

– get unique file path : Returns a unique path to save the image
temporarily.

• To convert HTML to LaTeX, bibformat pdf with latex template.py
module is created. It has the following classes:

– PdfWithLatexTemplateHtmlParser class is inherited from
HTMLParer class.

– LatexConverter : Converts HTML to LaTeX. Possible LaTeX
commands are mapped from dictionaries in
bibformat pdf with latex config.py module. Only a few HTML
tags are needed extra effort. The methods defined to handle them
are called from PdfWithLatexTemplateHtmlParser class. It
has the following methods:

∗ get latex text : Returns concatenation of definitions and latex
codes.
∗ handle latex commands : Adds given data to one of the

buffers holding LaTeX template according to state of HTML
tags.
∗ handle raw data : Main controller for inserting HTML

elements’ content.
∗ insert raw data : Handles LaTeX special characters, maps

special HTML characters (e.g. &hellip) with their LaTeX
equivalences and adds the content to latex code buffer.
∗ trivial tag start : Handles start tags.
∗ tag end : Pops end values until popped element’s type is given

tag. Until an HTML tag is found, CSS related values are added
to buffer. For table related elements extra effort is needed.
∗ br start : Applies new line only after text.
∗ font start : Handles attributes of font tag.
∗ anchor start : Handles attributes of anchor tag.
∗ img start : Handles img tag based on parameters in config

module. If
CFG BIBFORMAT LATEX USE LOCAL IMAGES is
not set, then the image is downloaded from src attribute value.
If the image extension is not supported by LaTeX, converts
image into specified format.
∗ table start : Handles start tag of table.
∗ table end : Handles end tag of table.
∗ table row start : Handles start tag of tr.
∗ table row end : Handles end tag of tr.
∗ table cell start : Handles start tag of td or th.
∗ flush end stack : If there is not any problem with the HTML

content, all HTML tags are successfully matched. If there are
any element for style rules, pops them and adds ’end’ values to
LaTeX text.

BlogForever Consortium 112



D4.8: Final BlogForever Platform September 14, 2013

∗ add style : Adds style related LaTeX codes based on current
tag’s CSS rules. Most of the CSS declarations are mapped from
dictionary. However, some needs extra effort (e.g. font-size,
color, border, etc.)
∗ search style in external css : In all possible selectors’ CSS

rules, searches given property.
∗ extract style : Finds all possible CSS declarations.
∗ find style selectors : Checks current HTML element’s parents

and their ids, class names to construct CSS selectors possibly
containing more than one identifier (e.g. “.class name >#id”,
“div div img”, “div.class name >p”, etc.)

– CssParser : Parses the CSS rules and converts into dictionary. It
has the following methods:

∗ parse : Finds each CSS declaration and selectors of CSS rules.
∗ parse inline style : Rather than whole css file data, runs on

only inline CSS.
∗ extract css declarations : Converts style rule declarations

in str form to dictionary.
∗ read css files :Reads CSS file. This method is called when

the data is supplied as file names.

• Configurations for converting HTML to LaTeX take place in
bibformat pdf with latex template config.py . It has the following
configurations:

– CFG BIBFORMAT EXPORT DIR : The directory to keep files
of exported record.

– CFG BIBFORMAT LATEX TEMP DIR : The directory to
keep temporary files when creation PDF from LaTeX.

– CFG BIBFORMAT PATH PDF CONVERTER : The path
of xelatex tool.

– CFG BIBFORMAT LATEX KEEP FILE EXTENSIONS :
The file extensions which will be kept in
CFG BIBFORMAT EXPORT DIR after pdflatex ends its job.

– CFG BIBFORMAT CSS FILES : The paths of the CSS files
used when converting HTML to LaTeX template.

– CFG BIBFORMAT IMG SRC URL : Regular expression to
check src attribute of img whether it is a local path or a URL.

– CFG BIBFORMAT LATEX HEADER : The first line of the
LaTeX document.

– CFG BIBFORMAT LATEX PAGE SETTINGS : Options for
page layout.

– CFG BIBFORMAT LATEX BEGIN DOC : The begin tag of
the LaTeX document.

– CFG BIBFORMAT LATEX END DOC : The end tag of the
LaTeX document.

BlogForever Consortium 113



D4.8: Final BlogForever Platform September 14, 2013

– CFG BIBFORMAT LATEX PACKAGES : The packages that
are used in LaTeX document.

– CFG BIBFORMAT LATEX SPECIAL CHARS REGEX :
Regular expression to identify special characters in LaTeX.

– CFG BIBFORMAT LATEX SPECIAL CHARS LIST : The
list of special characters in LaTeX.

– CFG BIBFORMAT LATEX MATH FORMULAS : Regular
expression to find patterns of math formulas which are in already
LaTeX format.

– CFG BIBFORMAT LATEX ONLY TEXT : Regular
expression to split content into pieces according to start and end of
math formulas.

– CFG BIBFORMAT LATEX LONG WORDS : Regular
expression to find words containing symbols more than provided
number.

– CFG BIBFORMAT MATHJAX ENABLED : Set to 1 to seek
LaTeX formulas in text. If it is set to 0, then
CFG BIBFORMAT MATHJAX DELIMITERS is ignored.

– CFG BIBFORMAT MATHJAX DELIMITERS : Delimiter
characters for formulas.

– CFG BIBFORMAT CSS
PARSER REGULAR EXPRESSIONS : Regular expressions
used for parsing CSS.

– CFG BIBFORMAT CSS SELECTOR COMPONENTS :
Regular expression to identify the components of a CSS selector.

– CFG BIBFORMAT LATEX CSS SELECTORS : Complex
selector types for which CSS rules will be applied.

– CFG BIBFORMAT LATEX STYLE FIRST TAGS : The list
of the tags to apply CSS rules before handling.

– CFG BIBFORMAT LATEX NON END TAGS : The tags
that may not have ’/’ character indicating end of tag.

– CFG BIBFORMAT LATEX
EXCEPTIONAL COMMANDS : List of commands after which
an environment can not be initialized.

– CFG BIBFORMAT LATEX DEFAULT IMG FORMAT :
Default image format for LaTeX.

– CFG BIBFORMAT LATEX SUPPORTED IMG EXTS :
The list of supported image types.

– CFG BIBFORMAT LATEX PX CM SCALE : Cm value that
corresponds to 1 pixel.

– CFG BIBFORMAT LATEX A4 SCALE : Amount of scale for
A4 paper dimensions.

– CFG BIBFORMAT LATEX DEFAULT IMG SCALE : The
rate to scale the image.

BlogForever Consortium 114



D4.8: Final BlogForever Platform September 14, 2013

– CFG BIBFORMAT LATEX DEFAULT FONT SIZE :
Default font size for LaTeX document.

– CFG BIBFORMAT LATEX KB FILE : The path of the
latex-to-unicode.kb file.

– CFG BIBFORMAT LATEX
SPECIAL CHARS EQUIVALANCES : Representations of
special LaTeX characters.

–
CFG BIBFORMAT LATEX COMMAND CONSTRAINTS
: Constraints for LaTeX tags.

– CFG BIBFORMAT LATEX ALIGNMENTS : LaTeX
representations of HTML alignment options.

– CFG BIBFORMAT LATEX COMMANDS : LaTeX
commands used for rather than tag and CSS mappings.

– CFG BIBFORMAT LATEX
REPRESENTATION OF HTML TAGS : HTML tags and
their LaTeX representations.

– CFG BIBFORMAT LATEX
REPRESENTATION OF CSS RULES : CSS declarations and
their LaTeX representations for possible values.

– CFG BIBFORMAT HTML SPECIAL CHARS BY NUM :
Unicode numbers of special HTML chars and their LaTeX
representations.

– CFG BIBFORMAT HTML
SPECIAL CHARS BY NAME : Special HTML chars and their
LaTeX representations.

Implemented By Şenan Postacı(SRDC)
Table A.34: Implementation Description: RF62

Feature ID RF64 (Repository Feature 64)
Name The archive offers the option to login using external

(universal) credentials
Effort Spent 3 Weeks
Modules Af-
fected / Created

MiscUtil, WebAccess, WebSession

Description of the new feature

This feature was implemented by BlogForever developers, but ported to next
and integrated into Invenio core by Invenio developers. Therefore, now it is a

BlogForever Consortium 115



D4.8: Final BlogForever Platform September 14, 2013

part of Invenio and directly used in BlogForever repository. Description of the
functionality of this feature can be found in D4.5.

Implemented By SRDC
Table A.35: Implementation Description: RF64

Feature ID RF65 (Repository Feature 65)
Name The archive analyzes blog links and stores the connections

between them separately
Effort Spent 4 weeks
Modules Af-
fected / Created

-

Description of the new feature

A network consists of nodes and links between the nodes. Three kinds of
networks are extracted from the archived blogosphere:

• Blog-Citation network

– Nodes: All Blog objects in the archived blogosphere.

– Links: A link is created when a hyperlink in a post references
another post or a blog. The link goes from the parent blog of the
sending post to the parent blog of the receiving post or the receiving
blog.

• Author-Citation network

– Nodes: All authors in the archived blogosphere.

– Links: A link is created when a hyperlink in a post or in a comment
references another post or comment. Sending and receiving posts or
comments must have an author.

• Author-Co-Citation network

– Nodes: All author objects in the archived blogosphere.

– Links: A link is created if two or more posts or comments reference
the same address through a hyperlink.

The Blog-Citation network and the Author-Citation network consider only
links that direct to an object that is archived in the repository. The
Author-Co-Citation network considers all kind of links (external and internal).

BlogForever Consortium 116



D4.8: Final BlogForever Platform September 14, 2013

The implementation of the feature differs from the feature design: Links are
not differentiated between Citations, BlogRoll, and Pingback/Trackback
because these information can not be identified by the spider.

RF65 - GUI of the feature. The main steps in the network generating process
are (a) to choose the input, (b) to choose the network type, and (c) to choose

the output format and location

Implementation details

The feature is implemented as java application together with the repository
feature RF72 which visualizes the extracted network. It has been also ported
to Python and this is the version that has been integrated into the repository.

Nodes are represented as objects that have an ID and a maximum of five
details. Links are an aggregation of one or more Linkevents. A linkevent has
one sender, one or more recipients, a timestamp, and a maximum of five
details. The distinction of Linkevents with timestamps allows representing and
analysing the network evolvement over time.

The application accepts as input a collection of blog, post, and comment
objects in MARCXML from the repository. The objects in the collection are
analyzed and the network extracted by the Java class tub.BFMarcXMLReader
and stored in the Java objects

• tub.dataElements.Network

• tub.dataElements.Node

• tub.dataElements.Linkevent

Currently, the two output formats CMX-XML and GEXF are provided.

BlogForever Consortium 117



D4.8: Final BlogForever Platform September 14, 2013

• With CMX-XML, the extracted network can be further analysed and
explored with the Commetrixa software. The Java class
tub.CMXXMLWriter transforms the extracted network into CMX-XML.
The CMX-XML preserves the structure of link events, and, therefore,
Commetrix facilitates dynamic and static analysis.

• GEFX can be analysed with Gephib, an open-source tool to visualize and
analyse networks. The Java class tub.GEXFWriter transforms the
extracted network into GEXF. Thereby, the linkevents has to be
aggregated to edges due to the limitations of the GEXF format.
Therefore, the Gephi tool facilitates only static analysis.

