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Abstract
We consider an elliptic variational–hemivariational inequality with constraints in a
reflexive Banach space, denoted P , to which we associate a sequence of inequalities
{Pn}. For each n ∈ N, Pn is a variational–hemivariational inequality without con-
straints, governed by a penalty parameter λn and an operator Pn . Such inequalities
are more general than the penalty inequalities usually considered in literature which
are constructed by using a fixed penalty operator associated to the set of constraints
of P . We provide the unique solvability of inequality Pn . Then, under appropriate
conditions on operators Pn , we state and prove the convergence of the solution of Pn

to the solution ofP . This convergence result extends the results previously obtained in
the literature. Its generality allows us to apply it in various situations which we present
as examples and particular cases. Finally, we consider a variational–hemivariational
inequality with unilateral constraints which arises in Contact Mechanics. We illustrate
the applicability of our abstract convergence result in the study of this inequality and
provide the corresponding mechanical interpretations.
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1 Introduction

Variational and hemivariational inequalities represent a powerful tool in the study
of a large number of nonlinear boundary value problems. The theory of variational
inequalities was developed in early sixty’s, by using arguments of monotonicity and
convexity, including properties of the subdifferential for convex functions. In contrast,
the analysis of hemivariational inequalities uses as main ingredient the properties
of the subdifferential in the sense of Clarke, defined for locally Lipschitz functions
which may be nonconvex. Hemivariational inequalities were first introduced in early
eighty’s by Panagiotopoulos in the context of applications in engineering problems.
Studies of variational and hemivariational inequalities can be found in monographs
[1,7,8,18,21,22] and research papers [2,11,16,17,20,23,30–38,40,42].

Variational–hemivariational inequalities represent a special class of inequalities,
governed by both convex and nonconvex functions. A recent reference in the field
is the monograph [28]. There, existence, uniqueness and convergence results have
been obtained for the elliptic, history-dependent and evolutionary cases. These results
have been used in the study of variousmathematical models which describe the contact
between a deformable body and a foundation. Recently, a considerable effort was done
to derive error estimates for discrete scheme associated to variational–hemivariational
inequalities. At the best of our knowledge, paper [11] represents the first paper that
provides an optimal order error estimate for the linear finite element method in solving
hemivariational or variational–hemivariational inequalities.We refer the readers to [12,
13] for internal numerical approximations of variational–hemivariational inequalities,
and [9] for both internal and external numerical approximations of such inequalities.

In this paper we consider the following inequality problem.

Problem P . Find an element u ∈ K such that

〈Au, v − u〉 + ϕ(u, v) − ϕ(u, u) + j0(u; v − u) ≥ 〈 f , v − u〉 ∀ v ∈ K . (1)

Here and everywhere in this paper X is a real reflexive Banach space, 〈·, ·〉 denotes
the duality pairing between X and its dual X∗, K ⊂ X , A : X → X∗, ϕ : X × X → R,
j : X → R and f ∈ X∗. Moreover, j0(u; v) represents the generalized directional
derivative of j at the point u in the direction v. Note that the function ϕ(u, ·) is assumed
to be convex for any u ∈ X and the function j is locally Lipschitz and, in general,
nonconvex. Therefore, (1) is a variational–hemivariational inequality and, since the
data and the solution do not depend on the time variable, we sometimes refer to this
inequality as an elliptic variational–hemivariational inequality.

The existence and uniqueness of the solution to the problem (1) was proved [19],
based on arguments of multivalued pseudomonotone operators and the Banach fixed
point theorem. The continuous dependence of the solution with respect to the data
A, ϕ, j , f and K has been studied in [39,41], where convergence results have been
obtained, under various assumptions. A comprehensive reference on the numerical
analysis Problem P is the survey paper [10].

Note that Problem P is governed by a set of constraints K . Therefore, for both
theoretical and numerical reasons, it is useful to approximate it by using a penalty

123



Applied Mathematics & Optimization (2021) 83:789–812 791

method. The classical penalty method aims to replace Problem P by a sequence of
problems {Pn} which, for every n ∈ N, can be formulated as follows.

Problem Pn. Find an element un ∈ X such that

〈Aun, v − un〉 + 1

λn
〈Pun, v − un〉 + ϕ(un, v) − ϕ(un, un)

+ j0(un; v − un) ≥ 〈 f , v − un〉 ∀ v ∈ X . (2)

Note that Problem Pn is formally obtained from Problem P by removing the con-
straint u ∈ K and including a penalty term governed by a parameter λn > 0 and
an operator P : X → X∗. Penalty methods have been used as an approximation
tool to treat constraints in variational inequalities [8,15,26,29] and variational–
hemivariational inequalities [19,28,31]. In particular, the existence of a unique solution
to Problem Pn together with its convergence to the solution of Problem P as λn → 0
was proved in [19,28], under the assumption that P is a penalty operator of the set K ,
see Definition 7 below.

An extension of Pn can be obtained by replacing in (2) the operator P with an
operator Pn : X → X∗ which depends on n. This problem can be stated as follows.

Problem Pn. Find an element un ∈ X such that

〈Aun, v − un〉 + 1

λn
〈Pnun, v − un〉 + ϕ(un, v) − ϕ(un, un)

+ j0(un; v − un) ≥ 〈 f , v − un〉 ∀ v ∈ X . (3)

Note that Problem Pn is formally obtained from Problem P by removing the con-
straint u ∈ K and including a penalty term governed by a parameter λn > 0 and an
operator Pn : X → X∗ which, in contrast to (2), depends on n.

The aim of this paper is twofold. The first one is to prove the unique solvability of
ProblemPn and the convergence of its solution to the solution of ProblemP . Themain
difficulty on this matter consists in constructing appropriate assumptions to establish
a link between the operators Pn and the set K , which guarantees the convergence
un → u in X . Note that in the particular case of Problem Pn this convergence follows
from the assumption that P is a penalty operator of K , which represents a simple
and elegant condition. Extending this condition to conditions which still guarantee
the convergence when P is replaced by Pn represents the first trait of novelty of this
paper.

Our second aim is to illustrate some applications of the convergence result un → u
in X . Note that this convergence extends the convergence result un → u in X , obtained
in [19,28]. It shows that for n large enough, the solution of ProblemP (with constraint)
can be approximated by the solution of problemPn (without constraint), which ismore
general than ProblemPn . The generality of our convergence result allows us to obtain
various consequences which are new and interesting in their own. This represents the
second trait of novelty of this paper.

