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Abstract no pasa nada

Purpose of ReviewGrowth equations have been widely

used in forest research, commonly to assess ecosystem-

level behaviour and forest management. Nevertheless,

the large number of growth equations has obscured the

growth-rate behaviour of each of these equations and

several different terms for referring to common phenom-

ena. This review presents a unified mathematical treat-

ment of growth-rates besides several well-known growth

equations by giving their mathematical basis and rep-

resenting their behaviour using tree growth data as an

example.

Recent Findings We highlight the mathematical dif-

ferences among several growth equations that can be

better understood by using their differential equations

forms rather than their integrated forms. Moreover, the

assumed-and-claimed biological basis of these growth-

rate models has been taken too seriously in forest re-

search. The focus should be on using a plausible equa-

tion for the organism being modelled. We point out that

more attention should be drawn to parameter estima-
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sidad de Aysén, Coyhaique, Chile.

7 Laboratorio de Biometŕıa, Departamento de Ciencias Fore-
stales, Universidad de La Frontera, Temuco, Chile.

tion strategies and behaviour analysis of the proposed

models. Thus, it is difficult for a single model to cap-

ture all possible shapes and rates that such a complex

biological process as tree growth can depict in nature.

SummaryWe pointed out misleading concepts attributed

to some growth equations; however, the differences come

from their mathematical properties rather than pure bi-

ological reasoning. Using the tree growth data, we de-

pict those differences. Thus, comparisons of some func-

tional forms (at least simple ones) must be carried out

before selecting a function for drawing scientific find-

ings.

Keywords Differential equations · growth-rates · von
Bertalanffy · logistic · trees

Introduction

Growth is a term which everybody understands but not

necessarily in the same way. Although we can track def-

initions of growth as far as Aristotle [1], one of the first

obstacles in understanding tree growth is the lack of

precision in the definition of what is meant by growth.

Growth is determined by cell-division, cell-extension

and cell differentiation [2]. Ergo, growth is a phenomenon

that captures the interest of research in a suite of dis-

ciplines [3], especially in plant sciences [4]. The growth

pattern in forest trees is divided into primary growth,

i.e. the growth from a bud, root, tip or other apical

meristem, and secondary growth, i.e. growth from cam-

bium [5]. Growth implies an increase in size and the

formation of new tissue. However, growth may occur

when older organs, particularly leaves, are dropping off

faster than new ones are being formed [6]. The term

net growth includes also this component, whereas gross

growth does not. In forestry, these terms are mainly
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used at the stand level, and using volume as variable of

reference, as follows: net growth refers to the difference

between volume at the end of the period and at the be-

ginning; gross growth must also incorporate the growth

of trees which may have died in the period [5, 7]. We

refer here to the growth of variables such as height and

stem diameters as the irreversible increase in leading-

shoot length and stem diameter, respectively [8], or in a

more physiological context, the incorporation of carbon

into structural material [2]. Nevertheless, we follow [9],

in the sense that the level of abstraction of our mod-

elling framework emphasizes the physically measurable

exterior tree characteristics, which we call variables.

Let us take a closer look at the use of the terms

“growth”, “increment” and “yield” in forestry. Bruce

[10] stated, using height growth equations as an exam-

ple, that there are growth and growth-rate equations,

the first one being an expression giving the variable as

a function of time, and the second as the differential of

the growth equation. He also emphasized that growth-

rate is determined at one point in time. In forestry,

growth over a time period shorter than a year may

be confusing because the growth usually occurs during

summertime. Yang et al. [11] defined the term incre-

ment as the increase in size of an organism within a

certain time interval i.e., as the difference in observed

or predicted growth at two points in time [10]. Cur-

rent annual increment (CAI ) is the difference in the

growth at the beginning and the end of the year and

periodic annual increment (PAI ) for longer time units

[12]. Term yield has also been used in the same meaning

as growth [12, 13, 14, 15, 16], but it has mainly been

associated with volume. For example, Clutter [14] and

Curtis [15] refer to growth-rate as the derivative form

and to yield as the integral of volume. Clutter [14] de-

fined that if integrating the growth-rate equation gives

the yield equation, the models are compatible. Even

though the forestry literature often recognizes the works

by [12] and [14] as the first to mention the consistency

between growth-rate equations and the yield equations,

many researchers in plant ecology [17, 18, 19], animal

growth [20], and also in forestry [21, 22, 23] have been

aware of this relationship long before.

