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a b s t r a c t

We consider a history-dependent variational–hemivariational inequality with uni-
lateral constraints in a reflexive Banach space. The unique solvability of the
inequality follows from an existence and uniqueness result obtained in Sofonea and
Migórski (2016, 2018). In this current paper we introduce and study a generalized
penalty method associated to the inequality. To this end we consider a sequence
of generalized penalty problems, governed by a parameter λn and an operator Pn.
We prove the unique solvability of the penalty problems as well as the convergence
of corresponding solutions sequence to the solution of original problem. These
results extend the previous results in Sofonea et al. (2018) and Xiao and Sofonea
(2019). Finally, we illustrate them in the study of a history-dependent problem
with unilateral boundary conditions which describes the quasistatic evolution of a
rod–spring system under the action of given applied force.

© 2021 Elsevier Ltd. All rights reserved.

1. Introduction

A large number of processes which arise in Mechanics, Physics and Engineering Sciences are described by
boundary value problems which, in a weak formulation, lead to mathematical models expressed in terms
of variational or hemivariational inequalities. Variational inequalities refer to those inequality problems
which have a convex structure. They have been studied extensively for over half a century since 1960s,
both theoretically and numerically, by using arguments of convex analysis. Representative references in the
field include [1–3] and, more recently, [4–10]. The notion of hemivariational inequality was introduced in
[11] in the study of engineering problems involving non-smooth, non-monotone and possibly multivalued
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relations for deformable bodies. Since then, the theory of hemivariational inequalities grew rapidly. It uses
as main ingredient the properties of the subdifferential in the sense of Clarke, defined for locally Lipschitz
functions which may be nonconvex. Comprehensive references in the area include [12–14] and, more recently,
[15–20]. Finally, variational–hemivariational inequalities represent a special class of inequalities, driven by
both convex and nonconvex functions. They represent a powerful tool in the study of a wide range of
nonlinear boundary value problems with or without unilateral constraints, as shown in [21–25].

History-dependent operators represent a class of nonlinear operators defined on spaces of vector-
valued continuous or Lebesgue integrable functions. They arise in Contact Mechanics and describe various
memory effects which appear either in the material’s behaviour or in the contact conditions. Variational–
hemivariational inequalities involving in their structure a history-dependent operator are called history-
dependent variational–hemivariational inequalities. They have been intensively studied in the recent
literature. General existence and uniqueness results can be found in [26,27], together with various appli-
cations in Contact Mechanics. A convergence result which shows the continuous dependence of the solution
with respect to the data was obtained in [28]. The numerical analysis of history-dependent variational–
hemivariational inequalities can be found in [29,30]. There, numerical schemes have been considered and error
estimates have been derived. Additional results on inequality problems with history-dependent operators can
be found in [26,31–33].

The current paper represents a continuation of [34,35]. Indeed, the paper [34] was devoted to the study of
a penalty method for history-dependent variational–hemivariational inequalities. There, the corresponding
unconstrained problems have been constructed with a given penalty operator P and a convergence result was

roved. In [35] we studied a generalized penalty method in the study of elliptic variational–hemivariational
nequalities, i.e., time-independent variational–hemivariational inequalities. There, in contrast to [34], the
nconstrained problems have been constructed with a sequence of penalty operators, denoted {Pn}.

The aim of the current paper is twofold. The first one is to use the generalized penalty method in
he study of history-dependent variational–hemivariational inequalities. Thus, our main convergence result,
heorem 16, extends our previous work in [34,35], since these results can be obtained in the particular cases
hen Pn = P for each n ∈ N and when the time is removed, respectively. Recall also that the proof of
heorem 16 is based on assumptions on the locally Lipschitz function j which are less restrictive than that
sed in [34,35]. This ingredient represents one of the traits of novelty of this contribution, as we mention in
emark 20. The second aim of the current paper is to illustrate the use of Theorem 16 in the study of a new
athematical model of contact and to provide the corresponding mechanical interpretations.
The outline of the paper is as follows. Basic notation and preliminary material needed in the rest of

he paper are recalled in Section 2. In Section 3 we state the original inequality problem and the penalty
roblems, together with their unique solvability. Then, in Section 4 we state and prove our main result,
heorem 16, which states that the sequence of solutions of the generalized penalty problems converges to the

olution of the original problem. The proof is carried out in several steps, based on arguments of compactness,
seudomonotonicity and the properties of the Clarke subdifferential. Finally, in Section 5 we illustrate the
se of this abstract convergence result in the study of a nonlinear boundary value problem which describes
he quasistatic evolution of a rod–spring system with unilateral constraints.

. Background material

In this section we shortly recall some notation and preliminaries which are needed in the rest of the paper.
or more details on the material presented below we refer the reader to [10,12,36–38].

Everywhere in this paper X represents a reflexive Banach space with dual X∗ and ⟨·, ·⟩ denotes the duality
etween X∗ and X. We use the notations ∥·∥X and ∥·∥X∗ for the norm on the spaces X and X∗, respectively,

∗ ∗
nd 0X for the zero element of X . Throughout the paper all the limits, upper and lower limits below are
2
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considered as n → ∞, even if we do not mention it explicitly. Also, the symbols “⇀” and “→” stand for the
weak and the strong convergence in various spaces, respectively, which will be specified. Finally, we denote
by 2X∗ the set of all subsets of X∗.

We start by recalling the following definitions concerning single valued operators.

Definition 1. An operator A : X → X∗ is said to be:

(a) monotone if ⟨Au − Av, u − v⟩ ≥ 0, for all u, v ∈ X;
b) strongly monotone, if there exists mA > 0 such that

⟨Au − Av, u − v⟩ ≥ mA∥u − v∥2
X , for all u, v ∈ X;

(c) bounded, if A maps bounded sets of X into bounded sets of X∗;
d) pseudomonotone, if it is bounded and un ⇀ u in X with lim sup ⟨Aun, un − u⟩ ≤ 0 implies

lim inf ⟨Aun, un − v⟩ ≥ ⟨Au, u − v⟩ for all v ∈ X;
(e) demicontinuous, if un → u in X implies Aun ⇀ Au in X∗.

We shall use the following properties of pseudomonotone operators.

Proposition 2.

(a) If the operator A : X → X∗ is bounded, demicontinuous and monotone, then A is pseudomonotone.
b) If A, B : X → X∗ are pseudomonotone operators, then the sum A + B : X → X∗ is pseudomonotone.

We now recall the notions of the pseudomonotonicity and generalized pseudomonotonicity for multivalued
operators.

Definition 3. An operator A : X → 2X∗ is said to be pseudomonotone if:

(a) for each v ∈ X, the set Av ⊂ X∗ is nonempty, bounded, closed and convex;
b) A is upper semicontinuous from each finite dimensional subspace of X to X∗ endowed with the weak

topology;
(c) for any sequences {un} ⊂ X and {u∗

n} ⊂ X∗ such that

un ⇀ u in X, u∗
n ∈ Aun for all n ∈ N and lim sup ⟨u∗

n, un − u⟩ ≤ 0,

and any v ∈ X, there exists u∗(v) ∈ Au such that

⟨u∗(v), u − v⟩ ≤ lim inf ⟨u∗
n, un − v⟩.

