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Abstract. Deep learning methods are widely used in the domain of change de-
tection in remote sensing images. While datasets of that kind are abundant, anno-
tated images, specific for the task at hand, are still scarce. Neural networks trained
with Self supervised learning aim to harness large volumes of unlabeled satellite
high resolution images to help in finding better solutions for the change detection
problem. In this paper we experiment with this approach by presenting 4 dif-
ferent change detection methodologies. We propose a fusion method that under
specific parameters can provide better results. We evaluate our results using two
openly available datasets with Sentinel-2 satellite images, S2MTCP and OSCD,
and we investigate the impact of using 2 different Sentinel 2 band combinations
on our final predictions. Finally we conclude by summarizing the benefits of this
approach as well as we propose future areas of interest that could be of value in
enhancing the change detection task’s outcomes.
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1 Introduction

The history of change detection can be traced back to the early days of remote sensing
with one of the first examples being the use of aerial photography to identify agricul-
tural land use changes [13]. Change detection is the process of comparing two images
of the same area at different times to identify changes, such as urban growth and de-
velopment, deforestation events and vegetation evolution. Those changes are depicted
onto a change mask where usually a white pixel represents a change and a black pixel
that nothing has changed.

Despite the large amount of data that is now available from programs like Coperni-
cus and Landsat, there is still a lack of open labelled datasets using these images. This
makes it difficult to compare and evaluate new proposed change detection algorithms.
Sufficient labelled datasets are essential for developing supervised learning methods
with deep neural networks.

A promising candidate in tackling this problem is Self Supervised Learning(SSL),
a subset of Unsupervised Learning. The term supervision means that labels do exist
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for the data on which a model is trained. However, as opposed to Supervised Learning
where the data is annotated with the help of a human, in SSL the labels are extracted
from the data itself. For this reason, SSL is able to use large amounts of data that are not
annotated. Generally, computer vision pipelines that employ self-supervised learning
involve performing two tasks, a pretext and a downstream task. The downstream task
can be anything like classification or detection task, with insufficient annotated data
samples. The pretext task is the self-supervised learning task solved to learn visual
representations, with the aim of using the trained model weights obtained in the process,
for the downstream one. In this work, we aim to leverage SSL in exploiting significant
amounts of earth observation images to enhance change detection. We experiment with
already proposed methodologies with some alterations of our own while also putting
forward a fusion technique that aims to aid in the solution of said problem.

The remainder of the paper is organised as follows. First, in Section 2 we dis-
cuss past work that has been done in the Change Detection domain, focusing on the
deep learning approaches and SSL techniques. Section 3 goes with great detail into the
methodology we use to tackle this problem as well as it describes the proposed fusion
approach. Section 4 presents the results of our experiments and last but not least, in
Section 5 we propose some future areas of interest to be explored in regards to change
detection in satellite images.

2 Related Work

Convolutional Neural Networks (CNNs) are the de facto architecture used when dealing
with images of any kind. Daudt et al. [5] presented three fully convolutional siamese
networks trained end-to-end using the Onera Satellite Change Detection [6] and the
Air Change datasets [1]. Their first network is based on the U-net architecture [10],
named Fully Convolutional Early Fusion (FC-EF), with the other two being its siamese
extensions. Their goal was to train these networks solely with change detection datasets
without any sort of pre-training. Despite achieving good results, the authors remarked
that the unavailability of larger annotated datasets, for this specific task, was a limiting
factor.

Trying to combat this, a lot of methods use various techniques based on transfer
learning. While this is a valid option, most pre-trained models are not trained on remote
sensing data, but usually RGB images where complete datasets are more abundant.
This results in most of the satellite image’s information (e.g. Sentinel 2 images have 13
bands) being unusable [5,6] for any given task.

Leenstra et al. [8] use Self Supervised Learning techniques to solve most of the
limitations mentioned before. They defined two pretext tasks that were trained on the
S2MTCP dataset [7]. One was made to discriminate between overlapping and non-
overlapping patches, while the second was trained to minimize the distance between
overlapping patches while maximizing the distance between non overlapping ones based
on a modified triplet loss function.

Their network architecture, in both cases, is a siamese convolutional network that
despite its simplicity produced great results. The Onera dataset again was used for eval-
uation on the pretext tasks and training for the downstream. For change detection they
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used a discriminative model to extract features from bi-temporal images, and they fine-
tuned the network to detect changes using either Change Vector Analysis (CVA) [2,3]
with thresholding techniques like the Otsu and Triangle methods [11], or a simple linear
classifier.

