
SEVENTH FRAMEWORK PROGRAMME
FP7-ICT-2009-6

BlogForever
Grant agreement no.: 269963

D4.7: Final Weblog Digital Repository
Component

Editor: J. Garćıa Llopis, R. Jiménez Encinar

Revision: First Version

Dissemination Level: Public

Author(s): J. Garćıa Llopis, R. Jiménez Encinar, Ş. Postacı, A. Çınar,
H. Kalb, T. Šimko,

Due date of deliverable: May 31, 2013

Actual submission date: June 2, 2013

Start date of the project: March 01, 2011

Duration: 30 months

Lead beneficiary name: European Organization for Nuclear Research (CERN)

Abstract:

This report presents the implementation activities carried out for the development of the
final BlogForever digital repository component. In this respect, it provides a complete
description of the development performed according to the design done previously, served
with a detailed list of implementation descriptions which explain in more detail what and
how has been developed. Furthermore, this report outlines the adopted collaboration
workflow together with the technologies utilised.

D4.7: Final Weblog Digital Repository Component June 2, 2013

Project co-funded by the European Commission within the Seventh
Framework Programme (2007-2013)

The BlogForever Consortium consists of:

Aristotle University of Thessaloniki (AUTH) Greece

European Organization for Nuclear Research (CERN) Switzerland

University of Glasgow (UG) UK

The University of Warwick (UW) UK

University of London (UL) UK

Technische Universitat Berlin (TUB) Germany

Cyberwatcher Norway

SRDC Yazilim Arastrirmave Gelistrirmeve Danismanlik Ticaret Limited
Sirketi (SRDC)

Turkey

Tero Ltd (Tero) Greece

Mokono GMBH Germany

Phaistos SA (Phaistos) Greece

Altec Software Development S.A. (Altec) Greece

BlogForever Consortium ii

D4.7: Final Weblog Digital Repository Component June 2, 2013

Revision History

Version Description of Change Author Date
0.1 First partial draft J. Garćıa Llopis, R.

Jiménez Encinar
07/05/2013

0.2 First draft J. Garćıa Llopis, R.
Jiménez Encinar

24/05/2013

0.3 Updates for Chapter 2 J. Garćıa Llopis, R.
Jiménez Encinar

28/05/2013

0.3 Updates for Chapter 1 Ş. Postacı, R. Jiménez
Encinar

28/05/2013

0.4 Updates for Chapters 2 and 3 J. Garćıa Llopis, R.
Jiménez Encinar

29/05/2013

0.5 Extra content for Chapter 3 and
updates for Executive Summary
and Introduction

J. Garćıa Llopis, R.
Jiménez Encinar

29/05/2013

0.6 Updates in Chapter 3,
conclusions and final review

J. Garćıa Llopis, R.
Jiménez Encinar, T.
Šimko

30/05/2013

0.7 Integration of implementation
descriptions in Chapter 3

Ş. Postacı, A. Çınar 31/05/2013

BlogForever Consortium iii

Table of Contents

ExecutiveSummary 1

1 Introduction 2

1.1 Background . 3

2 The Weblog Digital Repository Implementation 5

2.1 BlogForever and Invenio . 5

2.2 Implementation . 9

2.2.1 Overall architecture . 9

2.2.2 Ingestion workflow . 17

2.2.3 Metadata Structure . 24

2.2.4 Scalability . 27

2.2.5 Preservation features . 28

2.2.6 User Interface . 30

2.3 Development Cycle . 36

2.4 Development Methodology . 38

3 Implementation Descriptions 41

3.1 Features already in Invenio . 41

3.2 List of implementation descriptions 42

3.2.1 Previously implemented features 43

3.2.2 Newly implemented features 44

3.2.3 Updated features . 51

3.2.4 Features ported to the new interface 75

iv

D4.7: Final Weblog Digital Repository Component June 2, 2013

3.2.5 Postponed features . 76

3.3 Features not retained . 76

4 Conclusions 78

References 79

BlogForever Consortium v

List of Figures

1.1 BlogForever platform overview . 2

2.1 Invenio repository overall architecture 6

2.2 BlogForever repository overall architecture 8

2.3 BlogForever bibformat elements . 13

2.4 BibFormat template for a blog . 14

2.5 BibFormat template for a blogpost 15

2.6 BibFormat template for a comment 16

2.7 MARC extraction . 18

2.8 Cleaning HTML process . 19

2.9 Record and submission ID addition 20

2.10 Attached files addition . 21

2.11 Parent blog record ID addition . 22

2.12 Parent blog visibility addition . 23

2.13 Ingestion of original METS file in database 24

2.14 Shard manager components[1] . 28

2.15 Shard manager ingestion workflow[1] 28

2.16 BlogForever main page at BF1 . 30

2.17 BlogForever blog record at BF3 . 30

2.18 Invenio main page . 31

2.19 Invenio record . 31

2.20 BlogForever main page at BF5 . 32

2.21 BlogForever search page at BF5 . 33

2.22 BlogForever blog record at BF5 . 34

vi

D4.7: Final Weblog Digital Repository Component June 2, 2013

2.23 BlogForever post record at BF5 . 35

2.24 BlogForever comment record at BF5 36

2.25 Development workflow . 40

BlogForever Consortium vii

List of Tables

2.1 Blog record attributes - MARC tags mapping 25

2.2 Post and Page record shared attributes - MARC tags mapping 26

2.3 Post record extended attributes - MARC tags mapping 26

2.4 Page record extended attributes - MARC tags mapping 26

2.5 Comment record attributes - MARC tags mapping 27

3.1 Implementation Description: RF52 45

3.2 Implementation Description: RF65 47

3.3 Implementation Description: RF66 48

3.4 Implementation Description: RF72 51

3.5 Implementation Description: RF6 54

3.6 Implementation Description: RF1 54

3.7 Implementation Description: RF22 55

3.8 Implementation Description: RF48 57

3.9 Implementation Description: RF57-58-61 58

3.10 Implementation Description: RF64 59

3.11 Implementation Description: RF70 68

3.12 Implementation Description: RF71 73

3.13 Implementation Description: RF73 75

viii

D4.7: Final Weblog Digital Repository Component June 2, 2013

Executive Summary

This document presents the work conducted for the development of the final
BlogForever Weblog Digital Repository Component since the initial prototype
presented in D4.5: Initial Weblog Digital Repository Prototype [2].

The Weblog Digital Repository has been developed to implement aggregation,
preservation, management and dissemination of blogs. Implementation activities
of the digital repository component carried out within the scope of Task 4.5:
Implementation of the digital repository component are described in Chapter 2
comparing the design depicted in D4.4: Digital Repository Component Design [3]
and the final implementation. The methodology adopted for the development and
assessment of the digital repository is also described in Chapter 2.

Chapter 3 lists the final implementation descriptions of the repository features.
Conclusions are gathered in Chapter 4.

A demo of the latest weblog digital repository version is available at:
https://blogforever.cern.ch

BlogForever Consortium 1

https://blogforever.cern.ch

D4.7: Final Weblog Digital Repository Component June 2, 2013

Chapter 1

Introduction

The BlogForever project goal is to develop solutions for aggregating, preserving,
managing and disseminating blogs. To achieve this goal, the BlogForever
project aims to develop a software platform that enables real-time harvesting
and preservation of blog entities to facilitate extensive search and exploration
functionalities of the archived blogs.

The BlogForever platform consists of two main software components: the spider
and the digital repository. The spider is responsible for crawling all the necessary
blog data and characteristics designated for preservation while the repository is
responsible for long term archiving, preservation and management of the blogs, as
well as providing facilities for further analysis and reuse of the content.

Figure 1.1: BlogForever platform overview

This deliverable intends to describe the implementation process of the final digital
repository component.

Finally note that, in the following text, the words weblog and blog will be
interchangeably used to describe the same concept.

BlogForever Consortium 2

D4.7: Final Weblog Digital Repository Component June 2, 2013

1.1 Background

The BlogForever Description of Work (DoW) describes the objectives of the
digital repository component as “being responsible for weblog data preservation.
The digital repository will ensure weblog proliferation, safeguard their integrity,
authenticity and long-term accessibility over time, and allow for better sharing and
re-using of contained knowledge” [4].

Developing such a comprehensive archiving system from scratch is rather difficult
and time consuming, and therefore avoided since there are many open-source
archiving solutions. In this respect, the archiving system selected as basis of the
digital repository component was the Invenio1 software suite developed at CERN2,
which is also one of the partners involved in the BlogForever project.

In order to define how Invenio ought to be extended and modified, a list
of requirements gathered from DoW, a weblog survey and 26 semi-structured
interviews, were presented in D4.1: User Requirements and Platform Specifications
[5]. Based on these requirements, 89 repository features, to be built on top
of Invenio, were defined in D4.4: Digital Repository Component Design [3] as
part of the design of the repository, in order to develop a complete digital
repository for blogs. These features follow the metadata structure and preservation
recommendations previously given by WP2 (Weblog Structure and Semantics in
D2.2: Weblog Data Model [6]) and WP3 (The BlogForever Policies in D3.1:
Preservation Strategy Report [7]).

The main goal of Task 4.5: Implementation of the digital repository component is to
modify, to extend and to customize the vanilla Invenio source code by implementing
the set of 89 repository features defined, and hence, to fulfill the BlogForever
repository requirements.

In order to accomplish this goal, an initial prototype of the repository was delivered
in D4.5: Initial weblog digital repository prototype [2], being the final repository
component presented in this deliverable, which extends the initial prototype with
the implementation of not only new features, but also updates to existing ones.

The final digital repository component resulting of this deliverable will be integrated
with the final spider component developed during Task 4.3: Implementation of the
weblog spider component and presented in the deliverables D4.3: Initial Weblog
Spider Prototype [8] and D4.6: Final Weblog Spider Component [9], in Task 4.6:
Integration and Standardization.

Last but not least, implementation activities performed in WP4 are evaluated in
WP5. To be more specific, implemented features are tested and validated during
Task 5.2: Implementation of the case studies based on the 6 case studies designed
in D5.1: Design and Specification of Case Studies [10]. Since the implementation
phase adopts an agile approach, testing phase adopts as well principles of agile
testing which require testing to be an integral part of the software development.

1https://invenio-software.org/
2http://www.cern.ch/

BlogForever Consortium 3

D4.7: Final Weblog Digital Repository Component June 2, 2013

Moreover, feedback retrieved from both, internal and external testers, is used to
improve the initial prototype towards the final digital repository component.

BlogForever Consortium 4

D4.7: Final Weblog Digital Repository Component June 2, 2013

Chapter 2

The Weblog Digital Repository
Implementation

BlogForever deliverable D4.4[3] provides the specifications for the repository
features, describing the functionality for each of them. These specifications are
considered as points of reference during the implementation phase. The main aim
of the implementation phase conducted during Task 4.5 is to develop these features
according to their specifications to achieve a complete digital repository built on
top of Invenio for blog preservation.

In order to accomplish this goal, an initial prototype of the repository was delivered
in D4.5[2], being the final repository component presented in this deliverable.

In this Chapter, the importance of Invenio for the BlogForever project is presented,
followed by the description of the implementation activities that have been carried
out during the Task 4.5, comparing the results obtained with the design described in
D4.4[3]. Also, the development life cycle as well as the methodology that has been
followed to structure, plan, and control the process of developing are explained.

2.1 BlogForever and Invenio

Invenio was already introduced in D4.4[3] and D4.5[2]. It is the core of the
BlogForever digital repository component. Rather than implementing a repository
for blog preservation from scratch, which is quite time-consuming, the BlogForever
project has enhanced Invenio’s features and applied necessary modifications in order
to answer blog needs and provide a comprehensive repository for blog preservation,
management and dissemination.

In the deliverables D4.4 and D4.5, a diagram illustrating the relationship among the
Invenio modules and how they are organized was presented. In this deliverable, we
present an updated version of it in the Figure 2.1.