For each of these two output formats a BibFormat template has been created:
format records cmx.tpl and format records gexf.tpl

The Java class tub.BFNetworkGenerate contains the GUI for the Network
Generator application.

ahttp://www.commetrix.de/
bhttps://gephi.org/

Implemented By TUB
Table A.36: Implementation Description: RF65

Feature ID RF66 (Repository Feature 66)
Name The archive provides a historical/chronological navigation
Effort Spent 2 Weeks
Modules Af-
fected / Created

WebBlog, BibFormat

Description of the new feature

A new BibFormat element has been created and included in the BlogHTML
template. This element displays a JavaScript slider showing the blog posts in a
slider timeline. The events (post published) can be clicked and a short
description of the record is displayed in a bubble, with a link to the detailed
view of the record.

The slider is populated with data with an XML file created with the
information of the blog as a hidden XML export option. It could easily be
extended to include also in the XML file the comments of each post thus
enriching the content of the timeline slider.

BlogForever Consortium 118



D4.8: Final BlogForever Platform September 14, 2013

Implementation details

• Added a new install option to the Makefile options: (
install-jstimeline-plugin ) that installs the necessary JavaScript files.
The code used is from the simile-timeline 2.3.0 plugin.

• Added XML output format to feed the plugin. The format is called xtl
and can be viewed adding xtl to the url in the detailed view of a blog.

• Added a BibFormat element called bfe blog timeline.py to be used in
BlogHTML.bft

Implemented By CERN
Table A.37: Implementation Description: RF66

Feature ID RF67 (Repository Feature 67)
Name The archive fetches and stores embedded content
Effort Spent 3 Weeks
Modules Af-
fected / Created

BibUpload, WebSchedule

Description of the new feature

The repository fetches the embedded content using the spider’s API.
Afterwards, it uses BibUpload to insert the metadata and the embedded files
into the repository databases, as described in RF9.

BlogForever Consortium 119



D4.8: Final BlogForever Platform September 14, 2013

Implementation details

The script spider repository communication.py establishes a connection
with the spider, retrieves the list of new records, and for each one of them
downloads the files (metadata and embedded content) and calls the BibUpload
module that inserts them into the repository.

Implemented By Raquel Jiménez, Jaime Garćıa (CERN)
Table A.38: Implementation Description: RF67

Feature ID RF70 (Repository Feature 70)
Name 6 weeks
Effort Spent WebAccess, WebSession
Modules Af-
fected / Created

The archive can provide services under some cost using a
billing system

Description of the new feature

This feature introduces “premium access to collections” service. With this
feature admin can restrict collections for some cost for a finite/infinite time
interval.

Premium packages can be managed easily from the admin panel.
(Administration ⇒ Configure Webaccess ⇒ Manage Premium Packages)

Admin may add premium packages for collections:

Current premium packages can be monitored, edited or deleted:

BlogForever Consortium 120



D4.8: Final BlogForever Platform September 14, 2013

- Edits the premium package (Displays same form as adding new one)
- Deletes the premium package

- Moves the premium package up and down respectively. The order of
the premium packages can be changed through these buttons.

When premium packages are added for certain collections, these collections
become restricted.

After edit or delete operations, if a collection loses its premium packages, that
collection becomes unrestricted.

By clicking search button, if the user has not bought a premium package, the
list of the premium packages related to that collection are shown.

To purchase a premium package, users can select a suitable package and
payment method which are the following:

1) Credit card

BlogForever Consortium 121



D4.8: Final BlogForever Platform September 14, 2013

The user can buy premium packages with his/her credit card through the
above form. This is the last screen before completing the transaction. After
clicking the upgrade button, if the transaction fails, an error message is shown:

Otherwise, a confirmation page is displayed.

2) PayPal Express Checkout

BlogForever Consortium 122



D4.8: Final BlogForever Platform September 14, 2013

User may choose PayPal express checkout if s/he has a PayPal account.
Clicking “Checkout with PayPal” button redirects the user to the PayPal page
to login and confirm the transaction. After clicking “Continue Button”, user is
redirected back to Invenio site, and confirms his/her order.

User clicks the checkout with PayPal button and confirms the transaction.

Users may see their premium group memberships via “Your account page”:

BlogForever Consortium 123



D4.8: Final BlogForever Platform September 14, 2013

Users may display its detailed status of premium memberships by clickling the
title of the “Premium Memberships” box or “Your premium packages” link on
the top of the page.

“Your Premium Memberships” page consists of two main parts: “Premium
membership status” and “Available premium packages”

BlogForever Consortium 124



D4.8: Final BlogForever Platform September 14, 2013

On upper part, the user may display the expiration date of his/her premium
memberships, extend it by the “Extend your membership!” or “Buy a
premium package” links.

On lower part, user may see all of the available packages and purchase one of
them.

The admin may see the transaction history and premium members from the
admin panel:

The admin can disable paying with credit card, paypal express checkout or
whole premium service from invenio.conf file. Credit card payment can be
done by PayPal or Ogone payment gateways. Admin can select payment
methods to use in invenio.conf . Also the API credentials of PayPal and
Ogone can be set in this file.

If the admin disables the premium service, users cannot buy premium
packages but restriction status of collections does not change. If the admin
enables it back, users can buy premium packages again.

Implementation details

• 12 new variables added into invenio.conf :

– CFG PREMIUM SERVICE : 1 for enabling, 0 for disabling
the premium service. If this variable is changed 1 to 0 , users
cannot buy premium packages but restriction status of collections
does not change. On the contrary, If this variable is changed from 0
to 1 , users can buy premium packages again.

BlogForever Consortium 125



D4.8: Final BlogForever Platform September 14, 2013

– CFG TEST PREMIUM SERVICE : 1 for using test servers of
the payment gateways, otherwise 0 .

– CFG CREDIT CARD PAYMENT GATEWAY : The
payment gateway used for purchasing with credit card. It may have
3 options: “paypal” , “ogone” or “” (blank). If it is blank,
paying with credit card becomes disabled.

– CFG USE PAYPAL EXPRESS CHECKOUT : The variable
to decide to use “Paypal Express Checkout” or not. 1 for enabling,
0 for disabling.

– CFG PAYPAL API USERNAME ,
CFG PAYPAL API PASSWORD ,
CFG PAYPAL API SIGNATURE ,
CFG PAYPAL API VERSION : The credentials to use PayPal
API.

– CFG OGONE API PSPID , CFG OGONE API USERID ,
CFG OGONE API PSWD : The credentials to use OGone API.

– CFG PREMIUM GROUP SUFFIX : The suffix of the
premium group names.

• 4 new tables added into database:

– premium : Keeps the information (name, details, duration, price
and display order) about premium packages.

– hstPAYMENT : Keeps the payment history.

– premium collection : keeps the premium package - collection
mapping.

– collection accrole : keeps the collection - role mapping

• If a collection needs a premium membership to be accessed, it
is checked when displaying corresponding collection

search function in websearch blueprint.py is modified to
accommodate billing system. It checks if the premium service is enabled
and if there is a premium package to access that collection. If a user does
not have a right to access that collection, the list of the premium
packages that allows to access is displayed.

• The admin panel to manage premium packages is introduced
With the admin panel, premium packages can be added, edited and
deleted. In addition, their display order may be changed. Payment
history can be monitored and the list of the users who is a member of the
premium groups can be displayed in the admin page. To achieve these
functionalities, necessary functions are added into
webaccess admin blueprint.py and
webaccess admin premiumarea.html is added to templates.

• WebPayment module is introduced It handles the cases about
premium service, contains necessary functions and classes.
webpayment.py contains the following functions:

BlogForever Consortium 126



D4.8: Final BlogForever Platform September 14, 2013

– add new premium package : Adds a premium package to the
database. Arranges the restrictions for collections of the new
premium package.

– edit premium package : Edits the premium package. Arranges
the restrictions for collections of the premium package.

– fix roles and authorizations : Arranges the restrictions for the
premium collections.

– add role and authorization : Restricts the given collection. Adds
a role and an authorization to restrict the collection.

– grant user access : Give a user the access to the collections
restricted a given premium package.

– gift premium package : Gives a premium package to a user as
gift.

– get possible packages : Returns the premium packages to display
given collection.

– get package collection map : Returns a dictionary that contains
information about which premium package allows to access which
collections.

– register payment history : Registers the transaction to payment
history.

– delete premium package : Deletes the premium package with
given ID. Arranges the restrictions of the collections that can be
displayed by this premium package.

– get user premium membership : Returns total number of
premium packages that the user has purchased.

– get membership expiration dates : Returns the expiration
dates of the premium memberships of the user with given ID.

WebPayment module provides webpayment query.py file which
contains database related functions of WebPayment module. It also
provides webpayment base.py which includes the following required
classes to implement payment gateways:

– PaymentGatewayResponse : This class is inherited from dict
class. It ensures that the dictionary contains corresponding premium
package, success state of the transaction, transaction ID, error
messages and additional data if exits.

– PaymentGateway : This is an “abstract” class from which all of
the payment gateways should be inherited. The fields which should
be overridden are following:

∗ SERVER :The URL of the payment gateway API.
∗ TEST SERVER :The test URL of the payment gateway.
∗ additional inputs :Some payment gateways require more data

than the credit card information. This field is used to specify
the additional information required to payment gateway.
∗ name :The name of the payment gateway.

BlogForever Consortium 127



D4.8: Final BlogForever Platform September 14, 2013

∗ accept types :List of the credit card types that accepted.
Types can be PaymentGateway . VISA ,
PaymentGateway . MASTERCARD , PaymentGateway
. DISCOVER , PaymentGateway .
AMERICANEXPRESS or PaymentGateway .
MAESTRO constants.

If the payment gateway is used for purchasing with credit card,
process method should be overridden. process performs the
credit card transaction and return the response (
PaymentGatewayResponse ) including transaction ID if
succeeded, error messages if failed.

If the payment gateway redirects the user to a 3rd party site to
complete the payment, construct checkout url ,
get transaction details and complete transaction methods
should be overridden:

∗ construct checkout url :This method should return the
response with 3rd party site URL to checkout in the data field
of the response. If fails, it should return response with error
messages. The return URL when calling the payment gateway
api should be in the form of CFG SITE SECURE URL
/webpayment/re-
view?id package=self.premium package.id&payment method
=self.name. If you want to show the user what s/he is buying,
the endpoint should be review and override
get transaction details , or you may complete the payment
after returning from 3rd party site by setting endpoint as
complete.
∗ get transaction details : Checks if the transaction is

appropriate for the payment gateway. If it is, it returns the
HTML code of the button for completing the transaction in
data key of the response. Otherwise, it should return a
response with error messages. If you want to skip this step, just
do not override this function.
∗ complete transaction : Should complete the transaction. If

the transaction is succeeded, it should return a response with
transaction id. Otherwise, it should return a response with error
messages.

webpayment paypal.py and webpayment ogone.py modules
contain classes derived from PaymentGateway . These two both
contain necessary methods to buying with credit card. In addition,
webpayment paypal.py contains methods for completing
payment in 3rd party site (PayPal Express Checkout).

