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theorem for multivalued mappings generated by the sum of a maximal monotone multivalued operator and a bounded
multivalued pseudomonotone mapping to prove that the set of weak solutions to the problem is nonempty, bounded and
closed. Then, we introduce a sequence of penalized problems without obstacle constraints. Finally, we prove that the
Kuratowski upper limit of the sets of solutions to penalized problems is nonempty and is contained in the set of solutions
to original elliptic obstacle problem, i.e., ∅ ≠ w- lim supn→∞ Sn = s- lim supn→∞ Sn ⊂ S.
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1. Introduction

Let Ω be a bounded domain in R
N with Lipschitz boundary, s ∈ (0,1) be such that N > 2s and Ω∁ ∶= R

N
/Ω.

We consider the following elliptic inclusion problem involving a generalized fractional Laplace operator,
a multivalued term and obstacle effect

⎧
⎪
⎪
⎪

⎨

⎪
⎪
⎪
⎩

LKu(x) + ∂j(x,u(x)) ∋ f(x) in Ω
u(x) ≤ Φ(x) in Ω
u(x) = 0 in Ω∁,

(1.1)

where the operator LK stands for the generalized nonlocal fractional Laplace operator defined as follows

LKu(x) ∶= −∫
RN

(u(x + y) + u(x − y) − 2u(x))K(y)dy for a.e. x ∈ R
N ,

and the term ∂j(x,u(x)) denotes the Clarke’s generalized gradient of the locally Lipschitz function
j∶Ω×R→ R with respect to the last variable. Through the paper, we assume that the kernel function K
satisfies the following condition:
H(K): K ∶R

N
/{0} → (0,+∞) is such that

(i) the function x ↦ min{∣x∣2,1}K(x) belongs to L1
(R

N
).

(ii) for all x ∈ R
N
/{0}, there exists a constant mK > 0 such that

K(x) ≥ mK ∣x∣
−(N+2s).

(iii) for each x ∈ R
N
/{0}, we have K(x) = K(−x).

The weak solutions of problem (1.1) are understood as follows.
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Definition 1.1. We say that u ∈ X0 is a weak solution of problem (1.1) if u(x) ≤ Φ(x) for a.e. x ∈ Ω and
the inequality holds

∫

RN

(v(x) − u(x))LK(u)(x)dx + ∫
Ω

j0
(x,u(x); v(x) − u(x))dx

≥ ∫

Ω

f(x)(v(x) − u(x))dx

for all v ∈ X0 with v(x) ≤ Φ(x) for a.e. x ∈ Ω.

Particularly, if the kernel function K is specialized to the following formulation

K(x) ∶= ∣x∣−(N+2s) for all x ∈ R
N
/{0},

and for some s ∈ (0,1) such that 2s < N , i.e., the generalized fractional nonlocal Laplace operator LK

becomes the classical fractional Laplace operator (−Δ)
s,

(−Δ)
su(x) ∶= −∫

RN

u(x + y) + u(x − y) − 2u(x)

∣y∣N+2s
dy for a.e. x ∈ R

N ,

then our problem (1.1) reduces to the following one
⎧
⎪
⎪
⎪

⎨

⎪
⎪
⎪
⎩

(−Δ)
su(x) + ∂j(x,u(x)) ∋ f(x) in Ω

u(x) ≤ Φ(x) in Ω
u(x) = 0 in Ω∁,

(1.2)

which was considered by Migórski et al. [35].
Problem (1.1) combines several interesting phenomena like a generalized fractional Laplace operator,

a multivalued mapping provided by the Clarke generalized subdifferential and an obstacle inequality.
However, in the present paper, we first apply the surjectivity theorem for multivalued mappings due to
Le [29] to prove that the set of weak solutions to problem (1.1) is nonempty, bounded and closed. Then,
by using penalty method, we consider a sequence of penalized problems without obstacle constraints
corresponding to problem (1.1) (see problem (4.1)). Furthermore, we explore a significant convergence
theorem that the Kuratowski upper limit of the sets of solutions to penalized problems is nonempty
and is contained in the set of solutions to original inequality problem, i.e., ∅ ≠ w- lim supn→∞ Sn =

s- lim supn→∞ Sn ⊂ S.
The fractional calculus, as a natural generalization of the classical integer-order calculus, has been

of great interest recently. Since fractional-order derivatives hold nice properties, for instance, nonlocal
properties and memory effects, they have been widely applied to describe many phenomena, for example,
in electrodynamics, biotechnology, aerodynamics, distributed propeller design and control of dynamical
systems. Here, we refer to Liu et al. [32], Han et al. [26], Wu et al. [47], Zeng and Migórski [50], Wang et
al. [46], Li et al. [30], Wang et al. [45], Zeng et al. [49], Zhang et al. [51], Migórski and Zeng [36,37].

Partial differential equations involving fractional Laplace operators have recently attracted a lot of
attention, because fractional Laplace operators can describe accurately many complex systems in our real
life, for example, anomalous diffusion phenomenon, dynamical networks behaviors and geophysical flows.
For the problems with a fractional Laplace operator, we refer to Liu and Tan [33], Liu et al. [31], Migórski
et al. [35,38], Autuori and Pucci [1], Chen et al. [9], Choi et al. [12], Stinga and Torrea [44], Mosconi et
al. [39], Caffarelli et al. [6], Chen et al. [8]. On the other hand, for the problems dealing with multivalued
terms modeled by Clarke’s subdifferential we refer to the papers of Averna et al. [2], Denkowski et al.
[13–16], Filippakis et al. [18,19], Gasiński [20,21], Gasiński et al. [22], Gasiński and Papageorgiou [24,25],
Kalita and Kowalski [27], Papageorgiou et al. [41,42], Zeng et al. [48]. Finally, for the problems dealing
with obstacle problems we refer to the papers of Caffarelli et al. [4], Caffarelli et al. [5], Choe [10], Choe
and Lewis [11], Feehan and Pop [17], Oberman [40].
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The paper is organized as follows. In Sect. 2, we recall some definitions of function spaces and important
results in the sequel, in particular the surjectivity results of Le [29] and nonsmooth analysis. In Sect. 3,
we establish a critical theorem which reveals that the set of weak solutions to problem (1.1) is nonempty,
bounded and closed. In Sect. 4, we introduce a sequence of penalized problems without obstacle constraints
by using penalty technique. Then, we prove the main convergence result that the Kuratowski upper limit
of the sets of solutions to penalized problems is nonempty and is contained in the set of solutions to
original elliptic obstacle problem.