Definition 4. An operator A : X → 2X∗ is said to be generalized pseudomonotone, if for any sequences
{un} ⊂ X, {u∗

n} ⊂ X∗ with u∗
n ∈ Aun, un ⇀ u in X, u∗

n ⇀ u∗ in X∗ and

lim sup ⟨u∗
n, un − u⟩ ≤ 0,

we have u∗ ∈ Au and ⟨u∗
n, un⟩ → ⟨u∗, u⟩.

It is well known that every pseudomonotone operator is generalized pseudomonotone, while the converse
holds under an additional boundedness condition, see [17, Proposition 3.58].

For real valued functions defined on X we recall the following definition.

3
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Definition 5. Let φ : X → R := R ∪ {+∞}. Then:

(a) the function φ is proper, if it is not identically equal to +∞, i.e., the effective domain dom φ is nonempty,
where dom φ = {v ∈ X | φ(v) < +∞}.

b) the function φ is (sequentially) lower semicontinuous (l.s.c., for short), if vn → v in X implies φ(v) ≤
lim inf φ(vn).

Moreover, the following property holds.

roposition 6. Let φ : X → R := R ∪ {+∞} be a convex l.s.c. function such that dom φ = X. Then, φ is
ontinuous.

We now recall the notion of generalized (Clarke) subdifferential for a locally Lipschitz function.

efinition 7. A function j : X → R is called to be locally Lipschitz continuous if, for each u ∈ X, there
exist a neighbourhood Ou of u and a constant Lu > 0 such that

|j(w) − j(v)| ≤ Lu∥w − v∥X for all w, v ∈ Ou.

Given a locally Lipschitz function j : X → R, we denote by j0(u; v) the generalized (Clarke) directional
derivative of J at the point u ∈ X in the direction v ∈ X defined by

j0(u; v) = lim sup
λ→0+, w→u

j(w + λv) − j(w)
λ

.

he generalized (Clarke) gradient of j : X → R at u ∈ X is given by

∂j(u) = { ξ ∈ X∗ | j0(u; v) ≥ ⟨ξ, v⟩ for all v ∈ X }.

Moreover, the function j is said to be regular (in the sense of Clarke) at the point u ∈ X if, for all v ∈ X,
the one-sided directional derivative j′(u; v) exists and j0(u; v) = j′(u; v).

The generalized gradient and generalized directional derivative of a locally Lipschitz functional enjoy a
number of properties that we gather in the following result, which corresponds to [17, Proposition 3.23].

Proposition 8. Assume that j : X → R is a locally Lipschitz function. Then:

(a) for every x ∈ X, the function X ∋ v ↦→ j0(x; v) ∈ R is positively homogeneous and subadditive, i.e.,
j0(x; λv) = λj0(x; v) for all λ ≥ 0, v ∈ X and j0(x; v1 + v2) ≤ j0(x; v1) + j0(x; v2) for all v1, v2 ∈ X.

b) for every v ∈ X it holds j0(x; v) = max { ⟨ξ, v⟩ : ξ ∈ ∂j(x) }.
(c) the function X × X ∋ (u, v) ↦→ j0(u; v) ∈ R is upper semicontinuous.

Furthermore, we review the notion of the penalty operator.

Definition 9. An operator P : X → X∗ is said to be a penalty operator of the set K ⊂ X if P is bounded,
demicontinuous, monotone and K = {x ∈ X | Px = 0X∗}.

We recall that any reflexive Banach space X can be always considered as equivalently renormed strictly
convex space. Therefore, the duality map J : X → 2X∗ , defined by

J(x) = { x∗ ∈ X∗ | ⟨x∗, x⟩ = ∥x∥2 = ∥x∗∥2 }, for all x ∈ X,
X X∗

4
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is a single-valued operator. Moreover, if K is a nonempty, closed and convex subset of reflexive Banach space
X, then the operator P = J(I − PK) is a penalty operator of K, where I is the identity map on X, and
PK : X → K is the projection operator of K (see [37, Proposition 1.3.27]). We conclude that, under the
assumptions above, the penalty operator always exists.

Assume now that Y is a normed space endowed with the norm ∥ · ∥Y . We denote by C(R+; X) and
C(R+; Y ) the space of continuous functions defined on R+ with values on X and Y , respectively. Moreover,
for K ⊂ X, we denote by C(R+; K) the set of functions defined on R+ with values on K. We now recall the
following definition used in [27,39], for instance.

Definition 10. An operator S : C(R+; X) → C(R+; Y ) is said to be a history-dependent operator if, for
each n ∈ N, there exists sn > 0 satisfying

∥(Su1)(t) − (Su2)(t)∥Y ≤ sn

∫ t

0
∥u1(s) − u2(s)∥X ds

for all u1, u2 ∈ C(R+; X) and all t ∈ [0, n].

Note that basic properties of history-dependent operators together with various examples in Solid and
Contact Mechanics can be found in [27, Ch.3].

3. Problem statement and well-posedness results

We now turn to the inequality problem we consider in this paper. The functional framework is the
following. Let K be a subset of X and let (Y, ∥ · ∥Y ) be a normed space. Given two operators A : X → X∗

and S : C(R+; X) → C(R+; Y ), a function φ : Y × X × X → R, a locally Lipschitz function j : X → R and a
function f : R+ → X∗, we consider the following history-dependent variational–hemivariational inequality.

Problem 11. Find u ∈ C(R+; K) such that, for all t ∈ R+,

⟨Au(t), v − u(t)⟩ + φ((Su)(t), u(t), v) − φ((Su)(t), u(t), u(t)) (3.1)
+j0(u(t); v − u(t)) ≥ ⟨f(t), v − u(t)⟩ for all v ∈ K.

Note that Problem 11 is governed by a constraint set K. Therefore, for both theoretical and numerical
reasons, it is useful to approximate it by using a penalty method. The classical penalty method replaces
Problem 11 by a sequence of unconstrained inequality problems which, for every n ∈ N, can be formulated
as follows.

Problem 12. Find un ∈ C(R+; X) such that, for all t ∈ R+,

⟨Aun(t), v − un(t)⟩ + 1
λn

⟨Pun(t), v − un(t)⟩ + φ((Sun)(t), un(t), v) (3.2)

−φ((Sun)(t), un(t), un(t)) + j0(un(t); v − un(t))
≥ ⟨f(t), v − un(t)⟩ for all v ∈ X.

Note that Problem 12 is formally obtained from Problem 11 by removing the constraint u ∈ K and
ncluding a penalty term governed by a parameter λn > 0 and an operator P : X → X∗. Penalty

ethods have been used as an approximation tool to treat constraints in variational inequalities, as shown
n [2,3,39,40], and variational–hemivariational inequalities, as shown in [27,34,41], for instance.