– Payment methods can be managed from webpayment config.py
and implemented methods should be added into this file.

BlogForever Consortium 128



D4.8: Final BlogForever Platform September 14, 2013

CFG CREDIT CARD PAYMENT METHODS is a
dictionary which contains the classes implemented for purchasing
with credit card. Its keys are the name of the payment methods
(with uppercase letters) and values are only the corresponding
classes (not instances).

CFG PAYMENT METHODS is also a dictionary which
contains all the payment methods for purchasing with 3rd party site
(like PayPal Express Checkout). Its values are the name of the
payment methods and values are the corresponding class. In
addition it has the key cc for credit card payment whose value is
determined by invenio.conf .

• New modules are added for the web interface

– webpayment user settings.py is introduced to add “Your
premium memberships” box to “Your account” page.

– webpayment blueprint.py and templates
webpayment display.html , webpayment index.html ,
webpayment packages.html , webpayment review.html ,
webpayment upgrade.html are introduced.

Implemented By SRDC
Table A.39: Implementation Description: RF70

Feature ID RF71 (Repository Feature 71)
Name The archive provides a personalized annotating and high-

lighting tool for users
Effort Spent 4 weeks
Modules Af-
fected / Created

WebSearch, WebSession, Webstyle, Miscutil, Bibformat

Description of the new feature

This feature enables users to highlight certains parts of the records and add
notes on them. It can be enabled/disabled for each collection, So an icon is
added to activate the feature at the right of the page. This icon is only visible
when a user logged in, otherwise it is not displayed.

BlogForever Consortium 129



D4.8: Final BlogForever Platform September 14, 2013

When the icon is clicked, a color palette containing highlight colors appears
and previously saved highlighted items are loaded. 5 colors are choosen as
default. These can be changed from invenio.conf . Palette has also two
more options, remove all and undo.

Actions which can be undone by undo operation:

• Creating Highlight

• Extending Highlight

• Deleting Highlight

• Adding Note

• Editing Note

• Deleting Note

• Remove All

After activating highlight, an orange box appears around the record, which
defines the borders of the editable area.

The user is able to highlight the record by holding mouse button and dragging
the cursor.

BlogForever Consortium 130



D4.8: Final BlogForever Platform September 14, 2013

When mouse is rolled over an highlighted area, an edit menu is displayed. It
provides of 3 options which are Add Annotation, Delete highlight and
Change Color.

A box is displayed when user clicks on Add Annotation so that, the user can
enter his/her annotation and save it to the repository.

After the note is saved, the text of the corresponding highlight becomes
shadowed. When you hover the mouse through annotated section, a tooltip
showing the note appears.

When the icon at the leftmost of the annotation tooltip is clicked, a menu
similar to the edit menu appears. It provides of 3 options namely Edit
Annotation, Delete Highlight and Change Color.

When a highlighted text that has annotation or Edit Annotation link
illustrated above is clicked, the corresponding note can be seen. It can be
edited and saved or removed completely.

BlogForever Consortium 131



D4.8: Final BlogForever Platform September 14, 2013

When the color palette is closed, a new icon to reopen the color palette
appears just below the highlight activation icon.

Highlighted texts can be extended. If the selected text contains any
highlighted part and if the selection color is same with its color, they are
merged. Moreover, two neighbor highlighted parts are merged, if they have
same color after a color change is applied.

Since there are different nodes in HTML based records, the user selection is
resulted in divided highlighted parts. When the user adds an annotation to
one of them, it is also added to all highlight nodes with the same identifier.
Highlighted parts still seem divided, but they are logically unified.

If selection contains a part of a MathJax expression, it highlights whole
MathJax element in order not to ruin structure of MathJax.

Implementation details

• This feature can be enabled for specific collections by adding collection
name to
CFG HIGHLIGHT AND ANNOTATION COLLECTIONS .
Posts and Comments are in this list by default.

• To enable highlighting feature for any content, it is just enough to
surround the content with <div class=’highlightable’></div> tags.

• selectionRange object is mainly used for highlight. Therefore, this
feature is applicable on Internet Explorer from version 9.

• To highlight the selected text, an element with tag highlight is
inserted around the selection.

• A highlight element does not contain any other highlight elements.

BlogForever Consortium 132



D4.8: Final BlogForever Platform September 14, 2013

• The main aim is keeping the highlight elements with minimum depth
in DOM tree. To do so, after each selection, the recently inserted
highlight nodes are traversed. If all its siblings are highlight nodes,
then just highlight the parent instead of all children. This reduces the
costs to save highlights.

• For each text selection, the resulted highlight nodes are given same
identifier to logically unify them. This identifier is unique for each
selection. The identifiers are also used as annotation ID’s.

• Highlights are saved as serialized JSON string. On page load, the DOM
tree is reconstructed with this JSON object. An example json string:

{
"leaves":{

"43":[{"s": 22, "e": 35,"a": 0, "id": "2",

"n": 0, "c": "rgb(255, 255, 0)"}],
"73":[{"s": 357, "e": 406, "a": 1, "id": "0",

"n": 0, "c": "rgb(255, 255, 0)"}]
},

"nodes":{
"57":{"c": "rgb(255, 255, 0)", "id": "1", "a": 0}
}

}

’leaves’ key corresponds to highlight elements around text nodes. It has
keys as numbers which are ids of each dom element. These ids are
assigned when highlight mode is on. For the highlight nodes around text
nodes, their parent nodes are used as keys i.e 43, 73. Highlight nodes
under them are listed in dictionary format.

– ’s’ denotes start position

– ’e’ denotes end position

– ’a’ denotes whether that highlight element has an annotation. if yes
1 , otherwise 0 values are used.

– ’id’ denotes id ’high anno id’ attr value of the highlight
nodes. It is used to keep track of seperated highlight nodes which
are result of a selection. For example, the user makes a selection
starting from a <p> element and ending to another <div> .
There are more than one highlight nodes as a result of this selection.
This value is also used for annotation id.

– ’n’ denotes the child number that the indices are valid on.

– ’c’ denotes the color.

’nodes’ key corresponds to a node level highlighting information. For
nodes, there is no need to save indices, it is enough to keep color
information, since each node will have a unique identifier (57 in example
above) and they will be highlighted directly. The ’c’ , ’id’ , and ’a’
keys have same meanings as above.

BlogForever Consortium 133



D4.8: Final BlogForever Platform September 14, 2013

• Each change is directly saved into the database.

• Before loading highlights, record’s last modification date and highlight
date are compared to understand whether the record is changed or not.
If the comparison indicates a change on the record, the user is warned
about possible distortion on highlights.

• Two new tables namely bibrec highlights and bibrec annotations
have been inserted into database to keep highlights and annotations.

• In websession webinterface.py , savehighlights , loadhighlights ,
saveannotation , getannotation and removeannotation methods
have been added for communication between server and client sides.

• In webuser.py , check bibrec modification date ,
set user bibrec annotation , get user bibrec annotation ,
delete user bibrec annotation , set user bibrec highlights ,
get user bibrec highlights functions have been implemented for
database transactions.

• In websession templates.py , tmpl highlight tools ,
tmpl annotation box , tmpl color palette methods have been
implemented to create HTML codes for highlight tools such as color
palette and annotation box.

• In dateutils.py , difference between times function has been
inserted to calculate elapsed time in units such as second, minute, hour
etc.

• CFG COLOR PALETTE parameter has been added to define
highlight colors. As default, four colors have been set.

• Also in inveniocfg.py and search engine.py , some minor
modifications have been made.

Implemented By SRDC
Table A.40: Implementation Description: RF71

Feature ID RF72 (Repository Feature 72)
Name The archive provides a visualization of the blogs network

structure
Effort Spent 4 weeks
Modules Af-
fected / Created

-

Description of the new feature

The exploration of a blog network needs a visual representation of the nodes
and links. The feature provides a visualization with several options. Thus, a

BlogForever Consortium 134



D4.8: Final BlogForever Platform September 14, 2013

first exploration of the network can be conducted and the network adapted
before it is further analysed with more sophisticated analysing software, e.g.
Commetrix.

In the example figure below, an Author-Co-Citation network is shown. The
network is visualized as blue nodes with red edges between them. The size of a
node represents how many linkevent the node sends to another node. This
means how often an author references something that somebody has
referenced before. The nodes and linkevents of the feature are listed in the
corresponding tables on the right side for a more detailed inspection. The
visualization has the following options:

• Show Node IDs: Turns on/off that the node ID is shown as label for a
node.

• Show Iso Nodes: Turns on/off that isolated nodes are shown. An isolated
node is a node that does not have any connection with any other node.

• Freeze Network: The drawing algorithm for the network is dynamic and
reacts on the re-positioning network nodes. The dynamic behaviour can
be turned off so that the nodes of the network can be positioned
manually without interfering of the drawing algorithm.

• Time selection: The time slot can be limited to examine the evolvement
and state of the network at different points in time.

Furthermore, the feature provides the possibility to save the network
visualization as a screenshot in png. Thus, the network can be used in reports
or presentations.

RF72 - GUI of the feature

BlogForever Consortium 135



D4.8: Final BlogForever Platform September 14, 2013

Implementation details

The feature is implemented as java application together with the repository
feature RF65 which generates the network representation of the blogosphere.

Nodes are represented as objects that have an ID and a maximum of five
details. Links are an aggregation of one or more Linkevents. A linkevent has
one sender, one or more recipients, a timestamp, and a maximum of five
details. The distinction of Linkevents with timestamps allows representing and
analysing the network evolvement over time.

The application uses the following Java classes to represent the network
structure:

• tub.dataElements.Network

• tub.dataElements.Node

• tub.dataElements.Linkevent

• tub.dataElements.Link

The following classes represent the network graph that is used for the
visualisation:

• tub.aladin.graphNode

• tub.aladin.graph

The GUI of the network visualization is performed by the classes
tub.aladin.showGraphPanel and tub.aladin.showNetworkGraphFrame.

The class tub.aladin.settings contains the color configuration of the network
visualization.

Implemented By TUB
Table A.41: Implementation Description: RF72

BlogForever Consortium 136



D4.8: Final BlogForever Platform September 14, 2013

Feature ID RF73 (Repository Feature 73)
Name The archive recommends blogs to users based on the ratings

and preferences
Effort Spent 1 Week
Modules Af-
fected / Created

BibRank, WebSearch

Description of the new feature

This feature introduces a new ranking method to rank the records by their
weighted averages.

A portalbox which shows the Top Rated Records has been added into main
page.

RF73 - Portalbox displaying top rated records

A portalbox which shows last added records has been added into main page.

RF73 - Portalbox displaying recently added records

BlogForever Consortium 137



D4.8: Final BlogForever Platform September 14, 2013

Implementation details

• Portal boxes have become associated with ranking methods.

– bibrank portalbox table, which keeps which ranking method is
related with which portal box, has been inserted into database.

– update bibrank portalbox and drop bibrank portalbox
functions have been added into bibrank record sorter.py .

∗ update bibrank portalbox function updates the portal
boxes when bibrank is run.
∗ drop bibrank portalbox function removes the entries related

to given bibrank method when either the ranking method is
deleted or the variable keeping the number of records shown in
portalbox is set to 0 .

– For portalboxes bibrank portalbox.html template is added.

• Ranking with “Weighted Average” has been introduced.