BlogForever Consortium 5

D4.7: Final Weblog Digital Repository Component June 2, 2013

F
ig

u
re

2.
1:

In
ve

n
io

re
p

os
it

or
y

ov
er

al
l

ar
ch

it
ec

tu
re

BlogForever Consortium 6

D4.7: Final Weblog Digital Repository Component June 2, 2013

During the course of the project, Invenio reached the point where it was useful to
adopt a new development framework based on new technologies in order to keep
flexibility, manageability of growing number of modules, and speed-up prototyping
and development. The BlogForever repository has been notably affected by this
change since it was decided to follow the Invenio steps. This is explained in more
detail in Section 2.3.

As the design document of the digital repository component D4.4[3] clearly states,
89 features were identified to fulfill the requirements for the final digital repository
component. In general, these features describe how Invenio is extended and specify
functionalities that enable an efficient storage for blog preservation and offer rich
user interaction such as advanced weblog related information retrieval, managing a
customizable dashboard and socializing by building a user community.

To be more specific, repository features denote the following extensions to Invenio:

• Blog rendering for representation of four main record types: Blog, Blog Post,
Page and Comment

• Blog metadata to define blog specific properties and extend MARC 1 schema
used in Invenio

• Spider communication for communication between the spider and the
digital repository

• BibIngest module for ingestion of submitted material.

• WebTag module for enabling users to tag blogs

• Spam filtering for evaluation of the aggregated blog content

• Social features for dissemination of blog content in external social platforms
and socialization of users in the platform

• New export options such as METS2, PDF and JPEG

• Billing system for exploitation of added value services

The Figure 2.2 represents the overall architecture of the BlogForever repository
built on top of the Invenio core. The extensions mentioned above are represented
with green color. The description of the implementation activities that have been
carried out in order to develop each of these new BlogForever specific elements, are
described in depth in Section 2.2.

Implementation activities carried out within the scope of T4.5 and the methodology
adopted for the development and evaluation of the digital repository component are
explained in the following chapters.

1http://www.loc.gov/marc/
2http://www.loc.gov/standards/mets/

BlogForever Consortium 7

D4.7: Final Weblog Digital Repository Component June 2, 2013

F
ig

u
re

2.
2:

B
lo

gF
or

ev
er

re
p

os
it

or
y

ov
er

al
l

ar
ch

it
ec

tu
re

BlogForever Consortium 8

D4.7: Final Weblog Digital Repository Component June 2, 2013

2.2 Implementation

In this Chapter the design described in D4.4[3] is reviewed in comparison to the
actual implementation of the repository. Each section in Chapter 4 of D4.4 will be
discussed, explaining how the implementation matches the design or how and why
the original design has been modified.

2.2.1 Overall architecture

The design of the overall architecture for the repository consists of taking Invenio as
a starting point and add new modules and features on top of it. This design principle
has been followed as can be seen in the following enumeration of the added modules
and features. The mentioned feature specifications can be found at Chapter 5 of
D4.4[3].

• BibIngest module

This module has been implemented according to the feature specifications
RF87-The archive transforms the databases for preservation purposes IPS
received from the spider to AIPS and RF88-The archive stores the content
of the AIPS in two different databases. As stated in D4.4[3], this module is
very important from the preservation point of view since this module is the
responsible of storing the submitted material (ingestion packages) in its original
format covering, at the same time, the requirements of the Open Archival
Information System (OAIS) specification for the acquisition and storage of the
Submission Information Package (SIP). In summary, this module holds the
METS files submission and covers the needs of persistent storage of submitted
material.

• WebTag module

This new module, still under development, is being implemented according
to the feature specification RF52-Users can tag archived records with personal
tags. This feature was defined in D4.4[3] as low priority feature (optional),
reason why its development has been postponed until the rest of essential
and conditional features have been implemented. The methodology followed
to carry out the development and implement the different features will be
explained in more detail in Section 2.4. So far, we have worked mostly in the
back-end, creating 2 new tables in the database, (tagTAG and tagTAGLOG), as
well as an API with functions to enable users to add new tags to blog records,
to delete and to modify them and to get the tags set by an specific user (more
details about this development will be given in Section 3.2.

• Spam filtering

This module, according to RF41-The archive detects and eliminates spam
content, has been implemented using an external spam detection web service.
The module populates a MARC tag indicating whether the record is considered
spam or not.

BlogForever Consortium 9

D4.7: Final Weblog Digital Repository Component June 2, 2013

It is not used before the ingestion of the content as mentioned in the design, but
as a daemon. It runs periodically (configurable by the administrators) checking
the records that do not have this MARC tag populated yet (presumably new
records). It is implemented in a way that allows the ingestion process to
use its functionality in case the checking needs to be performed before the
ingestion, but it has been discarded because the webservice timeout could
delay the process and make it too slow, and also because it is easier for the
administrators to enable/disable it with the current daemon form.

• Billing system

According to the feature RF70-The archive can provide services under some
cost using a billing system, a billing system has been implemented. While
D4.4[3] mentioned disk space quota[3], the implementation does not offer this
functionality. The amount of blog URLs sent by the users and the disk space
they use will not be relevant for the repository. Instead, it is the feature
specification where an accurate description of what has been implemented in
the new webpayment functionality under the WebAccess module can be found.

This feature uses Invenio’s roles and authorization system in conjunction
with public/restricted collections to allow administrators to define restricted
content that users can disclose by paying a fee. The cost and duration of the
subscription can be configured by the administrators.

• Spider-repository communication

The spider-repository communication was designed in order to develop the
communication between these two independent components in both directions,
the repository fetches content from the spider (spider-repository) and the
repository informs the spider about new submitted blogs and errors occurred
during the content retrieval process (repository-spider).

The purpose of T4.6:Integration and Standardization, is to develop the first
BlogForever prototype platform, ensuring interoperability and comprising
the final weblog spider component and the final weblog digital repository
component, fully functional and communicating optimally with each other.

At this stage, the communication in the spider-repository direction is fully
working. For this purpose, a new tasklet called
bst fetch records from spider.py has been implemented, which allows the
repository to fetch content from the Spider by using its web service API
methods. The steps that this tasklet follows to achieve its goal are:

– To stablish a connection with the Spider using the API key provided, the
corresponding web service url, and to set limits to the number of records
downloaded.

– To download the list of Spider records crawled since the last execution of
the tasklet.

– For each record, to doenload the METS file as well as all its attached files,
and to store them in a temporary directory of the filesystem.

– For each record, to call BibUpload, which will finally process the record
and store it into the repository.

BlogForever Consortium 10

D4.7: Final Weblog Digital Repository Component June 2, 2013

• Export options

The BlogForever repository comes with new options to export records such as
“Export to METS”, “Export to PDF” and “Export to JPEG”, as well as a
new XML format used to create a network visualization of the content.

– METS: new output format used to export the metadata of a record or
a group of records in METS XML. The corresponding METS of a record
is retrieved from the mongoDB and displays it to the user. This export
option has been implemented according to RF59-Export data using XML
(METS, MARC).

– PDF and JPEG: blog content can be downloaded in a human-friendly
printable format, such as PDF and JPEG. This export option has been
implemented according to RF62-Export as PDF and JPEG.

– SRU: it is a standard XML-focused search protocol for Internet search
queries. Support for the SRU protocol has been added in the repository.
This export option has been implemented according to RF45-The archive
is able to inter-operate with federated search engine dbwiz (SRU Server).

– CMXXML: this XML format has been implemented as a new output
format that allows the repository to communicate with Commetrix3 and to
create the network visualization requested by RF65-The archive analyzes
blog links and stores the connections between them separately. The output
XML can be used in other network-visualization tools. An example of this
has been implemented in a Java application that is also delivered attached
to the repository code. The demo-software BF Network Generator accepts
both MARCXML and CMXXML and produces a preview of the network.
This export option was not in the design, but has been added to the
repository to profit from this software that provides the functionality
needed.

• Social features

Some features classified as social features have been marked as “low priority”
features, as explained in 3.3. This is the case of RF50-The archive offers the
option to disseminate newly archived content in external social platforms.

RF3-“Share” option in “Your History” box lets the user send another user
an activity he or she did. This functionality uses the WebMessage module to
send the activities that the feature RF2-“Your History” box as part of the user
dashboard has previously stored, like a search result, a record, a review, etc.

RF35-The archive displays other blogs that were viewed by people who also
viewed the current blog suggests the user other records that may be similar to
the record being displayed, according to other users’ previous readings.

These features enhance the existing Invenio social features like WebMessage
that let users communicate with private messages; WebBasket that let users
define group records creating their own collections and make them public for
other users to subscribe; and WebComment that allows users to write reviews
of the records and also rate them. This rating could be used to sort the search
results.

3http://www.commetrix.de/

BlogForever Consortium 11

D4.7: Final Weblog Digital Repository Component June 2, 2013

• Blog rendering

BibFormat is in charge of formatting the Invenio records that are displayed to
users. It is called by the search engine when it has to format a record[11].

Different kind of formatting is needed depending on the type of record: blog,
post, comment, page. In order to create the BlogForever related templates and
elements, a new module called WebBlog has been created, which extends the
bibformat Invenio templates and elements for this purpose.

Since the amount of records in the repository is potentially very high, the
layout can not be specified for each of them. Instead, BibFormat uses a rule-
based decision process to decide how to format a record. The workflow of
BibFormat has 4 steps:

– Step 1: When Invenio has to display a record, it asks BibFormat to
format the record with the given output format and language. The output
format can be, for example, one of the XML formats explained above in
the Export Options subsection, but typically it will be “HTML Detailed”.
This means that somehow a user arrived on the page of the record and
asked for a detailed view of the record.

– Step 2: The output format does not specify how to format the record,
but contains a set of rules which define which format template must be
used. In our case, this list of rules is:

tag 980.a:

BLOG --- BlogHTML.tpl

BLOGPOST --- PostHTML.tpl

COMMENT --- CommentHTML.tpl

PAGE --- PageHTML.tpl

The rules in the list are evaluated from top to bottom. Each rule defines a
condition on a field of the record, and a format template to use to format
the record if the condition matches. This is the output format for “HTML
Detailed”.

If the field 980 a of the record is equal to BLOG, then first rules
matches, and the format template BlogHTML.tpl is used for formatting
by BibFormat.

– Step 3: A format template is written using Jinja2 templates, which use at
the same time some tags known as format elements, which are placeholders
for the record values. These elements follow the naming convention of
starting by bfe . Different templates can share the same elements. The
diagram in the Figure 2.3 shows the 3 main templates used for blog content
and how they share the elements that have been created in order to define
and customize the specific BlogForever templates.

BlogForever Consortium 12

D4.7: Final Weblog Digital Repository Component June 2, 2013

Figure 2.3: BlogForever bibformat elements

The elements that are common to the 3 main templates are explained
below. Every element is presented together with the format element in
which it has been implemented.

∗ TRANSLATE(bfe translate.py): displays the Google translator
link which permits to the user translates the content of a record.
∗ DISCLAIMER(bfe disclaimer.py): returns the disclaimer notify-

ing that what the user is seeing is just a copy of the original blog
record.
∗ RECORD DATES(bfe record dates.py): displays the date in

which the record was ingested into the repository. If the record
is a BLOGPOST, this element also displays the date in which it was
published.
∗ LICENSE(bfe license.py): displays the license name under the blog

is licensed, as well as the url where more information about the license
can be found, if available.
∗ TAGS(bfe tags.py): returns all the tags provided by the Spider for

the corresponding record.
∗ DOI(bfe doi.py): returns an HTML link to the DOI.
∗ CITATION BOX(bfe citation box.py): displays the description of

how users should cite any content of the archive.

BlogForever Consortium 13

D4.7: Final Weblog Digital Repository Component June 2, 2013

∗ EDIT RECORD(bfe edit record.py): prints a link to BibEdit, if
authorization is granted.
∗ EDIT FILES(bfe edit files.py): prints a link to simple file

management interface (BibDocFile), if authorization is granted.
∗ BOOKMARK(bfe bookmark.py): returns a snippet of JavaScript

needed for displaying a bookmark toolbar.
∗ CLIENT INFO(bfe client info.py): prints several client specific

variables.
∗ SERVER INFO(bfe server info.py): prints several server specific

variables.
∗ RECORD ID(bfe record id.py): prints the record identifier.