Chen et al. [4] on the other hand, chose to use a contrastive loss for the pretext
task. The main difference between these two approaches is that triplet loss tries to en-
sure a margin between distances of negative pairs and distances of positive pairs while
contrastive loss takes into account the margin value only when comparing dissimilar
pairs, and it does not care at all where similar pairs are at that moment [12]. As a result,
contrastive loss may reach a local minimum sooner, while triplet loss may continue to
better organize the vector space.

For their network architecture, they chose a Siamese ResUnet [14] to obtain pixel-
wise representations of the temporal different and spacial similar image patch pairs. For
the downstream task they used the Otsu and the Rosin thresholding method [11] on the
difference between the features of the two network branches to obtain the binary change
mask.

In this paper we chose to experiment with Leenstra et al’s approach because despite
its simplicity it produced competitive results. We explored how 2 different band combi-
nations affect the final’s task results and we examined the impact of the network’s size
in regards to the change detection task. We also demonstrate a fusion technique that is
able to use the predicted outputs from all the change detection classifiers to generate a
better result.

3 Methodology

In this section we describe how Self Supervised learning, in this specific case, is used
to help solve the problem of change detection in satellite images.

As it has been said in section 2 there are not many large annotated datasets specif-
ically build for change detection in remote sensing data. Using SSL, large amounts of
earth observation images can be used to train a pretext task on an unrelated job and
then use those trained weights to solve a downstream task, which in our case is change
detection. By doing so, we can pre-train the majority of the weights and then teach the
model to recognize changes with a minimal amount of labels.

3.1 Network Architecture

The network’s configuration changes in each task, either that being a pretext or the
downstream one. In general the models are based on a Siamese Network’s arrangement
where the encoder part of the network consists of branches of convolutional layers while
the decoder part is specific for each task. According to [8] two pretext tasks and one
downstream task are defined. In Figure 1 there is an overview of the proposed change
detection pipeline where each prediction is fused with the aim to produce a better one.

Pretext Task 1 This task asks the network to do similarity detection between over-
lapping and non-overlapping patches. Overlapping patches have been given the label
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Fig. 1: Methodology Pipeline. The pre-trained siamese network uses convolutional
brances trained on an unrelated task, while the Fusion technique exploits the change
detection classifiers’ results to produce a fused prediction

0 while non-ovelapping one the label 1. The proposed approach has a Siamese Net-
work with two branches, where two images, spatially similar but temporally different,
are used as inputs in each branch. Each branch consists of 3 convolutional layers with
32 filters, 3x3 size kernels each and a Relu activation function. After each convolution
there is a dropout of 0.1. No pooling operations are implemented between each layer.

Features learned from each of the two embedding networks then fuse together
passing through a layer that calculates their absolute difference (Merge Layer). Subse-
quently the resulting feature map is then passed through a classifier that tries to predict
if the patches are overlapping or not. Figure 2a shows the network’s architecture.

The loss function we use is Binary cross entropy1, as this is a binary classification
problem. It compares each of the predicted probabilities to actual class output which
can be either 0 or 1. It then calculates the score that penalizes the probabilities based on
the distance from the expected value.

Loss = −
N∑
i=1

(yi log(ŷi) + (1− yi) log(1− ŷi)) (1)

where ŷ the predicted label, y the true label and i = (1...N) where N = number of
training samples.

Pretext Task 2 In this task the network is trying to minimize the triplet loss between
3 patches, a technique mainly used in face recognition algorithms [12]. These triplets
are usually named Anchor (A), the Positive (P) and the Negative (N) patch. The Anchor
and the Positive are overlaping patches while the Anchor and the Negative are non over-
lapping ones. We want the encodings (distance) of the Anchor and Positive images to
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(a) Pretext task 1 (b) Pretext task 2

Fig. 2: The Pretext tasks’ network architecture. Patches of size 96x96 pixels were taken
from the two images.

be quite similar while the encodings of the Anchor and Negative images to be different.
This can be seen in Equation 2,

Loss(A,P,N) = max(∥F (A)− F (P )∥2 − ∥F (A)− F (N)∥2 +margin, 0) ≤ 0
(2)

where F (X) is the encoding of the patch X = (A,P,N) and the margin is a value
to keep negative samples far apart.