– To rank the records by their weighted average,
bibrank weighted average indexer.py module has been
created. This module contains the function
weighted average to index which calculates the weighted
average with “Bayesian estimate” which is the following formula:

N

N + m
∗ A +

m

N + m
∗G

where

∗ N: the number of reviews of corresponding record
∗ m: minimum number of reviews required to calculate the rank

of the record
∗ A: Average score of corresponding record
∗ G: Average score of all of the records

– bibrank weigted average template.cfg containing the
parameters for the ranking method has been created. These
parameters are:

∗ show relevance : 1 to show the score on search page, 0
otherwise.
∗ minimum review number : minimum number of reviews

required to be ranked
∗ display on portalbox count : the number of the records will

be displayed on the portalbox. If it is 0 , portalbox disappears
and entries related to that ranking method is removed from
database.

• Archived content indexer has been added as a ranking method to create
“Recently Added Records” portalbox.

BlogForever Consortium 138



D4.8: Final BlogForever Platform September 14, 2013

– bibrank archived content indexer.py has been introduced to
rank the records in a time interval.

– template recently archived content.cfg containing the
parameters for the ranking method. These parameters are:

∗ latest records number : the number of the lastly added
records, if 0 , ranks all of them.
∗ date type : creation for ranking by creation date,

modification for ranking by modification date.
∗ start date : the beginning of the time interval.
∗ end date : the end of the time interval.
∗ interval : the sql like time interval. (i.e. 3 HOUR , 1 DAY )
∗ display on portalbox count : the number of the records will

be displayed on the portalbox. If it is 0 , portalbox disappears
and entries related to that ranking method is removed from
database.

• Some modifications have been occurred in bibrank.py and
bibrank tag based indexer.py to accommodate new ranking method.

Implemented By SRDC
Table A.42: Implementation Description: RF73

Feature ID RF78 (Repository Feature 78)
Name The archive displays content after filtering it with user

preferences
Effort Spent 2 Days
Modules Af-
fected / Created

WebSearch

Description of the new feature

The repository offers to users the possibility of personalizing their searches
with some options such as: the collections where users wish to search and the
number of records to be displayed per page.

Implementation details

The search user preferences has been enriched with a multiselect where the
user can select the collections that will be taken into account in his searches.

Also the file websearch blueprint.py has been amended in order to propagate
the selected preferences.

BlogForever Consortium 139



D4.8: Final BlogForever Platform September 14, 2013

Implemented By CERN
Table A.43: Implementation Description: RF78

Feature ID RF87 (Repository Feature 87)
Name The archive transforms the SIPS received from the spider

to AIPS
Effort Spent 2 Weeks
Modules Af-
fected / Created

BibArchive

Description of the new feature

New module to archive the AIP (Archival Information Package) of a record.
A daemon checks periodically for new or modified records, creates an AIP and
stores it in a dedicated database. In the web interface, the detailed view of a
record offers the user a link to download the AIP.

BlogForever Consortium 140



D4.8: Final BlogForever Platform September 14, 2013

Implementation details

A new module called BibArchive has been implemented: The database used is
MongoDB. It supports versioning, but the old versions of an AIP can only be
retrieved from the command-line interface. The AIP is wrapped using BagIt
and then zipped. The zipped file is stored in the db directly. It includes:

• The MARC and METS xml files of the record

• All the attached files (mostly images)

• The available metadata and md5 checksums of each file

A new tasklet has been created to update the database. The administrator
can decide how often this tasklet runs (depending on the upload/modification
rates, a value between 30 mins and 1 day is recommended). When it runs, it
first retrieves then list of records that have been created or modified since the
last time it run. Then, for each them, an AIP is created using BagIt and the
content mentioned above and inserts it in the archival database.

Implemented By CERN
Table A.44: Implementation Description: RF87

Feature ID RF88 (Repository Feature 88)
Name The archive stores the content of the AIPS in two different

databases for preservation purposes
Effort Spent 1 Week
Modules Af-
fected / Created

BibUpload, BibIngest

Description of the new feature

The AIPs are stored in two different databases. In one of them the SIP is
stored as received from the spider using BibIngest, and a second copy is used
as a working copy and stored in the Invenio metadata database.

Implementation details

Details on how this is done can be found in RF9 and RF87.

Implemented By Raquel Jiménez, Jaime Garćıa, Nikolaos Kasioumis
(CERN)

Table A.45: Implementation Description: RF88

BlogForever Consortium 141



D4.8: Final BlogForever Platform September 14, 2013

Feature ID RF89 (Repository Feature 89)
Name The archive carries out the normalization and/or migration

of the media attachments
Effort Spent 2 Weeks
Modules Af-
fected / Created

BibSched

Description of the new feature

New tasklet that creates new version of the file of a record, migrating them
from one format to another. It accepts plugins to transform the files

Implementation details

A new plugin system has been implemented allowing the administrators to
implement their own format conversion code and place the files under
modules/bibdocfile/lib/format migration plugins/ Then, the variable
CFG FORMAT MIGRATION PLUGINS MAPPING has to be updated to reflect which
plugin is desired to be used for each format.

A new tasklet has been implemented to migrate the format of attached files. It
retrieves the list of records uploaded or modified since the last time the tasklet
run and applies the appropriated conversion plugin according to the variable
CFG FORMAT MIGRATION PLUGINS MAPPING. Finally, it uploads the new file into
the record as a new format of the same file, without replacing it.

Implemented By CERN
Table A.46: Implementation Description: RF89

BlogForever Consortium 142



D4.8: Final BlogForever Platform September 14, 2013

A.3 Features not retained

In order to concentrate on blog-specific must-have repository features, some
decisions have been taken regarding nice-to-have feature requirements identified in
D4.1[4] user survey. The list of non-retained features is presented below.

The following features were not retained because the complexity of the topic is
falling out of scope of blog archiving platform. The solutions developed outside of
platform could be integrated with the blog archive in later stages.

• RF42 - The archive extracts bibliographic metadata from content embedded
in blogs

• RF68 - The archive provides information diffusion analysis mechanisms

• RF75 - The archive can do sentiment analysis on the content

The following features were not retained because sufficient alternative approaches
exist:

• RF50 - The archive offers the option to disseminate newly archived content in
external social platforms (alternative: instead of pushing to social platforms,
the apps can pull from the blog archive platform via customised RSS feeds)

• RF49 - The archive distinguishes institutional/corporate blogs from personal
blogs (alternative: user tags blogs as corporate upon submission, see RF31
description in Section 3.2 of D4.5[8])

The following features were not retained because of low demand and high complexity
of the topic:

• RF76 - The archive detects content originality and ranks it accordingly

BlogForever Consortium 143



D4.8: Final BlogForever Platform September 14, 2013

Appendix B

Final Spider Implementation
Descriptions

One of the objectives of this deliverable is to present the implementation activities
of the whole suite of spider features defined in D4.2[9] In order to include the
description of the features along with its implementation details, the same template
that was created in D4.5[8] will be used.

Feature ID SFID (Spider Feature ID)
Name One sentence clear enough to make someone who has

already read the specification remember the description
Effort Spent Actual implementation time (Possible values: Days/Week-

s/Months)
Modules Af-
fected / Created

Name of the modules either modified or introduced

Description of the new feature

High level description of the feature

Implementation details

Technical details of the implementation activities are described here. All the
files and modules that are exposed to modifications (i.e adding/ altering
classes/methods, introducing new fields into configuration files, new user
interfaces, etc) and how they are modified are explained in detail. Screenshots
of new functionalities are provided here.

Implemented By Person or partner who implemented the feature
Table B.1: Implementation Description: SFID

BlogForever Consortium 144



D4.8: Final BlogForever Platform September 14, 2013

Section B.1 presents the implementation descriptions of the whole list of spider
features that were defined in D4.2[9], and Section B.2 lists those spider features
that was decided not to implement, as well as the reasons why this decision was
taken.

B.1 List of implementation descriptions

In this Section the list of implementation descriptions of the final spider features is
presented.

Feature ID SF1 (Spider Feature 1)
Name Capture timestamps for creation and harvesting
Effort Spent 3 Days
Modules Af-
fected / Created

The capture module, the parser and the extractor

Description of the new feature

Automatically identify timestamp within the HTML using background
knowledge for each blog, post and comment.

Initial capture of the RSS identifies the timestamp of the published post as
well of the other data elements available in the RSS. This information is used
when harvesting the URI of the HTML version of the post.

Matching algorithms and machine learning algorithms can also be used to find
RSS and time stamp from an inserted blog URI.

XML output:

• Time stamp of the published blog post

• The time harvesting the post is also stored and presented in the output –
XML and integrated into the repository.

Implementation details

The algorithm uses the date/time tag in the RSS feed to be used as reference
in the brute force process for matching against the candidates in the harvested
HTML.

The candidates are selected using Microsoft date/time parsing algorithm to
identify potential candidates.

BlogForever Consortium 145



D4.8: Final BlogForever Platform September 14, 2013

This is being combined with using matching technique (Levenstein) to
compare text in RSS and HTML.

This knowledge is reused for following analysis for future learning
understanding other sites date time format, as well as increase the learning
speed.

The output format of time stamp is represented in the XML following the
MARC-standard.

Implemented By CyberWatcher
Table B.2: Implementation Description: SF1

Feature ID SF2 (Spider Feature 2)
Name Retrieve and Parse semi-structured information from the

blog
Effort Spent 3 Months
Modules Af-
fected / Created

Host Analyzer

Description of the new feature

Detect and extract blog entities such as post, comments and sub entities title,
content, tags, authors etc.

Detecting semi-structured information from the blog post – is essential to the
spider and follows all part of the harvesting process.

Initial capture of the RSS identifies the timestamp of the published post as
well of the other data elements available in the RSS. This information is used
when harvesting the URI of the HTML version of the post.

Implementation details

Ontology representation of how a blog structure is used as a basis for mapping
RSS feed item towards the HTML harvesting and parsing.

Through comparing the text from the RSS items with the HTML version,
using modified version of the Levenstein algorithm, we get xpaths1 which both
represent the absolute path and a weighting of the different attributes within
the DOM structure. This weight will cope with the possibility of different
absolute positions as well as class / id values.

BlogForever Consortium 146



D4.8: Final BlogForever Platform September 14, 2013

By creating several different rules and comparing those, it is then possible to
identify common patterns in a single blog.

Using matching algorithms such as Levenstein and machine learning
algorithms the RSS data elements are controlled and new identified – such as:

• Blog post headline

• Blog post full text

• Blog author

• Time stamp of the published blog post

• Blog domain

• Blog comments

• Blog pictures

• Blog Tags

• Blog post tags

Implemented By CyberWatcher
Table B.3: Implementation Description: SF2

Feature ID SF3 (Spider Feature 3)
Name Capture tags of blogs and blog posts
Effort Spent (Included in SF2)
Modules Af-
fected / Created

Host Analyzer, Spider Core

Description of the new feature

Extracting tags related to the blog sources and blog posts and storing them.
These tags represent or categorizes the content and source.