Figures 2.4, 2.5 and 2.6 show how the layout of a blog, blogpost and
comment records respectively looks like. The screenshots have been
annotated to highlight how the bibformat elements are used in the
templates.

Figure 2.4: BibFormat template for a blog

The blog record specific elements are explained below. Every element
is presented together with the format element in which it has been
implemented.

∗ TITLE(bfe title.py): prints the title of the blog.
∗ BLOG URL LINK(bfe blog url link.py): displays the original

blog link.

BlogForever Consortium 14

D4.7: Final Weblog Digital Repository Component June 2, 2013

∗ BLOG SNAPSHOT(bfe blog snapshot.py): displays the snapshot
of the blog.
∗ BLOG TIMELINE(bfe blog timeline.py): displays a timeline

showing graphically all the posts of the corresponding blog in chrono-
logical order.
∗ ASK FOR DELETION(bfe ask for deletion.py): offers a link to

delete the blog, redirecting the user directly to the blog submission
interface.
∗ ASK FOR MODIFICATION(bfe ask for modification.py): offers

a link to modify blog metadata, redirecting the user directly to the
blog submission interface.
∗ BLOG POSTS(bfe blog posts.py): displays the posts of the blog

sorted by posted date.

Figure 2.5: BibFormat template for a blogpost

BlogForever Consortium 15

D4.7: Final Weblog Digital Repository Component June 2, 2013

The blogpost record specific elements are explained below. Every element
is presented together with the format element in which it has been
implemented.

∗ POST HEADER(bfe post header.py): formats the header of the
post showing the name of the blog it belongs to.
∗ TITLE(bfe title.py): prints the title of the post.
∗ AUTHORS(bfe authors.py): prints the author of the post.
∗ POST POSTED DATE(bfe post posted date.py): formats and

displays the date in which the post was posted.
∗ TEXT CONTENT(bfe text content.py): prints the content of the

post.
∗ BLOG NAVIGATION(bfe blog navigation.py): creates a naviga-

tion menu showing all the other posts that belong to the same blog
sorted by posted date.
∗ ASK FOR DELETION(bfe ask for deletion.py): offers a link to

delete the post, redirecting the user directly to the blog submission
interface.
∗ LINKS MENU(bfe links menu.py): returns a menu containing all

the links used as references in the post.
∗ POST COMMENTS(bfe post comments.py): displays the comments

of the post.

Figure 2.6: BibFormat template for a comment

The comment record specific elements are explained below. Every element
is presented together with the format element in which it has been
implemented.

BlogForever Consortium 16

D4.7: Final Weblog Digital Repository Component June 2, 2013

∗ COMMENT HEADER(bfe comment header.py): formats the header
of the comment showing the name of the post it belongs to.
∗ AUTHORS(bfe authors.py):prints the author of the comment.
∗ TEXT CONTENT(bfe text content.py): prints the content of the

comment.
∗ COMMENT NAVIGATION(bfe comment navigation.py): creates

a navigation menu showing all the other comments that belong to
the same post.

– Step 4: A format element is written in Python. It acts as a bridge
between the record in the database and the format template. Each
element outputs some text that is written in the template where it is
called. Developers can add new elements by creating a new file, naming it
with the name of element, and write a Python format element function.
Regular Python code can be used, including import of other modules.

In summary, BibFormat is called by specifying a record and an output format,
which relies on different templates to do the formatting, and which themselves
rely on different format elements.

2.2.2 Ingestion workflow

The ingestion is done in 2 phases. On a first phase, the content is fetched from the
Spider component, while on the second phase it is inserted into the repository. This
second phase has 3 steps: pre-processing, upload and post-processing.

The first phase consists of running the tasklet to fetch content from the Spider whose
functionality was described above in Spider Communication subsection.

Regarding the second phase, the BibUpload task includes pre-processing and post-
processing stages. The pre-processing prepares the record being inserted to be
compatible with Invenio and enriches the metadata. This pre-processing has been
implemented in the BibUpload plugin bp pre ingestion.py. The tasks performed
at this stage are:

• Extracts the MARCXML from the METS received from the spider. This
MARC will be used as the base to create an Invenio record in the repository.
The original METS file will be later on attached to the record.

BlogForever Consortium 17

D4.7: Final Weblog Digital Repository Component June 2, 2013

Figure 2.7: MARC extraction

• The HTML included in MARC as text content is cleaned for 2 reasons: to
remove tags that might affect the repository rendering style and to scape the
remaining tags so they do not affect the validity of the document when it is
exported to MARCXML.

BlogForever Consortium 18

D4.7: Final Weblog Digital Repository Component June 2, 2013

Figure 2.8: Cleaning HTML process

• The record ID and the submission ID are added in the corresponding MARC
tags. First, the code checks whether the record already exists in the repository.
In this case, the existing record ID will be added and the rest of the process
will know that this is an update of an existing record. If it does not exist,
a new record ID is created. The submission ID is the identifier used by the
spider.

BlogForever Consortium 19

D4.7: Final Weblog Digital Repository Component June 2, 2013

Figure 2.9: Record and submission ID addition

• The attached files are also included in the Invenio record. With this purpose,
FFT4 tags are used to attach not just the files fetched from the spider (images,
etc.) but also the original METS file, and the HTML and CSS files crawled
from the original web page.

4http://invenio-demo.cern.ch/help/admin/bibupload-admin-guide#3.6

BlogForever Consortium 20

D4.7: Final Weblog Digital Repository Component June 2, 2013

Figure 2.10: Attached files addition

• In the case of Posts and Comments, they have a blog parent record. The
record ID of the parent blog is located and used to populate the corresponding
MARC tag. This makes much simpler and quicker to perform usual tasks in
the repository, like retrieving the list of all the Posts of a Blog.

BlogForever Consortium 21

D4.7: Final Weblog Digital Repository Component June 2, 2013

Figure 2.11: Parent blog record ID addition

• At submission time, the user decides the visibility of the blog (public,
restricted, private). It is at pre-ingestion time when Posts and Comments
inherit the visibility of the parent blog.

BlogForever Consortium 22

D4.7: Final Weblog Digital Repository Component June 2, 2013

Figure 2.12: Parent blog visibility addition

Once the record is ready, it is inserted into the repository databases by BibUpload.
If this action ends in success, the post-processing plugin will be executed. It has been
implemented in the BibUpload plugin bp post ingestion.py. The tasks performed
at this stage are:

• Gets the original METS file as it comes from the Spider.

• Creates an XML tree from the METS file and extracts the record type (Blog,
Post, Comment, Page).

• Identifies the Invenio record that corresponds to the METS file.

• The BibIngest module stores the original METS file in the submission database
(mongoDB) using the record ID as identifier.

BlogForever Consortium 23

D4.7: Final Weblog Digital Repository Component June 2, 2013

Figure 2.13: Ingestion of original METS file in database

More complete information about the communication with the Spider and error
control will be included in D4.8: Final BlogForever Platform.

2.2.3 Metadata Structure

The metadata structure of BlogForever was explained in D4.4[3]. The implemen-
tation has followed the design regarding the record types and how they are linked,
metadata schemes, the relationship between the METS document and the Invenio
record, the storage of attached files, etc.

However, the MARC tags used to store the blogs’ information have been extended
for practical reasons during the implementation process. Tables 2.1 to 2.5 show the
final design of the mapping between blog attributes and MARC tags, highlighting
in bold the newly added or modified tags.

BlogForever Consortium 24

D4.7: Final Weblog Digital Repository Component June 2, 2013

Record Attribute/Metadata concept MARC 21 representation

Blog

title 245 $a
subtitle 245 $b
URI 520 $u
aliases 100 $g
status code 952 $a
language 041 $a
encoding 532
sitemap uri 520
platform 781 $a
platform version 781 $b
webmaster 955 $a
hosting ip 956 $a
location city 270 $d
location country 270 $b
last activity date 954 $a
post frequency 954 $b
update frequency 954 $c
tags 653 $1
topic 654 $a
copyright 542
ownership rights 542
distribution rights 542
access rights 542
license 540 $a $u

Table 2.1: Blog record attributes - MARC tags mapping

BlogForever Consortium 25

D4.7: Final Weblog Digital Repository Component June 2, 2013

Record Attribute/Metadata concept MARC 21 representation

Entry (Post and Page)

title 245 $a
subtitle 245 $b
full content 520 $a
full content format 520 $b
author 100 $a
URI 520 $u
tags 653 $1
topic 654 $a
reference links 856 $u $y $z
aliases 100 $g
alt identifier (UR) 0247 $a
date created 269 $c
date modified 260 $m
version 950 $a
status code 952 $a
response code 952 $b
geo longitude 342 $g
geo latitude 342 $h
access restriction 506
has reply 788 $a
last reply date 788 $c
num of replies 788 $b
child of 760 $o $4 $w
license 540 $a $u

Table 2.2: Post and Page record shared attributes - MARC tags mapping

Record Attribute/Metadata concept MARC 21 representation

Post

type 336
posted via 781 $a
previous URI 780
next URI 785

Table 2.3: Post record extended attributes - MARC tags mapping

Record Attribute/Metadata concept MARC 21 representation

Page template 962

Table 2.4: Page record extended attributes - MARC tags mapping

BlogForever Consortium 26

D4.7: Final Weblog Digital Repository Component June 2, 2013

Record Attribute/Metadata concept MARC 21 representation

Comment

subject 245 $a
author 100 $a
full content 520 $a
full content format 520 $b
URI 520 $u
tags 653 $1
topic 654 $a
status 952 $a
date added 269 $c
date modified 269 $m
addressed to URI 789 $u
geo longitude 342 $g
geo latitude 342 $h
has reply 788 $a
num replies 788 $b
is child of post 773 $o $4 $w
is child of comment 773 $o $4 $w
is child of blog 760 $o $4 $w
license 540 $a $u

Table 2.5: Comment record attributes - MARC tags mapping

2.2.4 Scalability

Invenio infrastructure utilises load-balanced worker nodes for handling incoming
search requests, thereby making search scalable. However, document ingestion is
sequential due to the application level constraints. Moreover, current projects based
on Invenio technology, like BlogForever, require an ability to handle up to 100 million
documents. The Invenio collaboration developers have worked to improve Invenio
scalability in order to cover these conditions. A more detailed description of the work
done by the Invenio team can be found in the Master Thesis Enhancing Scalability
of Invenio[1]. The main contributions of their work are:

• to development shard manager components to ease the addition of more
machines on demand for document storage;

• to develop upload and search services that utilise shard manager component
to speed up ingestion throughput at performant search times;

• to run experiments in order to analyse the scalability of the designed solution;

• to extend shard manager component allowing existing modules to take
advantage of sharded architecture.

The Figure 2.14 shows an overall diagram of the sharded architecture, while Figure
2.15 represents a simple example of the ingestion process and how the records are
split and dispatched.

BlogForever Consortium 27

D4.7: Final Weblog Digital Repository Component June 2, 2013

Figure 2.14: Shard manager components[1]

Figure 2.15: Shard manager ingestion workflow[1]

2.2.5 Preservation features

In D4.4[3] a list of features was introduced to satisfy the needs derived from the
preservation recommendations coming from D3.1[7]. These recommendations have
been followed in the implementation of the related features, according to the design

BlogForever Consortium 28

D4.7: Final Weblog Digital Repository Component June 2, 2013

in D4.4’s feature specifications[3] and some have already been documented in D4.5’s
implementation descriptions[2].

These features include RF87-The archive transforms the SIPs received from the
spider to AIPs and RF88-The archive stores the content of the AIPs in two different
databases for preservation purposes. However, the feedback received from WP5
testing and from the partners with more expertise in preservation issues showed
that the design of these features was not enough to ensure that the repository
is compatible with the Open Archival Information System (OAIS5) principles,
especially regarding the Archival Information Packages (AIP). It was identified
that even though the repository stores all the information needed in an AIP the
information was stored in different places instead of being packed and stored
together.