The Siamese network for this task consists of 3 branches, one for each patch, that
have the same architecture as in the pretext task 1. A distance layer then is introduced,
that calculates ∥F (A)− F (P )∥2 and ∥F (A)− F (N)∥2, and then the triplet loss is
calculated. The networks architecture can be seen in Figure 2b.

Downstream Task Two methods were defined to solve the change detection problem,
as mentioned also in Section 2. A linear classifier and Change Vector Analysis (CVA)
with Otsu and Triangle Thresholding. We also add a third fusion method that takes the
predictions of the other two and aims to produce a change mask that is better than the
rest.

Change Vector Analysis (CVA) As suggested by Leenstra et al [8], CVA can be used to
identify spectral changes between two identical images which were acquired at differ-
ent times. In this case, CVA calculates the distance map, using the euclidean distance,
between the two features produced by the pre-trained convolutional branches as shown
in equation 3.

distance (F1, F2) =

√√√√ N∑
i=1

(F1i − F2i)
2 (3)
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F1 and F2 are the corresponding feature maps produced by the two branches of the
pre-trained Siamese network and i = (1...N). N = number of pixels in each map.

Thresholding techniques can then be employed on this distance map, like the Otsu
or the Triangle method, to produce the final predicted change mask.

Convolutional Classifier In place of the linear classifier, we propose a different ap-
proach that employs convolutional layers with 1x1 filters to produce a change mask.
Those layers can also be called ”Networks in Networks” as it’s defined in [9]. Although
a 1x1 filter does not learn any spatial patterns that occur within the image, it does learn
patterns across the depth of the image. Therefore filters like that provide a method of
dimensionality reduction as well as the benefit of enabling the network to learn more.
We call this approach a convolutional classifier.

Five of such convolutional layers were used with 32, 16, 8, 4 and 2 filters respec-
tively. The latter uses a softmax activation function to produce a 1x2 vector of probabil-
ities. Each probability corresponds to the chance of one pixel being of the class change
or no change. The first one is depicted by a white pixel in the change mask while the
second one by a black one.

This convolutional classifier was trained in a Supervised manner on a small anno-
tated satellite imagery dataset. Because the non-changes are more frequent in the ground
truth change masks we use a weighted Categorical Cross Entropy as a loss function as
seen in 4 to counteract this class imbalance.

Loss = −
N∑
i=1

(yi · log(ŷi) · weights) (4)

The parameter ŷ refers to the predicted label, y to the true label and i = (1...N).
N = number of pixels in the training image.

The pre-trained weights from the convolutional branch in the pretext tasks were
transferred to a Siamese configuration for the encoding part of the network. A depth
selector was also introduced to be able to select exactly how many of the 3 pre-trained
convolutional layers we need for the change detection task. The reason behind this is to
determine if choosing earlier feature representations, versus later ones, has any effect
on the performance of the downstream problem. This selection is done manually.

Fusion This approach aims to unify all the predicted change masks, produced from the
previous methods, to generate a mask with the best results (Equation 5).

Let Ωcm = {0, 1}n×m, where n = number of rows , m = number of columns,
be the change map produced from each aforementioned methods, where cm =(Conv,
Otsu, Triangle). From our experiments we discovered that the change mask generated
by CVA with Triangle Thresholding (Ωtriangle) usually was the best, but still it was
failing to detect specific pixel changes that the other two methods (Ωconv and Ωotsu)
could. Therefore, first, Fusion creates a similarities map (Ωsim) between Ωconv and
Ωotsu using the binary operator ⊕. Subsequently a threshold row-specific method is
used between the Ωtriangle and the Ωsim maps to keep only these specific pixels’ areas.

In particular, for each row i, the method computes the l2-norm of the respective rows
from the Ωtriangle and the Ωsim method and it either keeps the one from the Ωtriangle,
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if the distance is greater than the given threshold T , or the other from the Ωsim. This
way we can enhance the ”good” predictions of the CVA with Triangle Thresholding
technique by exploiting the areas where the Otsu and the Convolutional Classifier meth-
ods are better, using a user defined parameter.