In this paper, we use the following terminology that

corresponds to the mathematical explanation of deriva-

tives and integrals in calculus [24]: If a state variable,

y, is measured at times t0 and t1, or size at both times,

we have a dynamic variable, therefore we also refer to

them as growth at times t0 and t1 (Fig. 1). The differ-

ence between these two measurements is the increment

of that variable, for the period of time ∆t = t1 − t0,

and is symbolized by ∆y = y1 − y0. The ratio ∆y/∆t,

is referred to as the average rate of change, between t0

and t1, which is how fast the y variable is changing,

and is the slope of a straight line connecting f(t0) to

f(t1) in Figure 1. If ∆t becomes infinitesimally small,

then we are analyzing the derivative of y, dy/dt, in y

for any particular time (i.e., the slope of the tangent

line at points t0 and t1 in Fig. 1), which we call (in-

stantaneous) growth rate. If the increment in the state

variable from t0 up to a time t1, ∆y (or dy/dt inte-

grated), is added to y0, then we get y1, the growth at

time t1.

t0 t1

f (t0)

f (t1)

∆y
∆t

=
f (t1)− f (t0)

t1− t0

f ′(t0)

f ′(t1)

t

y

Fig. 1 Growth definitions for the state variable y obtained
from function f . Growth curve (blue), state variable at time
0 (f(t0)) and time 1 (f(t0)), increment (∆y) between t0 and
t1, and growth–rate or derivative (dy/dt) at t0 (f ′(t0)) and
t1 (f ′(t1)). The derivative, or instantaneous growth-rate, is
the slope of the tangent lines (black) at points t0 and t1.

If we were able to capture the entire lifetime of most

live organisms, their empirical growth would depict a
sigmoid curve. A sigmoid or S-type curve resembles

trends in the life cycle of many living organisms and

phenomena [25] (Figure 2a). Virtually all exterior tree

dimensions develop in a sigmoid manner with respect

to time [26]. A growth curve is typically separated in

phases (Figure 2a). Generally three phases have been

recognized [27, 28, 29], but the pattern remains the

same. Baker [28] called them; acceleration, intermedi-

ate, and deceleration; [29] youth, full vigor, and old age;

while [30], youth, maturity, and senescence. In phase 1,

y is an exponential function of time [27]. Trees grow

relatively slowly at first, increasing their growth-rate

to the point of inflection of the growth curve [30]. In

phase 2, y is directly proportional to time [27], and in

phase 3, there is a decrease of the growth-rates [27, 30].

In addition to CAI, the forestry literature recog-

nizes the term mean annual increment (MAI), which

is found by dividing the growth through time t by the

number of years required to produce it (red curve in
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Fig. 2 Growth and growth-rates curves. (a) The trajectory
of the state variable (y), generally representing an expres-
sion of size, is the growth curve. Meanwhile, (b) growth-rates
curves are represented by the current (blue) and mean (red)
annual increments. ta is the time of culmination of current
annual increment and tb is the time of maximum mean an-
nual increment.

Figure 2b), i.e. MAI = yt/t. Growth and increment

curves have long been used for making silvicultural de-

cisions, using as reference the following facts. The in-

flection point of the CAI curve, which occurs at the

time symbolized by ta in Figure 2, is also the time of

maximum CAI. It has been recognized as a good oppor-

tunity to apply thinning, since the increment of resid-

ual trees is going to reach its maximum. The point ta

is called the culmination of current annual increment

[29, 30, 31]. The inflection point of the MAI curve,

which occurs at the time symbolized by tb in Figure

2, represents the point where the curves of MAI and

CAI cross, and MAI is maximized. It has been recog-

nized as a biological criterion to choose the rotation age

of even-aged stands. More specifically, it is the rotation

that maximizes the growth. It would be the rotation

that leads to maximum carbon sequestration if the car-

bon of harvested biomass would never be released back

to the atmosphere [32]. Otherwise, the optimal rota-

tion for carbon sequestration would be longer. Point tb

would be an economically optimal rotation if the inter-

est rate of the forest owner is 0%. A higher interest rate

would make the optimal rotation shorter [33].

Growth equations

Many empirical and theoretical growth equations have

been used in forest research. Traditionally, practition-

ers want to predict the value of a random variable at

time t, let’s say yt, as a function of some variables that

might affect the value of yt. The usual approach is to

build a mathematical model that fits the pattern of the

observed data. The resulting model is called “empiri-

cal”. On the other hand, growth equations have been

developed from biological theory about the growth pro-

cess, with parameters that have (sometimes) biological

meaning. Theoretical growth equations have become

preferred in research but not always in practice. Some

of the so called theoretical growth equations have em-

pirical bases. Nevertheless, we prefer to call them as

such because the parameters have some biological in-

terpretation. Empirical models serve a different pur-

pose than do theoretical models. Thereupon, empirical

models should not be viewed as poorer alternatives.

Theoretical growth equations have been developed

for many biological disciplines. Several mathematical

equations are based on theoretical constructs. Since many

growth curves are nonlinear in terms of their parame-

ters, growth models are an important family of non-

linear models [34]. There is an extensive number of

growth equations in the literature; however, it is hard

to believe that a model with three or four parameters

could describe so complicated process as growth from

birth to death [35, 36]. The origin of many nonlinear

models in use today can be traced to scholarly efforts

to discover laws of nature, to reveal scales of being,

and to understand the forces of life [34]. There are sev-
eral growth equations with theoretical or theoretical-

empirical bases. Here, we focus on some that have been

widely used in forestry research.