2. Preliminaries

For a bounded domain Ω ⊆ R
N and 1 ≤ r ≤ ∞, in what follows, by Lr

(Ω) and Lr
(Ω;RN

) we denote
the usual Lebesgue spaces endowed with the norms denoted by ∥ ⋅ ∥r. For r > 1, we denote by r′ = r

r−1

its conjugate, the inner product in R
N is denoted by ⋅ and the norm of RN is given by ∣ ⋅ ∣. Moreover,

R+ = [0,+∞) and the Lebesgue measure in R
N is denoted by ∣ ⋅ ∣N .

Let Ω be a bounded domain in R
N with Lipschitz boundary and s ∈ (0,1) be such that N > 2s. In

what follows, we adopt the symbols S ∶= (R
N
/Ω) × (RN

/Ω), P ∶= R
2N

/S, and 2∗s ∶=
2N

N−2s
to denote the

fractional critical exponent. Also, we denote by u∣Ω the function u restricted to the domain Ω. Consider
the function space

X ∶= {u∶RN
→ R ∣ u∣Ω ∈ L2

(Ω) and (u(x) − u(y))2K(x − y) ∈ L2
(P)} .

It is obvious, see [43], that X is a normed linear space endowed with the norm

∥u∥X ∶= ∥u∥2 + (∫
P

∣u(x) − u(y)∣2K(x − y)dy dx)

1
2

for all u ∈ X. Since the boundary condition for problem (1.1) is the generalized Dirichlet boundary, so,
we also introduce a subspace of X, given by

X0 ∶= {u ∈ X ∣ u = 0 for a.e. x ∈ Ω∁ } .

Besides, we collect some important properties for the function space X0 as follows.

Lemma 2.1. Let s ∈ (0,1) and Ω be a bounded, open subset of RN with Lipschitz boundary and N > 2s.
Then, we have

(i) X0 is a Hilbert space with the inner product

⟨u, v⟩X0 ∶= ∫

RN

∫

RN

[u(x) − u(y)][v(x) − v(y)]K(x − y)dxdy

for all u, v ∈ X0.
(ii) If p ∈ [1,2∗s], then there exists a positive constant c(p) such that

∥u∥p ≤ c(p)∥u∥X0 for all u ∈ X0.

(iii) The embedding from X0 to Lp
(R

N
) is compact if p ∈ [1,2∗s).

Remark 2.2. Let X∗0 be the dual space of X0. Note that X0 ⊂ L2
(Ω) ⊂ X∗0 and 2 < 2∗s , so from Lemma 2.1,

we can see that the embedding from X0 to L2
(Ω) is compact.

Let E be a Banach space with its topological dual E∗. A function J ∶E → R is said to be locally
Lipschitz at u ∈ E if there exist a neighborhood N(u) of u and a constant Lu > 0 such that

∣J(w) − J(v)∣ ≤ Lu∥w − v∥E for all w, v ∈ N(u).
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Definition 2.3. Let J ∶E → R be a locally Lipschitz function and let u, v ∈ E. The generalized directional
derivative J0

(u; v) of J at the point u in the direction v is defined by

J0
(u; v) ∶= lim sup

w→u, t↓0

J(w + tv) − J(w)

t
.

The generalized gradient ∂J ∶E → 2E
∗

of J ∶E → R is defined by

∂J(u) ∶= { ξ ∈ E∗ ∣ J0
(u; v) ≥ ⟨ξ, v⟩E∗×E for all v ∈ E } for all u ∈ E.

The next proposition collects some basic results (see, e.g., Migórski et al. [34, Proposition 3.23]).

Proposition 2.4. Let J ∶E → R be locally Lipschitz of rank Lu > 0 at u ∈ E. Then, we have
(a) the function v ↦ J0

(u; v) is positively homogeneous, subadditive, and satisfies

∣J0
(u; v)∣ ≤ Lu∥v∥E for all v ∈ E.

(b) (u, v) ↦ J0
(u; v) is upper semicontinuous.

(c) for each u ∈ E, ∂J(u) is a nonempty, convex and weak∗ compact subset of E∗ with ∥ξ∥E∗ ≤ Lu for
all ξ ∈ ∂J(u).

(d) J0
(u; v) = max{⟨ξ, v⟩E∗×E ∣ ξ ∈ ∂J(u)} for all v ∈ E.

(e) the multivalued function E ∋ u ↦ ∂J(u) ⊂ E∗ is upper semicontinuous from E into w∗-E∗.

Besides, we recall the notions of pseudomonotonicity for multivalued operators (see, e.g., Gasiński and
Papageorgiou [23, Definition 1.4.8]).

Definition 2.5. Let E be a real reflexive Banach space. The operator A∶E → 2E
∗

is called pseudomonotone
if the following conditions hold:

(i) the set A(u) is nonempty, bounded, closed and convex for all u ∈ E.
(ii) A is upper semicontinuous from each finite-dimensional subspace of E to the weak topology on E∗.
(iii) if {un} ⊂ E with un ⇀ u in E and if u∗n ∈ A(un) is such that

lim sup
n→∞

⟨u∗n, un − u⟩E∗×E ≤ 0,

then to each element v ∈ E, exists u∗(v) ∈ A(u) with

⟨u∗(v), u − v⟩E∗×E ≤ lim inf
n→∞

⟨u∗n, un − v⟩E∗×E .

