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Abstract. In this paper, an alternative approach is provided in the well-posedness analysis of elliptic variational–hemivariational
inequalities in real Hilbert spaces. This includes the unique solvability and continuous dependence of the solution on the
data. In most of the existing literature on elliptic variational–hemivariational inequalities, well-posedness results are ob-
tained by using arguments of surjectivity for pseudomonotone multivalued operators, combined with additional compactness
and pseudomonotonicity properties. In contrast, following (Han in Nonlinear Anal B Real World Appl 54:103114, 2020; Han
in Numer Funct Anal Optim 42:371–395, 2021), the approach adopted in this paper is based on the fixed point structure
of the problems, combined with minimization principles for elliptic variational–hemivariational inequalities. Consequently,
only elementary results of functional analysis are needed in the approach, which makes the theory of elliptic variational–
hemivariational inequalities more accessible to applied mathematicians and engineers. The theoretical results are illustrated
on a representative example from contact mechanics.

Mathematics Subject Classification. 49J40, 47J20, 35M86, 35J87, 74M10, 74M15.

Keywords. Variational–hemivariational inequality, Minimization principle, Well-posedness, Fixed point argument, Mosco

convergence, Elastic contact.

1. Introduction

Variational–hemivariational inequalities represent a special class of inequalities which arise in the study
of nonsmooth boundary value problems. They are governed by two real-valued functions, say ϕ and
j, such that ϕ is convex, whereas j is locally Lipschitz and is generally nonconvex. The case with a
vanishing j corresponds to a pure variational inequality, and the case with a vanishing ϕ corresponds to
a pure hemivariational inequality. For this reason, the study of variational inequalities is carried out by
using arguments of nonlinear and convex analysis, while the analysis of hemivariational and variational–
hemivariational inequalities requires additional knowledge on nonsmooth analysis.

Hemivariational inequalities were introduced by Panagiotopoulous in early eighties in the context of
applications to engineering problems. The mathematical literature in the field concerns well-posedness,
regularity, convergence and error analysis of numerical approximations, among others. The area has grown
rapidly in the past few decades, motivated by a wide variety of applications in Physics, Mechanics and
Engineering Sciences. Representative books in the field include [14,19,21]. Detailed mathematical analysis
of variational–hemivariational inequalities, together with relevant applications in contact mechanics, can
be found in [24]. Numerical analysis of various classes of variational–hemivariational inequalities was
carried out in a number of papers, including [6,11,12] and the survey work [10].

The mathematical theory of contact mechanics deals with the study of systems of partial differential
equations which describe processes of contact with different constitutive laws, different loadings and dif-
ferent interface laws. Such kind of processes is commonly seen in industry and daily life, and, therefore,
a lot of effort has been observed in their modeling, analysis and numerical simulations. The literature
in this field is extensive. It deals with analysis of various models of contact, which are expressed in
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terms of strongly nonlinear elliptic, time-dependent or evolutionary boundary value problems. Some ref-
erences in the field include [3,4,9,15,20,21] and, more recently, [2,16,23,24]. There, various existence and
uniqueness results have been proved, by using arguments of variational, hemivariational and variational–
hemivariational inequalities. Once existence and uniqueness of solutions have been established, related
important questions arise, such as the behavior of the solution, which provides the continuous dependence
of the solution with respect to the data and the link between the solutions of different contact models.

As is shown in [11,12,24], a number of relevant mathematical models of contact mechanics lead, in a
weak formulation, to variational–hemivariational inequalities of the form

u ∈ K, 〈Au, v − u〉 + ϕ(u, v) − ϕ(u, u) + j0(u; v − u) ≥ 〈f, v − u〉 ∀ v ∈ K. (1.1)

Here, K ⊂ X, X is a real reflexive Banach space, 〈·, ·〉 represents the duality pairing between X and its
dual X∗, A : X → X∗, ϕ : X × X → R, j : X → R is a locally Lipschitz function and f ∈ X∗. Moreover,
j0(u; v) denotes the Clarke directional derivative of j at the point u in the direction v. Existence and
uniqueness result in the study of inequality problems of the form (1.1) has been obtained in [17,24], under
several assumptions on the data, including that the operator A is strongly monotone and pseudomonotone.
The proof in these references was based on an application of a surjectivity result for pseudomonotone
multivalued operators followed by the Banach fixed point argument. Stability of the solution of (1.1) with
respect to the data is shown in [25,26].

In the case when X is a real Hilbert space, thanks to the Riesz representation theorem, the inequality
(1.1) can be written in an equivalent form as

u ∈ K, (Au, v − u)X + ϕ(u, v) − ϕ(u, u) + j0(u; v − u) ≥ (f, v − u)X ∀ v ∈ K. (1.2)

Here, (·, ·)X represents the inner product on X, A : X → X and f ∈ X. Solution existence and uniqueness
of the problem (1.2) are shown in [8] through the use of elementary knowledge in functional analysis,
namely, convex minimization and Banach fixed-point argument. Compared to the solution existence and
uniqueness result in [17,24], the operator A is assumed to be strongly monotone and Lipschitz continuous;
meanwhile, a linear growth assumption on the generalized gradient of j is removed. The starting point of
the new approach adopted in [8] is a minimization principle established in [7] for a special case of (1.2)
where A is a potential operator and the function ϕ depends on only one argument, i.e., ϕ(u, v) = ϕ(v). This
new approach of analysis of variational–hemivariational inequalities eliminates the need of the notion of
pseudomonotonicity and the application of an abstract surjectivity result for a pseudomonotone operator,
and is thus more accessible to applied mathematicians, numerical analysts and engineers.

The current paper represents a continuation of [8] and deals with the analysis of the variational–
hemivariational inequality (1.2). First, a new proof is provided on the existence and uniqueness result
presented in [8]. The novelty of the proof is that in contrast to [8], the Banach fixed point argument is
used only once, in a different space and with different operators. The idea of this proof is useful also in
the stability study of the problem (1.2). Finally, the theoretical results are illustrated in the study of a
mathematical model of contact mechanics.