An extension of Problem 12 can be obtained by replacing in (3.2) the operator P with an operator
n : X → X∗ which depends on n ∈ N. It leads to the following generalized penalty problem associated

with Problem 11.

5
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Problem 13. Find un ∈ C(R+; X) such that, for all t ∈ R+,

⟨Aun(t), v − un(t)⟩ + 1
λn

⟨Pnun(t), v − un(t)⟩ + φ((Sun)(t), un(t), v) (3.3)

−φ((Sun)(t), un(t), un(t)) + j0(un(t); v − un(t))
≥ ⟨f(t), v − un(t)⟩ for all v ∈ X.

Likewise, Problem 13 is formally obtained from Problem 11 by removing the constraint u ∈ K and
ncluding a penalty term governed by a parameter λn > 0 and an operator Pn : X → X∗ which, in contrast
o (3.2), depends on n. Moreover, note that Problem 12 is a particular case of Problem 13, obtained when
n = P for all n ∈ N.

In order to state existence and uniqueness results for Problems 11 and 13, we impose the following
ssumptions on the data.

H(K) : K is a nonempty, closed and convex subset of X.
H(A) : A : X → X∗ is pseudomonotone and strongly monotone with constant mA > 0.
H(S) : S : C(R+; X) → C(R+; Y ) is a history-dependent operator with constant
sn > 0, for each n ∈ N.
H(φ) : φ : Y × X × X → R is a function such that:

(a) φ(y, u, ·) : X → R is convex and l.s.c., for all y ∈ Y and all u ∈ X;
b) there exist constants αφ ≥ 0 and βφ ≥ 0 such that

φ(y1, u1, v2) − φ(y1, u1, v1) + φ(y2, u2, v1) − φ(y2, u2, v2)
≤ αφ∥u1 − u2∥X ∥v1 − v2∥X + βφ∥y1 − y2∥Y ∥v1 − v2∥X ,

for all y1, y2 ∈ Y and all u1, u2, v1, v2 ∈ X.

H(j) : j : X → R is a function such that:

(a) j is locally Lipschitz continuous;
b) there exist constants c0 ≥ 0 and c1 > 0 such that

∥ξ∥X∗ ≤ c0 + c1∥v∥X , for all ξ ∈ ∂j(v) and v ∈ X;

(c) there exists αj ≥ 0 such that

j0(v1; v2 − v1) + j0(v2; v1 − v2) ≤ αj∥v1 − v2∥2
X , for all v1, v2 ∈ X.

H(s) : αφ + αj < mA.
H(f) : f ∈ C(R+; X∗).
We have the following existence and uniqueness result.

heorem 14. Let X be a reflexive Banach space, Y a normed space and assume H(K), H(A), H(S),
(φ), H(j), H(s), H(f). Then Problem 11 has a unique solution u ∈ C(R+; K).

The proof of Theorem 14 can be found in [27]. It is obtained by using arguments of elliptic variational–
hemivariational inequalities and a fixed point property for history-dependent operators. The unique solv-
ability of Problem 13 is obtained under the following additional assumptions.

H(λn) : λn > 0 for all n ∈ N.
H(Pn) : Pn : X → X∗ is bounded, demicontinuous and monotone for all n ∈ N.
6
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Theorem 15. Let X be a reflexive Banach space, Y a normed space and assume H(A), H(S), H(φ), H(j),
(s), H(f), H(λn), H(Pn). Then, for every n ∈ N, Problem 13 has a unique solution un ∈ C(R+; X).

Proof. Let n ∈ N. Assumptions H(λn), H(Pn) and Proposition 2(a) imply that the operator 1
λn

Pn : X →
X∗ is pseudomonotone. Therefore, assumption H(A) on the operator A and Proposition 2(b) show that the
operator An : X → X∗ defined by An = A + 1

λn
Pn is pseudomonotone, too. Moreover, since Pn is monotone

and λn > 0, using assumption H(A) we deduce that An is strongly monotone with constant mA. We conclude
from above that the operator An satisfies condition H(A), too. This allows us to use Theorem 14 with X

and An instead of K and A, respectively. In this way we obtain the unique solvability of the inequality (3.3)
which concludes the proof. □

4. A convergence result

In the section we move to the convergence of solution to generalized penalty problem. To this end, besides
the assumptions introduced in the previous section, we consider the following assumptions.

(H0) : λn → 0 as n → ∞.
(H1) : For each v ∈ K, there exists a sequence {vn} ⊂ X such that

Pnvn = 0X∗ for each n ∈ N and vn → v in X as n → ∞. (4.1)

(H2) : There exists an operator P : X → X∗ such that:

(a) for any sequence {un} satisfying un ⇀ u in X and
lim sup ⟨Pnun, un − u⟩ ≤ 0 we have

lim inf ⟨Pnun, un − v⟩ ≥ ⟨Pu, u − v⟩ for all v ∈ X;

b) Pu = 0X∗ implies u ∈ K.

(H3) : There exists a continuous function cφ : R+ × R+ → R+ such that

φ(y, u, v1) − φ(y, u, v2) ≤ cφ(∥y∥Y , ∥u∥X) ∥v1 − v2∥X

for all y ∈ Y and all u, v1, v2 ∈ X.
We now state and prove our main result in this paper.

Theorem 16.
Assume H(A), H(S), H(φ), H(j), H(s), H(f), H(λn), H(Pn), (H0), (H1), (H2), (H3). Then the solution

un of Problem 13 converges to the solution u of Problem 11 in the following sense:

un(t) → u(t) in X as n → ∞, for each t ∈ R+. (4.2)

The proof of Theorem 16 will be carried out in several steps. For the sake of convenience, we suppose,
in what follows, that assumptions of Theorem 16 hold. We start by introducing the following intermediate
problem.

Problem 17. Find ũn ∈ C(R+; X) such that, for all t ∈ R+,

⟨Aũn(t), v − ũn(t)⟩ + 1
λn

⟨Pnũn(t), v − ũn(t)⟩ + φ((Su)(t), u(t), v) (4.3)

−φ((Su)(t), u(t), ũn(t)) + j0(ũn(t); v − ũn(t))
≥ ⟨f(t), v − ũn(t)⟩ for all v ∈ X.
7
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Note that in contrast to inequality (3.3), which is a history-dependent variational–hemivariational
inequality, inequality (4.3) is a time-dependent variational–hemivariational inequality, since there Su is a
iven function. We have the following existence, uniqueness and convergence result.

emma 18.

(a) For each n ∈ N, Problem 17 admits a unique solution ũn ∈ C(R+; X).
b) The following convergence holds:

ũn(t) → u(t) in X as n → ∞, for each t ∈ R+. (4.4)

Proof. (a) The unique solvability of Problem 17 follows from arguments similar to those used to prove
Theorem 15. For this reason we do not present the details.

(b) The proof of the assertion is divided into the three claims that we state and prove in what follows.

Claim 1. For each t ∈ R+ the sequence {ũn(t)} is bounded.