Ωsim = Ωconv ⊕Ωotsu

ΩFused,i =

{
Ωtriangle,i, if l2(Ωtriangle,i, Ωsim,i) > T

Ωsim,i, otherwise

for i = 1, . . . , n

(5)

This algorithm assumes that one method always produces the overall better results
and uses the others to complement those.

3.2 Datasets

To evaluate the proposed methods we employed two openly available change detec-
tion datasets. For the pretext tasks the Sentinel-2 Multitemporal Cities Pairs dataset
(S2MTCP [7]) was used and the downstream task was applied on the Onera Satellite
Change Detection dataset (OSCD1). The latter was also used for evaluation purposes
on the pretext task 1.

The S2MTCP dataset is an urban change detection collection of 1,520 Sentinel-2
Level 1C (L1C) image pairs. It was created by Leenstra et al [8]. It does not contain
change masks and its purpose is to teach the network feature representations in regards
to the aforementioned pretext tasks. The images are roughly 600x600 in shape and
contains all Sentinel-2 bands of the Level 1C product resampled to 10m.

Despite the fact that the S2MTCP dataset contains images with less than one per-
cent cloud cover, some randomly taken patches contained mostly clouds. To avoid the
performance loss, those cloudy images were discarded before training.

The OSCD dataset(Onera) contains 24 pairs of Sentinel-2 Level 2 multispectral
images with pixel-level change ground truth maps for each pair. The annotated changes
focus on urban changes. The images contain all 13 Sentinel-2 bands and it varies in
spatial resolution between 10m, 20m and 60m. For the downstream task, we split the
data in train and test groups as recommended [6]: 14 image pairs were used for training
and 10 image pairs were used for testing. On the other hand for the pretext task 1 all
48 images were used. The reason for using the OSCD dataset, on this task, is to test the
network’s ability to discriminate between overlapping and non overlapping patches on
images it has never seen before.

3.3 Settings

To augment the available data, patches were taken from each image, from both datasets,
of size 96x96 pixels per patch. Random rotations, vertical and horizontal flips where
also applied to each patch at the pre-processing step and not during training.

1 https://rcdaudt.github.io/oscd/

https://rcdaudt.github.io/oscd/
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Table 1: The dataset use in regards to its specific task. Patch pairs from the S2MTCP and
Onera were employed both for the pretext task 1, with the latter used only for evaluation
purposes. Patch triplets were used for the pretext task 2. Training on the downstream
task was executed with the Onera patch pairs.

S2MTCP Onera

Set % Splits Patch
Pairs

Patch
Triplets % Splits Patch

Pairs
Train 85% 12776 6389 58.33% 1400

Validation 10% 1510 755 - -
Test 5% 744 372 41.66% 1000

For the S2MTCP dataset, 10 patch pairs, either overlapping or non overlapping
where randomly selected from each image pair, resulting in 15200 pairs, for the pretext
task 1. For the second task, 8116 patch triplets where taken, as described in the Section
3.

For the Onera dataset, 480 patch pairs were generated with the same augmentations
as in the S2MTCP for testing purposes on the pretext task 1. For the downstream task,
100 patches per image were extracted, resulting into 2400 patch pairs. Table 1 provides
an overview of the data splits of the aforementioned datasets.

All the aforementioned methods were executed using Tensorflow on a RTX 3060
12gb GPU. Also the Adam optimizer was used with a learning rate of 0.001, β1 = 0.9,
β2 = 0.999 and ϵ = 1e−7 on all the networks. Lastly we applied a small weight decay
of 0.0001 and we experimented with multiple band combinations from the Sentinel 2
images.

4 Results

Table 2 provides a quantitative evaluation of different approaches applied on the Onera
dataset on 3 channel images. Leenstra’s method uses the pretext task 1 methodology, as
mention in Section 3 as well as CVA with Triangle Thresholding. The 3 Fully Convolu-
tional Classifiers (FCCs) presented in this table 2 are solely trained on the Onera dataset
(i.e. no pre-training). It is very notable that our Fusion method was able to produce the
best F1 score, even when compared with state of the art methods as the FC-EF, while
also having a Recall and Precision that is very competitive. Following, we present the
different metrics for each task specifically (i.e pretexts and downstream).

Pretext task 1 For this task, where we predict if two patches are spatially overlapping,
we present the loss and the accuracy of the band combinations: B2(blue), B3(green)
and B4(red) and B2,B3,B4,B8(VNIR) in the Table 3.