Throughout the paper, the symbols “⇀” and “→” stand for the weak and the strong convergence,
respectively.

Definition 2.6. Let (Y, τ) be a Hausdorff topological space and {An} ⊂ 2Y for n ≥ 1. We define

τ - lim inf
n→∞

An ∶= {x ∈ Y ∣ x = τ - lim
n→∞

xn, xn ∈ An for all n ≥ 1} ,

and

τ - lim sup
n→∞

An ∶= {x ∈ Y ∣ x = τ - lim
k→∞

xnk
, xnk

∈ Ank
, n1 < n2 < . . . < nk < . . .} .

The set τ - lim infn→∞An is called the τ -Kuratowski lower limit of the sets An, and τ - lim supn→∞An is
called the τ -Kuratowski upper limit of the sets An. Further, if A = τ - lim infn→∞An = τ - lim supn→∞An,
then A is called τ -Kuratowski limit of the sets An.

Finally, we will state the surjectivity theorem for multivalued mappings which are defined as the sum
of a maximal monotone multivalued operator and a bounded multivalued pseudomonotone mapping. This
theorem was proved in Le [29, Theorem 2.2]. We use the notation BR(0) = {u ∈ E ∶ ∥u∥E < R}.
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Theorem 2.7. Let E be a real reflexive Banach space, let F ∶D(F ) ⊂ E → 2E
∗

be a maximal monotone
operator, let G∶D(G) = E → 2E

∗

be a bounded multivalued pseudomonotone operator, and let L ∈ E∗.
Assume that there exist u0 ∈ E and R ≥ ∥u0∥E such that D(F ) ∩BR(0) ≠ ∅ and

⟨ξ + η −L,u − u0⟩E∗×E > 0

for all u ∈ D(F ) with ∥u∥E = R, all ξ ∈ F (u) and all η ∈ G(u). Then, there exists u ∈ D(F ) ∩D(G) such
that

F (u) +G(u) ∋ L.

3. Existence result

This section is devoted to explore the existence, boundedness and closedness of the set of weak solutions
to problem (1.1). Our proof is based on a surjectivity theorem for multivalued mappings generated by the
sum of a maximal monotone multivalued operator and a bounded multivalued pseudomonotone mapping.

To end this, we now impose the following assumptions for the data of problem (1.1).
H(j): j∶Ω ×R→ R is such that

(i) for each r ∈ R, the function x ↦ j(x, r) is measurable on Ω with j(⋅,0) belonging to L1
(Ω);

(ii) for a.e. x ∈ Ω, the function r ↦ j(x, r) is locally Lipschitz;

(iii) there exist cj > 0, 1 ≤ p < 2∗s and α ∈ L
p

p−1
+ (Ω) such that

● if 1 ≤ p ≤ 2, then

∣ξ∣ ≤ α(x) + cj ∣r∣ for all ξ ∈ ∂j(x, r)

for all r ∈ R and a.e. x ∈ Ω.
● if 2 < p < 2∗s ,

∣ξ∣ ≤ α(x) + cj ∣r∣
p−1 for all ξ ∈ ∂j(x, r)

for all r ∈ R and a.e. x ∈ Ω.
(iv) there are βj ∈ L1

+(Ω) and ηj > 0 satisfying

−ξr ≤ βj(x) + ηj ∣r∣
2

for all ξ ∈ ∂j(x, r), r ∈ R, and a.e. x ∈ Ω.

Remark 3.1. It is not difficult to see that condition H(j)(iv) is equivalently to the following inequality

j0
(x, r;−r) ≤ βj(x) + ηj ∣r∣

2

for all r ∈ R, and a.e. x ∈ Ω. In fact, this condition has been used by Bai et al. [3] to explore the existence
of solutions to a class of generalized mixed variational–hemivariational inequalities.

H(f): f ∈ Lp′
(Ω).

Consider the function J ∶Lp
(Ω) → R defined by

J(u) = ∫
Ω

j(x,u(x))dx for all u ∈ Lp
(Ω). (3.1)

On account of hypotheses H(j) and the definition of J (see (3.1)), the next lemma is a direct consequence
of Theorem 3.47 of Migórski et al. [34].

Lemma 3.2. Under the assumptions H(j), we have
(i) J ∶Lp

(Ω) → R is locally Lipschitz continuous.
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(ii) the inequality is true

J0
(u; v) ≤ ∫

Ω

j0
(x,u(x); v(x))dx

for all u, v ∈ Lp
(Ω).

(iii) for each u ∈ Lp
(Ω), there hold

∂J(u) ⊂ ∫
Ω

∂j(x,u(x))dx,

∥ξ∥p′ ≤ dJ + cj∥u∥
p−1
p for all ξ ∈ ∂J(u),

with some dJ > 0.

Let C be a subset of X0 defined by

C ∶= {u ∈ X0 ∣ u(x) ⩽ Φ(x) for a.e. x ∈ Ω} , (3.2)

where

Φ∶Ω → [0,+∞] is a function. (3.3)

Remark 3.3. It is obvious that the set C is a nonempty, closed and convex subset of X0 and 0 ∈ C due
to the assumption (3.3).

The main results in the section are concerned with the following theorem.

Theorem 3.4. Assume that H(K), H(j), H(f) and (3.3) hold. If, in addition, 1 ≤ p < 2∗s with ηjc(2)2 < 1,
then the set of weak solutions to problem (1.1), denoted by S, is nonempty, bounded and closed in X0.