There are many different parameterizations of a cer-

tain growth model. Because these models start from dif-

ferential equations, many trajectories can be obtained;

as a result numerous models have been proposed based

on the differential forms. Furthermore from different

differential equations it is possible to attain the same

solution or trajectory, a mathematical fact that is not

fully understood, as expressed by [37, 38]. Several au-

thors have reported different parameterization of growth

models for forestry and other scientific disciplines [3,

34, 37, 39, 40, 41, 42, 43, 44]. Here, we present differ-

ential forms and solutions of selected and most widely

use models in forest science. We want to stress that by

selecting these mathematical functions, we are aiming

to compare their mathematical differences and origins,

but not providing a detailed review of all the available

growth functions that can be found.
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Hereafter, all the parameters are positive, as well as

time (t) is positive, and the state variable y. We also

provide expressions of the asymptote (i.e., the maxi-

mum level for the state variable) and the points of in-

flection (i.e., where the curve changes of curvature) of

all models. We shall use Greek letters to refer to pa-

rameters and italics font style to refer to variables. The

use of the same symbols that represent parameters in

equations through the document do not represent the

mathematical equivalence, unless that is clearly speci-

fied. For example, β or γ can be used in different equa-

tions, but they do not imply the same number.

Monomolecular growth model. The monomolecu-

lar model is the following differential equation

dy

dt
= β(α− y), (1)

where y is the state variable, t represent time, and β and

α are parameters that represents the proportional con-

stant and final size, respectively. For this model growth

is proportional to the remaining size of the organism

[34]. Therefore, the growth-rate decreases as t increases

and the equation cannot describe sigmoidal growth. A

solution of (1) produces the growth function

yt = α
{
1−

(
1− y0

α

)
e−β(t−t0)

}
. (2)

If we further assume that t0 = 0, y0 = 0, then (2) be-

comes

yt = α
{
1− e−βt

}
, (3)

where α is the asymptote of the state variable, but the

model does not have an inflection point (Table 1). The

equation form of (3) is known as the Mitscherlich law

or Mitscherlich equation [34]. This function was pro-

posed for height-diameter modelling by [45] as well and

is therefore sometimes called Meyer’s equation in the

literature.

Logistic growth model. The logistic growth is mostly

attributed to Verhulst’s work in 1838 [46, 47, 48]. The

logistic model imposes a restriction to the exponential

growth, then representing limiting resources for popu-

lation growth. There are many parametrizations of the

logistic model, but we shall show the one most com-

monly cited in the ecological literature [46, 49],

dy

dt
= θy − ϕy2 = y(θ − ϕy), (4)

where y is the state variable, θ and ϕ are parameters.

The differential logistic equation can also be param-

eterized as follows [48, 50], based on treating θ as β and

(θ/ϕ) as α,

dy

dt
= βy −

(
β

α

)
y2 = βy

(
1− y

α

)
, (5)

where the constant α has a biological interpretation as

the carrying capacity of the environment, e.g., the max-

imum population size for ecological studies or the max-

imum tree size, and β is a proportionality constant.

The logistic growth equation is the simplest equation

describing sigmoidal population growth in a resource-

limited environment, and it forms the basis for many

models in ecology [48]. A solution of the differential

form of the logistic is the following growth curve,

yt =
α

1 + [(α− y0)/y0] e−βt
, (6)

where y0 is the value of the initial condition of the state

variable y. From (5) we see that when y → α, which

happen when t → ∞, the growth-rate is zero, therefore

the population being modelled or the size of any organ-

ism, does not grow without limit. The logistic equation
is symmetric around the inflection point t0, implying

that the growth rate fulfills f(t0 − t) = f(t0 + t) for

any positive t. Also notice that, when the growth-rate

of the equation (Eq. 4) is plotted as a function of the

state variable y, and not time, the point of inflection

y = α/2 (Table 1) is when the growth-rate reaches

its maximum. A usual parameterization found in the

Table 1 Features of the studied growth models. The differential form (i.e., growth-rate equation), a solution (i.e., growth
equation), the asymptote and the inflection point are provided.

Model Differential form A solution Asymptote Point of inflection

Monomolecular dy
dt = β(α− y) yt = α(1− e−βt) α None

Logistic dy
dt = βy(1− y

α ) yt =
α

1+eβ0−β1t α
[
β0

β1
; α
2

]
Gompertz dy

dt = βy(lnα− ln y) yt = αe−e−β(t−γ)

α
[
γ; α

e

]
Johnson-Schumacher dy

y = βd
(

1
t2

)
ln yt = α− β

(
1
t

)
eα

[
β
2 ; e

α−2
]

Bertalanffy-Richards dy
dt =

(
β
γ

)
y
[(

α
y

)γ
− 1
]

yt = α
{
1− e−βt

} 1
γ α

[
− ln(γ)

β ;α(1− γ)
1
γ

]
Weibull dy

dt = αβγtγ−1e−βt yt = α(1− e−βtγ ) α
[
(γ−1

γβ )
1
γ ;α(1− e

γ−1
γ )
]

Schnute d2y
d2t = dy

dt [−α+ (1− β)γ] yt =
{
yβ1 + (yβ2 − yβ1 )

1−e−α(t−t1)

1−e−α(t2−t1)

} 1
β

α
[
yβ1 +

yβ
2 −yβ

1

1−e−α(t−t1)