Let t ∈ R+ and v ∈ K. Condition (H1) implies that there exists a sequence {vn} ⊂ X such that (4.1)
holds. Assume now that n ∈ N is fixed. Then, assumptions H(j)(b), (c) and Proposition 8(b) guarantee that

j0(ũn(t); vn − ũn(t)) (4.5)
= j0(ũn(t); vn − ũn(t)) + j0(vn; ũn(t) − vn) − j0(vn; ũn(t) − vn)
≤ j0(ũn(t); vn − ũn(t)) + j0(vn; ũn(t) − vn) + |j0(vn; ũn(t) − vn)|
≤ αj∥ũn(t) − vn∥2

X + | max { ⟨ξn, ũn(t) − vn⟩ : ξn ∈ ∂j(vn) }|
≤ αj∥ũn(t) − vn∥2

X + (c0 + c1∥vn∥X)∥ũn(t) − vn∥X .

On the other hand, we use assumption (H3) to see that

φ((Su)(t), u(t), vn) − φ((Su)(t), u(t), ũn(t)) (4.6)
≤ cφ(∥(Su)(t)∥Y , ∥u(t)∥X)∥vn − ũn(t)∥X .

Next, we test with v = vn in (4.3) and take into account the fact that Pnvn = 0X∗ and hypothesis H(A)
to see that

mA ∥ũn(t) − vn∥2
X ≤ ⟨Aũn(t) − Avn, ũn(t) − vn⟩ (4.7)

= ⟨Aũn(t), ũn(t) − vn⟩ − ⟨Avn, ũn(t) − vn⟩

≤ 1
λn

⟨Pnũn(t), vn − ũn(t)⟩ + φ((Su)(t), u(t), vn) − φ(Su(t), u(t), ũn(t))

+j0(ũn(t); vn − ũn(t)) + ⟨Avn − f(t), vn − ũn(t)⟩

= − 1
λn

⟨Pnvn − Pnũn(t), vn − ũn(t)⟩

+φ((Su)(t), u(t), vn) − φ(Su(t), u(t), ũn(t))
+j0(ũn(t); vn − ũn(t)) + ⟨Avn − f(t), vn − ũn(t)⟩.

y virtue of (4.5)–(4.7), the monotonicity of Pn and the Cauchy–Schwarz inequality, we find that(
mA − αj

)
∥ũn(t) − vn∥2

X ≤ cφ(∥(Su)(t)∥Y , ∥u(t)∥X)∥vn − ũn(t)∥X (4.8)
∗
+(c0 + c1∥vn∥X)∥ũn(t) − vn∥X + ∥Avn − f(t)∥X ∥ũn(t) − vn∥X .

8
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Recall that A is pseudomonotone, so it is a bounded operator. The latter combined with the convergence
n → v in X, as n → ∞, ensures that there exists a constant d1 > 0 which does not depend on n such that

max {∥vn∥X , ∥Avn − f(t)∥X∗} ≤ d1. (4.9)

e now combine inequalities (4.8) and (4.9), then use the smallness assumption H(s) to deduce that

∥ũn(t) − vn∥X ≤ C(t), (4.10)

where C(t) is defined by

C(t) = 1
mA − αj

(
cφ(∥(Su)(t)∥Y , ∥u(t)∥X) + (c0 + c1d1 + d1)

)
. (4.11)

Next, we use inequalities (4.9) and (4.10) to conclude that

∥ũn(t)∥X ≤ C(t) + d1, (4.12)

which proves the claim.

Claim 2. For each t ∈ R+, the whole sequence {ũn(t)} converges weakly to u(t) in X.

Let t ∈ R+ be fixed. From Claim 1 and reflexivity of X, we are able to find an element ũ(t) ∈ X such
hat, passing to a subsequence if necessary,

ũn(t) ⇀ ũ(t) in X. (4.13)

e shall prove that ũ(t) ∈ K. To this end, we use (4.3) to see that

1
λn

⟨Pnũn(t), ũn(t) − v⟩

≤ ⟨Aũn(t) − Av, v − ũn(t)⟩ + ⟨Av − f(t), v − ũn(t)⟩
+φ((Su)(t), u(t), v) − φ((Su)(t), u(t), ũn(t)) + j0(ũn(t); v − ũn(t)).

his inequality combined with hypotheses H(φ), H(j)(b), (H3) and the monotonicity of A infer

1
λn

⟨Pnũn(t), ũn(t) − v⟩ ≤ ∥Av − f(t)∥X∗∥ũn(t) − v∥X

+
(

cφ(∥(Su)(t)∥Y , ∥u(t)∥X) + c0 + c1∥ũn(t)∥X

)
∥ũn(t) − v∥X .

We now use the bounds (4.10) and (4.12) to see that

1
λn

⟨Pnũn(t), ũn(t) − v⟩ ≤ C̃(t, u, v), (4.14)

here C̃(t, u, v) is a positive constant which depends on t, u and v but is independent of n.
Notice that λn → 0 as n → ∞ and, therefore, (4.14) yields

lim sup ⟨Pnũn(t), ũn(t) − v⟩ ≤ 0. (4.15)

We now take v = ũ(t) in (4.15) to deduce that

lim sup ⟨P ũ (t), ũ (t) − ũ(t)⟩ ≤ 0. (4.16)
n n n

9
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Then we use (4.13), (4.16) and condition (H2)(a) to find that

⟨Pũ(t), ũ(t) − v⟩ ≤ lim inf ⟨Pnũn(t), ũn(t) − v⟩. (4.17)

Finally, we combine inequalities (4.15) and (4.17) to see that ⟨Pũ(t), ũ(t) − v⟩ ≤ 0. Hence, choosing
= ũ(t) ± w with w ∈ X, we get ⟨Pũ(t), w⟩ = 0 for all w ∈ X. Therefore, Pũ(t) = 0X∗ and, using

ssumption (H2)(b) we deduce that ũ(t) ∈ K, as claimed.
Next, we prove that ũ(t) = u(t). To this end, let v ∈ K be fixed. Hypothesis (H1) guarantees that

there exists a sequence {vn} in X such that (4.1) holds. Inserting v = vn into (4.3) and using the identity
Pnvn = 0X∗ yield

⟨Aũn(t), ũn(t) − vn⟩

≤ ⟨f(t), ũn(t) − vn⟩ + 1
λn

⟨Pnvn − Pnũn(t), ũn(t) − vn⟩

+φ((Su)(t), u(t), vn) − φ((Su)(t), u(t), ũn(t)) + j0(ũn(t); vn − ũn(t)).

hen, the monotonicity of Pn reveals that

⟨Aũn(t), ũn(t) − vn⟩ ≤ ⟨f(t), ũn(t) − vn⟩ (4.18)
+φ((Su)(t), u(t), vn) − φ((Su)(t), u(t), ũn(t)) + j0(ũn(t); vn − ũn(t)).

esides, we use Proposition 8(b) to see that, for each n ∈ N, we are able to find an element ξn(t) ∈ ∂j(ũn(t))
uch that

j0(ũn(t); vn − ũn(t)) = ⟨ξn(t), vn − ũn(t)⟩. (4.19)

e now combine inequalities (4.18) and (4.19) to see that

⟨Aũn(t) + ξn(t), ũn(t) − vn⟩ ≤ ⟨f(t), ũn(t) − vn⟩ (4.20)
+φ((Su)(t), u(t), vn) − φ((Su)(t), u(t), ũn(t)).