The remainder of the paper is structured as follows. In Sect. 2 we introduce some
preliminary material, and then we recall the existence and uniquenss result obtained
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in [19,27]. In Sect. 3 we state and prove our main results, Theorems 9 and 10. The
proofs are based on arguments of compactness, monotonicity and semicontinuity,
combined with the properties of the Clarke subdifferential. In Sect. 4 we deduce some
consequences of Theorems 9 and 10 that we present in a form of relevant particular
cases. Finally, in Sect. 5 we illustrate the use of these theorems in the study of a
variational–hemivariational inequalty which arises in Contact Mechanics and provide
the corresponding mechanical interpretations.

2 Preliminaries

We start with some notation and preliminaries and refer the readers to [4–6,14,24,43]
for more details on the material presented below in this section. We use ‖ · ‖X and
‖ · ‖X∗ for the norm on the spaces X and X∗, and 0X , 0X∗ for the zero element of X
and X∗, respectively. All the limits, upper and lower limits below are considered as
n → ∞, even if we do not mention it explicitly. The symbols “⇀” and “→” denote
the weak and the strong convergence in various spaces which will be specified.

For real valued functions defined on X we recall the following definitions.

Definition 1 A function ϕ : X → R is lower semicontinuous (l.s.c.) if xn → x in X
implies lim inf ϕ(xn) ≥ ϕ(x). A function ϕ : X → R is weakly lower semicontinuous
(weakly l.s.c.) if xn⇀x in X implies lim inf ϕ(xn) ≥ ϕ(x).

Definition 2 A function j : X → R is said to be locally Lipschitz, if for every x ∈ X ,
there existUx , a neighborhood of x , and a constant Lx > 0 such that | j(y) − j(z)| ≤
Lx‖y − z‖X for all y, z ∈ Ux . For such functions the generalized Clarke’s directional
derivative of j at the point x ∈ X in the direction v ∈ X is defined by

j0(x; v) = lim sup
y→x, λ↓0

j(y + λv) − j(y)

λ
.

The generalized Clarke’s gradient (subdifferential) of j at x is a subset of the dual
space X∗ given by

∂ j(x) = { ζ ∈ X∗ | j0(x; v) ≥ 〈ζ, v〉 ∀ v ∈ X }.

The function j is said to be regular (in the sense of Clarke) at the point x ∈ X if for
all v ∈ X the one-sided directional derivative j ′(x; v) exists and j0(x; v) = j ′(x; v).

We shall use the following properties of the generalized directional derivative and
the generalized gradient.

Proposition 3 Assume that j : X → R is a locally Lipschitz function. Then the fol-
lowing hold:

(i) For every x ∈ X, the function X � v �→ j0(x; v) ∈ R is positively homogeneous
and subadditive, i.e., j0(x; λv) = λ j0(x; v) for all λ ≥ 0, v ∈ X and j0(x; v1 +
v2) ≤ j0(x; v1) + j0(x; v2) for all v1, v2 ∈ X, respectively.
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(ii) For every v ∈ X, we have j0(x; v) = max { 〈ξ, v〉 : ξ ∈ ∂ j(x) }.
Next, we proceed with some definitions for nonlinear operators.

Definition 4 An operator A : X → X∗ is said to be:

(a) monotone, if for all u, v ∈ X , we have 〈Au − Av, u − v〉 ≥ 0;
(b) strongly monotone, if there exists mA > 0 such that

〈Au − Av, u − v〉 ≥ mA‖u − v‖2X , for all u, v ∈ X;

(c) bounded, if A maps bounded sets of X into bounded sets of X∗;
(d) pseudomonotone, if it is bounded and un → u weakly in X with

lim sup 〈Aun, un − u〉 ≤ 0

implies lim inf 〈Aun, un − v〉 ≥ 〈Au, u − v〉 for all v ∈ X ;
(e) demicontinuous, if un → u in X implies Aun → Au weakly in X∗.

We shall use the following results related to the pseudomonotonicity of operators.

Proposition 5 For a reflexive Banach space X the following statements hold.

(a) If the operator A : X → X∗ is bounded, demicontinuous and monotone, then A
is pseudomonotone.

(b) If A, B : X → X∗ are pseudomonotone operators, then the sum A+B : X → X∗
is pseudomonotone.

Weturnnow to the studyof (1) and, to this end,weconsider the followinghypotheses
on the data.

K is nonempty, closed and convex subset of X . (4){
A : X → X∗ is pseudomonotone and
strongly monotone with constant mA > 0.

(5)
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ϕ : X × X → R is such that
(a) ϕ(η, ·) : X → R is convex and lower semicontinuous,

for all η ∈ X .

(b) there exists αϕ > 0 such that
ϕ(η1, v2) − ϕ(η1, v1) + ϕ(η2, v1) − ϕ(η2, v2)

≤ αϕ‖η1 − η2‖X ‖v1 − v2‖X , for all η1, η2, v1, v2 ∈ X .

(6)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

j : X → R is such that
(a) j is locally Lipschitz.
(b) ‖ξ‖X∗ ≤ c0 + c1 ‖v‖X for all v ∈ X , ξ ∈ ∂ j(v), with c0, c1 ≥ 0.
(c) there exists α j > 0 such that
j0(v1; v2 − v1) + j0(v2; v1 − v2) ≤ α j ‖v1 − v2‖2X , for all v1, v2 ∈ X .

(7)

αϕ + α j < mA. (8)

f ∈ X∗. (9)
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It can be proved that for a locally Lipschitz function j : X → R, hypothesis (7)(c)
is equivalent to the so-called relaxed monotonicity condition see, e.g., [18]. Note also
that if j : X → R is a convex function, then (7)(c) holds with α j = 0, since it
reduces to the monotonicity of the (convex) subdifferential. Examples of functions
which satisfy condition (7)(c) have been provided in [18,19,28], for instance.

The unique solvability of the variational–hemivariational inequality (1) is provided
by the following version of Theorem 18 in [19], provided by Remark 13 in [28].

Theorem 6 Assume (4)–(9). Then, inequality (1) has a unique solution u ∈ K.

The Proof of Theorem 6 is carried out in several steps, by using the properties
of the subdifferential, a surjectivity result for pseudomonotone multivalued operators
and the Banach fixed point argument.

We conclude this section by introducing the notion of the penalty operator.

Definition 7 An operator P : X → X∗ is said to be a penalty operator of the set
K ⊂ X if P is bounded, demicontinuous, monotone and K = {x ∈ X | Px = 0X∗}.

Note that the penalty operator always exists. Indeed, we recall that any reflexive
Banach space X can be always considered as equivalently renormed strictly convex
space and, therefore, the duality map J : X → 2X

∗
, defined by

J x = { x∗ ∈ X∗ | 〈x∗, x〉 = ‖x‖2X = ‖x∗‖2X∗ }, for all x ∈ X ,

is a single-valued operator. Then, the following result holds.