Therefore, the design of these preservation features has been modified. A new
module called BibArchive will be implemented. This module will introduce a
new database using mongoDB6, similar to the strategy used to store the METS
documents coming from the spider. BibArchive will create an AIP for each record
and will insert it in the preservation database. The package will be created using
BagIt7. This package will include:

1. Crawled XML: It is stored unmodified checked using Message-Digest
Algorithm 5 (MD58) checksum to ensure that it has not been corrupted while
downloading from the spider.

2. Images and attachments: They are stored in BibDocFile, unmodified, and
checked using MD5.

3. Checksum generation and validation for the above objects: The
METSXML coming from the spider includes MD5 checksums for each attached
file, including images. First the METS file is checked, and then the checksum
of the attached files is extracted and the files are checked. In any case, Invenio
also creates a checksum for every attached file.

4. Extracted technical metadata from the above objects: Metadata
extraction tools like Hachoir9 will be used to extract metadata from the
attached files.

This modification of the design will be implemented during the next period and
included in D4.8: Final BlogForever Platform.

5http://en.wikipedia.org/wiki/Open Archival Information System
6http://www.mongodb.org/
7https://confluence.ucop.edu/display/Curation/BagIt
8http://en.wikipedia.org/wiki/MD5
9https://pypi.python.org/pypi/hachoir-core

BlogForever Consortium 29

D4.7: Final Weblog Digital Repository Component June 2, 2013

2.2.6 User Interface

As will be explained in Section 2.3, the BlogForever repository started being
developed on top of the Invenio master branch, which from the user interface point
of view was offering an old-fashioned visual design and a markup structure that
reduced the ability of customizing the interface. In the following Figures 2.16 2.17
some screenshots taken from the test servers BF110 and BF311, both built on top of
the Invenio master branch and used by WP5 to run their test cases, are offered.

Figure 2.16: BlogForever main page at BF1

Figure 2.17: BlogForever blog record at BF3

At some point, Invenio started integrating new technologies in a new Invenio next
branch such as Twitter Bootstrap and Jinja2 templates (as described in Section 2.3),

10http://bf1.csd.auth.gr/
11http://bf3.itc.auth.gr/

BlogForever Consortium 30

D4.7: Final Weblog Digital Repository Component June 2, 2013

providing a more modern appearance, as well as a more responsive and accessible
design. The following Figures 2.18 2.19 present how Invenio looks like from the user
interface point of view. This will help to the reader to appreciate the customization
that has been done to get the new BlogForever repository user interface.

Figure 2.18: Invenio main page

Figure 2.19: Invenio record

The Figures below show the current status of the BlogForever repository user
interface. These screenshots have been taken from the test server BF512, which
is built on top of the Invenio next branch and also used by WP5 to run their test
cases.

12http://bf5.itc.auth.gr/

BlogForever Consortium 31

D4.7: Final Weblog Digital Repository Component June 2, 2013

Figure 2.20: BlogForever main page at BF5

BlogForever Consortium 32

D4.7: Final Weblog Digital Repository Component June 2, 2013

Figure 2.21: BlogForever search page at BF5

BlogForever Consortium 33

D4.7: Final Weblog Digital Repository Component June 2, 2013

Figure 2.22: BlogForever blog record at BF5

BlogForever Consortium 34

D4.7: Final Weblog Digital Repository Component June 2, 2013

Figure 2.23: BlogForever post record at BF5

BlogForever Consortium 35

D4.7: Final Weblog Digital Repository Component June 2, 2013

Figure 2.24: BlogForever comment record at BF5

If we compare these images with Figures 2.16 2.17, which show the old BlogForever
user interface, the progress and improvement that the user interface has experienced
can be appreciated.

2.3 Development Cycle

As was already mentioned in D4.5 (Section 2.2: Implementation), Git13 is the
distributed revision control and Source Code Management (SCM) system used by
Invenio developers for a collaborative development workflow, and hence, the tool
that has been used to develop the BlogForever specific repository features.

The Git feature that really makes it stand apart from nearly every other SCM out
there is its branching model. Git allows and encourages developers to have multiple
local branches that can be entirely independent of each other.

The Invenio branches and repositories organization, as well as the collaboration
model followed for development, was described in D4.5 (Section 2.2: Implementa-
tion).

13http://git-scm.com/

BlogForever Consortium 36

D4.7: Final Weblog Digital Repository Component June 2, 2013

The prototype of the BlogForever repository (purpose of D4.5) was built on top of
Invenio master branch, a stable branch where the new features are developed and
where the new feature releases are made from, using technologies such as MySQL14,
JavaScript15, AJAX16, JQuery417 and HTML18 embedded within the Python19 code.

Just before starting the development of the BlogForever repository prototype,
Invenio reached the point where it was useful to rewrite part of the code base using
new software stack in order to keep flexibility, manageability of growing number
of modules, and speed-up prototyping and development of new ones[12]. For this
purpose, the Invenio team started building a new next branch on top of the existing
master branch to adopt a new development framework based on new technologies
such as SQLAlchemy20, Jinja221, Twitter Bootstrap22, WTForms23, Flask24 and
Redis25.

During the development of the BlogForever repository prototype, the idea of moving
to the next branch was always in mind. In fact, to build the user interface of
the prototype some of these new technologies were already introduced, such as
Twitter Bootstrap and Jinja2 templates, as well as other existing resources such
as Font Awesome26 icons or Bootswatch27 color templates. Finally, after studying
the consequences of this step in terms of advantages and disadvantages, the final
decision was to start taking advantage of all the work that the Invenio team was
doing on the next branch and to bring the new technologies to the development of
the BlogForever repository.

This change involved extra work to be done by the BlogForever repository
developers since it meant to port already implemented repository features to the new
technologies, as well as to rewrite the existing user interface templates by using the
front-end related technologies mentioned before (new implementation descriptions
have been written in Section 3.2 for those features which have been modified).
An important change is for example that Flask uses a concept of blueprints for
factorizing an application into a set of components that can be registered on an
application at a URL prefix and/or subdomain even multiple times. Blueprints are
preferred method used by Invenio developers to implement local custom modules
allowing a clean separation of custom overlay from Invenio core. To follow this
structure, new blueprints have been created within the BlogForever repository.

On the one hand, having taken this important step means an extra work, as was
already mentioned above. In addition to this, the fact that the next branch is

14http://www.mysql.com/
15http://www.w3schools.com/js/
16http://www.w3schools.com/ajax/
17http://jquery.com/
18http://www.w3schools.com/html/
19http://www.python.org/
20http://www.sqlalchemy.org
21http://jinja.pocoo.org/
22http://twitter.github.com/bootstrap/
23http://wtforms.simplecodes.com/docs/1.0.4/
24http://flask.pocoo.org/
25http://redis.io/
26http://fortawesome.github.io/Font-Awesome/
27http://bootswatch.com/

BlogForever Consortium 37

D4.7: Final Weblog Digital Repository Component June 2, 2013

still in process of development, which means that currently the Invenio team is
still adapting the existing Invenio modules, makes the BlogForever repository be
continuously subjected to the adaptation and integration of the new changes.

On the other hand, there is a list of advantages that push these disadvantages
into the background, and of course, helped us to make the final decision. The main
advantages are explained by the features that the new technologies bring with them.

For example, SQLAlchemy, one of the most used Python SQL toolkits, comes with
an optional Object Relation Mapper (ORM) component that provides the data
mapper pattern, where classes can be mapped to the databases in open ended,
multiple ways. It allows the object model and database schema to develop in a
cleanly decoupled way from the beginning. The object models have been designed in
a way permitting dynamic properties with strong checks ensuring data consistency.

Flask brings the blueprints as was described above, allowing also the easy way of
enable and disable certain modules.

Jinja2 is a full-featured template engine with an expressive language that forces
the strict separation between business logic and presentation. It allows creation of
reusable building blocks across the whole system that reduces the need for repeating
code. The code for the visual display of the repository can be maintained and edited
separately to the back-end components. This allows faster and easier customization
of the user interface and provides a more modular code framework that is easier to
maintain.

Finally, Twitter Bootstrap contains other widely used interface elements and
JavaScript based plugins to extend the functionality of existing interface elements.
It is widely supported by a community of developers and designers which allows to
take advantage of existing resources to develop very fast attractive and functional
front-end features.

2.4 Development Methodology

In this section the methodology that has been followed to structure, plan, and
control the process of developing is explained.

In D4.4 [3], three different levels were defined to group the list of repository resulting
features:

• High priority features: implies that the software will not be acceptable
unless these features are provided in an agreed manner.

• Medium priority features: implies that these are features that would
enhance the software product, but would not make it unacceptable if they
are absent.

• Low priority features: implies a class of functions that may or may not be
worthwhile. This gives the supplier the opportunity to propose something that
exceeds the Software Requirements Specification.

BlogForever Consortium 38

D4.7: Final Weblog Digital Repository Component June 2, 2013

Therefore, the methodology followed to develop the repository features was carried
out guided by the priorities defined. First of all the higher priority features are
developed, to ensure that the time spent on them is enough, and the essential
requirements are accomplished into the repository. Once the first iteration of the
development of the essential features is finished, the ones with medium priority were
attacked, leaving to the end those features defined as optional.

Once this is clear, the development process starts with the assignment of features
among the partners involved in the development, being CERN and SRDC the
main partners contributors. CERN, who is the responsible of coordinating the
implementation stage, defined for this purpose a simple task tracking system in
order to manage the tasks assigned to the different partners thought its life cycle.
A series of status of features were defined by the following states:

• ASSIGNED: feature already assigned by CERN to the appropriate partner/de-
veloper.

• IN WORK: partner/developer is working on the feature.

• TO REVIEW: partner/developer finishes the implementation of the feature,
pushes it to his/her public repository and the feature becomes ready to be
reviewed by CERN.

• REVIEWED: CERN fetches the code of the feature from the corresponding public
repository and reviews it. If there is any issue the feature can be marked as
IN WORK again to be solved by the corresponding partner/developer.

• INTEGRATED: CERN integrates the new feature into the main BlogForever
branch and runs unit and regression tests to check its behavior out with the
rest of components.

• DEPLOYED: once the feature is integrated, it is deployed on the corresponding
test server to let WP5 partners to carry out their testing work.

The Figure 2.25 tries to represent the development workflow described above:

BlogForever Consortium 39

D4.7: Final Weblog Digital Repository Component June 2, 2013

Figure 2.25: Development workflow

BlogForever Consortium 40

D4.7: Final Weblog Digital Repository Component June 2, 2013

Chapter 3

Implementation Descriptions

One of the objectives of this deliverable is to describe the implementation activities
of those repository features defined in D4.4 that were not included in D4.5, or those
that went through any modification after delivering the prototype. In order to
include the description of the features along with its implementation details, the
same template that was created in D4.5[2] will be used.

Section 3.1 lists the features that Invenio already provides and fulfill our needs,
Section 3 presents the implementation descriptions of those features that were
implemented for the prototype, but have been ported to the new technologies
running under next (as was already explained in Section2.3) as well as those which
have been implemented to complete the whole list of repository features, and Section
3.3 lists those repository features that were defined in D4.4 but finally has been
decided not implement them, as well as the reasons why this decision was taken.