Note that the function v ↦→ φ((Su)(t), u(t), v) is convex and lower semicontinuous. Therefore, using
Proposition 6, by virtue of convergences vn → v in X as n → ∞ and (4.13), we conclude that

lim sup
[
φ((Su)(t), u(t), vn) − φ((Su)(t), u(t), ũn(t))

]
(4.21)

≤ lim sup φ((Su)(t), u(t), vn) − lim inf φ((Su)(t), u(t), ũn(t))
≤ φ((Su)(t), u(t), v) − φ((Su)(t), u(t), ũ(t)).

Additionally, it is obvious to see that

⟨f(t), vn − ũn(t)⟩ → ⟨f(t), v − ũ(t)⟩ (4.22)

as n → ∞. We now pass to the upper limit in inequality (4.20) and take into account (4.21), (4.22) to deduce
that

lim sup ⟨Aũn(t) + ξn(t), ũn(t) − vn⟩ (4.23)
≤ ⟨f(t), ũ(t) − v⟩ + φ((Su)(t), u(t), v) − φ((Su)(t), u(t), ũ(t)).

On the other hand, keeping in mind that A is a bounded operator, from Claim 1 and hypothesis H(j)(b)
we find a constant d3 > 0 such that

∗
∥Aũn(t) + ξn(t)∥X ≤ d3 for all n ∈ N. (4.24)
10
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which implies that
lim ⟨Aũn(t) + ξn(t), v − vn⟩ = 0.

Therefore, writing

⟨Aũn(t) + ξn(t), ũn(t) − vn⟩
= ⟨Aũn(t) + ξn(t), ũn(t) − v⟩ + ⟨Aũn(t) + ξn(t), v − vn⟩,

it follows that

lim sup ⟨Aũn(t) + ξn(t), ũn(t) − vn⟩ (4.25)
= lim sup ⟨Aũn(t) + ξn(t), ũn(t) − v⟩.

We now combine inequalities (4.23) and (4.25) to find that

lim sup ⟨Aũn(t) + ξn(t), ũn(t) − v⟩ (4.26)
≤ ⟨f(t), ũ(t) − v⟩ + φ((Su)(t), u(t), v) − φ((Su)(t), u(t), ũ(t)).

Recall that v ∈ K is arbitrary and ũ(t) ∈ K. Therefore, testing with v = ũ(t) in (4.26) yields

lim sup ⟨Aũn(t) + ξn(t), ũn(t) − ũ(t)⟩ ≤ 0. (4.27)

Next, we use the bound (4.24) to see that, passing to a subsequence if necessary, we may suppose that

Aũn(t) + ξn(t) ⇀ η(t) in X∗, as n → ∞,

with η(t) ∈ X∗. Furthermore, as proved in [41, Lemma 20], we know that the multivalued operator
A+∂j : X → 2X∗ is generalized pseudomonotone. Exploiting now Definition 4, from conditions {ũn(t)} ⊂ X,
{Aũn(t) + ξn(t)} ⊂ X∗ with Aũn(t) + ξn(t) ∈ Aũn(t) + ∂j(ũn(t)), ũn(t) ⇀ ũ(t) in X, Aũn(t) + ξn(t) ⇀ η(t)
in X∗ and (4.27) we deduce that

η(t) ∈ Aũ(t) + ∂j(ũ(t)) and ⟨Aũn(t) + ξn(t), ũn(t)⟩ → ⟨η(t), ũ(t)⟩.

Hence, it follows that η(t) = Aũ(t) + ξ(t) with ξ(t) ∈ ∂j(ũ(t)) and

lim ⟨Aũn(t) + ξn(t), ũn(t) − v⟩ = ⟨Aũ(t) + ξ(t), ũ(t) − v⟩ for all v ∈ K. (4.28)

Combining (4.26) and (4.28) we have

⟨Aũ(t) + ξ(t), ũ(t) − v⟩ ≤ ⟨f(t), ũ(t) − v⟩ + φ((Su)(t), u(t), v)
−φ((Su)(t), u(t), ũ(t)) for all v ∈ K

with ξ(t) ∈ ∂j(ũ(t)). Therefore, using the definition of Clarke subgradient, it follows that

⟨Aũ(t), v − ũ(t)⟩ + φ((Su)(t), u(t), v) − φ((Su)(t), u(t), ũ(t)) (4.29)
+j0(ũ(t); v − ũ(t)) ≥ ⟨f(t), v − ũ(t)⟩ for all v ∈ K.

We now take v = u(t) in (4.29) and v = ũ(t) in (3.1), then we sum the resulting inequalities to obtain

⟨Aũ(t) − Au(t), ũ(t) − u(t)⟩ ≤ j0(ũ(t); u(t) − ũ(t)) + j0(u(t); ũ(t) − u(t)).

We now use assumptions H(A) and H(j)(c) to deduce that(
mA − αj

)
∥ũ(t) − u(t)∥2

X ≤ 0
and, therefore, the smallness condition mA > αj guarantees that u(t) = ũ(t).
11
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The previous analysis reveals that any weakly convergent subsequence of {ũn(t)} has the same limit in
which coincides with the unique solution u(t) of Problem 11 at t ∈ R+. On the other side, the sequence

ũn(t)} is bounded in X, as proved in Claim 1. The proof of Claim 2 follows now from a standard argument
[39, Theorem 1.20], for instance).

laim 3. For each t ∈ R+, the convergence (4.4) holds.

Let ξ(t) ∈ ∂j(u(t)) and, for each n ∈ N, let ξn(t) ∈ ∂j(ũn(t)). Then, using Definition 7 and assumption
H(j)(c) it follows that

⟨ξn(t) − ξ(t), ũn(t) − u(t)⟩ = −⟨ξn(t), u(t) − ũn(t)⟩ − ⟨ξ(t), ũn(t) − u(t)⟩
≥ −j0(ũn(t); u(t) − ũn(t)) − j0(u(t); ũn(t) − u(t))

and, therefore, assumption H(j)(c) yields

⟨ξn(t) − ξ(t), ũn(t) − u(t)⟩ ≥ −αj∥ũn(t) − u(t)∥2
X .

We combine this inequality with assumption H(A) to deduce that(
mA − αj

)
∥ũn(t) − u(t)∥2

X ≤ ⟨Aũn(t) + ξn(t) − Au(t) − ξ(t), ũn(t) − u(t)⟩.

We now pass to the upper limit in this inequality and use the convergence (4.28) with v = u(t) ∈ K and the
convergence ũn(t) ⇀ u(t) in X to find that

lim sup
(
mA − αj

)
∥ũn(t) − u(t)∥2

X ≤ 0.