Proposition 8 Let X be a reflexive Banach space, K a nonempty closed and convex
subset of X, J : X → X∗ the duality map, I : X → X the identity map on X, and
P̃K : X → K the projection operator on K . Then PK = J (I − P̃K ) : X → X∗ is a
penalty operator of K .

Recall that if X is a Hilbert space then J : X → X∗ is the canonical isometry.
Therefore, for the operator PK = J (IX − P̃K ) : X → X∗ in Proposition 8 we deduce
that

‖PK x‖X∗ = ‖x − P̃K x‖X ∀ x ∈ X . (10)

Moreover, recall that for each x ∈ X , P̃K x is the unique element in K which satisfies
the inequality

‖x − P̃K x‖X ≤ ‖x − y‖X ∀ y ∈ K . (11)

Relations (10), (11) will be used in various places in Sects. 4 and 5 of this paper.

3 Main Results

In this section we state and prove our existence, uniqueness and convergence result,
Theorems and 9 and 10. To this end, we consider a family of operators {Pn} and a
sequence {λn} ⊂ R such that, for each n ∈ N, the following hold:
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{
Pn : Xn → X∗

n is a bounded, demicontinuous
and monotone operator.

(12)

λn > 0. (13)

The existenceof a unique solution toProblemPn is a direct consequenceofTheorem
6.

Theorem 9 Assume (5)–(9), (12) and (13). Then, for each n ∈ N, there exists a unique
solution un ∈ X to Problem Pn.

Proof Let n ∈ N. Assumptions (12), (13) and Proposition 5(a) imply that the operator
1
λn

Pn : X → X∗ is pseudomonotone. Therefore, Proposition 5(b) shows that the

operator An : X → X∗ defined by An = A+ 1
λn
Pn is pseudomonotone, too.Moreover,

since Pn is monotone and λn > 0, using assumption (5)(b) we deduce that An is
strongly monotone with constant mA. We conclude from above that the operator An

satisfies condition (5). This allows us to use Theorem 6 with K and A replaced by X
and An , respectively. In this way we obtain the unique solvability of the inequality (2)
which concludes the proof. ��

To study the behavior of the sequence of solutions to Problems Pn as n → ∞, we
consider the following additional hypotheses.

∀ v ∈ K , ∃ {vn} ⊂ X s.t. Pnvn = 0X∗ ∀ n ∈ N and vn → v in X . (14)

λn → 0 as n → ∞. (15)⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

There exists an operator P : X → X∗ such that
(a) for any sequence {un} satisfying un⇀u in X and

lim sup 〈Pnun, un − u〉 ≤ 0 we have
lim inf 〈Pnun, un − v〉 ≥ 〈Pu, u − v〉 for all v ∈ X .

(b) Pu = 0X∗ �⇒ u ∈ K .

(16)

{
There exists a continuous function cϕ : R+ → R+ such that
ϕ(u, v1) − ϕ(u, v2) ≤ cϕ(‖u‖)X‖v1 − v2‖X ∀ u, v1, v2 ∈ X .

(17)
⎧⎨
⎩
For all sequences {un}, {vn} such that
un⇀u in X , vn → v in X ,we have
lim sup

(
ϕ(un, vn) − ϕ(un, un)

) ≤ ϕ(u, v) − ϕ(u, u).

(18)

⎧⎨
⎩
For all sequences {un}, {vn} such that
un⇀u in X , vn → v in X ,we have
lim sup j0(un; vn − un) ≤ j0(u; v − u).

(19)

A simple exemple of function ϕ which satisfies conditions (17) and (18) is given
by

ϕ(u, v) =
∫

Γ

u|v| da ∀ u, v ∈ H1(Ω).
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Here X = H1(Ω) is the Sobolev space of the first order associated to a bounded
domain Ω ⊂ R

d with smooth boundary Γ and, for each u ∈ X we still write u for
the trace of u to Γ .

Our main result in this section is the following.

Theorem 10 Assume (4)–(9), (12)–(19) and denote by un the solution of Problem Pn.
Then un → u in X, as n → ∞, where u ∈ K is the unique solution of Problem P .

Proof The proof of Theorem 10 is carried out in several steps.

(i) We claim that there is an element ũ ∈ X and a subsequence of {un}, still denoted
{un}, such that un⇀ũ in X as n → ∞.

To prove the claim, we establish the boundedness of {un} in X . Let v be a given
element in K . We use assumption (14) and consider a sequence {vn} ⊂ X such that
Pnvn = 0X∗ for all n ∈ N and

vn → v in X . (20)

Let n ∈ N. We now put vn ∈ X in (3) and use the strong monotonicity of the
operator A to obtain

mA ‖un − vn‖2X ≤ 〈Avn, vn − un〉 + 1

λn
〈Pnun, vn − un〉

+ϕ(un, vn) − ϕ(un, un) + j0(un; vn − un) + 〈 f , un − vn〉. (21)

Next, since Pnvn = 0X∗ , assumption (12) implies that

〈Pnun, vn − un〉 ≤ 0 (22)

and assumptions (6)(b), (17) yield

ϕ(un, vn) − ϕ(un, un)

= (
ϕ(un, vn) − ϕ(un, un) + ϕ(vn, un) − ϕ(vn, vn)

) + (
ϕ(vn, vn) − ϕ(vn, un))

≤ αϕ‖un − vn‖2X + cϕ(‖vn‖X )‖un − vn‖X . (23)

On the other hand, by (7) and Proposition 3(ii), we have

j0(un; vn − un)

= j0(un; vn − un) + j0(vn; un − vn) − j0(vn; un − vn)

≤ j0(un; vn − un) + j0(vn; un − vn) + | j0(vn; un − vn)|
≤ α j‖un − vn‖2X + |max { 〈ξ, un − u0〉 : ξ ∈ ∂ j(vn) }|
≤ α j‖un − vn‖2X + (c0 + c1‖vn‖X )‖un − vn‖X , (24)

and, obviously,

〈Avn, vn − un〉 + 〈 f , un − vn〉 ≤ ‖Avn − f ‖X∗‖un − vn‖X . (25)
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We now combine inequalities (21)–(25) to see that

mA ‖un − vn‖2X ≤ ‖Avn − f ‖X‖un − vn‖X + cϕ(‖vn‖X )‖un − vn‖X
+αϕ‖un − vn‖2X + α j‖un − vn‖2X + (c0 + c1‖vn‖X )‖un − vn‖X . (26)

Note that by (20) we know that the sequence {vn} is bounded in X . Therefore,
using inequality (26), the smallness assumption (8) and the properties of the operator
A and function cϕ we deduce that there is a constant C > 0 independent of n such
that ‖un − vn‖X ≤ C . This implies that {un} is bounded sequence in X . Thus, from
the reflexivity of X , by passing to a subsequence, if necessary, we deduce that

un⇀ũ in X , as n → ∞, (27)

with some ũ ∈ X . This implies the claim.