] 1
β

[
t1 + t2 − 1

α ln(
β(yβ

2 e
αt2−yβ

1 e
αt1 )

yβ
2 −yβ

1

); (1− β)(
yβ
2 e

αt2−yβ
1 e

αt1

eαt2−eαt1
)
]
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forestry literature [31, 51] is

yt =
α

1 + eβ0−β1t
(7)

which is equivalent to make (α − y0)/y0 of Eq. (6) as

equal to eβ0 , and β0 and β1 are parameters. Robert-

son [52] proposed the same differential equation (as in

Eq. 4) to describe an autocatalytic monomolecular re-

action in biochemestry. Then, the logistic equation is

also known as the expression that represents the “auto-

catalytic law” of physiology and chemistry. When [53]

commented on some recent studies on growth including

the one by [52], further generalized this thought to brain

(and other) growth. According to [34], Pearl and Reed

promoted the autocatalytic concept not only for indi-

vidual but also for population growth, in their work of

1924. In sociology, the logistic model is know as the law

of Verhulst established in 1838 describing the growth of

human populations with limited resources [54].

Gompertz growth model. This growth model was

proposed by [55], who was concerned with modelling

mortality in an arithmetical progression; however, [56]

derived it as a growth model. Gompertz’s differential

model is
d ln y

dt
= β(lnα− ln y),

1

y

dy

dt
= β(lnα− ln y),

dy

dt
= βy(lnα− ln y), (8)

when the relative growth-rate declines with ln y and the

other terms are parameters. The most common param-

eterization of a solution of (8) is [3, 34]

yt = αe−e−β(t−γ)

, (9)

where α is the asymptote and γ is the time where the

point of inflection occurs (Table 1). Although β is a di-

mensionless parameter, it affects the maximum growth-

rate (i.e., αβ/e). As opposed to the logistic model, the

Gompertz curve is asymmetric.

Johnson-Schumacher growth model. This model

was independently proposed by [57] and [21], which has

been also known as the “reciprocal function”. [21] ex-

plained the model by saying that the growth percent

varies inversely with age, which he expressed in a dif-

ferential form as follows

dy

y
= βd

(
1

t

)
. (10)

A solution to this differential equation is found by first,

set u = t−1 and then substitute du = −t−2dt for

d(1/t) = −t−2dt in Eq. (10)

dy

y
= βdu,∫

1

y
dy =

∫
βdu,

ln y + γ1 = βu+ γ2, (11)

where γ1 and γ2 are the constants of integration. Sec-

ond, by assigning α = γ2 − γ1, we arrive at

ln y = α+ β

(
1

t

)
. (12)

This model has been widely used in forestry, mainly

for fitting height-age models. Eq. (12) allows parameter

estimation in the context of linear modelling. However,

one should notice that model fitting for ln y leads to

biased predictions of y [58, 59]. Also the alternative

form y = α exp(βt ), is used in forest sciences; however,

here α has a different interpretation than in (12).

The differential equation of [21], can be represented

as the growth-rate as a fraction of the state variable y,

as follows(
dy

d
(
1
t

)) /y = β. (13)

however, as mentioned by [60], this differential equa-

tion does not represent what [21] said in words, i.e.,

“growth per cent varies inversely with age”. Instead,

that thought is represented by the following differential

equation(
dy

dt

)
/y = β

(
1

t

)
. (14)

A solution of Eq. (14) is obtained as follows,

dy

y
= β

(
1

t

)
dt,∫

1

y
dy = β

∫ (
1

t

)
dt,

ln y + γ1 = β ln t+ γ2, (15)

where γ1 and γ2 are the constants of integration, and

α = γ2 − γ1, as before, we get

ln y = α+ β ln t, (16)

This function is not the growth equation proposed by

[21], which is being advocated to represent growth-rate

as a percentage inversely proportional to time. Using

exponential transformation, we see that the equation

is a linearized version of the extensively used power

function y = ϕtα, where ϕ = eα.

Furnival [60] also detected the error in [21], and said

“the curve given by [21] is obtained if growth percentage

is taken as inversely proportional to the square of age”.
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If we proceed as above, we arrive to

ln y = α+ β

(
−1

t

)
. (17)

This formulation emphasizes that model (12) leads to

increasing logarithmic growth only if β < 0, whereas

in (17) we need to have β > 0. Therefore, we favor

this expression as a correct solution of the differential

equation

dy

y
= βd

(
1

t2

)
. (18)

Finally, we could say that the derivation of Schumacher

is correct but his formulation is wrong.