This inequality combined with assumption H(s) implies (4.4) which completes the proof of the lemma. □
We now have all the ingredients needed to provide the proof of our main result.

Proof of Theorem 16. Let t ∈ R+ be fixed and let m ∈ N be such that t ∈ [0, m]. We take v = un(t) in
(4.3) and v = ũn(t) in (3.3), then we add the resulting inequalities to obtain

⟨Aũn(t) − Aun(t), ũn(t) − un(t)⟩

≤ 1
λn

⟨Pnũn(t) − Pnun(t), un(t) − ũn(t)⟩ + φ((Su)(t), u(t), un(t))

−φ((Su)(t), u(t), ũn(t)) + φ((Sun)(t), un(t), ũn(t)) − φ((Sun)(t), un(t), un(t))
+j0(ũn(t); un(t) − ũn(t)) + j0(un(t); ũn(t) − un(t)).

e now use assumptions H(A), H(j)(c) and H(φ)(b) to find that(
mA − αj

)
∥ũn(t) − un(t)∥2

X ≤ αφ∥un(t) − u(t)∥X∥ũn(t) − un(t)∥X

+βφ∥(Sun)(t) − (Su)(t)∥Y ∥ũn(t) − un(t)∥X

nd, moreover,

∥ũn(t) − un(t)∥X

≤ αφ

mA − αj
∥un(t) − u(t)∥X + βφ

mA − αj
∥(Sun)(t) − (Su)(t)∥Y .

ext, we use condition H(S) and the inequality
∥un(t) − u(t)∥X − ∥ũn(t) − un(t)∥X ≤ ∥ũn(t) − u(t)∥X ,

12
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G

to conclude that (
1 − αφ

mA − αj

)
∥un(t) − u(t)∥X ≤ ∥ũn(t) − u(t)∥X (4.30)

+ βφsm

mA − αj

∫ t

0
∥un(s) − u(s)∥X ds.

Denote k := 1 − αφ

mA−αj
and note that condition H(s) guarantees that k > 0. Then, using (4.30) and the

ronwall inequality yields

∥un(t) − u(t)∥X ≤ 1
k

∥ũn(t) − u(t)∥X (4.31)

+ βφsm

k2(mA − αj)e
βφmsm

k(mA−αj )
∫ t

0
∥ũn(s) − u(s)∥X ds.

Recall that the sequence {ũn(t)} is uniformly bounded on [0, m], as it follows from (4.12), (4.11) and
assumption (H3). Moreover, recall the convergence (4.4). These ingredients allow us to use Lebesgue’s
convergence theorem to obtain that∫ t

0
∥ũn(s) − u(s)∥X ds → 0 as n → ∞. (4.32)

The convergence (4.2) is now a direct consequence of (4.31), (4.4) and (4.32). □

We now state and prove the following consequence of Theorems 15 and 16.

Corollary 19. Assume H(K), H(A), H(S), H(φ), H(j), H(s), H(f), H(λn), (H0) and (H3). Moreover,
assume that

P : X → X∗ is a penalty operator for the set K. (4.33)

Then, for every n ∈ N, Problem 12 has a unique solution un ∈ C(R+; X). Moreover, the solution un of
Problem 12 converges to the solution u of Problem 11 in the following sense:

un(t) → u(t) in X as n → ∞, for each t ∈ R+.

Proof. Recall that Problem 12 is a particular case of Problem 13 with Pn = P for all n ∈ N. We now use
assumption (4.33), Definition 9 and Proposition 2(a) to see that in this case condition H(Pn) is satisfied.
Moreover, Definition 9 shows that assumption (H1) is satisfied. In addition, since Pn = P , assumption (4.33)
combined with Proposition 2(a) and Definition 1(d) shows that condition (H2) is satisfied, too. Corollary 19
is a direct consequence of Theorems 15 and 16. □

We end this section with the following remarks.

Remark 20. A proof of Corollary 19 was given in [27,34] under the following additional assumption

un ⇀ u in X =⇒ lim sup j0(un; v − un) ≤ j0(u; v − u) for all v ∈ X.

Note that in the present paper we use arguments of generalized pseudomonotonicity and properties of
Clarke’s subdifferential operator to remove this assumption. This represents the first of trait of novelty of
the current paper. The second one consists in the fact that, in contrast to Problem 12 (governed by a given
penalty operator), here we consider more general penalty problem, Problem 13 (governed by an operator
which depends on n ∈ N).
13
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Remark 21. Note that in applications it is quite difficult to verify condition (H2)(a). For this reason,
t is important to provide sufficient conditions which could be verified easily to guarantee (H2)(a). Such
onditions were considered in [35]. There, it was proved that if P : X → X∗ is a pseudomonotone operator

such that
∥Pnun − Pun∥X∗ → 0 as n → ∞

whenever {un} is a weakly convergent sequence in X, then the operator P satisfies condition (H2)(a).

Remark 22. Another useful result which is convenient in applications is the following. Assume that X

is a Hilbert space, K satisfies condition H(K) and, for each n ∈ N, Pn = J(I − P̃n) : X → X∗ where
: X → X∗ is the canonical isometry, I : X → X is the identity map and P̃n is the projection operator on

a set Kn, assumed to satisfy condition H(K). In addition, assume that the Hausdorff distance of the sets
Kn and K, denoted H(Kn, K), satisfies the condition

H(Kn, K) → 0, as n → ∞.

hen it was proved in [35] that conditions (Pn), (H0) and (H2) are satisfied.

5. A spring-rod system with unilateral constraints

The abstract results presented in Sections 3–4 in this paper are useful in the study of various mathematical
models which describe the equilibrium of viscoelastic or viscoplastic bodies in unilateral contact with a
foundation. In this section we present a one-dimensional example which illustrates the applicability of these
results.

Consider a viscoelastic rod which occupies the interval [0, L] on the Ox axis with L > 0. The rod is fixed
at its end x = 0 and its extremity x = L is situated at the distance g from a rigid obstacle. The gap between
the rod and the obstacle is filled in a nonlinear spring which is attached to the obstacle. The natural length
of the spring is g ≥ 0 and the system is in equilibrium when no forces are acting on the rod. Assume now
that the rod is submitted to the action of a time-dependent body force of density f0, which acts along the
Ox axis. The time interval of interest is R+ = [0, ∞) and, everywhere below, we use the prime to denote
the derivative with respect the spatial variable, i.e. u′ = du

dx and σ′ = dσ
dx . Then, the problem of finding the

quilibrium of the rod in the physical setting above can be formulated as follows.

roblem 23. Find a displacement field u : [0, L] ×R+ → R and a stress field σ : [0, L] ×R+ → R such that

σ(x, t) = F(u′(x, t)) +
∫ t

0
b(t − s)u′(x, s) ds for (x, t) ∈ (0, L) × R+, (5.1)

σ′(x, t) + f0(x, t) = 0 for (x, t) ∈ (0, L) × R+, (5.2)
u(0, t) = 0 for t ∈ R+, (5.3)⎧⎨⎩ u(L, t) ≤ g,