3.1 Features already in Invenio

As mentioned earlier, Invenio is a comprehensive software for digital library
management. Therefore, it already supports 34 of the repository features. However,
some of these features needed to be configured in order to meet the requirements of
the final BlogForever platform. These features are listed as follows:

• RF5 - The web interface provides harmonized access and ensures compatibility
with major browsers

• RF7 - Export data using the OAI-PMH protocol

• RF8 - Export data using Dublin Core Schema

• RF10 - Archive user passwords are stored encrypted in the database

• RF11 - The archive web interface is available in many different languages

• RF13 - UTF is used as the default character encoding in the archive

• RF15 - Option to disseminate archive content in major social web platforms

• RF16 - The archive offers an RSS channel of its latest updates and/or users can
receive notification when new content of their interest is added to the archive

BlogForever Consortium 41

D4.7: Final Weblog Digital Repository Component June 2, 2013

• RF18 - The archive detects duplicated content and keeps only one copy

• RF19 - The archive can be indexed by external search engines

• RF20 - The archive’s statistics are exported as CSV

• RF21 - The archive offers the option to login using SSO / LDAP

• RF27 - The archive displays a unique URL (DOI) for each record

• RF29 - The archive alerts the user when there are software updates

• RF33 - The archive can display only the very core information for each record

• RF37 - The archive restricts the access to its content to specific IP ranges

• RF38 - Users can communicate within the archive sharing and exchanging
resources

• RF39 - Free open-source archive software

• RF43 - For each record the archive stores the search keywords used to find
them

• RF44 - The archive enables pingback/trackback services

• RF51 - The archive is able to search within external sources external
collections, hosted collections

• RF55 - The archive provides advanced APIs for use by developers to interact
with the archive’s content

• RF60 - The archive can export all its content, database entries and file system
for migration

• RF69 - The archive facilitates searching by providing fuzzy indexing and
stemming

• RF74 - The archive enables/disables certain functionalities based on the
content rights

• RF77 - The archive provides a mobile version

• RF79 - The archive can handle a very large number of content and users

• RF80 - The archive provides mechanisms to control data redundancy

• RF81 - The archive is built based on a modular service-oriented architecture

• RF82 - The archive can be deployed using a range of different database server
technologies

• RF83 - The archive provides multiple different views of the archive for each
user

• RF84 - The archive offers a complete range of search options to the user

• RF85 - The archive provides support for OpenURL

• RF86 - The archive offers functions to edit metadata

3.2 List of implementation descriptions

In this Section the list of implementation descriptions of the finished repository
features is presented. For the features developed to take part of the prototype

BlogForever Consortium 42

D4.7: Final Weblog Digital Repository Component June 2, 2013

that have not went through any modification, just its name is provided (their
corresponding implementation descriptions can be found in Chapter 3 of D4.5
[2]). For those that have been implemented in the second development phase,
their implementation descriptions are presented, as well as for those which were
implemented for the prototype but have been modified since then. The list of
features that have just been improved from the user interface point of view is also
presented, as well as a small list with those features whose development has been
postponed until the third development phase.

3.2.1 Previously implemented features

The following list correspond to those repository features that were already
implemented in the repository prototype. Their corresponding implementation
descriptions can be found in Chapter 3 of D4.5 [2] since they have not been modified.

• RF2 - “Your History“ box as part of the user dashboard

• RF3 - “Share” option in “Your History” box

• RF12 - The archive can import METS

• RF26 - BlogUploader command line to upload, update and delete a list of blogs

• RF30 - Users are able to bookmark records, also using external bookmarking
engines

• RF31 - The archive offers a complete blog submission interface to submit,
modify and delete blogs/posts

• RF32 - Users are able to remove their personal data

• RF35 - The archive displays other blogs that were viewed by people who also
viewed the current blog

• RF40 - The archive validates the content received from the spider

• RF41 - The archive detects and eliminates spam content

• RF45 - The archive is able to inter-operate with federated search engine dbwiz
(SRU Server)

• RF53 - The archive respects content licenses and displays useful information
about them

• RF54 - The archive keeps all the different versions of a record

• RF59 - Export data using XML (METS, MARC)

• RF62 - Export records as PDF and JPEG

• RF63 - The archive keeps snapshots of all the different designs of a blogs

• RF67 - The archive fetches and stores embedded content (introduced new clean
process)

• RF88 - The archive stores the content of the AIPs in two different databases
for preservation purposes

BlogForever Consortium 43

D4.7: Final Weblog Digital Repository Component June 2, 2013

3.2.2 Newly implemented features

The following implementation descriptions belong to the features that have been
implemented since D4.5 [2] submission.

Feature ID RF52 (Repository Feature 52)
Name Users can tag archived records with personal tags
Effort Spent 3 Weeks
Modules Af-
fected / Created

WebTag

Description of the new feature

Users are able to assign tags to the records with personal words. With these
tags, the user is able to organize the records in personal collections according
to his/her preferences.

Users are able to add, to edit and to delete tags.

Implementation details

So far, only the back-end of this feature is ready. A new module called
WebTag has been added which consists of:

• Two new tables in the database:

– tagTAG : for every tag created by an specific user, this table stores
the record ID, the language and the position in which the tag was
created

– tagTAGLOG : for every tag edited by an specific user, this table
stores the new record ID, the new language, the new position in
which the tag was edited, and the operation (insert, update, delete)
that the user did.

• Three triggers on tagTAGLOG table: insert user record tag ,
update user record tag and delete user record tag

• Nine public and three private functions which constitute the API of the
module:

– rename tag(user id, original tag, new tag, language) :
changes one tag into another

BlogForever Consortium 44

D4.7: Final Weblog Digital Repository Component June 2, 2013

– user record tags exist(user id, record id) : checks if there are
tags created by the user on the record

– get user tag pairs(user id) : gets co-occurrent tags

– get user tagged records(user id, query, mode) : gets records
tagged by this user

– get keywords user tags(user id, search) : gets keywords and
user tags matching a search

– get user tags(user id, search) : gets tags with additional info

– get user record tags(user id, record id) : gets the tags for a
user on a record

– delete tags(user id, record id) : delete the tags for a user on a
record

– set tags(user id, record id, tags, position, language) : sets
the tags for a user on a record

– add tag(user id, record id, tag, position, language) : adds a
single tag to a record for a user in the specified position

– tag valid(tag) : checks if the tag is valid for insertion

– tag cleanup(tag) : white space and character cleaning process

• A configuration file called webtag config.py containing the config
variable TAG MAX LENGTH , which sets the maximum length for
tags.

Implemented By CERN
Table 3.1: Implementation Description: RF52

Feature ID RF65 (Repository Feature 65)
Name The archive analyzes blog links and stores the connections

between them separately
Effort Spent 4 weeks
Modules Af-
fected / Created

-

Description of the new feature

A network consists of nodes and links between the nodes. Three kinds of
networks are extracted from the archived blogosphere:

• Blog-Citation network

– Nodes: All Blog objects in the archived blogosphere.

BlogForever Consortium 45

D4.7: Final Weblog Digital Repository Component June 2, 2013

– Links: A link is created when a hyperlink in a post references
another post or a blog. The link goes from the parent blog of the
sending post to the parent blog of the receiving post or the receiving
blog.

• Author-Citation network

– Nodes: All authors in the archived blogosphere.

– Links: A link is created when a hyperlink in a post or in a comment
references another post or comment. Sending and receiving posts or
comments must have an author.

• Author-Co-Citation network

– Nodes: All author objects in the archived blogosphere.

– Links: A link is created if two or more posts or comments reference
the same address through a hyperlink.

The Blog-Citation network and the Author-Citation network consider only
links that direct to an object that is archived in the repository. The
Author-Co-Citation network considers all kind of links (external and internal).

The implementation of the feature differs from the feature design: Links are
not differentiated between Citations, BlogRoll, and Pingback/Trackback
because these information can not be identified by the spider.

RF65 - GUI of the feature. The main steps in the network generating process
are (a) to choose the input, (b) to choose the network type, and (c) to choose

the output format and location

Implementation details

BlogForever Consortium 46

D4.7: Final Weblog Digital Repository Component June 2, 2013

The feature is implemented as java application together with the repository
feature RF72 which visualizes the extracted network.

Nodes are represented as objects that have an ID and a maximum of five
details. Links are an aggregation of one or more Linkevents. A linkevent has
one sender, one or more recipients, a timestamp, and a maximum of five
details. The distinction of Linkevents with timestamps allows representing and
analysing the network evolvement over time.

The application accepts as input a collection of blog, post, and comment
objects in MARCXML from the repository. The objects in the collection are
analyzed and the network extracted by the Java class tub.BFMarcXMLReader
and stored in the Java objects

• tub.dataElements.Network

• tub.dataElements.Node

• tub.dataElements.Linkevent

Currently, the two output formats CMX-XML and GEXF are provided.

• With CMX-XML, the extracted network can be further analysed and
explored with the Commetrixa software. The Java class
tub.CMXXMLWriter transforms the extracted network into CMX-XML.
The CMX-XML preserves the structure of link events, and, therefore,
Commetrix facilitates dynamic and static analysis.

• GEFX can be analysed with Gephib, an open-source tool to visualize and
analyse networks. The Java class tub.GEXFWriter transforms the
extracted network into GEXF. Thereby, the linkevents has to be
aggregated to edges due to the limitations of the GEXF format.
Therefore, the Gephi tool facilitates only static analysis.

The Java class tub.BFNetworkGenerate contains the GUI for the Network
Generator application.

ahttp://www.commetrix.de/
bhttps://gephi.org/

Implemented By TUB
Table 3.2: Implementation Description: RF65

Feature ID RF66 (Repository Feature 66)
Name The archive provides a historical/chronological navigation
Effort Spent 2 Weeks
Modules Af-
fected / Created

WebBlog, BibFormat

BlogForever Consortium 47

D4.7: Final Weblog Digital Repository Component June 2, 2013

Description of the new feature

A new BibFormat element has been created and included in the BlogHTML
template. This element displays a JavaScript slider showing the blog posts in a
slider timeline. The events (post published) can be clicked and a short
description of the record is displayed in a bubble, with a link to the detailed
view of the record.

The slider is populated with data with an XML file created with the
information of the blog as a hidden XML export option. It could easily be
extended to include also in the XML file the comments of each post thus
enriching the content of the timeline slider.

RF66 -
Chronological navigation of a blog

Implementation details

• Added a new install option to the Makefile options: (
install-jstimeline-plugin) that installs the necessary JavaScript files.
The code used is from the simile-timeline 2.3.0 plugin.

• Added XML output format to feed the plugin. The format is called xtl
and can be viewed adding xtl to the url in the detailed view of a blog.

• Added a BibFormat element called bfe blog timeline.py to be used in
BlogHTML.bft

Implemented By CERN
Table 3.3: Implementation Description: RF66

BlogForever Consortium 48

D4.7: Final Weblog Digital Repository Component June 2, 2013

Feature ID RF72 (Repository Feature 72)
Name The archive provides a visualization of the blogs network

structure
Effort Spent 4 weeks
Modules Af-
fected / Created

-

Description of the new feature

The exploration of a blog network needs a visual representation of the nodes
and links. The feature provides a visualization with several options. Thus, a
first exploration of the network can be conducted and the network adapted
before it is further analysed with more sophisticated analysing software, e.g.
Commetrixa.

In the example figure below, an Author-Co-Citation network is shown. The
network is visualized as blue nodes with red edges between them. The size of a
node represents how many linkevent the node sends to another node. This
means how often an author references something that somebody has
referenced before. The nodes and linkevents of the feature are listed in the
corresponding tables on the right side for a more detailed inspection. The
visualization has the following options:

• Show Node IDs: Turns on/off that the node ID is shown as label for a
node.

• Show Iso Nodes: Turns on/off that isolated nodes are shown. An isolated
node is a node that does not have any connection with any other node.

• Freeze Network: The drawing algorithm for the network is dynamic and
reacts on the re-positioning network nodes. The dynamic behaviour can
be turned off so that the nodes of the network can be positioned
manually without interfering of the drawing algorithm.

• Time selection: The time slot can be limited to examine the evolvement
and state of the network at different points in time.

Furthermore, the feature provides the possibility to save the network
visualization as a screenshot in png. Thus, the network can be used in reports
or presentations.

BlogForever Consortium 49

D4.7: Final Weblog Digital Repository Component June 2, 2013

RF72 - GUI of the feature

Implementation details

The feature is implemented as java application together with the repository
feature RF65 which generates the network representation of the blogosphere.

Nodes are represented as objects that have an ID and a maximum of five
details. Links are an aggregation of one or more Linkevents. A linkevent has
one sender, one or more recipients, a timestamp, and a maximum of five
details. The distinction of Linkevents with timestamps allows representing and
analysing the network evolvement over time.

The application uses the following Java classes to represent the network
structure:

• tub.dataElements.Network

• tub.dataElements.Node

• tub.dataElements.Linkevent

• tub.dataElements.Link

The following classes represent the network graph that is used for the
visualisation:

• tub.aladin.graphNode

BlogForever Consortium 50

D4.7: Final Weblog Digital Repository Component June 2, 2013

• tub.aladin.graph

The GUI of the network visualization is performed by the classes
tub.aladin.showGraphPanel and tub.aladin.showNetworkGraphFrame.