Proof. Let IC ∶X0 → R = R ∪ {+∞} be the indicator function of the set C, i.e.,

IC(u) = {
0 if u ∈ C,
+∞ otherwise.

It follows from Lemma 3.2 that u ∈ X0 is a solution to the following problem

⟨Au, v − u⟩X0 + J0
(u; v − u) ≥ ⟨f, v − u⟩X0 (3.4)

for all v ∈ C, and then, u is a weak solution to problem (1.1) as well, where C is the set given in (3.2)
and operator A∶X0 → X∗0 is defined by

⟨Au, v⟩X0 ∶= ∫

RN

v(x)LKu(x)dx for all u, v ∈ X0.

Based on this critical conclusion, we next shall show that problem (3.4) has at least one solution in X0.
We start with the following claims.

Claim 1. A∶X0 → X∗0 is a continuous, bounded and strongly monotone operator.
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For any u, v ∈ X0, it yields

⟨Au, v⟩X0 = ∫

RN

v(x)LKu(x)dx

= − ∫

R2N

v(x) [u(x + y) + u(x − y) − 2u(x)]K(y)dy dx

= − ∫

R2N

v(x) [u(x + y) − u(x)]K(y)dy dx − ∫

R2N

v(x) [u(x − y) − u(x)]K(y)dy dx

= − ∫

R2N

v(x) [u(y) − u(x)]K(x − y)dy dx − ∫

R2N

v(x) [u(y) − u(x)]K(y − x)dy dx

= − ∫

R2N

v(x) [u(y) − u(x)]K(x − y)dy dx − ∫

R2N

v(y) [u(x) − u(y)]K(x − y)dy dx

= ∫

R2N

[v(x) − v(y)] [u(x) − u(y)]K(x − y)dy dx

= ⟨u, v⟩X0 .

Hence, we conclude that A is linear and bounded, more precisely,

∥Au∥X∗0 ≤ ∥u∥X0 for all u ∈ X0.

Therefore, A is linear and continuous. Besides, the following equalities

⟨Au −Av,u − v⟩X0 = ⟨u − v, u − v⟩X0 = ∥u − v∥2X0
for all u, v ∈ X0

indicate that A is strongly monotone with constant mA = 1.

Claim 2. A+∂J ∶X0 → 2X
∗

0 is a bounded pseudomonotone multivalued operator such that for each u ∈ X0,
the set A(u) + ∂J(u) is closed and convex in X∗0 .

Employing Proposition 2.4 and Lemma 3.2 finds that the set A(u) + ∂J(u) is closed and convex in
X∗0 for each u ∈ X0. Additionally, the boundedness of A, Lemma 3.2(iii) and the fact that the embedding
from X0 into Lp

(Ω) is compact indicate that X0 ∋ u ↦ A(u) + ∂J(u) ⊂ X∗0 is a bounded map.
Next, we are going to illustrate that the map X0 ∋ u ↦ A(u) + ∂J(u) ⊂ X∗0 is upper semicontinuous

from X0 to X∗0 with weak topology. Invoking Proposition 3.8 of Migórski et al. [34], it is sufficient to verify
that for any weakly closed subset D in X∗0 , the set (A+∂J)−(D) is closed in X0. Let {un} ⊂ (A+∂J)−(D)

be a sequence such that

un → u in X0 as n →∞, for some u ∈ X0. (3.5)

Hence, for each n ∈ N, there exists ξn ∈ ∂J(un) satisfying

u∗n = Aun + ξn ∈ (A(un) + ∂J(un)) ∩D.

However, the continuity of A reveals that A(un) → A(u) in X∗0 , as n →∞. Besides, using Lemma 3.2(iii)
and the convergence (3.5), it finds that the sequence {ξn} is bounded in X∗0 , so, without any loss of
generality, we may suppose that ξn ⇀ ξ in X∗0 , as n →∞, with some ξ ∈ X∗0 . Keeping in mind that ∂J is
upper semicontinuous from X0 to w-X∗0 and has bounded, convex, closed values (see Proposition 2.4(d)),
therefore, it has a closed graph in X0 × w − X∗0 (see cf. Kamenskii et al. [28, Theorem 1.1.4]). But,
owing to the weak closedness of D, we obtain that A(u) + ξ ∈ D and ξ ∈ ∂J(u), which provides that
u ∈ (A + ∂J)

−
(D). Consequently, A + ∂J is upper semicontinuous from X0 to X∗0 with weak topology.

Then, we will show that A + ∂J is pseudomonotone. Let {un} and {u∗n} be sequences such that

un ⇀ u in X0, (3.6)
u∗n ∈ A(un) + ∂J(un) with lim sup

n→∞
⟨u∗n, un − u⟩X0 ≤ 0. (3.7)
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It is enough to demonstrate that for each v ∈ X0, we are able to find u∗(v) ∈ A(u) + ∂J(u) satisfying

lim inf
n→∞

⟨u∗n, un − v⟩X0 ≥ ⟨u
∗
(v), u − v⟩X0 . (3.8)

By virtue of (3.7), there exists a sequence {ξn} ⊂ X∗0 such that for each n ∈ N, ξn ∈ ∂J(un) and

u∗n = A(un) + ξn.

The latter combined with the inequality in (3.7) implies

lim sup
n→∞

⟨Aun, un − u⟩X0 + lim inf
n→∞

⟨ξn, un − u⟩X0 ≤ 0. (3.9)

But, using (3.6) and the compactness of the embedding of X0 into Lp
(Ω) yields that

un → u in Lp
(Ω) as n →∞.