The confusion matrices that were produced by the predictions versus the actual label
values can be seen in Table 4a 4b for B2B3B4 and Table 4c 4d for B2B3B4B8.

These results show that despite the band combination, the network managed to learn
each task. Notable is though that it produced better metrics and better predictions when
using Bands 2, 3 and 4. The Accuracy achieved is very high despite the data splits and
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Table 2: Comparison between the quantitative results of our best methods with a similar
SSL methodology and 3 FCCs architectures

Method F1 Recall Precision
Pretext task 1 &

Fusion
48.91 43.40 56.03

SSL
Pretext task 1 &

Triangle
48.82 42.51 57.33

Leenstra [8] 38.71 41.14 36.55

EF [5] 34.15 82.14 21.56
FCCs FC-EF [5] 48.89 53.92 44.72

FC-Siam-diff [5] 48.86 47.94 49.81

Table 3: Pretext Task 1 results for different band combinations

Dataset Data Split
Loss Accuracy

Bands 2,3,4 Bands 2,3,4,8 Bands 2,3,4 Bands 2,3,4,8
S2MTCP Validation 0.0790 0.0880 98.27% 97.22%
S2MTCP Test 0.0478 0.0920 98.65% 98.12%

Onera All 0.1644 0.1845 94.16% 93.75%

Table 4: Confusion matrices on the pretext task 1 ((a),(b) for bands 2,3,4 and (c),(d) for
bands 2,3,4,8). The 0 label means an overlapping patch pair while 1 a non overlapping.

(a) S2MTCP, bands
2,3 and 4

Test Set
Predicted
(0) (1)

True
(0) 352 7
(1) 3 382

(b) Onera, bands 2,3
and 4

Full Set
Predicted
(0) (1)

True
(0) 108 12
(1) 2 118

(c) S2MTCP, bands
2,3,4 and 8

Test Set
Predicted
(0) (1)

True
(0) 367 14
(1) 0 362

(d) Onera, bands
2,3,4 and 8

Full Set
Predicted
(0) (1)

True
(0) 106 14
(1) 1 119

the dataset used for validation. This might be due to the fact that the network is trying
to solve a simple task.

Pretext task 2 This task tries to minimize the Triplet loss. In other words, it is trying
to produce encodings between the Anchor and Positive patches that are quite similar
and encodings between the Anchor and Negative patches that are not, as described in
the Methodology 3. A way to evaluate if this has been achieved is by calculating the
cosine similarity between the encodings of patch pairs. We should expect the similarity
between the Anchor and Positive patches to be larger than the similarity between the
Anchor and the Negative ones. In Table 5 we present the mean values of the positive
and negative similarities for the test and validation sets of the S2MTCP dataset.

In both cases, of different band combinations, we see that indeed the positive sim-
ilarity is greater than the negative one, despite the dataset split, with the difference on
the second one (B2, B3, B4, B8) being slightly higher.
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Table 5: Evaluation of the Pretext task 2 using Cosine Similarity

(a) For Bands 2, 3, 4

Cosine similarities
Data Split A - P A - N
Test -0.9931156 -0.97266644
validation -0.9931706 -0.97263557

(b) For Bands 2, 3, 4, 8

Cosine similarities
Data Split A - P A - N
Test -0.99086726 -0.96263564
validation -0.9901459 -0.96268386

Change Detection Table 6 contains the quantitative evaluation of the proposed down-
stream tasks when their weights are pre-trained on the Pretext Task 1 (Table 6a) and
Pretext Task 2 (Table 6b). Experiments where enacted using two different band com-
binations, as well as either using the full pre-trained Siamese network from the pretext
task (Depth: 3) or only the 2 pre-trained convolutional layers (Depth: 2). Notable is the
fact that the latter, in all the cases produced better results. This happens due to the fact
that earlier layers in the Siamese network produce more general image encodings while
later ones are more task specific.

Fig. 3: Predicted change masks on the Chongqing city, an image pair from the Onera
Test Set. The Ground Truth mask shows the actual changes that occur between the
image pair

The convolutional classifier also is generating better results when trained with bands
2,3,4 and 8 rather than just bands 2,3 and 4, a testament to the fact that neural networks
will perform better when given more informantion. Classic techniques though as, in our
case, Change Vector Analysis with the Triangle Thresholding overall produced the best
results even when using bands 2,3 and 4.