This feature captures tags at three levels:

• Blog domain

• Blog source (watchpoint) such as sections with posting or comments

• Blog post or comment (categorized separately)

The different tags for blog domain and watchpoints includes:

• Host URI (URL identifier for the posts) group blog posts towards same
domain

BlogForever Consortium 147



D4.8: Final BlogForever Platform September 14, 2013

• URI (e.g. feed URI) — how to re-find the blog and watchpoint

• Content type HTML text or images

• Character encoding: UTF8 — using standardized characters

• Name Actual name of the source or domain

• Description — actual text describing the source or domain

• Language code (en, US, No, Fi)

• Generator: Technical Platform (as below — which Wordpress version)

• Thumbnail of the source

For the post or comment:

• URI of the post

• URI of the watchpoint

• URI of the domain

• Author

• Technical platform

• Title of the post

• Text of the post

• Links

• Embedded pictures including format e.g. jpg

Implementation details

Extracting tags from Posts and blogs

• Post: When the post div is located, most of the blog system uses
standard structures for displaying tags. By mapping these structures the
system will extract the tags related and is then stored within the post
entity object.
E.g. .‘‘Posted: Monday, March 11th, 2013 at 4:00 pm. Tags:

fashion, Fashion Week’’

• Post: Another type of tags related to the blog post may be microtags —
available within the text.

• Blog domain: The initial learning of the site will search for given
structures on the root page.
E.g. HTML/head/meta[@name=keywords]/@content

E.g.<meta content="Bakovervendt, fremovervendt, barnesete,

bilstol, beltestol, pute, lovlig, isofix, test, best,

BlogForever Consortium 148



D4.8: Final BlogForever Platform September 14, 2013

sikring, barn, bagnett, boxette, bilsyk, bilsyke"

name="keywords"/>

The data is then stored within the entity format describing either the blog or
post. This is then converted into XML and MARC for exporting.

Implemented By CyberWatcher
Table B.4: Implementation Description: SF3

Feature ID SF4 (Spider Feature 4)
Name Support different kinds of blog platforms and blogging

software
Effort Spent Included in SF2
Modules Af-
fected / Created

Host Analyzer / Spider Core

Description of the new feature

The spider is able to extract content from different blog content software and
platforms like Wordpress and blogger.com.

Within each platform, eg Wordpress there are multiple versions of the
platform which can have implications of the flexibility of how to set up and
design a new blog, as well as features and elements on the blogs.

The spider is generic and not customized for specific platforms. As described
in SF2 this is based upon analyzing RSS and matching this with harvested
HTML version.

However, new platforms might have different ontology and require to add new
rules to the spider. The final spider have been tested towards thousands of
blogs representing an unknown number over platforms and versions.

Implementation details

The spider identifies the ontology of the blog through harvesting the DOM
structure from the web version. The Document Object Model (DOM) is a
cross-platform and language-independent convention for representing and
interacting with objects in HTML.

Through comparing the text from the RSS items with the HTML version,
using modified version of the Levenstein algorithm, we get xpaths which both
represent the absolute path and a weighting of the different attributes within

BlogForever Consortium 149



D4.8: Final BlogForever Platform September 14, 2013

the DOM structure. This weight will cope with the possibility of different
absolute positions as well as class/id values.

By creating several different rules and comparing those, it is then possible to
identify common patterns in a single blog – independent of the spider
platform.

Implemented By CyberWatcher
Table B.5: Implementation Description: SF4

Feature ID SF5 (Spider Feature 5)
Name Harvesting of text and related HTML
Effort Spent 2 Weeks
Modules Af-
fected / Created

Host Analyzer / Spider Core

Description of the new feature

Ability to capture more text than displayed in RSS, such as full text for the
blog post and all HTML of the blog post and other HTML element of each
blog page.

This feature utilize RSS with the Levenstein matching algorithm and ID3
learning algorithm to compare text and tags in the RSS with the matching
text paragraphs in the blog post harvested by the spider from the blog page.

The RSS text is normally shorter than full text – so this feature shall detect
the pattern of the text in RSS with text in post and find end of text. Often
there is a tag displaying end of text, but sometimes this requires more
analyzing than one would expect from seeing the actual blog post.

Also when matching the text, there are sometimes differences due to
inconsistent use of RSS-tags, changes in version of text in post and RSS.

This feature captures at three levels:

• Blog domain

• Blog source (watchpoint) – such as sections with posting or comments

• Blog post or comment (categorized separately)

Implementation details

Identification of full text in the HTML version includes identifying:

BlogForever Consortium 150



D4.8: Final BlogForever Platform September 14, 2013

Tags in HTML of where text is ending

Change in DOM structure after text matching towards the RSS

Implemented By CyberWatcher
Table B.6: Implementation Description: SF5

Feature ID SF6 (Spider Feature 6)
Name Harvesting of the comments of blog posts
Effort Spent 2 Weeks
Modules Af-
fected / Created

Host Analyzer / Spider Core

Description of the new feature

This features covers the ability to capture comments in a blog source and
identify which blog post they relate to.

Comments are mostly found in separated RSS.

Initial process starts with finding the RSS which contains comments, and
identifying which of the two alternative ways of structuring the comments are
used:

1. Centralized RSS for comments - contains multiple comments from
different posts

2. RSS per post – for each post there is an RSS with all comments for this
specific post.

Implementation details

For centralized RSS the spider uses the same technique as described in SF5 in
order to identify the fulltext version of the comment.

In order to map which blog from which post the comment belong, the spider
search the RSS for URI relating to blog post. This is the identifier as a
“post-source” of the comment. The comments belonging to a single post needs
to be tagged with this post-source in order to be connected in the repository.

In addition the spider needs to find an identifier of the first to the last
comment. This is handled either through time sorting or number tags in the
RSS or the HTML version.

BlogForever Consortium 151



D4.8: Final BlogForever Platform September 14, 2013

RSS per post can be found when harvesting from the HTML. This type of
multiple RSS per blog source requires much more resources to analyze and
monitor and from a scaling point of view this has not been supported.

Implemented By CyberWatcher
Table B.7: Implementation Description: SF6

Feature ID SF7 (Spider Feature 7)
Name Information about the harvesting source
Effort Spent 2 Weeks
Modules Af-
fected / Created

Host Analyzer / Spider Core

Description of the new feature

This feature finds blog source tags and descriptive information about the
source relating to all posts.

Such tags includes:

• Host URI (URL identifier for the posts)

• Content type — HTML text or images

• Character encoding: UTF8 — using standardized characters

• Name — Actual name of the source or domain

• Description — actual text describing the source or domain

• Language code (en, US, No, Fi)

• Generator: Technical Platform (as below — which Wordpress version)

• Thumbnail of the source

Implementation details

This tags is found through the DOM structure of the blog.

Implemented By CyberWatcher
Table B.8: Implementation Description: SF7

BlogForever Consortium 152



D4.8: Final BlogForever Platform September 14, 2013

Feature ID SF8 (Spider Feature 8)
Name Spam detection and filtering
Effort Spent 2 weeks
Modules Af-
fected / Created

Host Analyzer / Web Service/Site / Spider Core

Description of the new feature

Spam filtering when inserting list of blogs reduces initial spam problems
substantially. Major spam issue is dead blogs, blogs which was supposed to be
blogs but does not fit or being changed into a non-blog. And also lists may
include non-blogs as well just because the list is not correct. In fact it may be
a larger challenge to avoid these type of spam, than a typical spam that may
be without content at all – or just high frequent volumes of same URL.

Instead of using black listing — the spider require all new blog sources to fit
into the rules identified with previous blogs in the machine learning algorithm.
This way the spider can be very strict or fairly flexible. E.g. new blogs must
fulfill all spider rules — or x%.

And by visiting the URI we find that the rule setting has disabled this source
— actually being a twitter feed site. However, there is a blog section related to
the site — but with a different URI: http://www.kasvi.org/index.php?blog

Implementation details

Source Analysis: The RSS is initially controlled to contain a minimum of Blog
elements, such as title, content and date. If such element is not recognized in
RSS — the spider will not harvest the HTML version. When mapping the
RSS onto the HTML and no unique identifier has been found the blog is
discarded as part of the spam process.

User: The user can disable specific blogs, inserting its own black list or import
publicly available blacklists – interface for such is not available in the spider
and will be done through repository.

Ping Monitor: User predefines blog filters, e.g. keywords found in URL and
title. Only specific blog URL and titles matching these keywords will pass
onto the Analyzer module. This prevents the spider from taking in
traditionally large volume spam.

Implemented By CyberWatcher
Table B.9: Implementation Description: SF8

BlogForever Consortium 153



D4.8: Final BlogForever Platform September 14, 2013

Feature ID SF10 (Spider Feature 10)
Name Configuration of crawled blogs
Effort Spent 8 weeks
Modules Af-
fected / Created

Host Analyzer / Spider Core

Description of the new feature

This features includes how to manage the spider as of what to crawl, how to
crawl and how to process and export.

There are three levels of configuring this:

1. The end user level

2. The admin level

3. The central admin level

The user level can be limited to inserting blog URLs.

In the admin level the configuration may include polling frequency, limitation
of what to spider such as snapshots and thumbnails.

In the central admin level — which is only controlled by the developers, new
methods can be implemented for improving the spider and its ability to crawl
new types of blogs.

All levels of configuration is available from a web interface — through the
spider web portal. In addition configurations can be done in the web service.

Implementation details

All configuration capabilities is described in the web service documentation,
Annex 3 in this document and the D 4.6 Final Weblog component, Chapter 3,
about the spider web portal.

Implemented By CyberWatcher
Table B.10: Implementation Description: SF10

BlogForever Consortium 154



D4.8: Final BlogForever Platform September 14, 2013

Feature ID SF11 (Spider Feature 11)
Name Publishing license type retrieval
Effort Spent 1 week
Modules Af-
fected / Created

Host Harvesting and Analyzer Module

Description of the new feature

Capturing license agreements regulating usage and access to a blog source.

Harvesting blogs according to policies and issues described in WP3 cannot be
implemented into an automated spider.

Initially it is expected that the user and manager of the spider has secured
allowance of capturing the blog before inserting the relevant URIs into the
spider interface.

The spider has implemented two features to assist in this process of identifying
license type and disclaimers and copyright issues:

1. The spider will capture and include information from key identifying
terms related to license:

• Copyright

• Term of use

• Terms of use

2. The spider will identify and capture meta-tag for spiders robots.txt. This
is a standard meta-tag used to inform spiders not to index the site.

Implementation details

The spider will capture and include information from key identifying terms
related to license:

• Copyright

• Term of use

• Terms of use

The spider will identify such links in the blog source or domain — and follow
these links to the page where such content can be harvested. This text will
then be available as “all text” for the repository. Related to this is also

BlogForever Consortium 155



D4.8: Final BlogForever Platform September 14, 2013

implementation of handling robots.txt. https://developers.google.com/
search-appliance/documentation/68/admin crawl/Preparing#donotcrawl

The spider identifies robots.txt and communicates this to the repository. The
repository will be where this is then handled according to user instructions —
as the user can be the publisher and then wanting to harvest their own blogs
despite a robots.txt.

Implemented By CyberWatcher
Table B.11: Implementation Description: SF11

Feature ID SF12 (Spider Feature 12)
Name Detection and harvesting of embedded content
Effort Spent
Modules Af-
fected / Created

Host Analyzer / Spider Core

Description of the new feature

This feature detects embedded elements in the blog — which can include:

• Pictures

• Documents

• Videos

The spider may harvest most embedded elements — but in the final spider its
limited what to harvest due to size restrictions.