Additionally, utilizing Theorem 2.2 of Chang [7] finds

∂(J ∣X0)(u) ⊂ ∂(J ∣Lp(Ω))(u) for all u ∈ X0;

this ensures

⟨ξn, un − u⟩X0 = ⟨ξn, un − u⟩Lp(Ω). (3.10)

Moreover, Lemma 3.2(iii) and the boundedness of the sequence {un} in X0 guarantee that the sequence
{ξn} is contained in Lp′

(Ω) as well. Then, passing to the limit in (3.10) as n →∞ to obtain

lim
n→∞

⟨ξn, un − u⟩X0 = lim
n→∞

⟨ξn, un − u⟩Lp(Ω) = 0.

Inserting the above equality into (3.9) yields

lim sup
n→∞

⟨Aun, un − u⟩X0 = lim sup
n→∞

⟨Aun, un − u⟩X0 + lim inf
n→∞

⟨ξn, un − u⟩X0 ≤ 0.

However, the monotonicity of A deduces

0 ≥ lim sup
n→∞

⟨Aun −Au +Au,un − u⟩X0

≥ lim inf
n→∞

⟨Au,un − u⟩X0 + lim sup
n→∞

⟨Aun −Au,un − u⟩X0

≥ lim sup
n→∞

∥un − u∥2X0
.

This means that un → u in X0, as n → ∞. Besides, the reflexivity of X∗0 and boundedness of {ξn} ⊂ X∗0
allow us to summarize that

ξn ⇀ ξ in X∗0 for some ξ ∈ X∗0 .

As before we did, it is not difficult to see that ξ ∈ ∂J(u) (see, e.g., Kamenskii et al. [28, Theorem 1.1.4]).
Therefore, one has

lim inf
n→∞

⟨u∗n, un − v⟩X0 = lim inf
n→∞

⟨A(un) + ξn, un − v⟩X0 = ⟨A(u) + ξ, u − v⟩X0 ,

and it is clear that (3.8) holds with u∗ = A(u) + ξ ∈ A(u) + ∂J(u). Therefore, we conclude that A + ∂J is
pseudomonotone. This proves Claim 2.

Claim 3. There exists a constant R > 0 such that

⟨Au + ξ + η − f, u⟩X0 > 0 (3.11)

for all u ∈ C with ∥u∥X0 = R, all ξ ∈ ∂J(u) and all η ∈ ∂CIC(u), where the notation ∂CIC stands for the
subdifferential of IC in the sense of convex analysis.
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Let u ∈ X0, ξ ∈ ∂J(u) and η ∈ ∂CIC(u) be arbitrary. Recall that 0 ∈ C and f ∈ Lp′
(Ω) ⊂ X∗0 , we have

⟨Au + ξ + η − f, u⟩X0

≥ ∥u∥2X0
+ ⟨ξ, u⟩Lp(Ω) + IC(u) − IC(0) − ∥f∥X∗0 ∥u∥X0

≥ ∥u∥2X0
− ∫

Ω

ξ(x)[−u(x)]dx + IC(u) − ∥f∥X∗0 ∥u∥X0

≥ ∥u∥2X0
− ∫

Ω

βj(x) + ηj ∣u(x)∣
2 dx + IC(u) − ∥f∥X∗0 ∥u∥X0

≥ ∥u∥2X0
− ∥βj∥L1(Ω) − ηj∥u∥

2
L2(Ω) + IC(u) − ∥f∥X∗0 ∥u∥X0

≥ ∥u∥2X0
− ∥βj∥L1(Ω) − ηjc(2)2∥u∥2X0

+ IC(u) − ∥f∥X∗0 ∥u∥X0 , (3.12)

where we have used Lemma 3.2(iii). Keeping in mind that IC ∶X0 → R is a proper, convex and lower
semicontinuous function, so we now apply Proposition 1.3.1 in Gasiński and Papageorgiou [23], to find
aC , bC ≥ 0 such that

IC(v) ≥ −aC∥v∥X0 − bC for all v ∈ X0. (3.13)

Therefore, from (3.12) and (3.13), we have

⟨Au + ξ + η − f, u⟩X0

≥ (1 − ηjc(2)2)∥u∥2X0
− ∥βj∥L1(Ω) − aC∥u∥X0 − bC − ∥f∥X∗0 ∥u∥X0 . (3.14)

Since 1 − ηjc(2)2 > 0, so, we are able to find constant R0 > 0 large enough such that

(1 − ηjc(2)2)R2
0 − ∥βj∥L1(Ω) − aCR0 − bC − ∥f∥X∗0 R0 > 0.

Therefore, for each R ≥ R0 fixed, the desired inequality (3.11) holds.

Recall that IC ∶X0 → R is a proper, convex and lower semicontinuous function, so, ∂CIC ∶X0 → 2X
∗

0 is
maximal monotone. The latter together with Theorem 2.7 implies that there exists u ∈ X0 resolving the
inclusion problem:

Find u ∈ X0 such that

Au + ∂J(u) + ∂CIC(u) ∋ f.

Obviously, u solves problem (3.4) too; therefore, the set of weak solutions to problem (1.1) is nonempty,
i.e., S ≠ ∅.

Next, we shall prove that the set S is closed in X0. Let {un} ⊂ S be a sequence such that

un → u in X0 (3.15)

for some u ∈ X0. For each n ∈ N, we have

⟨A(un), v − un⟩X0 + ∫

Ω

j0
(x,un(x); v(x) − un(x))dx ≥ ∫

Ω

f(x)(v(x) − un(x))dx
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for all v ∈ C. Passing to the upper limit as n →∞ for the above inequality, it finds

⟨A(u), v − u⟩X0 + ∫

Ω

j0
(x,u(x); v(x) − u(x))dx

≥ ⟨A(u), v − u⟩X0 + ∫

Ω

lim sup
n→∞

j0
(x,un(x); v(x) − un(x))dx

≥ lim sup
n→∞

⟨A(un), v − un⟩X0 + lim sup
n→∞

∫

Ω

j0
(x,un(x); v(x) − un(x))dx

≥ lim sup
n→∞

⎡
⎢
⎢
⎢
⎢
⎣

⟨A(un), v − un⟩X0 + ∫

Ω

j0
(x,un(x); v(x) − un(x))dx

⎤
⎥
⎥
⎥
⎥
⎦

≥ lim sup
n→∞

∫

Ω

f(x)(v(x) − un(x))dx

= ∫

Ω

f(x)(v(x) − u(x))dx

for all v ∈ C, where we have used Fatou Lemma (see, e.g., Migórski et al. [34, Theorem 1.64]), Lebesgue
Dominated Convergence Theorem (see, e.g., Migórski et al. [34, Theorem 1.65]) and Proposition 2.4(b).
Therefore, u solves problem (1.1); namely, the set S is closed.