Fusion was able to keep the different metrics as close as it is possible to the best
downstream method (Cva with Triangle) and it was able to improve the predictions in
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regards to some metrics as the F1 score and the Specificity. The thresholding parameter
T , as mentioned in Methodology 3, for every case, was set to 3.5.

Table 6: Change detection results using all the downstream methods with Pretext tasks’
pre-trained weights, Pretext task 1 (a), Pretext task 2 (b), for two different network
depths and with two different band combinations.

(a)

Pretext Task 1
Conv classifier Cva + Otsu Cva + Triangle Fusion

Bands 2,3,4 Bands 2,3,4,8 Bands 2,3,4 Bands 2,3,4,8 Bands 2,3,4 Bands 2,3,4,8 Bands 2,3,4 Bands 2,3,4,8

Depth: 2

Sensitivity 44.50 50.35 75.39 70.50 42.51 62.79 43.40 62.24
Specificity 93.89 96.05 86.50 87.66 98.56 94.14 98.45 94.21
Precision 24.89 36.72 20.25 20.63 57.33 32.78 56.03 32.85

F1 31.92 42.47 31.93 31.92 48.82 43.08 48.91 43.01
Accuracy 91.74 94.07 86.02 86.92 96.12 92.78 96.06 92.82

Depth: 3

Sensitivity 37.62 43.90 71.03 70.56 50.97 62.76 49.84 61.61
Specificity 95.14 96.78 87.97 86.97 97.26 94.22 97.26 94.36
Precision 26.05 38.25 21.18 19.77 45.79 33.05 45.32 33.18

F1 30.78 40.88 32.63 30.88 48.24 43.30 47.47 43.13
Accuracy 92.64 94.48 87.24 86.26 95.24 92.85 95.20 92.93

(b)

Pretext Task 2
Conv classifier Cva + Otsu Cva + Triangle Fusion

Bands 2,3,4 Bands 2,3,4,8 Bands 2,3,4 Bands 2,3,4,8 Bands 2,3,4 Bands 2,3,4,8 Bands 2,3,4 Bands 2,3,4,8

Depth: 2

Sensitivity 35.33 37.26 72.12 74.52 44.97 45.35 45.27 45.41
Specificity 95.12 97.51 85.05 85.45 98.26 98.00 98.19 98.00
Precision 24.77 40.52 18.00 18.89 53.97 50.82 53.18 50.79

F1 29.13 38.82 28.80 30.14 49.06 47.93 48.91 47.95
Accuracy 92.52 95.70 84.50 84.97 95.94 95.71 95.89 95.71

Depth: 3

Sensitivity 26.78 35.13 66.64 63.28 82.31 63.67 82.30 62.97
Specificity 96.52 97.80 83.99 89.97 64.46 92.75 64.47 92.88
Precision 25.95 42.11 15.92 22.30 9.53 28.53 9.53 28.69

F1 26.36 38.30 25.70 32.98 17.08 39.41 17.08 39.42
Accuracy 93.49 95.08 83.23 88.81 65.23 91.48 65.25 91.58

These results were produced, when evaluating the change detection methods on the
Onera Test set, using the full size images. Figure 3 presents the outputs from all the
classifiers, and the fusion, when the network is given an image pair.

5 Conclusion

Self Supervised learning (SSL) allows for the use of large unlabelled earth observation
datasets i.e S2MTCP, in aiding the performance of change detection networks. This
process can be split into two tasks, the pretext task and the downstream, where by using
insufficient annotated data samples i.e Onera Dataset, the second is able to enhance its
performance by leveraging the model weights of the first.

In this work, we presented 4 SSL pipelines for change detection, 3 of them were
inspired by [8]. We experimented with two different Sentinel-2 band combinations, as
well as with using different amounts of pre-trained convolutional layers for the down-
stream network. We proposed a Fusion technique that, given the right parameters, could
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be able to use predictions from different methodologies to create a better one. And last
but not least, we showed that SSL on a small network was able to produce competitive
results.

Future work will focus on tackling the question of which bands should be used
specifically for change detection as well as what pre-processing techniques should be
employed for satellite images. Moreover, it is of great interest to discover new pretext
tasks that will be more difficult to solve, so we can explore if the difficulty of the task
impacts the discovery of changes. And last but not least, fusion methodologies that
could work online while training neural networks is an area of interest worth exploring.
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