The rest of the paper is organized as follows. In Sect. 2, we introduce some preliminary material
and recall results in [7] needed later in the paper. In Sect. 3, we provide a new proof of the solution
existence and uniqueness result for the variational–hemivariational inequality (1.2). The proof is based
on the minimization principle established in [7] and a new fixed point argument. In Sect. 4, we use the
fixed point structure of the inequality (1.2) to show the stability of the solution of (1.2) with respect to
perturbations in the data. Section 5 is devoted to discussion of specializing the general results in previous
sections to some particular cases useful in applications. Finally, in Sect. 6 we illustrate applications of
the theoretical results in the study of a mathematical model of contact.
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2. Preliminaries

We will use X to stand for a real Hilbert space, unless stated otherwise. We denote by (·, ·)X and ‖ · ‖X

the inner product and the associated norm on X. Moreover, we will use the product space X×X endowed
with the inner product

(η, ξ)X×X = (η1, ξ1)X + (η2, ξ2)X ∀ η = (η1, η2), ξ = (ξ1, ξ2) ∈ X × X

and the associated norm ‖ · ‖X×X . We denote by “→” and “⇀” the strong and weak convergence in X
and in X × X. For a sequence indexed by n, all the limits, upper limits and lower limits are understood
to be when n → ∞, even if this is not stated explicitly.

We start by recalling some basic definitions.

Definition 1. A function j : X → R is said to be locally Lipschitz if for any x ∈ X there exist a
neighborhood Ux of x and a constant Lx such that

|j(u) − j(v)| ≤ Lx‖u − v‖X ∀u, v ∈ Ux.

The Clarke directional derivative of the locally Lipschitz function j : X → R at the point u ∈ X in the
direction v ∈ X is defined by

j0(u; v) = lim sup
w→u,λ↓0

j(w + λv) − j(w)
λ

.

Definition 2. A function J : X → R is said to be strongly convex if there exists β > 0 such that

(1 − t)J(u) + t J(v) − J((1 − t)u + tv) ≥ β t (1 − t) ‖u − v‖2
X ∀u, v ∈ X, t ∈ [0, 1]. (2.1)

Definition 3. A function J : X → R is said to be coercive if J(vn) → ∞ for any sequence {vn} ⊂ X such
that ‖vn‖X → ∞.

A sufficient and necessary condition for the local Lipschitz continuity of a convex function is stated
in the following result [5, Corollary 2.4, p. 12].

Lemma 4. Let ψ : X → R be a convex function over a normed space X. Then, ψ is locally Lipschitz
continuous on X if and only if ψ is bounded above on a nonempty open set in X.

Let us recall definitions for properties of nonlinear operators.

Definition 5. An operator A : X → X is said to be strongly monotone if there exists mA > 0 such that

(Au − Av, u − v)X ≥ mA‖u − v‖2
X ∀u, v ∈ X. (2.2)

The operator A is Lipschitz continuous if there exists LA > 0 such that

‖Au − Av‖X ≤ LA‖u − v‖X ∀u, v ∈ X. (2.3)

Remark 6. Note that if A : X → X is a strongly monotone Lipschitz continuous operator, then inequali-
ties (2.2) and (2.3) imply that mA ≤ LA.

The following result is proved in [23, p. 22] and will be applied in Sect. 3.

Lemma 7. Let A : X → X be a strongly monotone and Lipschitz continuous operator with constants mA

and LA, respectively, and let ρ > 0. Then, for the operator Bρ : X → X defined by

Bρu = u − ρAu, u ∈ X, (2.4)

we have the inequality

‖Bρu − Bρv‖X ≤ k(ρ)‖u − v‖X , k(ρ) = (1 − 2ρmA + ρ2L2
A)1/2 ∀u, v ∈ X. (2.5)

Consequently, for ρ ∈ (
0, 2mA/L2

A

)
, 0 ≤ k(ρ) < 1 and Bρ is a contraction on X.
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Next, we recall the notion of set convergence in the sense of Mosco [18] that will be needed for stability
analysis in Sect. 4.

Definition 8. Let X be a normed space, {Kn} a sequence of nonempty subsets of X and K a nonempty
subset of X. The sequence {Kn} is said to converge to K in the sense of Mosco, written Kn

M−→ K in
X, if the following conditions hold.

(a) For each u ∈ K, there exists a sequence {un} such that un ∈ Kn for any n ∈ N and un → u in X.
(b) For each sequence {un} such that un ∈ Kn for any n ∈ N and un ⇀ u in X, we have u ∈ K.

We introduce a particular variational–hemivariational inequality of the form (1.2).
Problem P0. Find an element u ∈ K such that

(u, v − u)X + ψ(v) − ψ(u) + h0(u; v − u) ≥ (f, v − u)X ∀ v ∈ K. (2.6)

In the study of this problem, we consider the following assumptions.
H(K) K is a nonempty, closed and convex subset of X.
H(ψ) ψ : X → R is convex and bounded above on a nonempty open set in X.
H(h) h : X → R is locally Lipschitz continuous and there exists αh ∈ [0, 1) such that

h0(v1; v2 − v1) + h0(v2; v1 − v2) ≤ αh‖v1 − v2‖2
X ∀ v1, v2 ∈ X. (2.7)

H(f) f ∈ X.
Moreover, define an energy functional

J(v) =
1
2

‖v‖2
X + ψ(v) + h(v) − (f, v)X ∀ v ∈ X (2.8)

and a minimization problem:
Problem PM . Find an element u ∈ K such that

J(u) ≤ J(v) ∀ v ∈ K. (2.9)

The following existence, uniqueness and equivalence results have been proved in [7].

Theorem 9. Assume H(K), H(ψ), H(h) and H(f). Then, Problem PM has a unique solution, which is
also the unique solution of Problem P0.

Note that this theorem shows the equivalence between Problems P0 and PM as well as their unique
solvability. Its proof is based on an elementary result for convex minimization (e.g., [1, Theorem 3.3.12])
and properties of the subdifferential in the sense of Clarke. We now quote the following lemma from [7]
that is used in proving Theorem 9.

Lemma 10. Assume H(K), H(ψ), H(h) and H(f). Then, the function J is locally Lipschitz and satisfies
condition (2.1) with β = (1 − αh)/2, i.e., it is strongly convex on X.

Under the assumptions H(K), H(ψ), H(h), Theorem 9 allows us to define an operator Θ(K,ψ, h) :
X → K as follows: for f ∈ X,

u = Θ(K,ψ, h)f ⇐⇒ u is a solution to Problem P0. (2.10)

Properties of this operator will be explored and will be used in the analysis of Problem P in the next
two sections.
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3. A new proof of existence and uniqueness result

In this section, we provide a new proof of a unique solvability result on the variational–hemivariational
inequality (1.2). For convenience, we restate the problem as follows.
Problem P. Find an element u ∈ K such that

(Au, v − u)X + ϕ(u, v) − ϕ(u, u) + j0(u; v − u) ≥ (f, v − u)X ∀ v ∈ K. (3.1)

In the study of this problem, besides the assumptions H(K) and H(f) already introduced in Sect. 2,
we consider the following assumptions on the operator A, the function ϕ and the function j.
H(A) A is a strongly monotone Lipschitz continuous operator with constants mA and LA ≥ 0, i.e., it
satisfies inequalities (2.2) and (2.3).
H(ϕ) ϕ : X × X → R, for any u ∈ X the function ϕ(u, ·) : X → R is convex and bounded above on a
nonempty open set, and there exists αϕ > 0 such that

{
ϕ(η1, v2) − ϕ(η1, v1) + ϕ(η2, v1) − ϕ(η2, v2)
≤ αϕ‖η1 − η2‖X ‖v1 − v2‖X ∀ η1, η2, v1, v2 ∈ X.