Bertanlanffy growth model. This model was first

published in German [61], and later the author intro-

duced it to the English literature in a brief paper [62],

and in a more developed one [20]. He originally devel-

oped it for weight growth of animals. The model is a

result of a deeper developed basic idea of Pütter in

1920 [54]. That is, growth can be considered a result

of a counteraction of synthesis and destruction, of the

anabolism and catabolism of the building materials of

the body. The differential form of the von Bertanlanffy

model is
dy

dt
= ηyθ − κyϕ, (19)

where η and κ are constants of anabolism and catabolism

respectively, and the exponents θ and ϕ indicate that

both are proportional to some power of the state vari-

able y. Leary [63] termed (19) as the Bertalanffy’s anabolic-

catabolic balance equation of biological growth. As ex-

plained by [20], this differential equation represents “the

change of y is given by the difference between the pro-

cesses of building up and breaking down”. Nonetheless,

this is a property that is also shared by the monomolec-

ular (1), logistic (4) and Gompertz (8) equations, in

the sense that the differential equation can be sepa-

rated into different additive terms. In the Bertalanffy

model, both these processes are described by the simple

power models, but the form of these submodels is not

justified by biological theory. [47] pointed out that von

Bertalanffy did not make clear what he meant by an-

abolism and catabolism, and aside from all the widely

quoted references to his model as a solid theoretical

growth model, that is not actually true. For instance,

[54] explained, when referring to his model, that the use

of the exponent θ and ϕ in (19) has a pure empirical

base, since it is well known that the size dependence

of physiological processes can well be approximated by

allometric expressions. More recently, [3] noticed that

unfortunately the biological basis of these models (re-

ferring to the logistic, Gompertz, and von Bertalanffy)

has been taken too seriously and had led to the use of

ill-fitting growth curves. Bertalanffy [20] justified that

ϕ = 1 based on physiological experience; hence

dy

dt
= ηyθ − κy, (20)

and he also empirically found that for a wide class of

animals, the allometric power for the metabolic rate (θ)

is 2/3. Thus, differential equation (19) becomes

dy

dt
= ηy2/3 − κy, (21)

Eq. (21) is usually termed the von Bertalanffy model

[3]; nonetheless, we prefer to reserve that denomination

to Eq. (20).

Bertalanffy-Richards growth model. [19] doubted

some theoretical considerations of the Bertalanffy model

(21), and treated some of the parameters to be related

to a point of inflection [3]. The Richard’s differential

equation is

dy

dt
=

(
β

γ

)
y

[(
α

y

)γ

− 1

]
, (22)

where α, β and γ are the asymptote, a scale, and shape-

related parameters [34]. Although, this equation has

been termed as the Bertalanffy-Richards model by [64,

65], and also as a generalization of the Bertanlanffy

model [19], it is paramount to understand that it is

simply a reparametrization of (20) as shown by [38]. A

solution of this differential equation is

yt = α
{
1−

[
1−

(y0
α

)γ]
e−β(t−t0)

} 1
γ

. (23)

Notice that (23) becomes the following growth equation

if y0 = t0 = 0,

yt = α
{
1− e−βt

} 1
γ . (24)

Hence, (24) is a special case of (23), being the former

suitable for forestry plantations and the latter for nat-

ural forests [66]. It is key to realize, and as aforemen-

tioned, that from distinct differential equations, we can

arrive at a same solution. Notice that from the following

linear differential equation with a power transformation

[64],

dyγ

dt
= β (αγ − yγ) , (25)

we can obtain the same solution of (23), as explained

in detail by [38].

Chapman [67] starting from the von Bertalanffy dif-

ferential equation, in the same way as [19] did, derived

a new parameterization of the model particularly suit-

able for fisheries population modelling. Because of that,

sometimes this equation has been called “Chapman-

Richards” as well [40, 68]. We can argue that the de-

nomination for the generalized differential equation (20)
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should be credited to [20], because even though he did

not state it formally in his paper, he used it as the ba-

sis to obtain his proposed solution. Nevertheless, [19]

made this clearer, and also gave his famous 2/3 expo-

nent for θ in (20). Thus, the denomination “Bertalanffy-

Richards” seems a better compromise. Any other de-

nomination, e.g., Chapman-Richards, even though cor-

rect in the sense that they started from the differential

equation (20), is burdensome. Similar claims had been

brought by [37, 38, 39, 69]. Based on the shortcomings

mentioned above, we shall focus on the Bertalanffy-

Richards growth model (23).

Weibull growth model. This model is a probability

density function (pdf) widely used in engineering [70]

as well as in forestry for describing diameter distribu-

tions [71, 72] because of its versatility. [73] noticed that

tree increment and growth curves resemble a proba-

bility density (i.e., frequency distribution) and a prob-

ability distribution (i.e., cumulative frequencies distri-

bution), respectively. Later, [11] exploited this relation-

ship and used it to fit growth curves of trees. Based on

the review given by [74], it seems that [11] were the

first to notice this. The differential form of the Weibull

growth model is as follows [40]

dy

dt
= αβγtγ−1e−βtγ . (26)

A solution of the Weibull growth-rate model is [11, 41]

yt = α
{
1− e−βtγ

}
, (27)

where α, β, and γ are parameters representing the asymp-

tote, intrinsic rate and the shape of the curve, respec-

tively. The last two parameters affects the point of in-

flection (Table 1). [40, 41, 75] found that the Weibull

growth model performed as well as other common growth

equations in modelling tree growth of several variables.