(ii) Next, we show that ũ ∈ K is a solution to Problem P .

Let v be a given element in X . We use (3) to obtain that

1

λn
〈Pnun, un − v〉 ≤ 〈Aun, v − un〉

+ϕ(un, v) − ϕ(un, un) + j0(un, v − un) + 〈 f , un − v〉. (28)

Then, by conditions (5), (7), (17), using the boundedness of the sequence {un} and
arguments similar to those used in the proof of (26), we deduce that each term in the
right hand side of inequality (28) is bounded. This implies that there exists a constant
D > 0 which does not depend on n such that

〈Pnun, un − v〉 ≤ λnD.

We now pass to the upper limit in this inequality and use the convergence (15) to
deduce that

lim sup 〈Pnun, un − v〉 ≤ 0. (29)

We now take v = ũ in (29) to find that

lim sup 〈Pnun, un − ũ〉 ≤ 0,

then we use assumptions (16)(a) and (27) to obtain that

〈Pũ, ũ − v〉 ≤ lim inf 〈Pnun, un − v〉

and, finally, we combine this inequality with (29) to find that 〈Pũ, ũ−v〉 ≤ 0. Hence,
choosing v = ũ + w with w ∈ X , we get 〈Pũ, w〉 = 0 for all w ∈ X . So, it is clear
that Pũ = 0X∗ and, therefore, (16)(b) implies that ũ ∈ K .
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Consider now a given element v ∈ K . We use assumption (14) to find a sequence
{vn} such that Pnvn = 0X∗ for all n ∈ N and (20) holds. Let n ∈ N. We now put
vn ∈ X in (3) and use the equality Pnvn = 0X∗ to obtain that

〈Aun, un − vn〉 ≤ − 1

λn
〈Pnvn − Pnun, vn − un〉

+ϕ(un, vn) − ϕ(un, un) + j0(un; vn − un) + 〈 f , un − vn〉.

Therefore, by the monotonicity of the operator Pn we find that

〈Aun, un − vn〉 ≤ ϕ(un, vn) − ϕ(un, un) + j0(un; vn − un) + 〈 f , un − vn〉. (30)

Next, using (27), (20) and assumption (18) we have

lim sup
(
ϕ(un, vn) − ϕ(un, un)

) ≤ ϕ(̃u, v) − ϕ(̃u, ũ). (31)

On the other hand, from (27), (20) and (19), it follows that

lim sup j0(un; vn − un) ≤ j0(̃u, v − ũ). (32)

Moreover,
〈 f , un − vn〉 → 〈 f , ũ − v〉. (33)

We now gather relations (30)–(33) to see that

lim sup 〈Aun, un − vn〉 ≤ ϕ(̃u, v) − ϕ(̃u, ũ) + j0(̃u, v − ũ) + 〈 f , ũ − v〉. (34)

Next, the properties of A combined with the convergences (27) and (20) imply that
〈Aun, v − vn〉 → 0. Therefore, writing

〈Aun, un − vn〉 = 〈Aun, un − v〉 + 〈Aun, v − vn〉,

we deduce that

lim sup 〈Aun, un − vn〉 = lim sup 〈Aun, un − v〉.

This equality combined with inequality (34) yields

lim sup 〈Aun, un − v〉 ≤ ϕ(̃u, v) − ϕ(̃u, ũ) + j0(̃u, v − ũ) + 〈 f , ũ − v〉, (35)

for all v ∈ K . Now, taking v = ũ ∈ K in (35) and using Proposition 3(i) we obtain
that

lim sup 〈Aun, un − ũ〉 ≤ 0. (36)

This inequality together with (27) and the pseudomonotonicity of A implies

〈Aũ, ũ − v〉 ≤ lim inf 〈Aun, un − v〉 for all v ∈ X . (37)
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Combining now (37) and (35), we have

〈Aũ, ũ − v〉 ≤ ϕ(̃u, v) − ϕ(̃u, ũ) + j0(̃u; v − ũ) + 〈 f , ũ − v〉,

for all v ∈ K . Hence, it follows that ũ ∈ K is a solution to Problem P , as claimed.

(iii) We now prove the weak convergence of the whole sequence {un}.
Since Problem P has a unique solution u ∈ K , we deduce that ũ = u. A careful

analysis of the proof in step (ii) reveals that every subsequence of {un}which converges
weakly in X has theweak limitu.Moreover,we recall that the sequence {un} is bounded
in X . Therefore, using a standard argument we deduce that the whole sequence {un}
converges weakly in X to u, as n → ∞.

(iv) In the final step of the proof, we prove that un → u in X , as n → ∞.

We take v = ũ ∈ K in (37) and use (36) to obtain

0 ≤ lim inf 〈Aun, un − ũ〉 ≤ lim sup 〈Aun, un − ũ〉 ≤ 0,

which shows that 〈Aun, un − ũ〉 → 0, as n → ∞. Therefore, using equality ũ = u,
the strong monotonicity of A and the convergence un⇀u in X , we have

mA‖un − u‖2X ≤ 〈Aun − Au, un − u〉 = 〈Aun, un − u〉 − 〈Au, un − u〉 → 0,

as n → ∞. Hence, it follows that un → u in X , which completes the proof. ��
We end this section by considering the following condition.

{
P : X → X∗ is a pseudomonotone operator and
‖Pnun − Pun‖X∗ → 0, whenever {un} is weakly convergent in X .

(38)

The interest in this condition follows from the next lemma.

Lemma 11 Assume that (38) holds. Then, the operator P satisfies condition (16)(a).

Proof Let v ∈ X and let {un} ⊂ X be a sequence such that un⇀u in X and

lim sup 〈Pnun, un − u〉 ≤ 0. (39)

It follows from here that {un} is bounded and, therefore, assumption (38) yields

〈Pnun − Pun, v − un〉 → 0 as n → ∞. (40)

On the other hand, for each n ∈ N we write

〈Pnun, un − v〉 = 〈Pnun − Pun, un − v〉 + 〈Pun, un − v〉
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and, using (40) we deduce that

lim sup 〈Pnun, un − v〉 = lim sup 〈Pun, un − v〉, (41)

lim inf 〈Pnun, un − v〉 = lim inf 〈Pun, un − v〉. (42)

We now take v = u in (41) and use (39) to obtain that

lim sup 〈Pun, un − u〉 ≤ 0.

Then, using the pseudomonotonicity of P and (42) we find that

〈Pu, u − v〉 ≤ lim inf 〈Pun, un − v〉 = lim inf 〈Pnun, un − v〉

which concludes the proof. ��
Lemma 11 shows that condition (38) implies (16)(a). Moreover, note that checking

(38) is more convenient in various applications than checking (16)(a). For this reason
condition (38) will be used in several places in the rest of the paper.