(3.2)

H(j) j : X → R is locally Lipschitz continuous and there exists αj > 0 such that

j0(v1; v2 − v1) + j0(v2; v1 − v2) ≤ αj‖v1 − v2‖2
X ∀ v1, v2 ∈ X. (3.3)

Moreover, we consider the following smallness condition involving the constants αϕ, αj and mA in
assumptions H(ϕ), H(j), and H(A), respectively.
H(s) αϕ + αj < mA.

An existence and uniqueness result on Problem P was proved in [17,24] in the framework of a reflexive
Banach space X, under the more general assumption on the operator A that it is strongly monotone and
pseudomonotone, and under an additional linear growth assumption on the generalized gradient of j.
There, the proof was carried out by using an abstract surjectivity result for pseudomonotone operators
and the Banach fixed-point theorem. The result in the form below (Theorem 11) is proved in [8], using
existence of a minimizer of a convex minimization problem and the Banach fixed-point theorem. The
main purpose of this section is to provide a new proof of the result. The proof method will be also useful
in the stability analysis of Problem P in Sect. 4.

Theorem 11. Assume H(K), H(A), H(ϕ), H(j), H(s) and H(f). Then, Problem P has a unique solu-
tion.

Proof. Let ρ ∈ (0, 1/αj) be a positive parameter, to be determined later. Note that the function h = ρj
satisfies condition H(h) with αh = ραj . For any fixed w ∈ X, the function ψ : X → R defined by
ψ(v) = ρϕ(w, v) for v ∈ X satisfies condition H(ψ). These properties allow us to define three operators
R, S and Λ as follows; recall the definition of Bρ in (2.4).

R : X × K → K, Rξ = Θ(K, ρϕ(ξ2, ·), ρj)ξ1 ∀ ξ = (ξ1, ξ2) ∈ X × K; (3.4)
S : K → X × K, Su = (S1u, u), S1u = Bρu + ρf ∀u ∈ K; (3.5)
Λ : K → K, Λu = RSu ∀u ∈ K. (3.6)

Note that the operator S depends on ρ and the operators R and Λ depend on K, ϕ, j and ρ. Nevertheless,
for simplicity, in this section we do not mention this dependence.

We now proceed in three steps, as follows.
(i) We prove that for all η = (η1, η2) and ξ = (ξ1, ξ2) ∈ X × K, the following bound holds:

‖Rη − Rξ‖X ≤ 1
1 − ραj

‖η1 − ξ1‖X +
ραϕ

1 − ραj
‖η2 − ξ2‖X . (3.7)
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Indeed, from the definition (3.4) of the operator R and (2.10) of the operator Θ, we know that Rη,Rξ ∈ K,
and

(Rη, v − Rη)X + ρϕ(η2, v) − ρϕ(η2, Rη) + ρj0(Rη; v − Rη) ≥ (η1, v − Rη)X ,

(Rξ, v − Rξ)X + ρϕ(ξ2, v) − ρϕ(ξ2, Rξ) + ρj0(Rξ; v − Rξ) ≥ (ξ1, v − Rξ)X

for all v ∈ K. Take v = Rξ in the first inequality, v = Rη in the second one, and add the two resulting
inequalities to find that

‖Rη − Rξ‖2
X ≤ ρ [ϕ(η2, Rξ) − ϕ(η2, Rη) + ϕ(ξ2, Rη) − ϕ(ξ2, Rξ)]

+ ρ
[
j0(Rη;Rξ − Rη) + j0(Rξ;Rη − Rξ)

]
+ (η1 − ξ1, Rη − Rξ)X .

Then, we use assumptions H(ϕ) and H(j) on the functions ϕ and j to deduce that

‖Rη − Rξ‖2
X ≤ ραϕ‖η2 − ξ2‖X‖Rη − Rξ‖X + ραj‖Rη − Rξ‖2

X + ‖η1 − ξ1‖X‖Rη − Rξ‖X .

Hence, (3.7) holds.
(ii) We prove that for ρ > 0 sufficiently small, the operator Λ : K → K is a contraction. Indeed, for
u, v ∈ K, by the definition (3.6),

Λu − Λv = R(Su) − R(Sv).

Applying (3.7),

‖Λu − Λv‖X ≤ 1
1 − ραj

‖S1u − S1v‖X +
ραϕ

1 − ραj
‖u − v‖X ,

i.e.,

‖Λu − Λv‖X ≤ 1
1 − ραj

‖Bρu − Bρv‖X +
ραϕ

1 − ραj
‖u − v‖X .

We now use assumption H(A) and Lemma 7 to deduce that

‖Λu − Λv‖X ≤ k(ρ) + ραϕ

1 − ραj
‖u − v‖X , (3.8)

where k(ρ) = (1 − 2ρmA + ρ2L2
A)1/2.

Consider the real-valued function

F (ρ) = k(ρ) + ραϕ + ραj = (1 − 2ρmA + ρ2L2
A)1/2 + ραϕ + ραj (3.9)

for ρ in a neighborhood of 0 and ρ < 1/αj . Then, F ′(0) = αϕ + αj − mA < 0 thanks to the smallness
assumption H(s). Thus, F is strictly decreasing in a neighborhood of the origin. Note that F (0) = 1. So
for ρ > 0 sufficiently small, we have F (ρ) < 1 and the inequality (3.8) indicates that the operator Λ is a
contraction.
(iii) We now prove the existence of a unique solution to Problem P. By the definitions (3.4)–(3.6),

Λu = R(Su) = R(ρf − ρAu + u, u) = Θ(K, ρϕ(u, ·), ρj)(ρf − ρAu + u).

