
1.2 SEVENTH FRAMEWORK PROGRAMME
FP7-ICT-2009-6
BlogForever

Grant agreement no.: 269963

D4.5: Initial Weblog Digital Repository
Prototype

Revision: First Version

Dissemination Level: Public

Author(s): Şenan Postacı, Alper Çınar, Gokce Banu Laleci, Jaime
Garćıa Llopis, Raquel Jiménez Encinar, Vangelis Banos,
Apostolos Papadopoulos, Ilias Trochidis, Konstantinos
Davarinos, Lamprini Kolovou, Christos Kontas, Panagi-
otis Chatzikamaris

Due date of deliverable: January 31, 2013

Actual submission date: October 22, 2013

Start date of the project: March 01, 2011

Duration: 30 months

Lead beneficiary name: SRDC Yazilim Arastirma ve Gelistirme ve Danismanlik
Ticaret Limited Sirketi (SRDC)

Abstract:

This report presents the implementation activities carried out for the BlogForever digital
repository component. In this respect, it provides detailed implementation descriptions as
well as the testing activities of the implemented features according to their feature spec-
ifications. Furthermore, this report outlines the adopted collaboration workflow together
with the technologies utilized.

D4.5: Initial Weblog Digital Repository Prototype January 31, 2013

Project co-funded by the European Commission within the Seventh
Framework Programme (2007-2013)

The BlogForever Consortium consists of:

Aristotle University of Thessaloniki (AUTH) Greece

European Organization for Nuclear Research (CERN) Switzerland

University of Glasgow (UG) UK

The University of Warwick (UW) UK

University of London (UL) UK

Technische Universitat Berlin (TUB) Germany

Cyberwatcher Norway

SRDC Yazilim Arastirma ve Gelistirme ve Danismanlik Ticaret Limited
Sirketi (SRDC)