4 Relevant Particular Cases

In this section we present some particular cases of penalty problems of the form (3)
for which the results in Theorems 9 and 10 hold, and which have some interest on
their own. Everywhere below we assume that (5)–(9), (13), (15) and (17)–(19) hold.
With these data we consider problems P and Pn in which both K and Pn will change
from place to place and, for this reason, will be described below, in each particular
case. For each example, we shall prove that conditions (4), (12), (14) and (16) are
satisfied. Therefore, the existence of a unique solution to the corresponding Problem
Pn will be provided by Theorem 9 and its convergence to the solution of Problem P
is guaranteed by Theorem 10.

(a) The classical penalty method. This particular case is obtained when K satisfies
(4) and Pn = P where P is a penalty operator of K . Note that in this case inequality
(3) becomes the penalty inequality (2).

We now prove the validity of conditions (12), (14) and (16). First, we use Definition
7 to see that the operator P is bounded, demicontinuous and monotone, and, therefore,
condition (12) holds. Moreover, conditions (14) and (16)(b) are obviously satisfied,
since Pn = P and P is a penalty operator of K . In addition, Proposition 5(a) guarantees
that P is pseudomonotone. Assume now that un⇀u in X and lim sup 〈Pnun, un−u〉 ≤
0, which implies that lim sup 〈Pun, un − u〉 ≤ 0. Then, using equality Pn = P and
the pseudomonotonicity of P , we have

lim inf 〈Pnun, un − v〉 = lim inf 〈Pun, un − v〉 ≥ 〈Pu, u − v〉 for all v ∈ X

which shows that (16)(a) holds.
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We are now in a position to apply Theorems 6 and 9 in order to obtain the following
result.

Corollary 12 Assume (4)–(9), (13) and, moreover, assume that P : X → X∗ is a
penalty operator of the set K . Then, for each n ∈ N, there exists a unique solution
un ∈ X to Problem Pn. In addition, if (15) and (17)–(19) hold, then un → u in X, as
n → ∞, where u ∈ K is a unique solution to Problem P . �

Corollary 12 was obtained in [19], in the particular case when ϕ(u, v) = ϕ(v). Its
proof in the general case, when ϕ depends on both u and v, was given in [28].

(b) An unconstrained variational–hemivariational inequality. This particular case
is obtained when K = X and, for each n ∈ N, Pn : X → X∗ is a penalty operator of
the closed ball Bn = { v ∈ X : ‖v‖X ≤ n }. Note that in this case Problem P reads
as follows : find an element u ∈ X such that

〈Au, v − u〉 + ϕ(u, v) − ϕ(u, u) + j0(u; v − u) ≥ 〈 f , v − u〉 ∀ v ∈ X . (43)

We now prove the validity of conditions (12) (14) and (16). First, we use Definition
7 to see that the operator Pn is bounded, demicontinuous and monotone, for each
n ∈ N. Therefore, condition (12) holds. Let v ∈ X . Then, it is easy to see that the
sequence {vn} ⊂ X defined by

vn =
{

0X if n ≤ ‖v‖X ,

v if n > ‖v‖X
satisfies condition (14). Let P : X → X∗ be such that Pv = 0X∗ for any v ∈ X ,
and let un⇀u in X . Then the sequence {un} is bounded in X and, therefore, for n
large enough we have ‖un‖X ≤ n, i.e., un ∈ Bn , which implies that Pnun = 0X∗ . We
deduce from here that condition (38) holds and, by Lemma 11 it follows that (16)(a)
holds, too. Finally, note that condition (16)(b) is obviously satisfied.

We now use Theorems 9 and 10 to deduce that for each n ∈ N, there exists a unique
solution un ∈ X to Problem Pn and, moreover, un → u in X , as n → ∞, where u is
a unique solution to the variational–hemivariational inequality (43).

We note that the previous convergence result is not surprising. Indeed, it follows
from the proof of Theorem 9 that the sequence {un} is bounded in X . Therefore, with
the choice above on Pn we have Pnun = 0 for n large enough. It follows from here
that Problem Pn becomes Problem P for n large enough, which shows that un = u
for n large enough and confirms the convergence un → u in X .

(c) Penalty method associated to the Hausdorff convergence of sets. For this exam-
ple we assume that X is a Hilbert space, K satisfies condition (4) and, for each n ∈ N,
Pn = J (I− P̃n) : X → X∗ where J : X → X∗ is the canonical isometry, I : X → X
is the identity map and P̃n is the projection operator on a set Kn , assumed to satisfy
condition (4). In addition, we assume that

H(Kn, K ) → 0, as n → ∞. (44)
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Here and below H(A, B) denotes the Hausdorff distance of the sets A, B ⊂ X ,
assumed to be nonempty. For the convenience of the reader we recall that

H(A, B) = max {e(A, B), e(B, A)}, (45)

where

e(A, B) = sup
a∈A

d(a, B), e(B, A) = sup
b∈B

d(b, A), (46)

d(a, B) = inf
b∈B ‖a − b‖X , d(b, A) = inf

a∈A
‖a − b‖X . (47)

Wenowprove the validity of conditions (12), (14) and (16). First,we useProposition
8 and Definition 7 to see that (12) holds. Assume now that v ∈ K . Then, using (11)
and (45)–(47) we have

‖v − P̃nv‖X = inf
w∈Kn

‖v − w‖X = d(v, Kn)

≤ sup
z∈K

d(z, Kn) = e(K , Kn) ≤ H(Kn, K )

and, therefore, assumption (44) implies that P̃nv → v in X . Denote vn = P̃nv. Then
vn ∈ Kn and, therefore, Pnvn = J (vn − P̃nvn) = 0X∗ . Moreover, recall that vn → v

in X . We conclude from here that condition (14) is satisfied.
Next, let P : X → X∗ be the operator defined by P = J (I− P̃)where P̃ : X → K

denotes the projection operator on K . Let {un} ⊂ X be a sequence which is weakly
convergent. Then, using (10) and (45)–(47) we deduce that

‖Pnun − Pun‖X∗ = ‖P̃nun − P̃un‖X = inf
w∈Kn

‖w − P̃un‖X
= d(P̃un, Kn) sup

z∈K
d(z, Kn) = e(K , Kn) ≤ H(Kn, K ),

for each n ∈ N. Therefore condition (44) implies

‖Pnun − Pun‖X∗ → 0.

On the other hand, by Propositions 8, Definition 7 and Proposition 5 we see that P is
a pseudomonotone operator. We deduce from above that condition (38) holds and, by
Lemma 11 it follows that (16)(a) holds, too. In addition, condition (16)(b) is obviously
satisfied.

We are now in a position to apply Theorems 9 and 10 in order to obtain the following
result.