Schnute growth model. [76] introduced a model first

tested for fisheries research. The model is capable of

assuming a wide range of characteristic shapes that

describe asymptotic as well as non-asymptotic growth

trends [65, 77]. The Schnute’s model is based upon ac-

celeration in growth, that is the rate of a rate, hence

using second derivatives as follows [76]

d2y

d2t
=

dy

dt
[−α+ (1− β)

1

y
], (28)

where α, β, and dy/dt are parameters. A solution of

the Schnute differential equation is [76]

yt =

{
τβ1 + (τβ2 − τβ1 )

1− e−α(t−t1)

1− e−α(t2−t1)

}1/β

, (29)

where α ̸= 0, β ̸= 0, t is the time of interest, t1 time at

beginning (e.g., young), t2 time at end of (e.g., old), τ1
and τ2 are parameters representing the state variable y

at time t1 and t2, respectively. As stated by [65], ϕ is

a constant acceleration in growth-rate, and β is incre-

mental acceleration. Unfortunately, the growth function

(29) does not have a single parameter with biological in-

terpretation (Table 1). The Schnute growth-rate model

is among the very few growth investigations based upon

second derivatives, with the exception of the lucid study

of [78] when modelling height growth.

The use of growth equations in empirical studies

Although the logistic model has been long used in pop-

ulation dynamics in ecology, it has barely been used in

forestry to model growth [51]. Among them, [22, 31, 51]

used it for modelling growth of stand volume, stem area,

and tree height growth, respectively. Unlike the logistic

model, the Gompertz model is not symmetric about the

point of inflection. It is a model more used in ecology

than in forestry; it performed well in population mod-

els as reported by the comparison of [79] and was used

with success by [80]. In forestry, it was first mentioned

by [81], but was not used until the work of [82] in mod-

elling stand volume growth. The Bertalanffy-Richards

model is used more than any other function in studies

at tree and stand level [41, 43]. This equation was first

used in forestry by [83], but mostly popularized by [68],

after which the model was termed and later known as

“Chapman-Richards”. The Schumacher growth equa-

tion (17) is long-established for modelling height growth

of dominant trees, because it is linear in its parame-

ters. Notwithstanding, lately the Bertalanffy-Richards

model has become the preferred model. The Weibull

model was first proposed by [11]. [73] earlier had men-

tioned the resemblance of growth and increment curves

to probability density and probability distribution. The

Schnute model has the property of having asymptotic

as well as non-asymptotic shape depending on the pa-

rameter values combination, therefore being versatile to

a wider ranges of situations. [77] were the first to intro-

duce the model to forestry. Later on [65, 84], and [85]

used this model as well.

Comparisons among growth equations are valuable

both for practical and theoretical use; nonetheless, it

seems that researchers tend to prefer one of the models

beforehand. Researchers might conduct initial screen-

ings, but may not report the results in detail. Consider-

ing the large number of growth functions [43], very few

studies have empirically compared them. In table 2, we

have summarized a comprehensive list of studies in this

regard. Overall, the authors selected their models using

traditional goodness-of-fit statistics. The Bertalanffy-

Richards, Weibull and Schnute were the most widely

selected according to these criteria.
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Table 2 Empirical comparisons of growth equations in some forestry studies. The symbol • and
√

represents that the equation
was assessed and selected as the best in the study, respectively.

Model

Source Monomolecular Logistic Gompertz Bertalanffy-Richards Weibull Schnute Other Data

[11] • • •
√

Tree volume
[86]

√
• • Stand volume

[77] •
√

Tree diameter
[40] • • • •

√
Tree diameter

[75] •
√

Tree height

[87] • • •
√

Plant disease
[65]

√ √
Tree diameter

[88] •
√ √ √

Tree height
[84]

√ √
Tree height

[89] • •
√ √ √

Tree height
[43] • • • •

√
Tree height

[90]
√

• Tree basal area

[91] •
√

• • • • Weight
[85]

√
• Tree height

[92]
√

•
√

Plant disease

Practical demonstration

To illustrate the different growth-rates, we estimated

the parameters of the growth equations by using time

series height data of 107 Nothofagus dombeyi sample

trees, a native evergreen and endemic species in Chile

[93], growing on secondary stands in the south of the

country. The tree-level data was collected within 30

sample plots established throughout the ecological dis-

tribution of the species. Sample trees, at the time of

sampling, ranged from young ages to mature (between

21 and 71 years), as well as from small trees to taller

ones (between 10 to 34 meters, Table 3).

Table 3 Tree level variables summary for the 107 Nothofa-
gus dombeyi trees at the time of sampling. d is diameter at
breast height, h is total height, age is total age, and bha is
breast-height age.

Statistic d h age bha

(cm) (m) (yr) (yr)

Minimum 5.3 9.9 21 15

Maximum 60.2 33.7 71 68

Mean 26.6 19.9 41.3 37.7

Median 26 20.8 40 37

CV(%) 19 16.6 15.8 17.3

The height growth data cover a wide variety of grow-

ing conditions (Fig. 3). Further details on the data can

be found in [38].

Breast−height age (yr)

H
ei

gh
t (

m
)

5

10

15

20

25

30

10 20 30 40 50 60

Fig. 3 Tree height growth series of dominant trees for
Nothofagus dombeyi in southern Chile. Grey lines join suc-
cessive observations of height on the same tree.