Turkey

Tero Ltd (Tero) Greece

Mokono GMBH Germany

Phaistos SA (Phaistos) Greece

Altec Software Development S.A. (Altec) Greece

BlogForever Consortium 2 of 78

D4.5: Initial Weblog Digital Repository Prototype January 31, 2013

Revision History

Version Description of Change Author Date

0.1 First draft SRDC 27/11/2012

0.2 Implementation descriptions of SRDC added SRDC 04/12/2012

0.3 Suggested imrovements AUTH 10/01/2013

0.5 Second draft SRDC 21/01/2013

0.6 Suggested improvements UW, CERN 24/01/2013

0.7 Implementation descriptions of AUTH added AUTH 24/01/2013

0.8 Implementation descriptions of CERN added CERN 24/01/2013

0.9 Minor details edited SRDC 28/01/2013

1.0 Final version SRDC 29/01/2013

BlogForever Consortium 3 of 78

Table of Contents

ExecutiveSummary 1

1 Introduction 2

1.1 Background . 3

2 The Weblog Digital Repository Implementation 4

2.1 BlogForever and Invenio . 4

2.2 Implementation . 6

2.3 Software Testing . 9

2.3.1 Unit Tests . 10

2.3.2 Regression Tests . 10

2.3.3 Web Tests . 10

2.4 User Testing . 11

3 Implementation Descriptions 14

3.1 Features already in Invenio . 15

3.2 List of implementation descriptions . 17

4 Conclusions and Future Work 76

References 78

4

List of Figures

1.1 BlogForever Platform overview . 2

2.1 Invenio Overall Architecture . 5

2.2 Digital Repository Overall Architecture . 6

2.3 Branch Workflow in Invenio . 8

2.4 Git Workflow in BlogForever . 9

2.5 Feature Testing Illustration [6] . 12

2.6 Iterative Development Cycles [6] . 13

3.1 RF1 - Sample dashboard box . 17

3.2 RF1 - Configuration box . 17

3.3 RF2 - A sample item on “Your History” page 18

3.4 RF2 - The activity detail as tooltip . 19

3.5 RF2 - History filter panel . 19

3.6 RF3 - Sharing activity panel . 20

3.7 RF17 - Disclaimer . 24

3.8 RF22 - “Recommended for you” box . 25

3.9 RF24 - Links to other sources menu . 27

3.10 RF25 - Tags . 28

3.11 RF31 - Submit a blog . 30

3.12 RF31 - Modify a blog . 30

3.13 RF31 - Delete a blog . 31

3.14 RF31 - Delete a post . 31

3.15 RF32 - Personal data removal interface . 33

3.16 RF32 - Registration failure message . 33

5

D4.5: Initial Weblog Digital Repository Prototype January 31, 2013

3.17 RF32 - “Welcome back” message . 33

3.18 RF47 - How to cite box for blogs . 37

3.19 RF47 - How to cite box for blog posts . 38

3.20 RF47 - How to cite box for comments . 38

3.21 RF48 - A translated record . 39

3.22 RF48 - Translate link in a message . 39

3.23 RF48 - A translated content can be reverted to its original 39

3.24 RF57-58-61 - New ranking method on adding ranking method admin interface 42

3.25 RF57-58-61 - Ranking methods on BibRank admin interface 42

3.26 RF57-58-61 - Ranking methods on advanced search panel 42

3.27 RF57-58-61 - Ranking by record view number 43

3.28 RF57-58-61 - Ranking by average score . 43

3.29 RF59 - METS option in main search page 45

3.30 RF59 - METS option in detailed record page 45

3.31 RF59 - Record exported as METS . 45

3.32 RF62 - PDF and JPEG as export options 46

3.33 RF62 - Jpeg of a record . 46

3.34 RF64 - External login providers . 49

3.35 RF64 - Adding an application to FourSquare 50

3.36 RF64 - Client ID and Secret obtained from FourSquare 51

3.37 RF70 - Adding new premium package panel 56

3.38 RF70 - Monitoring premium packages in admin panel 57

3.39 RF70 - A restricted collection that requires premium package to display . . 57

3.40 RF70 - Warning message indicates that the collection is restricted 57

3.41 RF70 - Available premium packages to display current collection 58

3.42 RF70 - A form to purchase a premium package with credit card 58

3.43 RF70 - The error message states that the credit card information is wrong . 58

3.44 RF70 - Confirmation page that also displays the premium packages the user
have . 59

3.45 RF70 - PayPal express checkout screen . 59

BlogForever Consortium 6 of 78

D4.5: Initial Weblog Digital Repository Prototype January 31, 2013

3.46 RF70 - PayPal transaction confirmation page 59

3.47 RF70 - Confirmation page that also displays the premium packages the user
have . 60

3.48 RF70 - “Your Account” page displaying current premium groups the user
joined . 60

3.49 RF70 - The admin panel displaying payment history 60

3.50 RF70 - The admin panel displaying current users joined premium groups . 61

3.51 RF70 - Ogone purchase with credit card from 63

3.52 RF70 - PayPal purchase with credit card from 64

3.53 RF71 - The icon to activate highlighting . 67

3.54 RF71 - Color palette . 67

3.55 RF71 - Highlighting a part of text . 68

3.56 RF71 - The icon to edit highlighted text . 68

3.57 RF71 - The edit menu of an highlighted text 68

3.58 RF71 - Adding annotation for a text . 68

3.59 RF71 - An annotated text . 69