Corollary 13 Let X be a Hilbert space. Assume (4)–(9), (13) and, moreover, and, for
each n ∈ N assume that Pn = J (I − P̃n) : X → X∗ where J : X → X∗ is the
canonical isometry, I : X → X is the identity map and P̃n is the projection operator
on the set Kn, assumed to satisfy (4). Then, for each n ∈ N, there exists a unique
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solution un ∈ X to Problem Pn. In addition, if (15), (17)–(19) and (44) hold, then
un → u in X, as n → ∞, where u ∈ K is the unique solution to Problem P .

(d) Penalty method associated to affine transformation of the set of constraints.
For this last example in this section we assume that X is a Hilbert space, K satisfies
conditions (4) and, for each n ∈ N, Pn = J (I − P̃n) : X → X∗ where P̃n is the
projection operator on the set

Kn = anK + bnθ, (48)

where an , bn > 0 and θ ∈ K is given. In addition, we assume that

an → 1, bn → 0 as n → ∞. (49)

Here and below the operators J and I are those defined in the previous example.
Note that assumption (4) combined with (48) guarantees that Kn is a closed convex
nonempty subset of X and, therefore, the operator Pn is well defined. Denote by
P : X → X∗ the operator given by P = J (I − P̃) where P̃ : X → K denotes the
projection operator on K . With these notations we prove the validity of conditions
(12), (14) and (16).

First, we use Proposition 8 and Definition 7 to see that (12) holds. Next, condition
(14) is guaranteed by definition (48) and assumption (49) with vn = anv + bnθ , for
each v ∈ K and n ∈ N. Let {un} ⊂ X be a weakly convergent sequence and let n ∈ N.
Using (10) we deduce that

‖Pnun − Pun‖X∗ = ‖P̃nun − P̃un‖X . (50)

On the other hand, an elementary calculus based on the definition of the projection,
(11), combined with equality (48) reveals that

P̃nz = an P̃
( z − bnθ

an

)
+ bnθ ∀ z ∈ X . (51)

Recall also the nonexpansivity of the projector on Hilbert spaces, that is

‖P̃ y − P̃z‖X ≤ ‖y − z‖X ∀ y, z ∈ X . (52)

We now substitute inequality (51) in (50), then use the triangle inequality and (52) to
deduce that

‖Pnun − Pun‖X∗ ≤ 1

an
|an − 1|‖un‖X + |bn|‖θ‖X . (53)

Recall also that the sequence {un} is bounded in X . Therefore, (53) and (49) imply
that

‖Pnun − Pun‖X∗ → 0. (54)

The convergence (54) combined with the pseudomonotonicity of P , guaranteed by
Proposition 5(a), shows that condition (38) holds and, by Lemma 11 it follows that
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(16)(a) holds, too. On the other hand, condition (16)(b) is a consequence of Proposition
8.

We are in a position to use Theorems 9 and 10 in order to obtain the following
result.

Corollary 14 Let X be a Hilbert space. Assume (4)–(9), (13) and, moreover, for each
n ∈ N assume that Pn = J (I − P̃n) : X → X∗ where P̃n is the projection operator
on the set Kn, given by (48) with an, bn > 0. Then, for each n ∈ N, there exists a
unique solution un ∈ X to Problem Pn. In addition, if (15), (17)–(19) and (49) hold,
then un → u in X, as n → ∞, where u ∈ K is the unique solution to Problem P .

We end this section with two remarks. The first one is that in the particular case
when the set K is bounded, then the example d) is a particular case of the example
c). Indeed, it is easy to see that in this case assumptions (48), (49) imply that (44)
holds. The second remark is that that Theorems 9 and 10 can be applied to various
elliptic variational–hemivariational inequalities which do not cast in the particular
cases presented above. The last section of this manuscript is devoted to the study of
such example, which arises in Contact Mechanics.

5 An application in Contact Mechanics

The results presented in Sects. 3 and 4 can be used in the study of variousmathematical
models which describe the equilibrium of elastic bodies in contact with an obstacle,
the so-called foundation. References in the field are the books [3,18,26,28]. Providing
a description of such contact models requires to introduce a long list of preliminaries
and notation. Therefore, in order to keep this paper in a reasonable length we consider
only the variational formulation of a representative contact model which was already
studied in [25]. The reason of this choice is two fold. First, the results obtained in [25]
provide part of the ingredients we need in our study below. Second, we obtain here a
new result, Theorem 16, which extends some of the results obtained in [25].

Let Ω ⊂ R
d (d = 2, 3) be a domain with smooth boundary Γ , divided into three

measurable disjoint parts Γ1, Γ2 and Γ3 such that meas (Γ1) > 0. A generic point in
Ω ∪ Γ will be denoted by x = (xi ). We use the notation S

d for the space of second
order symmetric tensors on R

d . Moreover, “·′′ and ‖ · ‖ will represent the canonical
inner product and Euclidian norms on R

d and S
d , and τ D denotes the deviator of

the tensor τ ∈ S
d . We use standard notation for the Sobolev and Lebesgue spaces

associated to Ω and Γ and for an element v ∈ H1(Ω)d we still write v for the trace
of v to Γ . In addition, we consider the following spaces:

V = { v ∈ H1(Ω)d : v = 0 on Γ1 },
Q = { σ = (σi j ) : σi j = σ j i ∈ L2(Ω) }.

The spaces V and Q are real Hilbert spaces endowed with the inner products given
by

(u, v)V =
∫

Ω

ε(u) · ε(v) dx, (σ , τ )Q =
∫

Ω

σ · τ dx, (55)
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where, here and below, ε(v) denotes the linearized strain of v. The associated norms
on these spaces are denoted by ‖ · ‖V and ‖ · ‖Q , respectively. We use notation V ∗
and 〈·, ·〉 for the topological dual of V and the duality pairing between V ∗ and V ,
respectively. We also denote by 0V the zero element of V and, for any element v ∈ V ,
we denote by vν and vτ its normal and tangential components on Γ given by vν = v ·ν
and vτ = v−vνν, respectively. Finally, we recall that the Sobolev trace theorem yields

‖v‖L2(Γ3)d
≤ ‖γ ‖ ‖v‖V ∀ v ∈ V , (56)

where ‖γ ‖ represents the norm of the trace operator γ : V → L2(Γ3)
d .

Consider in what follows the dataA, k, f 0, f 2, F , g and jν , assumed to satisfy the
following conditions.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a) A : Ω × S
d → S

d .

(b) There exists LA > 0 such that
‖A(x, ε1) − A(x, ε2)‖ ≤ LA‖ε1 − ε2‖

∀ ε1, ε2 ∈ S
d , a.e. x ∈ Ω.