Therefore, from (2.10) for the definition of the operator Θ, we know that u = Λu if and only if

u ∈ K, (u, v − u)X + ρϕ(u, v) − ρϕ(u, u) + ρj0(u; v − u) ≥ (ρf − ρAu + u, v − u)X ∀ v ∈ K,

or if and only if u is a solution to Problem P. By the argument in Step (ii), for ρ > 0 sufficiently small,
the operator Λ is a contraction on K and thus admits a unique fixed-point according to the Banach fixed
point theorem. Hence, Problem P has a unique solution. �
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4. A convergence result

The solution of Problem P depends on the data K, A, ϕ, j and f . In this section, we study its continuous
dependence with respect to these data. To this end, we start with a convergence result for the auxiliary
problem P0. We assume in what follows that H(K), H(ψ), H(h) and H(f) hold. Moreover, we consider
sequences {Kn}, {ψn}, {hn} and {fn} such that for each n ∈ N, the following conditions hold.
H(Kn) Kn is a nonempty, closed and convex subset of X.
H(ψn) ψn : X → R is convex and bounded above on a nonempty open set in X.
H(hn) hn : X → R is locally Lipschitz continuous and there exists αhn

∈ [0, 1) such that

h0
n(v1; v2 − v1) + h0

n(v2; v1 − v2) ≤ αhn
‖v1 − v2‖2

X ∀ v1, v2 ∈ X.

H(fn) fn ∈ X.
By Theorem 9, for each n ∈ N there exists a unique solution to the following inequality problem.

Problem P0
n. Find an element un ∈ Kn such that

(un, v − un)X + ψn(v) − ψn(un) + h0
n(un; v − un) ≥ (fn, v − un) ∀ v ∈ Kn. (4.10)

For each n ∈ N, we define an energy functional

Jn(v) =
1
2

‖v‖2
X + ψn(v) + hn(v) − (fn, v)X ∀ v ∈ X. (4.11)

By Theorem 9, un is the solution of Problem P0
n if and only if un is the solution to the following

optimization problem.
Problem PM

n . Find an element un ∈ Kn such that

Jn(un) ≤ Jn(v) ∀ v ∈ Kn. (4.12)

For a relation between the solutions of Problem P0 and Problem P0
n, we consider the following con-

ditions.

Kn
M−→ K in X. (4.13)

ψn(vn) − ψ(vn) → 0 for any weakly convergent sequence {vn} ⊂ X. (4.14)
hn(vn) − h(vn) → 0 for any weakly convergent sequence {vn} ⊂ X. (4.15)
There exist c0, c1 ∈ R such that (4.16)
ψn(v) + hn(v) ≥ c1‖v‖X + c0 ∀ v ∈ X, n ∈ N.

fn → f in X. (4.17)

Recall that the symbol “ M−→” denotes the set convergence in the sense of Mosco, see Definition 8.
We have the following convergence result.

Theorem 12. Assume H(K), H(ψ), H(h) and H(f) and, for each n ∈ N assume H(Kn), H(ψn), H(hn)
and H(fn). Moreover, assume (4.13)–(4.17). Then, the solution un of Problem P0

n converges to the solu-
tion u of Problem P0, i.e.,

un → u in X. (4.18)

Proof. The proof is split into three steps.
Step (i). We prove that functions Jn and J enjoy the following properties.

Jn(vn) − J(vn) → 0 for any weakly convergent sequence {vn} ⊂ X. (4.19)
Jn(vn) → J(v) for any {vn} ⊂ X such that vn → v in X. (4.20)

Indeed, assume that {vn} is a sequence of elements of X such that

vn ⇀ v in X. (4.21)
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From the definitions of Jn and J , cf. (4.11) and (2.8),

Jn(vn) − J(vn) =
(
ψn(vn) − ψ(vn)

)
+

(
hn(vn) − h(vn)

)
+ (f − fn, vn)X .

By the assumptions (4.14), (4.15), (4.17), each of the three terms on the right side of the above equality
converges to 0; thus, (4.19) holds.

Now, let vn → v in X. Write

J(vn) − J(v) =
1
2

(‖vn‖2
X − ‖v‖2

X

)
+ (ψ(vn) − ψ(v)) + (h(vn) − h(v)) − (f, vn − v)X .

By Lemma 4 and assumptions H(ψ), H(h), we know that both ψ and h are continuous. Thus,

J(vn) − J(v) → 0.

From (4.19), we also have

Jn(vn) − J(vn) → 0.

Hence, (4.20) holds:

Jn(vn) − J(v) = [Jn(vn) − J(vn)] + [J(vn) − J(v)] → 0.

Step (ii). We prove that the sequence {un} converges weakly to u, that is

un ⇀ u in X. (4.22)

First, we claim that the sequence {un} is bounded in X. Arguing by contradiction, suppose {un} is not
bounded in X. Then, we can find a subsequence of the sequence {un}, again denoted by {un}, such that
‖un‖X → ∞. Using now (4.16) and (4.17), we deduce that there exist c̃1, c0 ∈ R, independent of n, such
that

Jn(un) ≥ 1
2

‖un‖2
X + c̃1‖un‖X + c0 ∀n ∈ N.

Thus,
Jn(un) → ∞. (4.23)

Let v be a given element in K and note that condition (4.13) implies that there exists a sequence
{vn} such that vn ∈ Kn for each n ∈ N and vn → v in X. Since un is the solution of Problem P0

n and
vn ∈ Kn, by Theorem 9,

Jn(un) ≤ Jn(vn) ∀n ∈ N.

By (4.20),

Jn(vn) → J(v).

Therefore, the sequence {Jn(un)} is bounded in R, which contradicts (4.23).
We conclude from above that the sequence {un} is bounded in X. Since X is reflexive, there exists a

subsequence of the sequence {un}, again denoted by {un}, and an element ũ ∈ X, such that

un ⇀ ũ in X. (4.24)

Let us prove that ũ is a solution of Problem PM . First, by the assumption (4.13),

ũ ∈ K. (4.25)

By Lemma 10, J is convex and continuous; hence, J is weakly lower semicontinuous. Consequently,

J(ũ) ≤ lim inf J(un). (4.26)

By the property (4.19),
lim inf J(un) = lim inf Jn(un). (4.27)

Again, let v ∈ K be an arbitrarily fixed element and let vn ∈ Kn such that vn → v in X. Then, from
(4.12) and (4.20) we have

Jn(un) ≤ Jn(vn), Jn(vn) → J(v),
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and, therefore,
lim inf Jn(un) ≤ J(v). (4.28)

Combine (4.26)–(4.28) to see that
J(ũ) ≤ J(v). (4.29)

From (4.25) and (4.29), we see that ũ solves Problem PM . Now, since Problem PM has a unique
solution, denoted by u, it follows that ũ = u. Thus, the limit ũ is the unique solution of Problem PM and
it is independent of the subsequence selected. Consequently, the whole sequence {un} converges weakly
in X to u, i.e., (4.22) holds.
Step (iii). We prove that the sequence {un} converges strongly to u, i.e., (4.18) holds. By assumption
(4.13), there exists a sequence {ũn} such that ũn ∈ Kn for each n ∈ N and