3.60 RF71 - Displaying/editing an annotation . 69

3.61 RF71 - The icon to retrieve color palette . 69

3.62 RF73 - Ranking with weighted averages of the records 72

3.63 RF73 - Portalbox displaying top rated records 72

3.64 RF73 - Portalbox displaying recently added records 72

BlogForever Consortium 7 of 78

List of Tables

3.1 Implementation Description Template . 14

3.3 Implementation Description: RF1 . 18

3.4 Implementation Description: RF2 . 19

3.5 Implementation Description: RF3 . 20

3.6 Implementation Description: RF4 . 21

3.7 Implementation Description: RF5 . 22

3.8 Implementation Description: RF6 . 22

3.9 Implementation Description: RF9 . 23

3.10 Implementation Description: RF12 . 24

3.11 Implementation Description: RF17 . 24

3.12 Implementation Description: RF22 . 26

3.13 Implementation Description: RF23 . 26

3.14 Implementation Description: RF24 . 27

3.15 Implementation Description: RF25 . 28

3.16 Implementation Description: RF26 . 29

3.17 Implementation Description: RF28 . 29

3.18 Implementation Description: RF31 . 32

3.19 Implementation Description: RF32 . 34

3.20 Implementation Description: RF35 . 35

3.21 Implementation Description: RF40 . 35

3.22 Implementation Description: RF41 . 36

3.23 Implementation Description: RF45 . 37

3.24 Implementation Description: RF47 . 38

8

D4.5: Initial Weblog Digital Repository Prototype January 31, 2013

3.25 Implementation Description: RF48 . 40

3.26 Implementation Description: RF53 . 40

3.27 Implementation Description: RF54 . 41

3.28 Implementation Description: RF57-58-61 44

3.29 Implementation Description: RF59 . 45

3.30 Implementation Description: RF62 . 48

3.31 Implementation Description: RF64 . 55

3.32 Implementation Description: RF67 . 56

3.33 Implementation Description: RF70 . 66

3.34 Implementation Description: RF71 . 71

3.35 Implementation Description: RF73 . 74

3.36 Implementation Description: RF87 . 75

3.37 Implementation Description: RF88 . 75

BlogForever Consortium 9 of 78

D4.5: Initial Weblog Digital Repository Prototype January 31, 2013

Executive Summary

The BlogForever platform consists of two main software components: the spider com-
ponent and the digital repository component. This document intends to describe the
implementation process of the digital repository component prototype performed within
the scope of Task 4.5 Implementation of the weblog digital repository web application com-
ponent (T4.5) of Work Package 4 Software Infrastructure (WP4).

The BlogForever digital repository component is based on Invenio1, which is a digital
archiving system developed and maintained by CERN. The main goal of this deliverable is
to explain how Invenio is enhanced and customized for blog preservation by implementing
a set of features to fulfill BlogForever project requirements. For digital repository, a total
of 89 features, each having a certain task to accomplish, were identified from a list of user
requirements, and designed in T4.4 Design of the digital repository component. In general,
these features enhances Invenio from the following aspects:

• Blog rendering
• Blog metadata
• Blog tagging
• Spider communication
• Ingestion
• Spam filtering
• Social features
• New export options
• Billing system

Implemented features are tested and validated through a combination of test cases
designed and implemented in Work Package 5 Case Studies (WP5) with the contribution
of project members as well as third parties, including bloggers other stakeholders. An-
other goal of this deliverable is to briefly explain testing activities carried out in WP5 for
repository features.

1https://invenio-software.org/

BlogForever Consortium 1 of 78

D4.5: Initial Weblog Digital Repository Prototype January 31, 2013

Chapter 1

Introduction

The primary objective of the BlogForever project is to find solutions for aggregation,
preservation, management and dissemination of blogs. To achieve these goals, the Blog-
Forever project aims to develop a software platform that enables real-time harvesting of
blog entities and preservation of these blogs to facilitate extensive search and exploration
functionalities of the archived blogs.

The software architecture behind the intended repository system consists of two main
components - the weblog spider (in the following document it will be referred to just as
“spider”) and the digital repository. The spider is responsible for crawling all the necessary
blog data and capturing/extracting characteristics designated for preservation, while the
digital repository is responsible for long term archiving, preservation and management of
the blogs, as well as providing facilities for further analysis and reuse of the content. The
overall architecture is illustrated in Figure 1.1.