−σ(L, t) = θ(u(L, t)) if u(L, t) < g,
−σ(L, t) ≥ θ(u(L, t)) if u(L, t) = g.

for t ∈ R+. (5.4)

A brief description of the equations and conditions in Problem 23 is the following. First, Eq. (5.1)
represents the viscoelastic constitutive law in which F and b are given functions which will be described
below. Eq. (5.2) is the equilibrium equation and condition (5.3) represents the displacement condition which
shows that the rod is assumed to be fixed at the end x = 0 during the deformation process. Conditions (5.4)
represent the contact condition in which θ is a given positive function which vanishes for a negative argument.
Our interest lies in this condition and, for this reason, we describe it in detail.
14
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Let t ∈ R+ be given. First, inequality u(L, t) ≤ g shows that the displacement in x = L is subjected to
n unilateral constraint. This constraint arises from the physical setting, since the obstacle is assumed to be
igid and, therefore, its penetration is not allowed. Equality u(L, t) = g corresponds to the case when the
pring is completely compressed. Next, condition

− σ(L, t) = θ(u(L, t)) if u(L, t) < g

hows that when the spring is partially compressed, then the stress in x = L depends on the displacement
eld in x = L. When 0 < u(L, t) < g the rod moves towards the spring, the last one is in compression,
nd its reaction is in the negative direction of the Ox axis (since σ(L, t) < 0). When u(L, t) < 0 then there
s separation between the rod and the spring and the reaction of the spring vanishes (since, in this case
(u(L, t)) = 0 and, therefore, σ(L, t) = 0).

Assume now that u(L, t) = g, i.e., the spring is totally compressed between the rod and the obstacle.
hen (5.4) implies that σ(L, t) + θ(u(L, t)) ≤ 0 and, moreover, the properties of the function θ show that
θ(u(L, t)) ≤ 0. Therefore,

σ(L, t) = σe(L, t) + σa(L, t) (5.5)

where
σe(L, t) = −θ(u(L, t)) ≤ 0, σa(L, t) = σ(L, t) + θ(u(L, t)) ≤ 0. (5.6)

We conclude from (5.5)–(5.6) that, when the spring is totally compressed, then the pressure it acts on the
rod in x = L, σ(L, t), is decomposed into two parts: an elastic one, σe(L, t), and an additional one, σa(L, t),
both negative. The additional pressure prevents the displacement of the extremity x = L of the rod in such
a way that the constraint u(L, t) ≤ g is satisfied.

In the study of Problem 23 we assume that the constitutive functions F and b are such that:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(a) F : R → R.
(b) There exists Lp > 0 such that

|F(r1) − F(r2)| ≤ LF |r1 − r2| ∀ r1, r2 ∈ R.
(c) There exists mF > 0 such that

(F(r1) − F(r2))(r1 − r2) ≥ mF |r1 − r2|2 ∀ r1, r2 ∈ R.
(d) F(0) = 0.

(5.7)

b ∈ C(R+,R). (5.8)

We also assume that the density of the body forces f0 and the function θ are such that

f0 ∈ C(R+, L2(0, L)). (5.9)⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(a) θ : R → R is a continuous function.
(b) There exist c0 > 0, c1 > 0 such that

|θ(r)| ≤ c0 + c1|r| ∀ r ∈ R.
(c) There exists Lθ > 0 such that

(θ(r1) − θ(r2))(r1 − r2) ≥ −Lθ |r1 − r2|2 ∀ r1, r2 ∈ R.
(d) θ(r) = 0 for all r ≤ 0.

(5.10)

Finally, we recall that
g ≥ 0. (5.11)

We denote by q : R → R the locally Lipschitz function defined by

q(r) =
∫ r

θ(s) ds for all r ∈ R. (5.12)

0

15
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Note that the function θ is not assumed to be monotone. Therefore, the function q could be nonconvex.
evertheless, it is regular and it satisfies the equality

q0(s; r) = θ(s) r for all r, s ∈ R, (5.13)

here q0(s; r) denotes the generalized directional derivative of q at the point s in the direction r.
We use the space

V = { v ∈ H1(0, L) | v(0) = 0 }

hich is a real Hilbert space with the inner product

(u, v) =
∫ L

0
u′v′ dx.

nd the associated norm ∥ · ∥V . Recall that the completeness of the space (V, ∥ · ∥V ) follows from the
riedrichs–Poincaré inequality. Moreover, using the identity

v(x) =
∫ x

0
v′ dx

nd the Cauchy–Schwarz inequality it follows that

|v(L)| ≤
√

L ∥v∥V ∀ v ∈ V, (5.14)

∥v∥L2(0,L) ≤ L√
2

∥v∥V ∀ v ∈ V. (5.15)

We denote by V ∗ and ⟨·, ·⟩ the dual of V and the duality pairing between V ∗ and V , respectively. In
ddition, we define the set K, the operators A : V → V ∗, S : C(R+, V ) → C(R+, L2(0, L)) and the functions

φ : L2(0, L) × V × V → R, j : V → R, f : R+ → V ∗ by equalities

K = {u ∈ V | u(L) ≤ g }, (5.16)

⟨Au, v⟩ =
∫ L

0
F(u′) v′ dx for all u, v ∈ V, (5.17)

(Su)(t) =
∫ t

0
b(t − s)u′(s) dx for all u ∈ C(R+, V ), t ∈ R+, (5.18)

φ(y, u, v) =
∫ L

0
yv′ dx for all y ∈ L2(0, L), u, v ∈ V, (5.19)

j(v) = q(v(L)) for all v ∈ V, (5.20)

⟨f(t), v⟩ =
∫ L

0
f0(t)v dx for all v ∈ V, t ∈ R+. (5.21)

Note that sometimes, here and below, we do not mention the dependence of some functions on the spatial
variable x ∈ [0, L].

To derive the variational formulation of Problem 23 we assume in what follows that (u, σ) are sufficiently
smooth functions which satisfy (5.1)–(5.4). Let v ∈ K and t ∈ R+. First, we perform an integration by parts
and use the equilibrium equation (5.2) to see that∫ L

0
σ(t)(v′ − u′(t)) dx =

∫ L

0
f0(t)(v − u(t)) dx

+σ(L, t)(v(L) − u(L, t)) − σ(0, t)(v(0) − u(0, t)).