The class tub.aladin.settings contains the color configuration of the network
visualization.

ahttp://www.commetrix.de/

Implemented By TUB
Table 3.4: Implementation Description: RF72

3.2.3 Updated features

The following implementation descriptions describe the features that were imple-
mented for the repository prototype, but have been modified since then because,
they have just been fixed or improved, or because they have been ported to the
Invenio next branch. These implementation descriptions should be considered as an
update to the ones that can be found in Chapter 3 of D4.5 [2].

Feature ID RF6 (Repository Feature 6)
Name Latest posts are displayed sorted by posted date
Effort Spent 1 Week
Modules Af-
fected / Created

WebSearch, BibSort

Description of the new feature

Posts are always offered sorted chronologically by the date in which they were
posted on their blog.

• Latest posts page: page displayed when the user clicks on Posts collection

BlogForever Consortium 51

D4.7: Final Weblog Digital Repository Component June 2, 2013

• Search posts results: results displayed when the user search within the
Posts’ collection

• “More posts in this blog” menu: menu offered within the post template
with the rest of posts which belong to the same blog

BlogForever Consortium 52

D4.7: Final Weblog Digital Repository Component June 2, 2013

• “Posts in this blog” section: section offered within the blog template
with all the posts belonging to the same blog

Implementation details

• A new sorting method called posted date has been added to the set of
BibSort methods in order to sort records by the date given in the MARC
tag 269 c. Also a new washer called (sort transform format date has
been implemented to transform the format of the date provided by the
spider to the standard format %Y/%m/%d %H:%M:%S.

BlogForever Consortium 53

D4.7: Final Weblog Digital Repository Component June 2, 2013

• A new property called latest additions has been added to the
Collection class, which will contain the list of recids of each collection
sorted by the selected sorting method.

• The blueprint websearch blueprint.py has been extended to
propagate to the search the sorting parameters introduced to sort the
latest additions.

• A new config variable
CFG WEBSEARCH INSTANT BROWSE AND SEARCH
SAME SORTING has been added in order to enable or disable the
option to display the search results in the same order than the one
selected to display the latest additions

Implemented By CERN
Table 3.5: Implementation Description: RF6

Feature ID RF1 (Repository Feature 1)
Name Customizable user dashboard
Effort Spent 2 Weeks
Modules Af-
fected / Created

WebSession

Description of the new feature

This feature was implemented by BlogForever developers, but ported to next
and integrated into Invenio core by Invenio developers. Therefore, now it is a
part of Invenio and directly used in BlogForever repository. Description of the
functionality of this feature can be found in D4.5.

Implemented By SRDC
Table 3.6: Implementation Description: RF1

Feature ID RF22 (Repository Feature 22)
Name “Your Preferences” box as part of the user dashboard
Effort Spent 1 Week
Modules Af-
fected / Created

WebSearch, WebSession

Description of the new feature

BlogForever Consortium 54

D4.7: Final Weblog Digital Repository Component June 2, 2013

A new box containing recommended records based on user search criteria has
been added into “Your Account” page.

Implementation details

• Two new database tables, query term and user query term are
introduced. Moreover, log query terms function is added into
search engine.py to keep history of the search terms used by each user.

• webrecommend.py module that contains functions to recommend the
records to the users are developed. These functions are:

– get unread records : Returns the record ID’s that are not viewed
by the user.

– get query terms : Returns the list of the query terms that have
been used by the user

– get recommended content : Returns the unread records based
on word similarity with the query terms used by the user.

• Three configuration parameters have been added into
websession config.py :

– CFG RECOMMENDATION RANK METHOD : The name
of the word similarity ranking method

– CFG RECOMMENDED CONTENT NUMBER : The
number of records recommended in “Your Account” page.

– CFG MOST FREQUENT TERM NUMBER : The number
of most frequent terms considered in recommendation.

• webrecommend user settings.py is introduced to add
“Recommended for you” box to “Your account” page.

Implemented By SRDC
Table 3.7: Implementation Description: RF22

BlogForever Consortium 55

D4.7: Final Weblog Digital Repository Component June 2, 2013

Feature ID RF48 (Repository Feature 48)
Name The archive provides the option to translate its content on

demand
Effort Spent 2 Weeks
Modules Af-
fected / Created

BibFormat, WebComment, WebMessage, WebStyle

Description of the new feature

This feature enables users to translate the content of records, messages,
reviews and comments. The language used by the user determines the
language of the translation.

The user can translate the corresponding part by clicking “Translate” link over
the context. Moreover, the text of the “Translate” link appears in the
language of the user. In the sample below, the user using the platform in
English translates the message in German to English.

The user is able to undo the translation by clicking “Show Original” link.

BlogForever Consortium 56

D4.7: Final Weblog Digital Repository Component June 2, 2013

Implementation details

• Google translate gadget has been utilized for translation task.

• “Translate” link is added over the records, messages, reviews and
comments to translate the content.

• To add “Translate” link, webcomment comments.html ,
webcomment reviews.html , webmessage view.html and some of
the bibformat templates are modified, also a new bibformat element,
bfe translate.py , is created.

Implemented By SRDC
Table 3.8: Implementation Description: RF48

Feature ID RF57-58-61 (Repository Feature 57-58-61)
Name The archive provides a ranking method based on the user

rating of content (RF57)
A user can rank archived content based on specific users’
content rating (RF58)
The archive ranks blogs based on their views and downloads
(RF61)

Effort Spent 1 Week
Modules Af-
fected / Created

Bibrank

Description of the new feature

These three features have been implemented in the same development branch
and add two different ranking method templates to the existing ones: “Number
of Record Views” (record view) and “Average Review Score” (average score).

BlogForever Consortium 57

D4.7: Final Weblog Digital Repository Component June 2, 2013

“Number of Record Views” ranking method calculates the number of the visits
to the record. Each visit to the same record is counted as 1 for the visits
occured within a minute.

“Average Review Score” calculates the average scores of the records.

Implementation details

• 2 new ranking templates are added: template average score.cfg and
template record view.cfg

• template record view.cfg has a parameter time interval that
decides the interval to delete consequent record views, i.e., it does not
matter how many times a user views a record in a given time interval, it
is counted only once.

• 4 new functions have been implemented in
bibrank tag based indexer.py :

– record view : executes bibrank engine method for
record view ranking method

– record view exec : Ranks total number of record visits without
checking the user IP

– average score : executes bibrank engine method for
average score ranking method

– average score exec : Ranks average review score for records

• 2 new files have been created: bibrank record view indexer.py and
bibrank average score indexer.py

– bibrank record view indexer contains the functions that are
used for indexing visit counts of each record.

– bibrank average score indexer contains the function that are
used for indexing average review score of each record.

Implemented By SRDC
Table 3.9: Implementation Description: RF57-58-61

Feature ID RF64 (Repository Feature 64)
Name The archive offers the option to login using external

(universal) credentials
Effort Spent 3 Weeks
Modules Af-
fected / Created

MiscUtil, WebAccess, WebSession

BlogForever Consortium 58

D4.7: Final Weblog Digital Repository Component June 2, 2013

Description of the new feature

This feature was implemented by BlogForever developers, but ported to next
and integrated into Invenio core by Invenio developers. Therefore, now it is a
part of Invenio and directly used in BlogForever repository. Description of the
functionality of this feature can be found in D4.5.

Implemented By SRDC
Table 3.10: Implementation Description: RF64

Feature ID RF70 (Repository Feature 70)
Name 6 weeks
Effort Spent WebAccess, WebSession
Modules Af-
fected / Created

The archive can provide services under some cost using a
billing system

Description of the new feature

This feature introduces “premium access to collections” service. With this
feature admin can restrict collections for some cost for a finite/infinite time
interval.

Premium packages can be managed easily from the admin panel.
(Administration ⇒ Configure Webaccess ⇒ Manage Premium Packages)

Admin may add premium packages for collections:

Current premium packages can be monitored, edited or deleted:

BlogForever Consortium 59

D4.7: Final Weblog Digital Repository Component June 2, 2013

- Edits the premium package (Displays same form as adding new one)
- Deletes the premium package

- Moves the premium package up and down respectively. The order of
the premium packages can be changed through these buttons.

When premium packages are added for certain collections, these collections
become restricted.

After edit or delete operations, if a collection loses its premium packages, that
collection becomes unrestricted.

By clicking search button, if the user has not bought a premium package, the
list of the premium packages related to that collection are shown.

To purchase a premium package, users can select a suitable package and
payment method which are the following:

1) Credit card

BlogForever Consortium 60

D4.7: Final Weblog Digital Repository Component June 2, 2013

The user can buy premium packages with his/her credit card through the
above form. This is the last screen before completing the transaction. After
clicking the upgrade button, if the transaction fails, an error message is shown:

Otherwise, a confirmation page is displayed.

2) PayPal Express Checkout

BlogForever Consortium 61

D4.7: Final Weblog Digital Repository Component June 2, 2013

User may choose PayPal express checkout if s/he has a PayPal account.
Clicking “Checkout with PayPal” button redirects the user to the PayPal page
to login and confirm the transaction. After clicking “Continue Button”, user is
redirected back to Invenio site, and confirms his/her order.

User clicks the checkout with PayPal button and confirms the transaction.

Users may see their premium group memberships via “Your account page”:

BlogForever Consortium 62

D4.7: Final Weblog Digital Repository Component June 2, 2013

Users may display its detailed status of premium memberships by clickling the
title of the “Premium Memberships” box or “Your premium packages” link on
the top of the page.

“Your Premium Memberships” page consists of two main parts: “Premium
membership status” and “Available premium packages”

BlogForever Consortium 63

D4.7: Final Weblog Digital Repository Component June 2, 2013

On upper part, the user may display the expiration date of his/her premium
memberships, extend it by the “Extend your membership!” or “Buy a
premium package” links.

On lower part, user may see all of the available packages and purchase one of
them.

The admin may see the transaction history and premium members from the
admin panel:

The admin can disable paying with credit card, paypal express checkout or
whole premium service from invenio.conf file. Credit card payment can be
done by PayPal or Ogone payment gateways. Admin can select payment
methods to use in invenio.conf . Also the API credentials of PayPal and
Ogone can be set in this file.

If the admin disables the premium service, users cannot buy premium
packages but restriction status of collections does not change. If the admin
enables it back, users can buy premium packages again.

Implementation details

• 12 new variables added into invenio.conf :

– CFG PREMIUM SERVICE : 1 for enabling, 0 for disabling
the premium service. If this variable is changed 1 to 0 , users
cannot buy premium packages but restriction status of collections
does not change. On the contrary, If this variable is changed from 0
to 1 , users can buy premium packages again.

BlogForever Consortium 64

D4.7: Final Weblog Digital Repository Component June 2, 2013

– CFG TEST PREMIUM SERVICE : 1 for using test servers of
the payment gateways, otherwise 0 .

– CFG CREDIT CARD PAYMENT GATEWAY : The
payment gateway used for purchasing with credit card. It may have
3 options: “paypal” , “ogone” or “” (blank). If it is blank,
paying with credit card becomes disabled.

– CFG USE PAYPAL EXPRESS CHECKOUT : The variable
to decide to use “Paypal Express Checkout” or not. 1 for enabling,
0 for disabling.

– CFG PAYPAL API USERNAME ,
CFG PAYPAL API PASSWORD ,
CFG PAYPAL API SIGNATURE ,
CFG PAYPAL API VERSION : The credentials to use PayPal
API.

– CFG OGONE API PSPID , CFG OGONE API USERID ,
CFG OGONE API PSWD : The credentials to use OGone API.

– CFG PREMIUM GROUP SUFFIX : The suffix of the
premium group names.

• 4 new tables added into database:

– premium : Keeps the information (name, details, duration, price
and display order) about premium packages.

– hstPAYMENT : Keeps the payment history.

– premium collection : keeps the premium package - collection
mapping.