Pictures and elements with smaller size elements are downloaded and exported
to the repository as part of the XML.

Implementation details

Embedded pictures, icons and other small sizes elements are harvested as part
of the HTML and included in the spider content to be exported as part of
XML.

The spider detects size and formats. PNG, JPG and other light graphical
oriented formats is automatically included.

For other formats — the spider control the size and which element to save
according to this code:

BlogForever Consortium 156

https://developers.google.com/search-appliance/documentation/68/admin_crawl/Preparing#donotcrawl
https://developers.google.com/search-appliance/documentation/68/admin_crawl/Preparing#donotcrawl


D4.8: Final BlogForever Platform September 14, 2013

For all tags marked as <object> which are embedded objects into the html are
automatically analyzed and stored as a reference.

The data is then stored within the entity format describing either the blog or
post. This is then converted into XML and MARC for exporting.

Implemented By CyberWatcher
Table B.12: Implementation Description: SF12

Feature ID SF13 (Spider Feature 13)
Name Scalability and real time harvesting
Effort Spent 2 Months
Modules Af-
fected / Created

Application / Web service / Website

Description of the new feature

The ability to harvest and monitor updates on larger amount of blogs, with
the trade off towards depth and resources required to harvesting frequency.
Scaling can be done by either installing multiple applications across multiple
computers and adjust the amount of threads that should be running at any
time.

An initial Analyzer learns and identifies blogs based upon previous indexed
blogs.

After an inserted blog is analyzed and harvested – revisiting and monitoring
blogs are substantially quicker. Revisiting blogs using already established rules
makes it more than ten folds as quick.

Implementation details

Scaling capability is implemented both in optimizing each module of the
software and through the architectural structure. Optimizing the software is
done through testing the software and logging the time and CPU required for
each step of the spider process.

The architectural structure scales by supporting to add more back-end spider
applications and using the same web interface. When inserting new blog sites,
the load of processing shall be evenly distributed across all the back ends.

Implemented By CyberWatcher
Table B.13: Implementation Description: SF13

BlogForever Consortium 157



D4.8: Final BlogForever Platform September 14, 2013

Feature ID SF14 (Spider Feature 14)
Name Capture necessary metadata from crawled content
Effort Spent 3 Days
Modules Af-
fected / Created

Host Analyzer / Spider Core

Description of the new feature

Capture metadata like Micro Formats and other meta tags describing the
source and each post.

Extracting meta tags includes feature SF3 — extracting tags describing blogs
and blog posts.

In addition the spider capture Micro formats which can represent multiple sets
of additional data, as described in D2.4 WeblogSpider Prototype, Chapter
3.4.1.

The final spider capture this and deliver this to the repository without any
categorization or further analyzing. This way the repository may utilize this
all type of captured Micro Formats without limitations of new formats and
change of formats.

Implementation details

Extracting and implementing of meta tags and micro formats — is seen

Implemented By CyberWatcher
Table B.14: Implementation Description: SF14

BlogForever Consortium 158



D4.8: Final BlogForever Platform September 14, 2013

Feature ID SF15 (Spider Feature 15)
Name UTF8 as the default character encoding
Effort Spent 2 Weeks
Modules Af-
fected / Created

Host Analyzer / Spider Core

Description of the new feature

Character encoding represents a challenge in all harvesting from the web.
Encoding according to UTF8 represents a standard way of reading and
representing all characters.

This function encodes the string data to UTF-8, and returns the encoded
version. UTF-8 is a standard mechanism used by Unicode for encoding wide
character values into a byte stream. UTF-8 is transparent to plain ASCII
characters, is self-synchronized (meaning it is possible for a program to figure
out where in the byte stream characters start) and can be used with normal
string comparison functions for sorting and such.

The spider extract the text from the web – including the encoding used.

Implementation details

The UTF8 encoding is implemented with following programming method

For all new host analyzed the system will send the byte stream through an
opens source library UDE (http://code.google.com/p/ude/), which is ported
from Mozilla Universal Charset Detector. Depending on the result from this
analyzer and what the web response from the server is compared to what the
character mapping in the HTML head is. When the correct type is selected, it
will be converted using .Net is internal character encoding converter to UTF8.

Implemented By CyberWatcher
Table B.15: Implementation Description: SF15

Feature ID SF16 (Spider Feature 16)
Name Harvesting the author
Effort Spent Included in SF2
Modules Af-
fected / Created

Host Analyzer / Spider Core

BlogForever Consortium 159

http://code.google.com/p/ude/


D4.8: Final BlogForever Platform September 14, 2013

Description of the new feature

Capturing the blog author of each post or the source either as name or email
or both.

The name of the author of a blog is normally found through the RSS. This is a
standard tag in the RSS. This information will then be matched towards the
HTML version.

If not found through RSS, the spider will harvest tags in HTML-version, in
DOM or simple identify email links. The latter is a bit more uncertain as the
spider will not know if it’s the email of the author or someone else.

Implementation details

Extracting author tags from Posts and blogs

• Post: When the post div is located, most of the blog system uses
standard structures for displaying tags.

• Within these structures author and email is normally a separate tag. The
system will extract these tags and store it according to the structure of
rest of the found tags — as described in SF2 and SF3.

Implemented By CyberWatcher
Table B.16: Implementation Description: SF16

Feature ID SF17 (Spider Feature 17)
Name Harvesting the disclaimer
Effort Spent 2 Weeks
Modules Af-
fected / Created

Host Analyzer Module

Description of the new feature

Capture disclaimers describing liability issues of each blog. It is stored and is
accessible through the file description on the blog entity.

BlogForever Consortium 160



D4.8: Final BlogForever Platform September 14, 2013

Implementation details

When a new blog site is added, it will be analyzed to extract data such as the
disclaimer. By searching for predefined patterns in URLs and HTML structure
the disclaimer will be extracted.

After identifying the disclaimer, the spider will follow the link to a disclaimer
page. This entire page will be store as a file related to the blog entity. When
the repository gets the latest batch from the spider API, they will be
requesting all file elements and they will be returned as a byte stream.

Implemented By CyberWatcher
Table B.17: Implementation Description: SF17

Feature ID SF18 (Spider Feature 18)
Name Harvesting links
Effort Spent 2 weeks
Modules Af-
fected / Created

Host Analyzer Module

Description of the new feature

Detecting and capture external links per blog posts such as video links,
presentations, article references, and link farms.

Links in the full text of each blog post is captured and handled both as text
and as a separate entity.

The spider is classifying the link according to the URL and well known
formats such as:

• PDF

• Excel

• Docs

• HTML

• JAVA

• MPG

The embedded content is also represented with links and will be found
through these links in the repository.

BlogForever Consortium 161



D4.8: Final BlogForever Platform September 14, 2013

Implementation details

When extracting all links within the post it will look at what type of link it is,
such as:

• <img src=‘‘’’> When link is found within this type of html tag it is
obvious that it is an image link.

• <embed src=‘‘’’ type=‘‘’’> Embedded data, reading the type (if
defined) makes it possible to know what it is

• <ifram src=‘‘’’> Iframe, possible to html page

• <object data=‘‘’’> Could be everything from audi, video to apples
and documents

• <a href=‘‘’’> When a normal link is found we can look at some
identifiers within the link url, e.g.

– .doc

– .pdf

– etc

But in most cases you must access that source to know what it really is.

Implemented By CyberWatcher
Table B.18: Implementation Description: SF18

Feature ID SF19 (Spider Feature 19)
Name Snapshot of blog versions
Effort Spent 2 weeks
Modules Af-
fected / Created

Host Analyzer Module

Description of the new feature

Capture the HTML of each blog and makes a low resolution thumbnail and
high resolution snapshot.

This is however not done per post due to size constrains and risk of
hammering the blog too extensively. Such can be seen as spamming and the
spider then being black listed from the source.

The thumbnail includes the whole length of the text. If the text is short, the
thumbnails looks like a screen dump. However, if text is long, this features

BlogForever Consortium 162



D4.8: Final BlogForever Platform September 14, 2013

includes the entire text and the thumbnail will shrink to fit the height into
same format. This could be configured differently – as many thumbnails
becomes hard to see if text is long. The alternative is to cut text and only
have thumbnail more like a screen dump.

Implementation details

Snapshot and Thumbnails are implemented using SiteShoter from NirSoft
(http://www.nirsoft.net/utils/web site screenshot.html). Using this
application you can configure:

• Resolution

• Image type

• Compression

• Browser width and height

• Etc.

If the blog is configured to take snapshot of the blog, it will create one with
normal resolution and one that is reduced to 100 x Y pixels, where Y is
calculated to get the correct scaling.

Implemented By CyberWatcher
Table B.19: Implementation Description: SF19

Feature ID SF20 (Spider Feature 20)
Name Purposive list of crawled blog sources
Effort Spent 6 weeks
Modules Af-
fected / Created

Host Analyzer Module

Description of the new feature

This features includes the implementation of a search engine and log into the
spider. The capability can be seen in the spider web portal:

Search field is possible within sources, posts and entities. The log list is seen
both as state: number of indexed source/posts/entity and actual listing below
with paging.

BlogForever Consortium 163

http://www.nirsoft.net/utils/web_site_screenshot.html


D4.8: Final BlogForever Platform September 14, 2013

Holding such log is a major part of the spider but key to be able to manage
and sort captured data as well as avoid already crawled data — see SF 21.

Lucene .net is implemented as search engine
(http://en.wikipedia.org/wiki/Lucene).

Implementation details

A custom wrapper been created around Lucene to support our need for
search/update and delete object that are strongly typed. In this solution we
use this wrapper to create the following indices:

• WatchPoint: Search for the state of all entry points for crawling blogs
sites

• Host: Search for hosts that has been registered in the system

• UriState: For all added URLs they are put here for processing. The
system uses this index to keep track of all the urls the user has added.

• Entity: Search for blogs, posts and comments.

The query syntax is described here:
http://lucene.apache.org/core/2 9 4/queryparsersyntax.html

Implemented By CyberWatcher
Table B.20: Implementation Description: SF20

Feature ID SF21 (Spider Feature 21)
Name List of already crawled posts – separating old from new

posts
Effort Spent Included in SF20
Modules Af-
fected / Created

Host Analyzer Module

Description of the new feature

The spider holds lists of already crawled blog posts and comments to separate
new from old post. This is key both to avoid spamming the source with
multiple harvesting of same posts as well as avoid duplicates in the harvesting
and storing.

BlogForever Consortium 164

http://en.wikipedia.org/wiki/Lucene
http://lucene.apache.org/core/2_9_4/queryparsersyntax.html


D4.8: Final BlogForever Platform September 14, 2013

Through using RSS as initial phase of harvesting the spider gets IDs and URI
of only the latest posts. Any RSS updates gives new posts only, with no need
to harvest other posts.

Second method is matching URI towards spider log. As long as the spider
keeps the complete log — the ID represented with URI will detect duplicates
and stop harvesting and indexing old posts.

Implementation details

Through using RSS as initial phase of harvesting the spider gets IDs and URI
of only the latest posts. Any RSS updates gives new posts only, with no need
to harvest other posts.