Next, since v(0) = u(0, t) = 0, we deduce that∫ L

σ(t)(v′ − u′(t)) dx =
∫ L

f0(t)(v − u(t)) dx + σ(L, t)(v(L) − u(L, t)). (5.22)

0 0

16



M. Sofonea, Y.-b. Xiao and S.-d. Zeng Nonlinear Analysis: Real World Applications 61 (2021) 103329

t

W

O

w
s
o

P

f

Moreover, we write

σ(L, t)(v(L) − u(L, t)) = (σ(L, t) + θ(u(L, t))) (v(L) − g)
+(σ(L, t) + θ(u(L, t)))(g − u(L, t)) − θ(u(L, t))(v(L) − u(L, t)),

hen we use the contact condition (5.4) and the definition (5.16) of the set K to deduce that

σ(L, t)(v(L) − u(L, t)) ≥ −θ(u(L, t))(v(L) − u(L, t)). (5.23)

e now combine (5.22), (5.23) and use (5.13), (5.21) to find that∫ L

0
σ(t)(v′ − u′(t))dx + q0(u(L, t); v(L) − u(L, t)) ≥ ⟨f(t), v − u(t)⟩. (5.24)

n the other hand, a simple computation based on (5.20) shows that

j0(u; v) = q0(u(L); v(L)) for all u, v ∈ V, (5.25)

here j0(u; v) denotes the generalized directional derivative of j at the point u in the direction v. We now
ubstitute the constitutive law (5.1) in (5.24), then we use definitions (5.17)–(5.19) and equality (5.25) to
btain the following variational formulation of Problem 23.

roblem 24. Find a displacement field u : R+ → K such that, for all t ∈ R+,

⟨Au(t), v − u(t)⟩ + φ((Su)(t), u(t), v) − φ((Su)(t), u(t), u(t)) (5.26)
+j0(u(t); v − u(t)) ≥ ⟨f(t), v − u(t)⟩ for all v ∈ K.

In order to construct the penalty problems associated to the constrained inequality (5.26) we consider a
unction p such that ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(a) p : R → R.
(b) There exists Lp > 0 such that

|p(r1) − p(r2)| ≤ Lp |r1 − r2| ∀ r1, r2 ∈ R.
(c) (p(r1) − p(r2))(r1 − r2) ≥ 0 ∀ r1, r2 ∈ R.
(d) p(r) > 0 if r > 0 and p(r) = 0 if r ≤ 0.

(5.27)

A typical example of such function is p(r) = r+ = max {0, r} for all r ∈ R. Moreover, we consider a sequence
{gn} ⊂ R such that

gn > 0 ∀ n ∈ N, (5.28)
gn → g as n → ∞ (5.29)

and, for each n ∈ N, we define the operator Pn : V → V ∗ by equality

⟨Pnu, v⟩ = p(u(L) − gn)v(L) for all u, v ∈ V. (5.30)

Then, for the sequence {λn} ⊂ R satisfying condition H(λn), we consider the following penalty problem.

Problem 25. Find un : R+ → V such that, for all t ∈ R+,

⟨Aun(t), v − un(t)⟩ + 1
λn

⟨Pnun(t), v − un(t)⟩ + φ((Sun)(t), un(t), v) (5.31)

−φ((Sun)(t), un(t), un(t)) + j0(un(t); v − un(t))
≥ ⟨f(t), v − un(t)⟩ for all v ∈ V.
17
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Our main result in this section is the following.

Theorem 26. Assume (5.7), (5.8), (5.9), (5.10), (5.11), (5.27), (5.28), (5.29), H(λn), (H0). Moreover,
ssume that

LθL < mF . (5.32)

hen:
(a) Problem 24 has a unique solution u ∈ C(R+; K).
(b) For each n ∈ N Problem 25 has a unique solution un ∈ C(R+; V ).
(c) The solution un of Problem 25 converges to the solution u of Problem 24 in the following sense:

un(t) → u(t) in V as n → ∞, for each t ∈ R+. (5.33)

Proof. We check point by point the validity of conditions of Theorems 14–16 on the spaces X = V and
Y = L2(0, L).

First, we use definition (5.16) to see condition H(K) is satisfied. Next, we use the properties (5.7) of the
function F to see that the operator (5.17) satisfies condition H(A) with mA = mF . Moreover, assumption
(5.8) guarantees that the operator (5.18) is history-dependent and, therefore, condition H(S) holds, too. In
addition, using (5.15), it is easy to see that the function (5.19) satisfies condition H(φ) with αφ = 0 and
βφ = 1. Moreover, assumption (5.10) combined with inequality (5.14) implies that the function j defined
by (5.20) satisfies condition H(j) with αj = LθL. In addition, condition H(s) is a direct consequence of the
smallness assumption (5.32). Next, the regularity (5.9) implies that the function f defined by (5.21) satisfies
assumption H(f).

On the other hand, note that the properties (5.27) of the function p and assumption (5.28) show that,
for each n ∈ N, the operator Pn defined by (5.30) is bounded, continuous and monotone and, therefore,
condition H(Pn) is satisfied.

Assume now that v ∈ K and, for each n ∈ N, denote

vn =
{ gn

g v if g > 0,

v if g = 0.

hen, using assumptions (5.27) and (5.29) it is easy to see that the sequence {vn} satisfies (4.1). We conclude
rom here that condition (H1) is satisfied.

Next, we define the operator P : V → V ∗ by equality

⟨Pu, v⟩ = p(u(L) − g)v(L) for all u, v ∈ V (5.34)

nd assume that un ⇀ u in V which, obviously, implies that un(L) → u(L). Therefore, using the properties
5.27) of the function p as well as the convergence (5.28) we deduce that

⟨Pnun, v − un⟩ = p(un(L) − gn)(v(L) − un(L))
→ p(u(L) − g)(v(L) − u(L)) = ⟨Pu, v − u⟩.

his shows that condition (H2)(a) holds. Moreover, assumption (5.27)(d) shows that condition (H2)(b)
holds, too.

Finally, using (5.15) it is easy to check that the function (5.19) satisfies condition (H3) with cφ(r, s) = r.
The properties described above show that we are in a position to apply Theorems 14–16 in order to

conclude the proof of Theorem 26. □
18
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We end this section with the following mechanical interpretation. First, Problem 25 represents the
variational formulation of a contact problem similar to Problem 23, in which the obstacle is assumed to
be deformable and the natural length of the spring is gn. The function p is the so-called normal compliance
function which describes the reaction of the obstacle and λn represents a deformability coefficient. Besides
the existence and uniqueness results, Theorem 26 is important for the convergence result (5.33) which can
be interpreted as follows: at each time moment t ∈ R+ the weak solution of the contact problem with a rigid
obstacle can be approached by the weak solution of the problem with a deformable obstacle, provided that
the deformability coefficient of the obstacle is small enough and the natural length of the springs in the two
problems is close enough.
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[22] W. Han, S. Migórski, M. Sofonea, A class of variational–hemivariational inequalities with applications to frictional
contact problems, SIAM J. Math. Anal. 46 (2014) 3891–3912.

[23] W. Han, S.D. Zeng, On convergence of numerical methods for variational–hemivariational inequalities under minimal
solution regularity, Appl. Math. Lett. 93 (2019) 105–110.

[24] W. Han, M. Sofonea, D. Danan, Numerical analysis of stationary variational–hemivariational inequalities, Numer. Math.
139 (2018) 563–592.

[25] Y.B. Xiao, M. Sofonea, On the optimal control of variational–hemivariational inequalities, J. Math. Appl. Anal. 475
(2019) 364–384.
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