– collection accrole : keeps the collection - role mapping

• If a collection needs a premium membership to be accessed, it
is checked when displaying corresponding collection

search function in websearch blueprint.py is modified to
accommodate billing system. It checks if the premium service is enabled
and if there is a premium package to access that collection. If a user does
not have a right to access that collection, the list of the premium
packages that allows to access is displayed.

• The admin panel to manage premium packages is introduced
With the admin panel, premium packages can be added, edited and
deleted. In addition, their display order may be changed. Payment
history can be monitored and the list of the users who is a member of the
premium groups can be displayed in the admin page. To achieve these
functionalities, necessary functions are added into
webaccess admin blueprint.py and
webaccess admin premiumarea.html is added to templates.

• WebPayment module is introduced It handles the cases about
premium service, contains necessary functions and classes.
webpayment.py contains the following functions:

BlogForever Consortium 65

D4.7: Final Weblog Digital Repository Component June 2, 2013

– add new premium package : Adds a premium package to the
database. Arranges the restrictions for collections of the new
premium package.

– edit premium package : Edits the premium package. Arranges
the restrictions for collections of the premium package.

– fix roles and authorizations : Arranges the restrictions for the
premium collections.

– add role and authorization : Restricts the given collection. Adds
a role and an authorization to restrict the collection.

– grant user access : Give a user the access to the collections
restricted a given premium package.

– gift premium package : Gives a premium package to a user as
gift.

– get possible packages : Returns the premium packages to display
given collection.

– get package collection map : Returns a dictionary that contains
information about which premium package allows to access which
collections.

– register payment history : Registers the transaction to payment
history.

– delete premium package : Deletes the premium package with
given ID. Arranges the restrictions of the collections that can be
displayed by this premium package.

– get user premium membership : Returns total number of
premium packages that the user has purchased.

– get membership expiration dates : Returns the expiration
dates of the premium memberships of the user with given ID.

WebPayment module provides webpayment query.py file which
contains database related functions of WebPayment module. It also
provides webpayment base.py which includes the following required
classes to implement payment gateways:

– PaymentGatewayResponse : This class is inherited from dict
class. It ensures that the dictionary contains corresponding premium
package, success state of the transaction, transaction ID, error
messages and additional data if exits.

– PaymentGateway : This is an “abstract” class from which all of
the payment gateways should be inherited. The fields which should
be overridden are following:

∗ SERVER :The URL of the payment gateway API.
∗ TEST SERVER :The test URL of the payment gateway.
∗ additional inputs :Some payment gateways require more data

than the credit card information. This field is used to specify
the additional information required to payment gateway.
∗ name :The name of the payment gateway.
∗ accept types :List of the credit card types that accepted.

Types can be PaymentGateway . VISA ,

BlogForever Consortium 66

D4.7: Final Weblog Digital Repository Component June 2, 2013

PaymentGateway . MASTERCARD , PaymentGateway
. DISCOVER , PaymentGateway .
AMERICANEXPRESS or PaymentGateway .
MAESTRO constants.

If the payment gateway is used for purchasing with credit card,
process method should be overridden. process performs the
credit card transaction and return the response (
PaymentGatewayResponse) including transaction ID if
succeeded, error messages if failed.

If the payment gateway redirects the user to a 3rd party site to
complete the payment, construct checkout url ,
get transaction details and complete transaction methods
should be overridden:

∗ construct checkout url :This method should return the
response with 3rd party site URL to checkout in the data field
of the response. If fails, it should return response with error
messages. The return URL when calling the payment gateway
api should be in the form of CFG SITE SECURE URL
/webpayment/re-
view?id package=self.premium package.id&payment method
=self.name. If you want to show the user what s/he is buying,
the endpoint should be review and override
get transaction details , or you may complete the payment
after returning from 3rd party site by setting endpoint as
complete.
∗ get transaction details : Checks if the transaction is

appropriate for the payment gateway. If it is, it returns the
HTML code of the button for completing the transaction in
data key of the response. Otherwise, it should return a
response with error messages. If you want to skip this step, just
do not override this function.
∗ complete transaction : Should complete the transaction. If

the transaction is succeeded, it should return a response with
transaction id. Otherwise, it should return a response with error
messages.

webpayment paypal.py and webpayment ogone.py modules
contain classes derived from PaymentGateway . These two both
contain necessary methods to buying with credit card. In addition,
webpayment paypal.py contains methods for completing
payment in 3rd party site (PayPal Express Checkout).

– Payment methods can be managed from webpayment config.py
and implemented methods should be added into this file.

CFG CREDIT CARD PAYMENT METHODS is a
dictionary which contains the classes implemented for purchasing

BlogForever Consortium 67

D4.7: Final Weblog Digital Repository Component June 2, 2013

with credit card. Its keys are the name of the payment methods
(with uppercase letters) and values are only the corresponding
classes (not instances).

CFG PAYMENT METHODS is also a dictionary which
contains all the payment methods for purchasing with 3rd party site
(like PayPal Express Checkout). Its values are the name of the
payment methods and values are the corresponding class. In
addition it has the key cc for credit card payment whose value is
determined by invenio.conf .

• New modules are added for the web interface

– webpayment user settings.py is introduced to add “Your
premium memberships” box to “Your account” page.

– webpayment blueprint.py and templates
webpayment display.html , webpayment index.html ,
webpayment packages.html , webpayment review.html ,
webpayment upgrade.html are introduced.

Implemented By SRDC
Table 3.11: Implementation Description: RF70

Feature ID RF71 (Repository Feature 71)
Name The archive provides a personalized annotating and high-

lighting tool for users
Effort Spent 4 weeks
Modules Af-
fected / Created

WebSearch, WebSession, Webstyle, Miscutil, Bibformat

Description of the new feature

This feature enables users to highlight certains parts of the records and add
notes on them. It can be enabled/disabled for each collection, So an icon is
added to activate the feature at the right of the page. This icon is only visible
when a user logged in, otherwise it is not displayed.

BlogForever Consortium 68

D4.7: Final Weblog Digital Repository Component June 2, 2013

When the icon is clicked, a color palette containing highlight colors appears
and previously saved highlighted items are loaded. 5 colors are choosen as
default. These can be changed from invenio.conf . Palette has also two
more options, remove all and undo.

Actions which can be undone by undo operation:

• Creating Highlight

• Extending Highlight

• Deleting Highlight

• Adding Note

• Editing Note

• Deleting Note

• Remove All

After activating highlight, an orange box appears around the record, which
defines the borders of the editable area.

The user is able to highlight the record by holding mouse button and dragging
the cursor.

When mouse is rolled over an highlighted area, an edit menu is displayed. It
provides of 3 options which are Add Annotation, Delete highlight and
Change Color.

BlogForever Consortium 69

D4.7: Final Weblog Digital Repository Component June 2, 2013

A box is displayed when user clicks on Add Annotation so that, the user can
enter his/her annotation and save it to the repository.

After the note is saved, the text of the corresponding highlight becomes
shadowed. When you hover the mouse through annotated section, a tooltip
showing the note appears.

When the icon at the leftmost of the annotation tooltip is clicked, a menu
similar to the edit menu appears. It provides of 3 options namely Edit
Annotation, Delete Highlight and Change Color.

When a highlighted text that has annotation or Edit Annotation link
illustrated above is clicked, the corresponding note can be seen. It can be
edited and saved or removed completely.

When the color palette is closed, a new icon to reopen the color palette
appears just below the highlight activation icon.

BlogForever Consortium 70

D4.7: Final Weblog Digital Repository Component June 2, 2013

Highlighted texts can be extended. If the selected text contains any
highlighted part and if the selection color is same with its color, they are
merged. Moreover, two neighbor highlighted parts are merged, if they have
same color after a color change is applied.

Since there are different nodes in HTML based records, the user selection is
resulted in divided highlighted parts. When the user adds an annotation to
one of them, it is also added to all highlight nodes with the same identifier.
Highlighted parts still seem divided, but they are logically unified.

If selection contains a part of a MathJax expression, it highlights whole
MathJax element in order not to ruin structure of MathJax.

Implementation details

• This feature can be enabled for specific collections by adding collection
name to
CFG HIGHLIGHT AND ANNOTATION COLLECTIONS .
Posts and Comments are in this list by default.

• To enable highlighting feature for any content, it is just enough to
surround the content with <div class=’highlightable’></div> tags.

• selectionRange object is mainly used for highlight. Therefore, this
feature is applicable on Internet Explorer from version 9.

• To highlight the selected text, an element with tag highlight is
inserted around the selection.

• A highlight element does not contain any other highlight elements.

• The main aim is keeping the highlight elements with minimum depth
in DOM tree. To do so, after each selection, the recently inserted
highlight nodes are traversed. If all its siblings are highlight nodes,
then just highlight the parent instead of all children. This reduces the
costs to save highlights.

• For each text selection, the resulted highlight nodes are given same
identifier to logically unify them. This identifier is unique for each
selection. The identifiers are also used as annotation ID’s.

• Highlights are saved as serialized JSON string. On page load, the DOM
tree is reconstructed with this JSON object. An example json string:

BlogForever Consortium 71

D4.7: Final Weblog Digital Repository Component June 2, 2013

{
"leaves":{

"43":[{"s": 22, "e": 35,"a": 0, "id": "2",

"n": 0, "c": "rgb(255, 255, 0)"}],
"73":[{"s": 357, "e": 406, "a": 1, "id": "0",

"n": 0, "c": "rgb(255, 255, 0)"}]
},

"nodes":{
"57":{"c": "rgb(255, 255, 0)", "id": "1", "a": 0}
}

}

’leaves’ key corresponds to highlight elements around text nodes. It has
keys as numbers which are ids of each dom element. These ids are
assigned when highlight mode is on. For the highlight nodes around text
nodes, their parent nodes are used as keys i.e 43, 73. Highlight nodes
under them are listed in dictionary format.

– ’s’ denotes start position

– ’e’ denotes end position

– ’a’ denotes whether that highlight element has an annotation. if yes
1 , otherwise 0 values are used.

– ’id’ denotes id ’high anno id’ attr value of the highlight
nodes. It is used to keep track of seperated highlight nodes which
are result of a selection. For example, the user makes a selection
starting from a <p> element and ending to another <div> .
There are more than one highlight nodes as a result of this selection.
This value is also used for annotation id.

– ’n’ denotes the child number that the indices are valid on.

– ’c’ denotes the color.

’nodes’ key corresponds to a node level highlighting information. For
nodes, there is no need to save indices, it is enough to keep color
information, since each node will have a unique identifier (57 in example
above) and they will be highlighted directly. The ’c’ , ’id’ , and ’a’
keys have same meanings as above.

• Each change is directly saved into the database.

• Before loading highlights, record’s last modification date and highlight
date are compared to understand whether the record is changed or not.
If the comparison indicates a change on the record, the user is warned
about possible distortion on highlights.

• Two new tables namely bibrec highlights and bibrec annotations
have been inserted into database to keep highlights and annotations.

• In websession webinterface.py , savehighlights , loadhighlights ,
saveannotation , getannotation and removeannotation methods
have been added for communication between server and client sides.

BlogForever Consortium 72

D4.7: Final Weblog Digital Repository Component June 2, 2013

• In webuser.py , check bibrec modification date ,
set user bibrec annotation , get user bibrec annotation ,
delete user bibrec annotation , set user bibrec highlights ,
get user bibrec highlights functions have been implemented for
database transactions.

• In websession templates.py , tmpl highlight tools ,
tmpl annotation box , tmpl color palette methods have been
implemented to create HTML codes for highlight tools such as color
palette and annotation box.

• In dateutils.py , difference between times function has been
inserted to calculate elapsed time in units such as second, minute, hour
etc.

• CFG COLOR PALETTE parameter has been added to define
highlight colors. As default, four colors have been set.

• Also in inveniocfg.py and search engine.py , some minor
modifications have been made.

Implemented By SRDC
Table 3.12: Implementation Description: RF71

Feature ID RF73 (Repository Feature 73)
Name The archive recommends blogs to users based on the ratings

and preferences
Effort Spent 1 Week
Modules Af-
fected / Created

BibRank, WebSearch

Description of the new feature

This feature introduces a new ranking method to rank the records by their
weighted averages.