ũn → u in X. (4.30)

Then, using Lemma 10 and inequality (2.1) with t = 1
2 we find that

β

4
‖ũn − un‖2

X ≤ 1
2

[
J(ũn) − J

( ũn + un

2

)]
+

1
2

[
J(un) − J

( ũn + un

2

)]
. (4.31)

Write

J(ũn) − J
( ũn + un

2

)
= [J(ũn) − J(un)] + [J(un) − Jn(un)]

+
[
Jn(un) − Jn

( ũn + un

2

)]

+
[
Jn

( ũn + un

2

)
− J

( ũn + un

2

)]
. (4.32)

Note that the convergences (4.22), (4.30) and the properties of J imply that

lim sup [J(ũn) − J(un)] = J(u) − lim inf J(un) ≤ 0. (4.33)

By the convergence relations (4.22), (4.30) and (4.19),

J(un) − Jn(un) → 0, Jn

( ũn + un

2

)
− J

( ũn + un

2

)
→ 0. (4.34)

Finally, since un is a solution to Problem PM
n ,

Jn(un) − Jn

( ũn + un

2

)
≤ 0. (4.35)

Therefore, (4.32)–(4.35) imply that

lim sup
[
J(ũn) − J

( ũn + un

2

)]
≤ 0. (4.36)

On the other hand,

J(un) − J
( ũn + un

2

)
= [J(un) − Jn(un)] +

[
Jn

( ũn + un

2

)
− J

( ũn + un

2

)]

+
[
Jn(un) − Jn

( ũn + un

2

)]
.

Thus, using (4.34) and (4.35) we find that

lim sup
[
J(un) − J

( ũn + un

2

)]
≤ 0. (4.37)

We now combine inequalities (4.31), (4.36) and (4.37) to deduce that

lim sup ‖ũn − un‖2
X = 0
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or, equivalently,
ũn − un → 0 in X. (4.38)

Finally, we write un − u = (un − ũn) + (ũn − u) and combine the convergences (4.30) and (4.38) to see
that un → u in X which concludes the proof. �

Remark 13. We can restate Theorem 12 by using the definition (2.10) of the operator Θ. Indeed, assume
H(K), H(ψ), H(h), H(f) hold and, for each n ∈ N assume H(Kn), H(ψn), H(hn) and H(fn). Moreover,
assume (4.13)–(4.17). Then, Theorem 12 states that the following convergence holds:

Θ(Kn, ψn, hn)fn → Θ(K,ψ, h)f in X. (4.39)

We now move on to a convergence result in the study of Problem P. To this end, we keep in what
follows the assumptions of Theorem 11 and, besides the sequences {Kn} and {fn}, we consider the
sequences {An}, {ϕn} and {jn} such that for each n ∈ N, the following conditions hold.
H(An) An is a strongly monotone and Lipschitz continuous operator with constants mn and Ln ≥ 0.
H(ϕn) ϕn : X × X → R, satisfies condition H(ϕ) with constant αϕn

.
H(jn) jn : X → R, satisfies condition H(j) with constant αjn .
H(sn) αϕn

+ αjn < mn.

Under these assumptions, it follows from Theorem 11 that for each n ∈ N there exists a unique solution
to the following inequality problem.
Problem Pn. Find an element un ∈ Kn such that

(Anun, v − un)X + ϕn(un, v) − ϕn(un, un) + j0
n(un; v − un)

≥ (fn, v − un) ∀ v ∈ Kn. (4.40)

We now consider the following additional assumptions.

Anv → Av in X, ∀ v ∈ X. (4.41)
ϕn(u, vn) − ϕ(u, vn) → 0 ∀u ∈ X, {vn} ⊂ X weakly convergent. (4.42)
jn(vn) − j(vn) → 0 ∀ {vn} ⊂ X weakly convergent. (4.43)
There exist c0, c1 ∈ R such that (4.44)

ϕn(u, v) + jn(v) ≥ c1‖v‖X + c0 ∀u, v ∈ X, n ∈ N.
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

There exist m > 0, L > 0 and α > 0 such that
(a) m ≤ min {mn,mA}, L ≥ max {Ln, LA} ∀n ∈ N.
(b) max {αϕ + αj , αϕn

+ αjn} ≤ α ∀n ∈ N.

(c) α < L2

m

(
1 −

√
1 − m2

L2

)
.

(4.45)

Remark 14. It follows from Remark 6 and the condition (a) in (4.45) that m ≤ L; then the expression in
condition (c) is well-defined.

The main result in this section is the following convergence result.

Theorem 15. Assume H(K), H(A), H(ϕ), H(j), H(s) and H(f) and, for each n ∈ N assume H(Kn),
H(An), H(ϕn), H(jn), H(sn) and H(fn). Moreover, assume (4.13), (4.17) and (4.41)–(4.45). Then, the
solution un of Problem Pn converges to the solution u of Problem P, i.e.,

un → u in X. (4.46)

Proof. The proof is split into three steps.
Step (i) Preliminary results. Let n ∈ N and denote

ρ0 =
m

L2
(4.47)
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where m and L are defined in (4.45). Note that the elementary inequality

1 −
√

1 − m2

L2
≤ m2

L2

combined with assumption (4.45)(c) implies that

α < m. (4.48)

Then, using the inequality m ≤ L and assumption (4.45)(b) it follows that m/L2 is strictly less than
1/αj and 1/αjn . Therefore,

ρ0 ∈
(
0,

1
αjn

)
, ρ0 ∈

(
0,

1
αj

)
. (4.49)

Since these inclusions are satisfied, it follows from the proof of Theorem 11 that we are in a position to
define the operators R, S and Λ by equalities (3.4), (3.5), (3.6), with ρ = ρ0. Similarly, for each n ∈ N

we can consider the operators Rn, Sn, Λn defined by equalities

Rn : X × K → K, Rnξ = Θ(Kn, ρ0ϕn(ξ2, ·), ρ0jn)ξ1 ∀ ξ = (ξ1, ξ2) ∈ X × K, (4.50)
Sn : K → X × K, Snu = (ρ0fn − ρ0Anu + u, u) ∀u ∈ K, (4.51)
Λn : K → K, Λnu = RnSnu ∀u ∈ K. (4.52)