Finally, we shall illustrate the set S is bounded. If the above were not true, then there would exist a
sequence {un} ⊂ S such that

∥un∥X0 →∞ as n →∞. (3.16)

A simple calculating (see, for example, (3.14)) gives

0 ≥ ⟨Aun − f, un⟩X0 − ∫

Ω

j0
(x,un(x);−un(x))dx

≥ ∥un∥
2
X0

− ∥βj∥L1(Ω) − ηjc(2)2∥un∥
2
X0

− ∥f∥X∗0 ∥un∥X0 .

Since 1 > ηjc(2)2, so, letting n → ∞ for the above inequality, it finds a contradiction. Therefore, we
conclude that S is bounded. ◻

Particularly, if K is specialized to K(x) ∶= ∣x∣−(N+2s) for all x ∈ R
N
/{0}, then we have the following

corollary, which extends the recent result, Migórski et al. [35, Theorem 1].

Corollary 3.5. Assume that H(j), H(f) and (3.3) hold. If, in addition, 1 ≤ p < 2∗s with ηjc(2)2 < 1, then
the set of weak solutions to problem (1.2) is nonempty, bounded and closed in X0.

Remark 3.6. Recently, Migórski et al. [35] applied the Moreau–Yosida approximation method to show
the solvability of (1.2). However, in the current paper, we use a different approach, which is a surjectivity
theorem for multivalued mappings generated by the sum of a maximal monotone multivalued operator
and a bounded multivalued pseudomonotone mapping, to prove the existence of weak solutions. In the
meanwhile, we also provide the boundedness and closedness of the set of weak solution to the problem
under consideration.
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4. Convergence analysis

Let {ρn} be a sequence with ρn > 0 for each n ∈ N such that ρn → 0 as n → ∞. For each n ∈ N, consider
the following nonlocal elliptic inclusion problem with a penalty term:

⎧
⎪
⎪
⎪

⎨

⎪
⎪
⎪
⎩

LKu(x) + ∂j(x,u(x)) +
1
ρn

(u(x) −Φ(x))+ ∋ f(x) in Ω

u(x) = 0 in Ω∁,
(4.1)

where the superscript + stands for the positive part.
The weak solution to problem (4.1) is given as follows.

Definition 4.1. We say that u ∈ X0 is a weak solution of problem (1.1) if the inequality holds

∫

RN

v(x)LK(u)(x)dx +
1
ρn

∫

Ω

(u(x) −Φ(x))+ v(x)dx

+∫

Ω

j0
(x,u(x); v(x))dx ≥ ∫

Ω

f(x)v(x)dx

for all v ∈ X0.

In what follows, we denote by Sn the set of weak solutions to problem (4.1). As to details, in the section,
we are interesting in the study of the essential relation between the sets S and Sn. More precisely, the
main results in the section are given the following theorem.

Theorem 4.2. Assume that H(K), H(j), H(f), (3.3) and 1 ≤ p < 2∗s with ηjc(2)2 < 1 hold. If, in addition,
{ρn} is a sequence with ρn > 0 for each n ∈ N such that ρn → 0 as n →∞, then the statements are true

(i) for each n ∈ N, the set of weak solutions to problem (4.1), Sn, is nonempty, bounded and closed.
(ii) it holds

∅ ≠ w- lim sup
n→∞

Sn = s- lim sup
n→∞

Sn ⊂ S.

(iii) for each u ∈ s- lim supn→∞ Sn and any sequence {ũn} with

ũn ∈ arg min
un∈Sn

∥un − u∥X0 for each n ∈ N,

there exists a subsequence of {ũn} converging strongly to u in X0, where the set argminun∈Sn
∥un −

u∥X0 is defined by

arg min
un∈Sn

∥un − u∥X0

∶= {ũ ∈ Sn ∣ ∥u − ũ∥X0 ≤ ∥u − v∥X0 for all v ∈ Sn} .

Proof. Ad (i). It can be proved directly by using the same argument as the proof of Theorem 3.4.
Ad (ii). Let us introduce a function B∶Lp

(Ω) → Lp′
(Ω) given by

⟨Bu, v⟩Lp(Ω) = ∫

Ω

(u(x) −Φ(x))+ v(x)dx for all u, v ∈ Lp
(Ω). (4.2)

First, we prove that the set w- lim supn→∞ Sn is nonempty. Indeed, we have the following claim.

Claim 4. The set ∪n∈NSn is uniformly bounded in X0.

Arguing by contradiction, suppose that ∪n∈NSn is unbounded. Without loss of generality, we may
assume that there exists a sequence {un} ⊂ X0 with un ∈ Sn for each n ∈ N such that

∥un∥X0 →∞ as n →∞.
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Hence, for each n ∈ N, it has

⟨Aun, v⟩X0 + ∫

Ω

j0
(x,un(x); v(x))dx +

1
ρn

∫

Ω

(un(x) −Φ(x))+ v(x)dx

≥ ∫

Ω

f(x)v(x)dx

for all v ∈ X0. Inserting v = −un into the above inequality yields

⟨Aun, un⟩X0 − ∫

Ω

j0
(x,un(x);−un(x))dx − ∫

Ω

f(x)un(x)dx

≤ −

1
ρn

∫

Ω

(un(x) −Φ(x))+ un(x)dx.