Second method is matching URI towards spider log. As long as the spider
keeps the complete log — the ID represented with URI will detect duplicates
and stop harvesting and indexing old posts.

Implemented By CyberWatcher
Table B.21: Implementation Description: SF21

Feature ID SF22 (Spider Feature 22)
Name METS packages of crawled content
Effort Spent 2 weeks
Modules Af-
fected / Created

Exporting module, webservice and feed

Description of the new feature

The captured content has been parsed and structured into XML to be
available for repositories. In this project the XML should be formatted
according to METS, as seen below.

This is securing the repository being able to understand all entities available
from the spider.

Implementation details

The webservice exposes a get-method where the method transforms the
internal XML-representation of the blog entity using XSLT transformation

BlogForever Consortium 165



D4.8: Final BlogForever Platform September 14, 2013

into a METS document according to the MARC XML format. Each document
is described with METS namespace in the XML.

The MARC contains three different structures – one for blog source, blog post
and one for blog comments.

Within the XML there is a set of file references (FileGrp) containing metadata
describing the content as well as where content can be retrieved; either from
the spider server or from the original blog source.

Example of FileGrp:
<file ID="2.jpeg" MIMETYPE="image/jpeg" SIZE="25975"

CREATED="29.04.2013 12:51:51">

<FLocat

LOCTYPE="URL">http://indianautosblog.com/wp-content/...</FLocat>

<FContent CHECKSUM="d8a729cbbc4c036279d3b1f14ba98ec2">

</FContent>

</file>

The repository can use the webservice to fetch all the METS documents.

Implemented By CyberWatcher
Table B.22: Implementation Description: SF22

B.2 Features not retained

During the development process some features have been considered too resource
processing to be fully implemented. Such considerations have been discussed with
the rest of the technical BlogForever team to see if there are alternatives and
to discuss about the prioritization of those features. In addition to this, such
discussions have been taken in the entire BlogForever project meetings — before
final decision being made about leaving out such features [2].

Finally, the only spider feature that has not been implemented after such process
is:

• SF9 - Information about the context of the blog: Personal vs. business/insti-
tutional.

SF9 covers classification of the blog source and its content. Separating end user
blogs from professional blogs, e.g. corporates, authors and editor managed blogs.
It has not been possible to find an exact way of categorizing blogs by content and
context. Just implementing content categorization would require a very resource
demanding process for the spider. It would have to text analyzing the related blog
post as well as the rest of the posts within the same blog domain for all posts

BlogForever Consortium 166



D4.8: Final BlogForever Platform September 14, 2013

— or at least absolutely all blog domains. This would take resources away from
scaling and other extraction tasks of the spider — and require more hardware.
Also, the chance of making a successful categorization — fully automated - across
different type of industries, languages and format of blogs — is fairly low. And even
more importantly the main usage of the blog spider has been defined as users can
insert already known blog URLs into the spider. Then they have the capability to
categorize better and more efficient than an automated spider can achieve through
text-mining.

BlogForever Consortium 167



D4.8: Final BlogForever Platform September 14, 2013

Appendix C

Spider API Documentation

The spider web service is the main API for enabling repository to utilize the weblog
spider for data harvesting. It includes ability to administrate the spider and to allow
end users to insert blog URLs in the repository.

The web service is accessible for any technical license holder that wants to set up a
separate spider locally or to use the web service as SaaS for connecting towards a
dedicated repository.

Each web service is managed through username and password. The login to the
web service is available at http://bf.cyberwatcher.com/. Username and password
can be given through michael@cyberwatcher.com.

In addition to this, there will be implemented API keys for authentication and access
control purposes. The API keys are generated through the web interface.

The complete web service API description is presented below.

The API consists of 15 methods:

• Version

• AddWatchPoint

• DeleteWatchPoint

• UpdateHost

• DeleteHost

• GetWatchPoint

• GetEntity

• SearchEntities

• SearchWatchPoints

• SearchHosts

• SearchLog

• UpdateWatchPoint

• GetDocumentStorage

BlogForever Consortium 168

http://bf.cyberwatcher.com/ 


D4.8: Final BlogForever Platform September 14, 2013

• GetDocument

• GetDocumentAsMets

The description of each method is presented below with a summary, the input
parameters and the return value:

[ServiceContract]

public interface IServiceApi

<summary>
Returns the given version for connected to the given API key

</summary>
<param name="apiKey">Authentication key</param>
<returns>Returns the version number of the given backend

Version information for an assembly consists of the following four values:

Major Version

Minor Version

Build Number

Revision

</returns>
[OperationContract]

string Version(string apiKey);

<summary>
A method for adding blog urls, the return objects describes the status

of the given url added, if the url has already been added, that record

is returned with.

</summary>
<param name="apiKey">Authentication key</param>
<param name="watchPoints">array of urls pointing to the blogsite</param>
<param name="tags">It is a feature not currently inuse </param>
<returns>Returns the state of the given url, the record contains state

as well as messages and what the forward url is. The differen states

are:

* New, the url is new and just added

* Unknown, the url has been process, but the system could not identify

it as a valid blog

* Processing, the url is being analyzed

* Invalid, either no rules where created or the site does not exist/blocked

etc

* Entity, rules has been created and the system

* Forward, if the url is forwarded it is defined here

* Queued, the url is queued

* Finished, successful download of blog entities

* Failed, by some reason it has failed, it will try at a later time

BlogForever Consortium 169



D4.8: Final BlogForever Platform September 14, 2013

</returns>
[OperationContract]

UriState[]AddWatchPoints(string apiKey, string[]watchPoints, string[]tags);

<summary>
A method for deleting a watchpoints

</summary>
<param name="apiKey">Authentication key</param>
<param name="watchpointId">The ID of the watchpoint to be deleted</param>
<returns>True or false if it where successful</returns>
[OperationContract]

bool DeleteWatchPoint(string apiKey, int watchpointId);

<summary>
A method for updating the host

</summary>
<param name="apiKey"></param>
<param name="hostDescription">Object contains several different fields

that are possible to change, OverrideUserAgent, State and name</param>
<returns>Returns the updated host description</returns>
[OperationContract]

SystemHostDescription UpdateHost(string apiKey, SystemHostDescription

hostDescription);

<summary>
Method for deleting the host

</summary>
<param name="apiKey">Authentication key</param>
<param name="hostId">Id of the host</param>
<returns>Returns true if successful</returns>
[OperationContract]

bool DeleteHost(string apiKey, int hostId);

<summary>
Returns a description of the watchpoint , it contains information such

as taking snapshot of the site, override useragent etc.

</summary>
<param name="apiKey">Authentication key</param>
<param name="watchpointId"></param>
<returns>Returns a description / configuration of the given watchpoint</returns>
[OperationContract]

WatchPointDescription GetWatchPoint(string apiKey, int watchpointId);

<summary>
A method for getting a specific entity, an entity is either:

BlogForever Consortium 170



D4.8: Final BlogForever Platform September 14, 2013

- Blog

- Post

- Comment

</summary>
<param name="apiKey">Authentication key</param>
<param name="entityId">Id of the entity</param>
<returns>Returns a blog entity</returns>
[OperationContract]

BlogEntity GetEntity(string apiKey, int entityId);

<summary>
The method gives the possibility to search for entities using lucene search

syntax, for more information: http://lucene.apache.org/core/old versioned docs/versions/2 9 1/queryparsersyntax.html

To get an overview of what fields are available perform an empty search

</summary>
<param name="apiKey">Authentication key</param>
<param name="request">Search request object</param>
<returns>Returns a blog search response object containing data such as

time spent, search result, facets, fields etc</returns>
[OperationContract]

BlogSearchResponse SearchEntities(string apiKey, SearchRequest request);

<summary>
The method gives the possibility to search for watchpoints using lucene

search syntax, for more information: http://lucene.apache.org/core/old versioned docs/versions/2 9 1/queryparsersyntax.html

</summary>
<param name="apiKey">Authentication key</param>
<param name="request">Search request object</param>
<returns>Returns a watchpoint search response object containing data such

as time spent, search result, facets, fields etc</returns>
[OperationContract]

WatchpointSearchResponse SearchWatchPoints(string apiKey, SearchRequest

request);

<summary>
The method gives the possibility to search for hosts using lucene search

syntax, for more information: http://lucene.apache.org/core/old versioned docs/versions/2 9 1/queryparsersyntax.html

</summary>
<param name="apiKey">Authentication key</param>
<param name="request">Search request object</param>
<returns>Returns a host search response object containing data such as

time spent, search result, facets, fields etc</returns>
[OperationContract]

HostSearchResponse SearchHosts(string apiKey, SearchRequest request);

BlogForever Consortium 171



D4.8: Final BlogForever Platform September 14, 2013

<summary>
The method gives the possibility to search for hosts using lucene search

syntax, for more information: http://lucene.apache.org/core/old versioned docs/versions/2 9 1/queryparsersyntax.html

</summary>
<param name="apiKey">Authentication key</param>
<param name="request">Search request object</param>
<returns>Returns a log search response object containing data such as

time spent, search result, facets, fields etc</returns>
[OperationContract]

LogSearchResponse SearchLogs(string apiKey, SearchRequest request);

<summary>
A method for updating the watchpoint description, if successful the object

is returned, not all fields are allowed to be modified

</summary>
<param name="apiKey">Authentication key</param>
<param name="watchpoint">The the changed object</param>
<returns>Returns the modified description object</returns>
[OperationContract]

WatchPointDescription UpdateWatchPoint(string apiKey, WatchPointDescription

watchpoint);

<summary>
Returns an objects containing an overview of all files connected to this

specific document id

</summary>
<param name="apiKey">Authentication key</param>
<param name="documentId">Document Id / Entity Id</param>
<returns>Returns a storage info object containing file association descriptions</returns>
[OperationContract]

StorageInfo GetDocumentStorage(string apiKey, int documentId);

<summary>
Returns the given binary file associated

</summary>
<param name="apiKey">Authentication key</param>
<param name="documentId">Document id / entity id, owner of the files</param>
<param name="filename">The file that is to be returned</param>
<returns>Returns the given binary file associated</returns>
[OperationContract]

byte[]GetDocument(string apiKey, int documentId, string filename);

<summary>
Converts from the internal format (xml) to a METS document structure

</summary>

BlogForever Consortium 172



D4.8: Final BlogForever Platform September 14, 2013

<param name="apiKey">Authentication key</param>
<param name="documentId">Document id / entity id</param>
<returns></returns>
[OperationContract]

MetsDocment GetDocumentAsMets(string apiKey, int documentId);

<summary>
A method of check what state a given url that has been added is

</summary>
<param name="apiKey">Authentication key</param>
<param name="uri">The already added url</param>
<returns>Returns the state of the url</returns>
[OperationContract]

UriState GetUriState(string apiKey, string uri);

<summary>
The method gives the possibility to search for uristates using lucene

search syntax, for more information: http://lucene.apache.org/core/old versioned docs/versions/2 9 1/queryparsersyntax.html

</summary>
<param name="apiKey">Authentication key</param>
<param name="request"></param>
<returns>Returns a search result set of type UriState</returns>
[OperationContract]

UriStateSearchResponse SearchUriState(string apiKey, SearchRequest request);

<summary>
Restarts the watchpoint if for some reason it has failed.