(c) There exists mA > 0 such that
(A(x, ε1) − A(x, ε2)) · (ε1 − ε2) ≥ mA ‖ε1 − ε2‖2

∀ ε1, ε2 ∈ S
d , a.e. x ∈ Ω.

(d) The mapping x �→ A(x, ε) is measurable on Ω,

for any ε ∈ S
d .

(d) The mapping x �→ A(x, 0) belongs to Q.

(57)

k > 0. (58)

f 0 ∈ L2(Ω)d . (59)

f 2 ∈ L2(Γ2)
d . (60)

F ∈ L2(Γ3), F(x) ≥ 0 a.e. x ∈ Γ3. (61)

g > 0. (62)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

jν : Γ3 × R → R is such that
(a) jν(·, r) is measurable on Γ3 for all r ∈ R and there
exists e ∈ L2(Γ3) such that jν(·, e(·)) ∈ L1(Γ3).

(b) jν(x, ·) is locally Lipschitz on R for a.e. x ∈ Γ3.

(c) |∂ jν(x, r)| ≤ c0 + c1 |r | for a.e. x ∈ Γ3,

for all r ∈ R with c0, c1 ≥ 0.
(d) j0ν (x, r1; r2 − r1) + j0ν (x, r2; r1 − r2) ≤ α jν |r1 − r2|2
for a.e. x ∈ Γ3, all r1, r2 ∈ R with α jν ≥ 0.

(e) either jν(x, ·) or − jν(x, ·) is regular on R for a.e. x ∈ Γ3.

(63)

α jν ‖γ ‖2 < mA. (64)

Note that in (63) and below we denote by ∂ jν(x, ·) and j0(x, ·; ·) the generalized
gradient and the generalized directional derivative of jν with respect to the second
variable, for a.e. x ∈ Γ3.
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We now introduce the sets U , W and K defined by

U = { v ∈ V : vν ≤ g a.e. on Γ3 }, (65)

W = { v ∈ V : ‖εD(v)‖ ≤ k a.e. in Ω }, (66)

K = U ∩ W . (67)

Moreover, let A, ϕ, j , f be defined as follows:

A : V → V ∗, 〈Au, v〉 =
∫

Ω

Aε(u) · ε(v) dx, (68)

ϕ : V × V → R, ϕ(u, v) =
∫

Γ3

Fv+
ν da, (69)

j : V → R, j(v) =
∫

Γ3

jν(vν) da, (70)

f ∈ V ∗, 〈 f , v〉 =
∫

Ω

f 0 · v dx +
∫

Γ2

f 2 · v da, (71)

for all u, v ∈ V . Assumptions (57)–(63) guarantee that the set K is nonempty and
the integrals in (68)–(71) are well-defined. Moreover, (63) implies that j is a locally
Lipschitz function on V and, therefore, its directional derivative at any the point u ∈ V
in any the direction v ∈ V , denoted j0(u; v), is well defined. Finally, note that the
function ϕ does not depend on u.

With these notations we consider the following problem.

Problem Q. Find a function u ∈ K such that

〈Au, v − u〉 + ϕ(u, v) − ϕ(u, u) + j0(u; v − u)

≥ 〈 f , v − u〉 for all v ∈ K . (72)

Problem Q was introduced in our recent paper [25]. It represents the variational
formulation of a mathematical model which describes the equilibrium of an elastic
body made of a locking material in frictionless contact with a foundation. Here, the
operator A is the elasticity operator, assumed to be nonlinear, k represents the yield
limit of the vonMises convexwhich governs the locking constraints of thematerial, f 0
denotes the density of body forces and f 2 represents the density of surface tractions
which act on Γ3. The body is fixed on Γ1 and is in potential contact on Γ3 with a
foundation made of a rigid body covered by a deformable layer of thickness g and a
rigid-plastic crust of yield limit F . The function jν is the so-called normal compliance
function which describes the behaviour of the deformable layer of the foundation.

In the study of ProblemQ we recall the following existence and uniqueness result.

Theorem 15 Assume that (57)–(64) hold. Then Problem Q has a unique solution
u ∈ K.
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The proof of Theorem 15 can be found in [25], based on the abstract existence
and uniqueness result provided by Theorem 6. There, it was proved that assumptions
(57)–(64) imply conditions (4)–(9) with X = V and A, ϕ, j , f given by (68)–(71).

We now illustrate the use of the abstract results in Theorems 9 and 10 in the study of
Problem Q. To this end we consider a normal compliance function pν which satisfies
the following condition.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

pν : Γ3 × R → R+ is such that
(a) there exists L pν > 0 such that

|pν(x, r1) − pν(x, r2)| ≤ L pν |r1 − r2|
for all r1, r2 ∈ R, a.e. x ∈ Γ3,

(b) (pν(x, r1) − pν(x, r2)) (r1 − r2) ≥ 0
for all r1, r2 ∈ R, a.e. x ∈ Γ3,

(c) pν(·, r) is measurable on Γ3 for all r ∈ R,

(d) pν(x, r) = 0 if and only if r ≤ 0, a.e. x ∈ Γ3.

(73)

A typical example of function satisfying (73) is pν(x, r) = r+ for all r ∈ R, a.e.
x ∈ Γ3. Next, for each n ∈ N we assume that kn and gn satisfy

kn > 0 (74)

gn > 0, (75)

and we define the sets

Un = { v ∈ V : vν ≤ gn a.e. on Γ3 }, (76)

Wn = { v ∈ V : ‖εD(v)‖ ≤ kn a.e. in Ω }, (77)

Kn = Un ∩ Wn, (78)

Σn = { τ ∈ Q : ‖τ D‖ ≤ kn a.e. in Ω }. (79)

Note that Σn is a closed convex subset of the Hilbert space Q. These properties
allows us to consider the projection operator on Σn , denoted P̃n . Moreover, using the
Riesz representation theorem we define the operator Pn : V → V ∗ by equality

〈Pnu, v〉 =
∫

Ω

(ε(u) − P̃nε(u)) · ε(v) dx

+
∫

Γ3

pν(uν − gn)vν da ∀ u, v ∈ V . (80)

Assume (13). Then, for each n ∈ N, we consider the following problem.

Problem Qn. Find a function un ∈ V such that

〈Aun, v − un〉 + 1

λn
〈Pnun, v − un〉 + ϕ(v) − ϕ(un)

+ j0(un; v − un) ≥ 〈 f , v − un〉 ∀ v ∈ X . (81)
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We also consider the following assumption:

gn → g and kn → k. (82)

We now state and prove the following existence, uniqueness and convergence result.

Theorem 16 Assume (57)–(64), (73)–(75) and (13). Then:

(i) For each n ∈ N, there exists a unique solution un to Problem Q.
(ii) If, in addition (82) and (15) hold, the solution un of ProblemQn converges to the

solution u of Problem Q, i.e., un → u in V , as n → ∞.