Note that the solutions un and u of the variational–hemivariational inequalities (2.6) and (4.10), respec-
tively, satisfy the equalities

un = Λnun, u = Λu. (4.53)
Step (ii) We prove that here exists a constant k0 ∈ [0, 1) such that for any n ∈ N the following inequality
holds:

‖Λnu − Λnv‖X ≤ k0‖u − v‖X ∀u, v ∈ X. (4.54)
Let n ∈ N. Define

k0 =

√

1 − m2

L2
+

αm

L2
. (4.55)

The smallness assumption (4.45)(c) guarantees that k0 ∈ [0, 1).
Assumptions H(An) and (4.45)(a) imply that the operator An is strongly monotone and Lipschitz

continuous with constants m and L. It follows from (3.8) that the operator Λn is Lipschitz continuous
with the constant

kn =
k(ρ0) + ρ0αϕn

1 − ρ0αjn

(4.56)

where k(ρ0) = (1 − 2ρ0m + ρ2
0L

2)1/2. We now use (4.47), inequality k0 < 1 and assumption (4.45)(b) to
see that

k(ρ0) + ρ0αϕn
+ k0ρ0αjn ≤

√

1 − m2

L2
+

m

L2
(αϕn

+ αjn) ≤
√

1 − m2

L2
+

αm

L2
.

Thus, from (4.55),

k(ρ0) + ρ0αϕn
+ k0ρ0αjn ≤ k0;

equivalently,
k(ρ0) + ρ0αϕn

1 − ρ0αjn

≤ k0. (4.57)

Combine (4.56) and (4.57) to see that kn ≤ k0. Since Λn is Lipschitz continuous with the constant kn, it
follows that (4.54) holds.
Step (iii) We prove the convergence (4.46). Let n ∈ N. From equalities (4.53),

‖un − u‖X = ‖Λnun − Λu‖X ≤ ‖Λnun − Λnu‖X + ‖Λnu − Λu‖X .
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We use inequality (4.54) to find that

‖un − u‖X ≤ k0‖un − u‖X + ‖Λnu − Λu‖X ;

equivalently,

‖un − u‖X ≤ 1
1 − k0

‖Λnu − Λu‖X . (4.58)

Next,

‖Snu − Su‖X×X = ‖(ρfn − ρAnu + u, u) − (ρf − ρAu + u, u)‖X×X

= ‖(ρ(fn − f) − ρ(Anu − Au)‖X

≤ ρ‖fn − f‖X + ρ‖Anu − Au‖X .

By assumptions (4.41), (4.17), we have

Snu → Su in X × X as n → ∞. (4.59)

On the other hand, the inequality (3.7) for the operator Rn yields

‖Rnη − Rnξ‖X ≤ 1
1 − ρ0αjn

‖η1 − ξ1‖X +
ρ0αϕn

1 − ρ0αjn

‖η2 − ξ2‖X (4.60)

for η = (η1, η2), ξ = (ξ1, ξ2) ∈ X × K. From the assumption (4.45),

1
1 − ρ0αjn

≤ 1
1 − ρ0α

,
ρ0αϕn

1 − ρ0αjn

≤ ρ0α

1 − ρ0α
.

Therefore, using (4.60) we deduce that there exists a constant d0 > 0 which does not depend on n such
that

‖Rnη − Rnξ‖X ≤ d0‖η − ξ‖X×X ∀ η = (η1, η2), ξ = (ξ1, ξ2) ∈ X × K. (4.61)

Write

Λnu − Λu = Rn(Snu) − R(Su) = Rn(Snu) − Rn(Su) + Rn(Su) − R(Su).

By (4.61),

‖Λnu − Λu‖X ≤ d0‖Snu − Su‖X×X + ‖Rn(Su) − R(Su)‖X . (4.62)

We use the convergence (4.39) with ψn = ρ0ϕn(u, ·), hn = ρ0jn and fn = f = Su to deduce that

Rn(Su) → R(Su) in X as n → ∞. (4.63)

Therefore, (4.59), (4.63) and (4.62) imply

‖Λnu − Λu‖X → 0. (4.64)

We now combine inequality (4.58) with (4.64) to see that (4.46) holds, which concludes the proof. �

We end this section with a remark.

Remark 16. From the proof of Theorem 15, it can be seen that the assumptions H(s) and H(sn) are
implied by the assumption (4.45), cf. (4.48). Thus, in the statement of Theorem 15, the assumptions H(s)
and H(sn) can be formally removed.
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5. Relevant particular cases and applications

In this section, we present some particular cases of the results obtained in Sects. 3 and 4. Our first
particular case is when Kn

M−→ K, An = A, ϕn = ϕ, jn = j and fn = f . In this case, Theorems 11 and
15 lead to the following result.

Corollary 17. Assume H(K), H(A), H(ϕ), H(j), H(s), H(f), H(Kn) for each n ∈ N, and Kn
M−→ K

in X. Then, for each n ∈ N, there exists a unique element un ∈ Kn such that

(Aun, v − un)X + ϕ(un, v) − ϕ(un, un) + j0(un; v − un) ≥ (f, v − un)X ∀ v ∈ Kn.

Moreover, un → u in X, where u represents the solution of Problem P guaranteed by Theorem 11.

When we associate the index n with a discretization parameter, Corollary 17 may be interpreted as
a convergence result for numerical solutions of Problem P. For the setting, we consider a sequence of
subsets {Kn} in finite-dimensional spaces {Xn} such that Xn is a finite element subspace of the space
X, corresponding to a finite element partition of the spatial domain of the variational–hemivariational
inequality (3.1). If we take Kn = Xn ∩K, then Kn ⊂ K and Problem Pn represents an internal numerical
approximations of Problem P. We refer the reader to [11,12] for convergence results related to internal
numerical approximations, and [13] for both internal and external numerical approximations of such
inequalities. A comprehensive reference on the numerical analysis of Problem P can be found in the
survey paper [10].

Our second particular case is when Kn = K. In this case, Theorems 11, 15 and Remark 16 lead to
the following result.

Corollary 18. Assume H(K), H(A), H(ϕ), H(j) and H(f) and, for each n ∈ N assume H(An), H(ϕn),
H(jn) and H(fn). Moreover, assume (4.17) and (4.41)–(4.45). Then, for each n ∈ N, there exists a unique
element un ∈ K such that

(Anun, v − un)X + ϕn(un, v) − ϕn(un, un) + j0
n(un; v − un) ≥ (fn, v − un)X ∀ v ∈ K.

Moreover, un → u in X.

This result provides the continuous dependence of the solution to Problem P with respect to the
operator A, the functions ϕ, j, and the element f .