The growth equations were fitted in a mixed-effects

model framework for considering the grouped structure

of the data [66, 94]. A general nonlinear mixed-effects

model for the kth observation on the jth tree at the ith

plot is

yijk = f(ϕij , tijk) + εijk, (30)

where f is a growth equation and the parameter vec-

tor ϕij includes the parameters of the selected growth
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function. Each parameter consists of a fixed effect (µ)

and two random-effects, i.e., plot (bi) and tree (bij),

therefore

ϕij = µ+ bi + bij . (31)

We assume that the random effects among plots are in-

dependent with bj ∼ N(0,D), as well as for the random

effects among trees within plots with bij ∼ N(0,E).

Also the residual errors are independent and normally

distributed with Var(εijk) = σ2. Further details on the

formulation of non-linear mixed-effects models are pre-

sented in [59, 95, 96, 97]. The models were fitted using

the nlme package [98] of R [99]. The fixed-effects pa-

rameter estimates for each growth model are displayed

in Table 4. We also computed the prediction statis-

tics as in [100], i.e., the root mean square differences

(RMSD) and the aggregated difference (AD) using the

population level predicted value from the correspond-

ing mixed-effects fitted model. These statistics provide

some insight into model fit. Except for the Johnson-

Schmacher equation, all models have similar precision

and accuracy levels.

Using the fixed-effects estimated parameters of the

non-linear mixed-effects growth models (Table 4), we

represent the height growth or trajectory of the state

variable h (Fig. 4a), and the instantaneous growth-rates

versus time (Fig. 4b) and versus the state variable (Fig.

4c), as well. These trajectories should be interpreted as

the estimates for a typical sample plot of the data set.

The number of parameters (i.e., coefficients) affects

the flexibility of functions. As such, the greater number

of parameters, the greater flexibility or intrinsic curva-

ture. We used two functions (i.e., Monomolecular and

Johnson-Schumacher) having 2 parameters, four (i.e.,

logistic, Gomperts, Bertlanffy-Richards, and Weibull)

having 3 parameters, and the Schnute’s function having

4 parameters. Comparing flexibility of the functions for

a given number of parameters is of great interest when

a generally applicable function is searched for empirical

growth modelling. See [101] for such an analysis in the

context of diameter distribution models. However, we

leave such analysis for future studies.

Caveats

In physics, it is rare to analyze different models be-

cause they are already well established, and uncertainty

is not a central feature. On the contrary, in biology-

related disciplines, such as forestry, variability and un-

certainty is the rule. As such, selecting a growth equa-

tion on which our findings are based is not straight-

forward. Most practitioners might compare a suite of

equations and choose one of the merit of goodness-of-

fit indices [102, 103]. On the contrary, others will start

with a preferred growth equation at the very beginning

of their studies [104, 105, 106]. In this vein, it is often

not recognized the tremendous impact that a selected

growth model will have on our inferences. For instance,

let us assume that the goodness-of-fit indices are similar

among the suite of growth equations examined here as

a reference, a pattern that is not unrealistic. However, if

we are interested in finding the maximum height for the
species, a critical functional trait, the asymptote of the

growth curves (Fig. 4a) varies tremendously between an

unrealistic value of 15.2 m for the Johnson-Schumacher

model (we used the [58] bias correction for prediction)

Table 4 Fixed-effects parameter estimates and prediction statistics for each mixed-effects growth model. All models were
fitted by maximum-likelihood and using time series height data of 107 Nothofagus dombeyi sample trees from southern Chile.
RMSD is the root mean square differences and AD the aggregated difference.

Parameters RMSD AD

Growth model α̂ β̂ γ̂ (m) % (m) %

Monomolecular 49.76 0.012 – 2.8249 26.2 0.0507 0.47

Logistic 23.41 2.242 0.10 2.8560 26.5 0.0689 0.63

Gompertz 26.28 0.057 18.59 2.8003 25.9 0.1082 1.00

Johnson-Schumacher 2.72 5.681 – 5.1607 47.9 1.6846 15.62

Bertalanffy-Richards 34.67 0.024 0.81 2.7876 25.9 0.1494 1.39

Weibull 32.70 0.012 1.18 2.7871 25.8 0.1487 1.38

τ̂1 τ̂2
Schnute 0.16 -2.13 2.84 18.02 2.9419 27.3 0.2120 1.96
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Fig. 4 Growth (a) and growth-rates (b) versus time, and growth-rates versus the state variable (c) for the growth equations
studied here.

and 49.8 m for the monomolecular one (Table 4). Over-

all, there is no theoretical reason to limit either tree or

forest growth analysis by using a single equation, and

claims on different reparametrizations have been pro-

posed [107].

As previously, most growth models are non-linear.