Before presenting the proof of Theorem 16wemake the following comments. First,
the sets K and Kn defined by (67) and (78), respectively, do not satisfy an equality of
the form (48). Moreover, the operator Pn is not expressed in terms of the projection
operator on Kn . We conclude from here that we are not in a position to obtain Theorem
16 as a consequence of Corollaries 13 or 14. In fact, Problem Qn represents a type
of penalty problem which does not cast in the particular cases treated in Sect. 4. This
example shows, once more, that our results in this paper can be used in the study of a
large class of the penalty problems.

Next, we consider the closed convex subset of Q given by

Σ = { τ ∈ Q : ‖τ D(v)‖ ≤ k a.e. in Ω } (83)

and denote by P̃ : Q → Σ the projection operator on Σ . Moreover, we use the Riesz
representation theorem, again, to define the operator P : V → V ∗ by equality

〈Pu, v〉 =
∫

Ω

(ε(u) − P̃ε(u)) · ε(v) dx

+
∫

Γ3

pν(uν − g)vν da ∀ u, v ∈ V . (84)

The proof of Theorem 16 requires some preliminaries that we recall in what follows
together with the corresponding references.

Lemma 17 Under the assumption (63), the function (70) satisfies the following prop-
erty: ⎧⎨

⎩
For all sequences {un}, {vn} such that
un⇀u in V , vn → v in V ,we have
lim sup j0(un; vn − un) ≤ j0(u; v − u).

Lemma 18 Assume that gn, g, kn, k > 0. Then, the operators Pn : V → V ∗ and
P : V → V ∗ are penalty operators to the sets Kn and K , respectively, i.e., they satisfy
the conditions in Definition 7 with X = V and Kn, K given by (78) and (67).

Lemma 19 Assume that kn, k > 0. Then, the projection operators P̃n : Q → Σn and
P̃ : Q → Σ satisfy the following condition:

‖P̃nτ − P̃τ‖Q ≤ |kn − k| ∀ τ ∈ Q. (85)
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Lemma 17 is a direct consequence of Lemma 6 in [28, p. 123]. Lemma (18) was
proved in [25] for the operator P and, therefore, is valid for the operator Pn , too.
Finally, Lemma 19 corresponds to Proposition 4.6 in [26, p. 102].

We now have all the ingredients to provide the proof of Theorem 16.

Proof (i) Let n ∈ N. It follows from Lemma 18 and Definition 7 that the operator
Pn is bounded, demicontinuous and monotone and, therefore, it satisfies condition
(12). The existence of a unique solution of ProblemQ is now a direct consequence
of Theorem 9.

(ii) Let u, v1, v2 ∈ V . We use definition (69) and the trace inequality (56) to see
that

ϕ(u, v1) − ϕ(u, v2) ≤ ‖F‖L2(Γ3)
‖v1 − v2‖L2(Γ3)d

≤ ‖γ ‖‖F‖L2(Γ3)
‖v1 − v2‖V ,

which shows that condition (17) is satisfied. Assume now that {un}, {vn} are
sequences of V such that un⇀u and vn → v in V . Then, using the compactness
of the trace we have

ϕ(un, vn) − ϕ(un, un) =
∫

Γ3

F(v+
nν − u+

nν) da

→
∫

Γ3

F(v+
ν − u+

ν ) da = ϕ(u, v) − ϕ(u, u),

which shows that condition (18) holds. Moreover, Lemma 17 guarantees that
condition (19) is satisfied, too.

Let v ∈ K , n ∈ N and let vn = αnv where

αn = min
{gn
g

,
kn
k

}
> 0. (86)

Then, using the definitions of the sets Kn and K it is easy to see that vn ∈ Kn . We now
use Lemma 18 and Definition 7 to see that Pnvn = 0V ∗ . On the other hand, definition
(86) and assumption (82) show that αn → 1. Therefore, since vn = αnv we deduce
that vn → v in V . We conclude from here that condition (14) is satisfied.

Let v ∈ V ,w ∈ V and let n ∈ N. Then, using the definitions (80) and (84) combined
with inequality (85), assumption (73)(a) and (56) we find that

〈Pnv − Pv,w〉 =
∫

Ω

(P̃ε(v) − P̃nε(v)) · ε(w) dx

+
∫

Γ3

(
pν(vν − gn) − (pν(vν − g)

)
wν da

≤ ‖P̃nε(v) − P̃ε(v)‖Q‖ε(w)‖Q + L p|gn − g|
∫

Γ3

‖w‖ da

≤ |kn − k|‖w‖V + L p|gn − g|(meas Γ3)
1
2 ‖w‖L2(Γ3)d

≤
(
|kn − k| + L p|gn − g|(meas Γ3)

1
2 ‖γ ‖

)
‖w‖V .
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It follows from here that

‖Pnv − Pv‖V ∗ ≤ |kn − k| + L p|gn − g|(meas Γ3)
1
2 ‖γ ‖ ∀ v ∈ V , n ∈ N. (87)

Consider now a sequence {un} of elements of V . We write (87) with v = un then
we use (82) to deduce that

‖Pnun − Pun‖V ∗ → 0. (88)

The convergence (88) combined with the pseudomonotonicity of P shows that con-
dition (38) holds and, by Lemma 11 it follows that (16)(a) holds, too. On the other
hand, condition (16)(b) is a consequence of Lemma 18.

We conclude from above that conditions (14), (16), (17), (18) and (19) are satisfied.
Moreover, recall that assumptions (57)–(64) imply conditions (4)–(9) with X = V
and A, ϕ, j , f given by (68)–(71). We are in a position to use Theorem 10 in order to
conclude the proof. ��

In addition to the mathematical interest in the convergence result in Theorem 10(ii),
it is important from the mechanical point of view, since it provides the link between
the weak solutions of two different models of contact. Indeed, Problem Qn describes
the frictionless contact of an elastic material, with a deformable foundation covered
by a crust. In contrast, Problem Q describes the frictionless contact of a locking
material with a rigid-deformable foundation covered by a crust. Note that Problem
Q is nonsmooth since it contains unilateral constraints both in the constitutive law
and the contact boundary condition. In contrast, ProblemQn is smoother, since these
constraints have been removed. Theorem 10 shows that we can approach the solution
of the nonsmooth contact problem Q by the solution of a smoother contact problem
Qn , as the penalty parameter λn converges to zero and the convergences (82) hold.
The novelty of this result arises from the fact that it guarantees the convergences of the
solution even when the penalty problems are constructed with the parameters gn and
kn , different from g and k, provided that (82) holds. This is important in applications,
since the data g and k are obtained from experiments and, therefore, their value can
slightly vary due to the error measurements.
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