Due to Φ(x) ≥ 0 for all x ∈ Ω, we can use the monotonicity of the function s ↦ s+ to get

⟨Aun, un⟩X0 − ∫

Ω

j0
(x,un(x);−un(x))dx − ∫

Ω

f(x)un(x)dx

≤ −

1
ρn

∫

Ω

[(un(x) −Φ(x))+ − (0 −Φ(x))+]un(x)dx

≤ 0,

that is,

∥un∥
2
X0

− ∥f∥X∗0 ∥un∥X0 − ∫

Ω

j0
(x,un(x);−un(x))dx ≤ 0.

However, hypothesis H(j)(iv) reveals

0 ≥ ∥un∥
2
X0

− ∥f∥X∗0 ∥un∥X0 − ∫

Ω

j0
(x,un(x);−un(x))dx

≥ (1 − ηjc(2)2)∥un∥
2
X0

− ∥βj∥L1(Ω) − ∥f∥X∗0 ∥un∥X0 .

Since ηjc(2)2 < 1, we are able to find R > 0 large enough such that

(1 − ηjc(2)2)R2
− ∥βj∥L1(Ω) − ∥f∥X∗0 R > 0.

This points out that for n ∈ N large enough we have

0 ≥ ∥un∥
2
X0

− ∥f∥X∗0 ∥un∥X0 − ∫

Ω

j0
(x,un(x);−un(x))dx > 0,

which generates a contradiction. So, Claim 4 is valid.
Let {un} ⊂ X0 with un ∈ Sn for each n ∈ N be an arbitrary sequence. Claim 4 indicates that {un} is

bounded in X0. Then, we now may assume that along a relabeled subsequence, it has

un ⇀ u as n →∞ (4.3)

for some u ∈ X0. This guarantees that the set w- lim supn→∞ Sn is nonempty.
Next, we are going to demonstrate that w- lim supn→∞ Sn is a subset of S. Let u ∈ w- lim supn→∞ Sn

be arbitrary. Without loss of generality, we may suppose that there exists a subsequence {un} ⊂ X0 with
un ∈ Sn for all n ∈ N satisfying (4.3). Our goal is to prove that u ∈ S.

Claim 5. u(x) ≤ Φ(x) for a.e. x ∈ Ω.
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For every n ∈ N, we have

1
ρn

∫

Ω

(un(x) −Φ(x))+ v(x)dx

≤ ⟨Aun,−v⟩X0 + ∫

Ω

j0
(x,un(x);−v(x))dx + ∫

Ω

f(x)v(x)dx (4.4)

for all v ∈ X0. It is easy to calculate that

1
ρn

∫

Ω

(un(x) −Φ(x))+ v(x)dx ≤ M0∥v∥X0

for some M0 > 0, which is independent of n and v. Hence,

∫

Ω

(un(x) −Φ(x))+ v(x)dx ≤ ρnM0∥v∥X0 .

Passing to the limit as n →∞ for the above inequality and using the convergence (4.3), it concludes from
Lebesgue Dominated Convergence Theorem and the compactness of the embedding from X0 to Lp

(Ω)
that

∫

Ω

(u(x) −Φ(x))+ v(x)dx

= ∫

Ω

lim
n→∞

(un(x) −Φ(x))+ v(x)dx

= lim
n→∞

∫

Ω

(un(x) −Φ(x))+ v(x)dx

≤ lim
n→∞

ρnM0∥v∥X0

= 0

for all v ∈ X0. Therefore, we have (u(x) −Φ(x))+ = 0 for a.e. x ∈ Ω, that is, u(x) ≤ Φ(x) for a.e. x ∈ Ω.

Claim 6. u ∈ S.

For each n ∈ N, we have

⟨Aun, un − v⟩X0

≤

1
ρn

∫

Ω

(un(x) −Φ(x))+ (v(x) − un(x))dx + ∫
Ω

j0
(x,un(x); v(x) − un(x))dx

+∫

Ω

f(x)(un(x) − v(x))dx

for all v ∈ X0. The latter combined with the monotonicity of s ↦ s+ deduces

⟨Aun, un − v⟩X0

≤

1
ρn

∫

Ω

(v(x) −Φ(x))+ (v(x) − un(x))dx + ∫
Ω

j0
(x,un(x); v(x) − un(x))dx

+∫

Ω

f(x)(un(x) − v(x))dx
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for all v ∈ X0; hence,

⟨Aun, un − v⟩X0

≤ ∫

Ω

j0
(x,un(x); v(x) − un(x))dx + ∫

Ω

f(x)(un(x) − v(x))dx (4.5)

for all v ∈ C. Inserting v = u into the above inequality and passing to the upper limit as n → ∞ for the
resulting inequality, it finds

lim sup
n→∞

⟨Aun, un − u⟩X0

≤ lim sup
n→∞

⎛

⎜

⎝

∫

Ω

j0
(x,un(x);u(x) − un(x))dx + ∫

Ω

f(x)(un(x) − u(x))dx
⎞

⎟

⎠

≤ lim sup
n→∞

∫

Ω

j0
(x,un(x);u(x) − un(x))dx + lim sup

n→∞
∫

Ω

f(x)(un(x) − u(x))dx

≤ ∫

Ω

lim sup
n→∞

j0
(x,un(x);u(x) − un(x))dx

≤ 0,

where we have used the compactness of the embedding from X0 to Lp
(Ω), Fatou Lemma and Lebesgue

Dominated Convergence Theorem. The latter combined with the strong monotonicity of A implies

lim sup
n→∞

∥un − u∥2X0

≤ lim sup
n→∞

⟨Aun −Au,un − u⟩X0 + lim inf
n→∞

⟨Au,un − u⟩X0

≤ lim sup
n→∞

⟨Aun −Au +Au,un − u⟩X0

≤ 0,

so we conclude un → u as n →∞. Passing to the upper limit as n →∞ for inequality (4.5), we can employ
Fatou Lemma and Lebesgue Dominated Convergence Theorem again to conclude that

⟨Au,u − v⟩X0

≤ ∫

Ω

j0
(x,u(x); v(x) − u(x))dx + ∫

Ω

f(x)(u(x) − v(x))dx

for all v ∈ C. Therefore, one finds u ∈ S. This means ∅ ≠ w- lim supn→∞ Sn ⊂ S.