The only linear model (in the parameters) assessed here

was the Johnson-Schumacher (Eq. 17). There is no closed

formula to estimate non-linear models’ parameters, as

we have for the linear models. Nowadays, most statisti-

cal software includes tools for easing the fit of non-linear

equations, such as self-starting functions that find good

initial guesses for the parameters. [97]. However, a lit-

tle more care and time may be needed than with linear

models e.g. to run the numerical estimation routines in

large data sets, to find good enough initial guesses for

the parameters, and to ensure that the estimates found

are the global maximum of the likelihood function, but

not local [3]. Regardless, several attempts have been

devoted to ecological applications to offer guidance for

fitting non-linear growth models, since [108, 109] to

[44], highlighting that this is still an important topic

when modelling tree and forest growth. Consequently,

the possibility of working with models having parame-

ters with biological or physical interpretation is an ad-

vantage for fitting these non-linear models.

There are numerous applications for the unified math-

ematical treatment of growth equations presented here.

The more obvious are in forest modelling, such as the

ones fully described in [110, 111]. Besides, growth equa-

tions have several implications in decision support and

scientific findings [112]. Nonetheless, there are a handful

of other applications where growth equations are used.

Among them, we can mention the studies focus on: eco-

physiological aspects of sapling growth [104, 105, 106,

113]; forest-dynamics [114]; silviculture [115, 116]; and

restoration ecology [117, 118, 119], where all the find-

ings are based upon a single fitted–and–assessed growth

function.

As lucidly summarized by [3], we can use x (i.e.,

another state variable) instead of t in the growth-rate

equations, and by this simple twirl, the same mathe-

matical models shown here, as well as their implica-

tions, can serve for representing tree allometry [120], a

major scientific endeavor in biology [121, 122]. In the

forestry context, growth equations have been used in

modelling height-diameter [88, 123, 124], and stem ta-

per [125, 126] allometric relationships.

Growth-rates of the tree and forest growing pro-

cesses are essential in research [23, 127, 128], especially

to study the partitioning of components, resources, and

allocation of them to different processes. At least a basic

but correct mathematical understanding of differential

equations is paramount for researching these complex

processes. Similar advocacy has been claimed by oth-

ers in ecology [129]. It is noteworthy to realize how the

forestry literature is way more focused on growth than

on the growth-rates themselves; that is to say, forestry

is a discipline where we seem to be trained to think in

an integrated form rather than in a differential form. In

contrast, we highlight the pioneer works on differential

equations in forestry led by [64, 130, 131, 132, 133]. Al-

though we might think that the reasons for focus- ing

on growth, but not on growth-rates when modelling
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forestry variables are a handful; the main one could

be related to the fact that instantaneous growth rates

are essentially unobservable, whereas realized sizes can

be measured and so are amenable to exploratory data

analysis. However, this can also be applied to other bi-

ological disciplines, such as wildlife ecology and land-

scape ecology. Regardless, the use of growth-rates, or

differential equations, are just a few compared to size-

time equations (i.e., a differential equation solution).

Maybe the reasons are also related to a weak educa-

tional background in calculus of ecology-related scien-

tists [129, 134]. Accordantly, we favour using growth-

rates functions, such as differential equations, in forest

growth modelling when justified by the research ques-

tion [23, 38, 128, 133].

As a reflection of the above, the analyses of the

growth rates is mandatory. The growth-rates against

time for each model broadly vary (Fig. 4b). All of them

implies completely different processes. For instance, the

Monomolecular and the Johnson-Schumacher curves seem

unrealistic. Both the Bertalanffy-Richards and theWeibull

functions behave quite similar at reaching their maxi-

mum growth-rates at much earlier stages. On the con-

trary, the logistic, Gompertz and Bertalanffy-Richards

seems to be more feasible. Finally, a graphic repre-

senting the growth-rates against time (Fig. 4b) is usu-

ally the most commonly reported; however, plotting

the growth-rates against size (Fig. 4c) is also essen-

tial. These two figures describe completely different pro-

cesses. For instance, the logistic growth-rate is symmet-

ric, and the point on which this occurs is where half of

the asymptote is reached, and the growth-rate is max-

imum. Nonetheless, no biological reasons for the sym-

metry have been presented. The asymmetric behaviour

of the other functions seems more realistic. Both the

Bertalanffy-Richards and the Weibull behave quite sim-

ilarly, reaching their maximum growth-rates at much

smaller sizes. Finally, the Monomolecular and the Johnson-

Schumacher curves are entirely unrealistic. In general,

the rules on which the growth equations are based are

rather broad and motivated more by mathematical for-

mulation than by a solid, established theory about the

biological processes of growth.

Concluding remarks

We have shown that the mathematical differences among

several growth equations can be more easily explained

and understood using their differential equation than

their integrated forms. Inter alia, the assumed-and-claimed

biological basis of these growth-rate models has been

taken too seriously, and the focus should be on using

a plausible equation for the organism being modelled.

More attention should be put on parameter estimation

strategies and behaviour analysis of the proposed mod-

els. It is difficult for a single function to capture all

possible shapes and rates that such a complex biological

process as tree growth can depict in nature. Therefore,

comparisons of some functional forms (at least simple

ones) must be carried out before selecting a function

for drawing scientific findings.
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119. Vaverková MD, Radziemska M, Barton̆ S, Cerdà A,
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