When j vanishes and jn �≡ 0 for each n ∈ N, Corollary 18 provides the convergence of the solution
of a variational–hemivariational inequality to the solution of a pure variational inequality. Similarly, in
the case ϕ vanishes and ϕn �≡ 0 for each n ∈ N, Corollary 18 provides the convergence of the solution of
a variational–hemivariational inequality to the solution of a pure hemivariational inequality. Moreover,
Corollaries 17 and 18 reduce to corresponding results for pure variational inequalities if jn and j are
removed from consideration, and to that for pure hemivariational inequalities if ϕn and ϕ are removed
from consideration.

We end this section with examples of sets, operators and functions which satisfy conditions stated
in Theorem 15. We conclude that the convergence result (4.46) holds for the corresponding inequality
problems.

Example 19. Assume H(K) and let {an}, {bn} be two sequence of positive reals such that an → 1 and
bn → 0. Let θ ∈ X and assume that for each n ∈ N the set Kn is defined by

Kn = anK + bn{θ}.

It is easy to see that the sequence {Kn} satisfies conditions H(Kn) and (4.13).
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Example 20. Assume H(A). Let {ωn} be a sequence of positive numbers such that ωn → 0 and let
T : X → X be a monotone and Lipschitz continuous operator, i.e., an operator which satisfies the
inequalities

(Tu − Tv, u − v)X ≥ 0, ‖Tu − Tv‖X ≤ LT ‖u − v‖X ∀u, v ∈ X

with LT > 0. For all n ∈ N define an operator An : X → X by Anv = Av + ωnTv for all v ∈ X. Then, it
is easy to see that the sequence {An} satisfies conditions H(An) and (4.41).

Example 21. Assume H(ϕ). Let {ωn} be a sequence of positive numbers such that ωn → 0 and let
ψ : X → R be convex Lipschitz continuous function. For all n ∈ N consider the function ϕn : X ×X → R

defined by ϕn(u, v) = ϕ(u, v) + ωnψ(v) for all u, v ∈ X. Then, it is easy to see that the sequence {ϕn}
satisfies conditions H(ϕn) and (4.42). A similar example can be constructed for function j.

6. An elastic contact problem

The theoretical results presented in Sects. 3 and 4 can be applied in analysis of a large number of
static contact problems with elastic materials. Details on modeling and construction of the correspond-
ing boundary value problems can be found in [10,24]; for this reason, we will present the variational
formulation of the contact model directly.

We denote by S
d (d = 2, 3) the space of second-order symmetric tensors on R

d, and by “·”, ‖ · ‖ and 0
the inner product, the norm and the zero element on the spaces R

d and S
d. Let Ω be a bounded domain

in R
d with a Lipschitz continuous boundary Γ that is divided into three measurable disjoint parts Γ1, Γ2

and Γ3 such that measΓ1 > 0. The unknown displacement will be sought in a subset of the space

V = {v ∈ H1(Ω)d : v = 0 on Γ1 }.

We denote by ν the unit outward normal to Γ. For every v ∈ V , we use the notation

ε(v) =
1
2
(∇v + ∇T v), vν = v · ν, vτ = v − vνν

for the symmetric part of the gradient of v, the normal and tangential components of v, respectively. It
is well known that V is a real Hilbert space with the canonical inner product

(v,u)V =
∫

Ω

ε(u) · ε(v) dx,

and the associated norm ‖ · ‖V . We also use ‖γ‖ for the norm of the trace operator γ : V → L2(Γ3)d.
Let F , pν , pτ , f0, f2, and θ be given data, satisfying the following conditions.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F : Ω × S
d → S

d is such that
(a) there exists LF > 0 such that

‖F(x, ε1) − F(x, ε2)‖ ≤ LF‖ε1 − ε2‖
for all ε1, ε2 ∈ S

d, a.e. x ∈ Ω;
(b) there exists mF > 0 such that

(F(x, ε1) − F(x, ε2)) · (ε1 − ε2) ≥ mF ‖ε1 − ε2‖2

for all ε1, ε2 ∈ S
d, a.e. x ∈ Ω;

(c) F(·, ε) is measurable on Ω for all ε ∈ S
d,

(d) F(x,0) = 0 for a.e. x ∈ Ω.

(6.1)

⎧
⎪⎪⎨

⎪⎪⎩

For e = ν, τ, the function pe : R → R+ is such that
(a) there exists Le > 0 such that

|pe(r1) − pe(r2)| ≤ Le|r1 − r2| for all r1, r2 ∈ R;
(b) pe(r) = 0 if and only if r ≤ 0.

(6.2)
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(Lν + Lτ ) ‖γ‖2 < mF . (6.3)

f0 ∈ L2(Ω)d, f2 ∈ L2(Γ2)d. (6.4)
{

There exist G ∈ H2(Ω) and M0, M1 ∈ R such that
θ = γ(G) on Γ3 and 0 < M0 ≤ G(x) ≤ M1 for all x ∈ Ω ∪ Γ.

(6.5)

Introduce the following notation.

K = {v ∈ V : vν ≤ θ a.e. on Γ3 }, (6.6)

A : V → V, (Au,v)V =
∫

Ω

Fε(u) · ε(v) dx, (6.7)

ϕ : V × V → R, ϕ(u,v) =
∫

Γ3

pτ (uν) ‖vτ‖ds, (6.8)

g : R → R, gν(r) =

r∫

0

pν(s) ds, (6.9)

j : V → R, j(v) =
∫

Γ3

gν(vν) ds, (6.10)

f ∈ V, (f ,v) =
∫

Ω

f0 · v dx +
∫

Γ2

f2 · v ds (6.11)

for u,v ∈ V and r ∈ R. It can be proved that the function j is locally Lipschitz. Therefore, as usual,
we shall use the notation j0(u;v) for the generalized directional derivative of j at u in the direction v.
Moreover, a standard regularity result based on definition (6.9) and assumption (6.2) shows that

j0(u;v) =
∫

Γ3

pν(uν)vν ds ∀u,v ∈ V. (6.12)

We now consider the following inequality problem.
Problem Q. Find a displacement field u ∈ K such that

〈Au,v − u〉 + ϕ(u,v) − ϕ(u,u) + j0(u;v − u) ≥ 〈f ,v − u〉 ∀v ∈ K. (6.13)

Problem Q represents the variational formulation of a mathematical model which describes the equi-
librium of an elastic body in frictional contact with a foundation made of a rigid obstacle covered by a
layer of asperities of thickness θ, under the action of body forces and surface tractions of densities f0 and
f2, respectively. Here, F is a nonlinear constitutive function which describes the material’s behavior and
pν and pτ are the so-called normal compliance functions.