Claim 7. It holds w- lim supn→∞ Sn = s- lim supn→∞ Sn.

Since s- lim supn→∞ Sn ⊂ w- lim supn→∞ Sn, it is enough to verify the condition w- lim supn→∞ Sn ⊂

s- lim supn→∞ Sn. Let u ∈ w- lim supn→∞ Sn be arbitrary. Without any loss of generality, there exists a
sequence, still denoted by {un} with un ∈ Sn such that un ⇀ u as n → ∞. We claim that un → u as
n → ∞. For each n ∈ N, the inequality (4.5) holds. Inserting v = u into (4.5) and passing to the upper
limit as n →∞ for the resulting inequality, it is easy to see

lim sup
n→∞

∥un − u∥2X0
≤ 0.

Then, one has un → u as n →∞, namely, u ∈ s- lim supn→∞ Sn. Consequently, it is valid that s- lim supn→∞ Sn =

w- lim supn→∞ Sn.
Ad (iii). Let u ∈ s- lim supn→∞ Sn be arbitrary. Since Sn is nonempty, bounded and closed, so, the set

argminun∈Sn
∥un − u∥X0 is nonempty. Let {ũn} be any sequence such that

ũn ∈ arg min
un∈Sn

∥un − u∥X0 for each n ∈ N.
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It follows from Claim 4 that the sequence {ũn} is bounded. So, we may assume, by passing to a subse-
quence, not relabeled, that

ũn ⇀ ũ as n →∞

for some ũ ∈ X0, whereas using the same argument as the proof of Claim 5, it finds ũ ∈ C. Then, for each
n ∈ N, (4.5) is available. Employing the same process with the proof of Claim 6, it concludes that ũ is a
solution to problem (1.1) and ũn → u as n →∞. Consequently, the desired conclusion is true. ◻

Acknowledgements

The authors wish to thank the two knowledgeable referees for their useful remarks in order to im-
prove the paper. Project is supported by the NNSF of China Grants Nos. 12001478 and 12026256,
the H2020-MSCA-RISE-2018 Research and Innovation Staff Exchange Scheme Fellowship within the
Project No. 823731 CONMECH and National Science Center of Poland under Preludium Project No.
2017/25/N/ST1/00611. It is also supported by the Startup Project of Doctor Scientific Research of Yulin
Normal University No. G2020ZK07, NSF of Guangxi Grants No. 2020JJB110001, and the International
Project co-financed by the Ministry of Science and Higher Education of Republic of Poland under Grant
No. 3792/GGPJ/H2020/2017/0.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

References

[1] Autuori, G., Pucci, P.: Elliptic problems involving the fractional Laplacian in R
N . J. Differ. Equ. 255, 2340–2362 (2013)

[2] Averna, D., Marano, S.A., Motreanu, D.: Multiple solutions for a Dirichlet problem with p-Laplacian and set-valued
nonlinearity. B. Aust. Math. Soc. 77, 285–303 (2008)
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[38] Migórski, S., Nguyen, V.T., Zeng, S.D.: Solvability of parabolic variational-hemivariational inequalities involving space-

fractional Laplacian. Appl. Math. Comput. 364, 124668 (2020)

[39] Mosconi, S., Perera, K., Squassina, M., Yang, Y.: The Brezis-Nirenberg problem for the fractional p-Laplacian. Calc.
Var. Partial Dif. 55, 105 (2016)

[40] Oberman, A.: The convex envelope is the solution of a nonlinear obstacle problem. Proc. Am. Math. Soc. 135, 1689–1694
(2007)

[41] Papageorgiou, N.S., Vetro, C., Vetro, F.: Nonlinear multivalued Duffing systems. J. Math. Appl. Anal. 468, 376–390
(2018)

[42] Papageorgiou, N.S., Vetro, C., Vetro, F.: Extremal solutions and strong relaxation for nonlinear multivalued systems
with maximal monotone terms. J. Math. Appl. Anal. 461, 401–421 (2018)

[43] Pucci, P., Xiang, M., Zhang, B.: Existence and multiplicity of entire solutions for fractional p-Kirchhoff equations. Adv.
Nonlinear Anal. 5, 27–55 (2016)

[44] Stinga, P.R., Torrea, J.L.: Regularity theory and extension problem for fractional nonlocal parabolic equations and the
master equation. SIAM J. Math. Anal. 49, 3893–3924 (2017)

[45] Wang, G.T., Ren, X.Y., Bai, Z.B., Hou, W.W.: Radial symmetry of standing waves for nonlinear fractional Hardy-
Schrödinger equation. Appl. Math. Lett. 96, 131–137 (2019)

[46] Wang, X.H., Li, X.S., Huang, N.J., O’Regan, D.: Asymptotical consensus of fractional-order multi-agent systems with
current and delay states. Appl. Math. Mech. 40, 1677–1694 (2019)



ZAMP Qualitative analysis of solutions of obstacle inclusion problem Page 17 of 17 30

[47] Wu, Z.B., Zou, Y.Z., Huang, N.J.: A system of fractional-order interval projection neural networks. J. Comput. Appl.
Math. 294, 389–402 (2016)
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