</summary>
<param name="apiKey">Authentication key</param>
<param name="id"></param>
<param name="reCreateRules">If the system should be forced to also delete

the rules and recreate them</param>
[OperationContract]

void ResetWatchPointById(string apiKey, int id, bool reCreateRules);

<summary>
Resets a given entity, it should be downloaded and analyzed once more

</summary>
<param name="apiKey">Authentication key</param>
<param name="id"></param>
[OperationContract]

void ResetEntityById(string apiKey, int id);

BlogForever Consortium 173



D4.8: Final BlogForever Platform September 14, 2013

Appendix D

Deployment Instructions

D.1 Repository Deployment Instructions

This Section presents the deployment guide to install the Repository component.

D.1.1 Software Requirements

The software requirements needed to run the BlogForever Repository are either
Linux packages or Python packages. The Linux packages will be installed
automatically in the installation process described in the next subsection. The
commands that do this part are:

sudo -u www-data make install-jquery-plugins

sudo -u www-data make install-jquery-tokeninput

sudo -u www-data make install-jstimeline-plugin

sudo -u www-data make install-mathjax-plugin

sudo -u www-data make install-mediaelement

Regarding the Python packages, the source files include several files listing the
packages needed. These files are requirements.txt, requirements-extras.txt,
requirements-flask.txt, and requirements-flask-ext.txt In Debian, for
example, it is easy to use these files. The following commands will install the
packages using the appropriated version of each of them.

sudo pip install -r requirements.txt

sudo pip install -r requirements-extras.txt

sudo pip install -r requirements-flask.txt

sudo pip install -r requirements-flask-ext.txt

D.1.2 Instructions

The code of the BlogForever repository is divided in 2 different git code repositories:

BlogForever Consortium 174



D4.8: Final BlogForever Platform September 14, 2013

• One of them is a new branch on top of Invenio’s next branch and
has the features developed for BlogForever that can be used in Invenio
(they are generic to any digital repository). The name of this branch is
invenio-blogforever-next. We will refer to it as “the Invenio side”.

• The second one is a different repository where you can find the features
developed that are not compatible with the general-purpose version of Invenio.
This repository can be found in http://invenio-software.org/repo/blogforever/
and the latest branch is called next. We talk about is as “the BlogForever
side”

Therefore, you will need 2 different directories with the source files. From now on,
we will assume /src/invenio and /src/blogforever.

To bring the latest version of the BlogForever side under the right directory:

cd /src

git clone http://invenio-software.org/repo/blogforever/

cd blogforever

git fetch

git checkout next

To bring the latest version of the Invenio side under the right directory:

cd /src

git clone http://invenio-software.org/repo/invenio/

cd invenio

git remote add

jgarcial http://invenio-software.org/repo/personal/invenio-jgarcial

git fetch jgarcial invenio-blogforever-next

git checkout invenio-blogforever-next

Now you have all the latest source files. Let’s install all of it. First, we install the
Invenio side. According to the Invenio install instructions, you do:

BlogForever Consortium 175

http://invenio-software.org/repo/blogforever/


D4.8: Final BlogForever Platform September 14, 2013

This is needed only the first time
cd /src/invenio

aclocal-1.9

automake-1.9 -a

autoconf

./configure

These 2 lines are only ones needed every time you reinstall the code
sudo make

sudo -u www-data make install

This is needed only the first time
sudo -u www-data make install-jquery-plugins

sudo -u www-data make install-jquery-tokeninput

sudo -u www-data make install-jstimeline-plugin

sudo -u www-data make install-mathjax-plugin

sudo -u www-data make install-mediaelement

pip install -r requirements.txt

pip install -r requirements-extras.txt

pip install -r requirements-flask.txt

pip install -r requirements-flask-ext.txt

Let’s install the BlogForever side sources:

cd /src/blogforever

make

sudo -u www-data make install

Now, all the source files are in the right directories (by default /opt/invenio). We
need to load the config variables and restart apache:

These 2 commands will also be needed every time you reinstall the sources
sudo -u www-data /opt/invenio/bin/inveniocfg --update-all

sudo /etc/init.d/apache2 restart

Let’s create the database and fill it with the default values:

sudo -u www-data /opt/invenio/bin/inveniomanage database create

sudo -u www-data /opt/invenio/bin/inveniocfg --create-demo-site

And there you go. Your site will be up and running. . . hopefully. I guess you also
want some records. For this, you will need to get your BibSched ready: This will
tell the scheduler to start running the tasks in the queue. You can also stop it.

sudo -u www-data /opt/invenio/bin/bibsched start

Config variables to be added in your invenio-local.conf file:

BlogForever Consortium 176



D4.8: Final BlogForever Platform September 14, 2013

CFG BIBUPLOAD FFT ALLOWED LOCAL PATHS = /tmp,/home,/opt

CFG BIBSCHED MAX NUMBER CONCURRENT TASKS = 2

CFG FLASK SERVE STATIC FILES = 1

CFG BLOGFOREVER SITE = 1

CFG FLASK CACHE TYPE = redis

CFG DEVEL TOOLS = werkzeug-debugger

CFG FLASK DISABLED BLUEPRINTS = webdeposit blueprint

CFG WEBSTYLE TEMPLATE SKIN = blogforever.css

After adding this configuration to your invenio-local.conf file you should run
the following command so they are taken into account:

sudo -u www-data /opt/invenio/bin/inveniocfg --update-all

Let’s add the fetcher task. It will download data from the spider (BF4 instance in
this case). It will upload records into the database:

Note that this all is just one command
sudo -u www-data /opt/invenio/bin/bibtasklet

-T bst fetch records from spider

-a url=’http://bf4.itc.auth.gr/Spider20130620/SpiderService.svc?wsdl’

-a api key=’DZFbrYM5pmOs6xKafZSz9+lLeJVoIyWhgF3VQU0+4dg=’

-a constant set=20 -u admin

This task keeps the id of the last record fetched from the spider. If you want to
start fetching all the records from the beginning again, you will need to remove the
file where the last id was stored (/opt/invenio/var/tmp/last id) Probably you
will also want to remove all the current records. To do that you just need to run
the following command:

sudo -u www-data /opt/invenio/bin/inveniocfg --remove-demo-records

In order to be able to find the records when searching or browsing, you’ll need to
add other tasks to the BibSched queue:

These commands will load the basic tasks that will run every 5 minutes
sudo -u www-data /opt/invenio/bin/bibindex -f50000 -s5m -u admin

sudo -u www-data /opt/invenio/bin/bibreformat -oHB -s5m -u admin

sudo -u www-data /opt/invenio/bin/webcoll -v0 -s5m -u admin

sudo -u www-data /opt/invenio/bin/bibrank -f50000 -s5m -u admin

sudo -u www-data /opt/invenio/bin/bibsort -s5m -u admin

These commands will load housekeeping tasks that will run only once a week
sudo -u www-data /opt/invenio/bin/bibrank -f50000 -R -wwrd -s14d

-L Sunday -u admin

sudo -u www-data /opt/invenio/bin/bibsort -R -s7d

-L ’Sunday 01:00-05:00’ -u admin

sudo -u www-data /opt/invenio/bin/inveniogc -a -s7d

-L’Sunday 01:00-05:00’ -u admin

BlogForever Consortium 177



D4.8: Final BlogForever Platform September 14, 2013

D.2 Spider Deployment Instructions

This Section presents the deployment guide to install the Spider component.

D.2.1 Software Requirements

• Windows Server (Preferably version 2008 or newer).

• .NET Framework versions 3.5, 4 and 4.5.

• Microsoft SQL Server 2008, preferably 2012, (also works with SQL Server
express but there is a limit of 4GB to the size of the database).

• Microsoft IIS web server.

D.2.2 Instructions

1. Microsoft IIS web server

(a) Install IIS from the add/remove software menu of Windows server.

(b) Open the IIS Control panel, and click on the Windows Platform
Installer Icon. From there, you are able to install all .NET versions as
well as the MVC4 library.

(c) Enable Windows Communication Foundation (WCF) Library.

(d) Enable HTTP activation.

(e) All .NET versions should have the same settings.

2. Microsoft SQL server

(a) Install the Microsoft SQL server following standard installation procedure
(CDROM installation setup).

(b) Use the BlogForever Spider database deployment script deploy.sql
which creates the initial database structure.

3. BlogForever Spider Web component

(a) Extract the BlogForever spider zip file in the IIS web folder
(c:/inetpub/wwwroot/Spider by default).

(b) Open the IIS control panel, right click on the folder and select Convert
to Application. (All the files beneath this folder are parts of a web
application, if not it is not accessible).

(c) Setup database connection. Edit the web.config file inside the Spider
web folder, containing the database connection string which has to be
modified according to server settings.

4. BlogForever Web Crawler component

(a) Extra the BlogForever Crawler zip file in a selected folder.

BlogForever Consortium 178



D4.8: Final BlogForever Platform September 14, 2013

(b) Note that The default file storage location of the spider executable is in
a subfolder below its location.

(c) Edit CW.CrawlerSystem.ConsoleApp.exe.config file to setup database
connection string

(d) Furthermore, inside the AppSettings there are important application
variables.

i. EntityStorage is the folder location of the entities the crawler
extracts,

ii. SourcesStorage is the location of the sources description,

iii. WebRequestCache is used to cache every HTTP request result,
expiration time is 10min (this is necessary for HTTP traffic
optimisation)

iv. UserAgent is a copy of the Opera UserAgent,

v. mexHttpBinding is the description of all the network services that
this program provides,

vi. baseAddress it the address of mexHttp

vii. SvcConfigEditor is used to define new endpoint connections towards
a service. You can use the same application to configure your client to-
wards a service or the other way round. Example of service description
is in this address: http://bf4.itc.auth.gr/Spider/SpiderService.svc

viii. maxStringContentLength and maxString should not be modified.

(e) Execute the CW.CrawlerSystem.ConsoleApp.exe to run the crawler.

BlogForever Consortium 179




	ExecutiveSummary
	1 Introduction
	1.1 Background

	2 Communication Mechanisms
	2.1 Spider Communication Mechanisms
	2.2 Repository Communication Mechanisms
	2.2.1 Data transfer
	2.2.1.1 Passive crawler
	2.2.1.2 Active crawler

	2.2.2 Data insertion into the repository


	3 Spider Repository Integration
	3.1 Repository-Spider Direction
	3.2 Spider-Repository Direction

	4 Implementation Updates
	4.1 Spider Implementation Updates
	4.2 Open Source Spider Implementation
	4.2.1 Software Architecture
	4.2.2 Operation

	4.3 Repository Implementation Updates
	4.3.1 Newly implemented features
	4.3.2 Updated features


	5 Future Work
	6 Conclusions
	References
	A Final Repository Implementation Descriptions
	A.1 Features already in Invenio
	A.2 List of implementation descriptions
	A.3 Features not retained

	B Final Spider Implementation Descriptions
	B.1 List of implementation descriptions
	B.2 Features not retained

	C Spider API Documentation
	D Deployment Instructions
	D.1 Repository Deployment Instructions
	D.1.1 Software Requirements
	D.1.2 Instructions

	D.2 Spider Deployment Instructions
	D.2.1 Software Requirements
	D.2.2 Instructions