Next, we consider a perturbed version of Problem Q in which, for simplicity, we assume that only the
set K, the operator A and the function ϕ are perturbed. To this end, we consider sequences {θn}, {ωn}
and {εn} with the following properties.

{
For each n ∈ N there exist Gn ∈ H2(Ω) such that
θn = γ(Gn) on Γ3 and 0 < M0 ≤ Gn(x) ≤ M1 for all x ∈ Ω ∪ Γ.

(6.14)

Gn ⇀ G in H2(Ω). (6.15)

ωn ∈ L∞(Ω), ωn(x) ≥ 0 a.e. x ∈ Ω, ∀n ∈ N, ‖ωn‖L∞(Ω) → 0. (6.16)

εn ≥ 0 ∀n ∈ N, εn → 0. (6.17)

Define

Kn = {v ∈ V : vν ≤ θn a.e. on Γ3 }, (6.18)
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An : V → V, (Anu,v)V =
∫

Ω

(Fε(u) + ωnε(u)
) · ε(v) dx, (6.19)

ϕn : V × V → R, ϕn(u,v) =
∫

Γ3

pτ (uν)
√

‖vτ‖2 + ε2
n ds (6.20)

for u,v ∈ V , together with the following perturbed version of Problem Q.
Problem Qn. Find a displacement field un ∈ Kn such that

(Anun,v − un)X + ϕn(un,v) − ϕn(un,un) + j0(un;v − un)

≥ (f ,v − un)X ∀v ∈ Kn. (6.21)

Note that Problem Qn represents the variational formulation of a contact model similar to that
associated with Problem Q. The difference arises in the fact that the elasticity operator F and the
thickness θ are perturbed and the friction law is regularized.

Regarding Problems Q and Qn, we have the following existence, uniqueness and convergence result.

Theorem 22. Assume (6.1)–(6.5), (6.14)–(6.17). Then, the following statements hold.
(a) Problem Q admits a unique solution u ∈ K, and for each n ∈ N, Problem Qn admits a unique

solution un ∈ Kn.
(b) If, in addition, the smallness condition

(Lν + Lτ ) ‖γ‖2 ≤ 1
2

mF (6.22)

holds, then the solution un of Problem Qn converges to the solution u of Problem Q: un → u in V as
n → ∞.

Proof. We apply Theorems 11 and 15 on the space V . Since in our case the function j and the element
f are not perturbed, we need to verify only the validity of conditions H(K), H(A), H(ϕ), H(j), H(s),
H(f), H(Kn), H(An), H(ϕn), H(sn), (4.13), (4.41), (4.42), (4.44) and (4.45). Some of the conditions
are obviously satisfied, such as conditions H(K), H(A), H(f), H(Kn), H(An) and (4.41). Therefore, we
focus in what follows on the conditions H(ϕ), H(j) H(s), H(ϕn), H(sn) (4.13), (4.42), (4.44) and (4.45).
Note that the constants mA and LA in H(A) are given by mA = mF and LA = LF .

Let u1,u2,v1,v2 ∈ V . By the definition (6.8) and the assumption (6.2),

ϕ(u1,v2) − ϕ(u1,v1) + ϕ(u2,v1) − ϕ(u2,v2)

≤
∫

Γ3

(
pτ (u1ν) − pτ (u2ν)

)(‖v2τ‖ − ‖v1τ‖)
ds

≤ Lτ‖γ‖2‖u1 − u2‖V ‖v1 − v2‖V .

This shows that condition H(ϕ) holds with αϕ = Lτ‖γ‖2. Next, (6.12) and assumption (6.2) show that

j0(v1,v2 − v1) + j0(v1,v2 − v1) =
∫

Γ3

(
pν(v1ν) − pν(v2ν)

)(
v1ν − v2ν) ds

≤ Lν‖γ‖2‖v1 − v2‖2
V .

This shows that condition H(j) holds with αj = Lν‖γ‖2. Therefore, using assumption (6.3) we deduce
that condition H(s) is satisfied. In addition, using the elementary inequality

|
√

a2 + ε2 −
√

b2 + ε2| ≤ |a − b| ∀ a, b, ε ∈ R,

we deduce that condition H(ϕn) holds with αϕn
= Lτ‖γ‖2 and, therefore, condition H(sn) is satisfied,

too.
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On the other hand, it was proved in [22] that, under conditions (6.5), (6.14), (6.15) the set sequence
{Kn} defined by (6.18) converge to the set (6.6) in the sense of Mosco, in the space V . Therefore, condition
(4.13) is satisfied.

Next, condition (4.42) follows from the compactness of the trace operator combined with inequality

|
√

a2 + ε2 − a| ≤ ε ∀ a, ε ∈ R+,

while condition (4.44) is a consequence of the positivity of functions ϕn and j, guaranteed by assumptions
(6.2).

Finally, to check condition (4.45) we assume that (6.22) holds. We remark that in our case mn = mA

and Ln = LA + ‖ωn‖L∞(Ω) for all n ∈ N. Therefore, we deduce that condition (4.45)(a) holds with
m = mA = mF and, for n large enough, with any L > LF . In addition, (6.3) guarantees that (4.45)(b)
holds with α = (Lν + Lτ )‖γ‖2. Using the elementary inequality

x −
√

x2 − x >
1
2

∀x ≥ 1

with x = L2/m2, we deduce that

L2

m2

(

1 −
√

1 − m2

L2

)

>
1
2

and, therefore,

1
2

m <
L2

m

(

1 −
√

1 − m2

L2

)

.

We conclude from here that if (6.22) holds then α ≤ m/2 which implies that (4.45)(c) holds, too.
It follows from above that we are in a position to use Theorems 11 and 15 which concludes the

proof. �

In addition to the mathematical interest in the convergence result in Theorem 22(b), it is important
from the mechanical point of view, since it shows that the weak solution of the elastic frictional contact
problem depends continuously on the perturbation of the constitutive operator, the thickness of the
deformable layer and the friction law.
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[24] Sofonea, M., Migórski, S.: Variational–Hemivariational Inequalities with Applications. Pure and Applied Mathematics,

Chapman & Hall/CRC Press, Boca Raton (2018)
[25] Xiao, Y.B., Sofonea, M.: On the optimal control of variational–hemivariational inequalities. J. Math. Anal. Appl. 475,

364–384 (2019)
[26] Zeng, B., Liu, Z., Migorski, S.: On convergence of solutions to variational–hemivariational inequalities. Z. Angew. Math.

Phys. 69, 87 (2018)

Mircea Sofonea
Laboratoire de Mathématiques et Physique
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