A portalbox which shows the Top Rated Records has been added into main
page.

BlogForever Consortium 73

D4.7: Final Weblog Digital Repository Component June 2, 2013

A portalbox which shows last added records has been added into main page.

Implementation details

• Portal boxes have become associated with ranking methods.

– bibrank portalbox table, which keeps which ranking method is
related with which portal box in which language, has benn inserted
into database.

– update bibrank portalbox and drop bibrank portalbox
functions have been added into bibrank record sorter.py .

∗ update bibrank portalbox function updates the portal
boxes when bibrank is run.
∗ drop bibrank portalbox function removes the entries related

to given bibrank method when either the ranking method is
deleted or the variable keeping the number of records shown in
portalbox is set to 0 .

– For portalboxes bibrank portalbox.html template is added.

• Ranking with “Weighted Average” has been introduced.

– To rank the records by their weighted average,
bibrank weighted average indexer.py module has been
created. This module contains the function
weighted average to index which calculates the weighted
average with “Bayesian estimate” which is the following formula:

BlogForever Consortium 74

D4.7: Final Weblog Digital Repository Component June 2, 2013

N

N + m
∗ A +

m

N + m
∗G

where

∗ N: the number of reviews of corresponding record
∗ m: minimum number of reviews required to calculate the rank

of the record
∗ A: Average score of corresponding record
∗ G: Average score of all of the records

– bibrank weigted average template.cfg containing the
parameters for the ranking method has been created. These
parameters are:

∗ show relevance : 1 to show the score on search page, 0
otherwise.
∗ minimum review number : minimum number of reviews

required to be ranked
∗ display on portalbox count : the number of the records will

be displayed on the portalbox. If it is 0 , portalbox disappears
and entries related to that ranking method is removed from
database.

• Archived content indexer has been added as a ranking method to create
“Recently Added Records” portalbox.

– bibrank archived content indexer.py has been introduced to
rank the records in a time interval.

– template recently archived content.cfg containing the
parameters for the ranking method. These parameters are:

∗ latest records number : the number of the lastly added
records, if 0 , ranks all of them.
∗ date type : creation for ranking by creation date,

modification for ranking by modification date.
∗ start date : the beginning of the time interval.
∗ end date : the end of the time interval.
∗ interval : the sql like time interval. (i.e. 3 HOUR , 1 DAY)
∗ display on portalbox count : the number of the records will

be displayed on the portalbox. If it is 0 , portalbox disappears
and entries related to that ranking method is removed from
database.

• Some modifications have been occurred in bibrank.py and
bibrank tag based indexer.py to accommodate new ranking method.

Implemented By SRDC
Table 3.13: Implementation Description: RF73

BlogForever Consortium 75

D4.7: Final Weblog Digital Repository Component June 2, 2013

3.2.4 Features ported to the new interface

This list presents those features of which front-end has been notably improved by
introducing the new technologies, Jinja2 templates and Twitter Bootstrap, described
in Section 2.3. The improvements that the user interface has gone through after
adapting the user interface elements to the new technologies, can be appreciated in
Figures 2.20, 2.21, 2.22, 2.23 and 2.24.

• RF4 - Bibformat output templates to display blogs and blog posts differently

• RF9 - The archive stores and displays accordingly all record metadata received
from the spider

• RF17 - The archive displays a disclaimer about the originality of the content

• RF23 - The archive stores the comments of blog posts and displays them as
part of the blog posts

• RF24 - Links to other sources within the blog posts are displayed separately

• RF25 - The archive displays the tags of blogs and blog posts

• RF28 - The archive displays the author of blog posts and comments

• RF47 - Description of how to cite archived records is presented prominently
with each record

3.2.5 Postponed features

The benefits that basing the repository on the new version of Invenio gives to
the platform were explained in Section 2.3, but of course it comes with a work
overload that obviously has delayed the implementation of the features. The
remaining 3 months were planned for the integration of the spider and the repository
components, but both, the spider and the repository design, and development,
have taken this into account since the beginning of the project. This results in
having a complete design of the communication between the 2 components and an
implementation already working, as can be verified in the Case Studies conducted
by WP5 so far in the 3 test servers: BF1, BF3 and BF5. This leaves us enough of
time to finish the development of the following features within the project deadlines.

• RF14 - Descriptive statistics are offered by records

• RF34 - The archive displays and suggests similar records to the user

• RF36 - The archive identifies and stores the topic of blogs and blog posts to
let users navigate through the archive by topic

• RF46 - Users can create personal collections of their favourite blogs

• RF56 - The archive provides a journal view of the new blog

• RF78 - The archive displays content after filtering it with user preferences

• RF87 - The archive transforms the SIPS received from the spider to AIPs

• RF89 - The archive carries out the normalization and/or migration of the
media attachments

BlogForever Consortium 76

D4.7: Final Weblog Digital Repository Component June 2, 2013

3.3 Features not retained

In order to concentrate on blog-specific must-have repository features, some
decisions have been taken regarding nice-to-have feature requirements identified in
D4.1 [5] user survey. The list of non-retained features is presented below.

The following features were not retained because the complexity of the topic is
falling out of scope of blog archiving platform. The solutions developed outside of
platform could be integrated with the blog archive in later stages.

• RF42 - The archive extracts bibliographic metadata from content embedded
in blogs

• RF68 - The archive provides information diffusion analysis mechanisms

• RF75 - The archive can do sentiment analysis on the content

The following features were not retained because sufficient alternative approaches
exist:

• RF50 - The archive offers the option to disseminate newly archived content in
external social platforms (alternative: instead of pushing to social platforms,
the apps can pull from the blog archive platform via customised RSS feeds)

• RF49 - The archive distinguishes institutional/corporate blogs from personal
blogs (alternative: user tags blogs as corporate upon submission, see RF31
description in Section 3.2 of D4.5 [2])

The following features were not retained because of low demand and high complexity
of the topic:

• RF76 - The archive detects content’s originality and ranks it accordingly

BlogForever Consortium 77

D4.7: Final Weblog Digital Repository Component June 2, 2013

Chapter 4

Conclusions

The aim of this report was to present the implementation process of the final
BlogForever Weblog Digital Repository Component. In Chapter 2 the design of D4.4
[3] has been compared to the final implementation. In Chapter 3 the implementation
details were described in more detail. In general, the implementation has closely
followed the original design.

The agile development and testing of early repository prototypes through
collaboration with WP5 case studies has led to putting higher priority for features
related to improving user experience. As a result the decision has been taken to
base the BlogForever repository on a newer version of Invenio that better answers
these needs. The results were positive not only from improving the user experience,
but also from the point of view of the flexibility of the platform, making it easier
to extend the source code and to facilitate its long-term maintainability. As a
drawback, using newer version of Invenio implied extra work to port previously
developed features to the new system. Furthermore, working on top of cutting edge
source code consumed extra time due to its initial lack of stability. As a result, the
implementation of several features has been delayed.

The final parts of WP4 are devoted to implementing delayed features and to
finalising the integration between the Spider and Repository components. Thanks
to the agile development and testing done collaboratively in WP4 and WP5, the
integration of Spider and Repository components has been happening progressively
for the user case studies, leaving the remaining workload perfectly affordable to
implement delayed features within project deadlines.

Some feature requirements were identified as “low priority” or falling out of scope
for the current project. The feature definition threshold in Task 4.1 to accept a
sentence from a user interview as a requirement was found to be too permissive,
leading to niche features (e.g. detect content originality). Some of the repository
features as depicted in the Description of Work were too ambitious to implement
within project deadlines and given resources (e.g. sentiment analysis). Some of the
features are common to blog and non-blog repositories (e.g. extraction of metadata
from attached content) and may come to the blog archive platform in that way.

BlogForever Consortium 78

References

[1] V. C. Venkatraman, “Enhancing scalability of invenio - digital library software,”

tech. rep., École Polytechnique Fédérale de Lausanne (EPFL), May 2013.

[2] S. Postacı, A. Çınar, G. B. Laleci, J. Garćıa Llopis, R. Jiménez Encinar,
V. Banos, and A. P. and, “D4.5: Initial Weblog Digital Repository Prototype,”
work package, SRDC Yazilim Arastirma ve Gelistirme ve Danismanlik Ticaret
Limited Sirketi, Jan. 2013. Work Package Four Deliverables.

[3] J. Garćıa Llopis, R. Jiménez Encinar, et al., “D4.4: Digital Repository
Component Design,” work package, European Organization for Nuclear
Research (CERN), Nov. 2012. Work Package Four Deliverables.

[4] “Blogforever,” tech. rep., 2011.

[5] H. Kalb, N. Kasioumis, J. Garćıa Llopis, S. Postaci, and S. Arango-Docio,
“D4.1: User Requirements and Platform Specifications Report,” work package,
B. Consortium (Ed.): Technische Universität Berlin, Dec. 2011. Work Package
Four Deliverables.

[6] K. Stepanyan, M. Joy, A. Cristea, Y. Kim, E. Pinsent, and S. Kopidaki,
“D2.2: Weblog Data Model,” work package, B. Consortium (Ed.): University
of Warwick (UW), Oct. 2011. Work Package Two Deliverables.

[7] Y. Kim, S. Ross, K. Stepanyan, E. Pinsent, P. Sleeman, S. Arango-Docio,
H. Kalb, et al., “D3.1 Preservation Strategy Report,” work package, Y. Kim
& S. Ross (Eds.): University of Glasgow, Sept. 2012. Work Package Three
Deliverables.

[8] M. Rynning, “D4.3: Initial Weblog Spider Prototype,” work package,
CyberWatcher, Sept. 2012. Work Package Four Deliverables.

[9] M. Rynning, “D4.6: Final Weblog Spider Component,” work package,
CyberWatcher, Apr. 2013. Work Package Four Deliverables.

[10] S. Arango-Docio, P. Sleeman, E. Pinsent, G. Gkotsis, T. Farrell, S. Kopidaki,
and M. Rynning, “D5.1: Design and Specification of Case Studies,” work
package, University of London, June 2012. Work Package Five Deliverables.

[11] “Invenio documentation.” http://invenio-demo.cern.ch/help/admin/. [Re-
trieved November 25, 2012], 2012.

79

http://invenio-demo.cern.ch/help/admin/

D4.7: Final Weblog Digital Repository Component June 2, 2013

[12] J. Kunčar and T. Šimko, “New Features and Technologies in Current and
Future Invenio Versions,” tech. rep., European Organization for Nuclear
Research (CERN), Oct. 2012.

[13] H. Kalb, Y. Kim, and P. Lazaridou, “D2.3: Weblog Ontologies,” work package,
A. I. Cristea & M. Joy (Eds.): Technische Universität Berlin (TUB), May 2012.
Work Package Two Deliverables.

[14] H. Kalb, P. Lazaridou, and M. Trier, “D4.2: Weblog spider component design,”
work package, B. Consortium (Ed.): Technische Universität Berlin (TUB), June
2012. Work Package Four Deliverables.

[15] S. Arango-Docio, V. Banos, K. Stepanyan, and M. Joy, “D2.1: Survey
Implementation Report,” work package, University of London, Aug. 2011. Work
Package Two Deliverables.

[16] “Invenio Project.” http://invenio-software.org/. [Retrieved November 11,
2012], 2012.

BlogForever Consortium 80

http://invenio-software.org/

	ExecutiveSummary
	1 Introduction
	1.1 Background

	2 The Weblog Digital Repository Implementation
	2.1 BlogForever and Invenio
	2.2 Implementation
	2.2.1 Overall architecture
	2.2.2 Ingestion workflow
	2.2.3 Metadata Structure
	2.2.4 Scalability
	2.2.5 Preservation features
	2.2.6 User Interface

	2.3 Development Cycle
	2.4 Development Methodology

	3 Implementation Descriptions
	3.1 Features already in Invenio
	3.2 List of implementation descriptions
	3.2.1 Previously implemented features
	3.2.2 Newly implemented features
	3.2.3 Updated features
	3.2.4 Features ported to the new interface
	3.2.5 Postponed features

	3.3 Features not retained

	4 Conclusions
	References