Figure 1.1: BlogForever Platform overview

BlogForever Consortium 2 of 78

D4.5: Initial Weblog Digital Repository Prototype January 31, 2013

BlogForever Task 4.5 Implementation of the digital repository component has been
designated to develop the digital repository component based on Invenio but specially
tailored for weblog needs. Details regarding the outcome of this task are presented in this
deliverable.

Finally, in the following text, the words weblog and blog will be interchangeably used
to describe the same concept.

1.1 Background

The BlogForever Description of Work (DoW)[1] describes the objectives of the digital
repository component as “being responsible for weblog data preservation. The digital
repository will ensure weblog proliferation, safeguard their integrity, authenticity and
long-term accessibility over time, and allow for better sharing and re-using of contained
knowledge”.

Developing such a comprehensive archiving system from scratch is rather diffucult
and time consuming, and therefore avoided since there are many open-source archiving
solutions. Taking into CERN’s participation in BlogForever project, Invenio software suite
is selected for the basis of the digital repository component.

In order to define how Invenio ought to be extended and modified, a list of require-
ments gathered from DoW, a weblog survey and 26 semi-structured interviews, were pre-
sented in D4.1 User Requirements and Platform Specifications[3]. Based on these require-
ments, 89 repository features, to be built on top of Invenio in order to develop a complete
digital repository for blogs, were identified and architecture of the digital repository were
described in detail in D4.4 Digital Repository Component Design[4].

Implemention of a repository feature defines a required modification of Invenio mod-
ules or development of new module(s) to be introduced into Invenio. Therefore imple-
mentation phase has followed an incremental, iterative and agile approach, yielding the
final digital repository component. The digital repository component will be integrated
with the spider component developed in Task 4.3 Implementation of the weblog spider
component (T4.3) into the final BlogForever platform during T4.6.

Last but not least, implementation activities performed in WP4 have been evaluated
in WP5. To be more specific, implemented features have been tested and validated during
Task 5.2 Implementation of the case studies based on the 6 case studies designed in D5.1
Design and Specification of Case Studies[6]. Since implementation phase adopts an agile
approach, testing phase also adopts principles of agile testing which require testing to be
an integral part of the software development.

The organization of this deliverable is as follows: Implementation and testing activities
of the digital repository component carried out within the scope of T4.5 are described in
Chapter 2. Chapter 3 introduces the Implementation Description concept, and lists the
status of the repository features together with their implementation descriptions. Finally,
this deliverable is concluded in Chapter 4.

BlogForever Consortium 3 of 78

D4.5: Initial Weblog Digital Repository Prototype January 31, 2013

Chapter 2

The Weblog Digital Repository
Implementation

In this section, the importance of Invenio for the BlogForever project is presented. In
addition, implementation activities of the digital repository component performed within
the scope of WP4 are described. These activities include necessary modifications and
additions to Invenio at the code level as well as software and user testing to validate the
execution of the implemented features, and details regarding them are presented in the
following sections.

2.1 BlogForever and Invenio

Rather than implementing a repository for blog preservation from scratch, which is
quite time-consuming, the BlogForever project has enhanced Invenio’s features and ap-
plied necessary modifications in order for Invenio to answer blog needs and provide a
comprehensive repository for blog preservation, management and dissemination. There-
fore, Invenio is the core of the digital repository component which is an integral part of
the final BlogForever platform.

Invenio is an open-source suite of applications for digital library management, devel-
oped and maintained by CERN, and covers all aspects of digital library management from
document ingestion through classification, indexing, and curation to dissemination. It is
currently in use in CERN and many other scientific institutions for document archiving.

Invenio is built on top of a modular architecture enabling it to be flexible and cus-
tomizable. Each module in Invenio performs a certain task, works independently and may
collaborate with other modules. Tasks of each module are already explained in D4.4, so
they are not included in this deliverable. Additionally, having support for open standards,
such as MARC211 and Open Archives Initiative protocol for metadata harvesting (OAI-
PMH)2, enables interoperability with external digital libraries and nominates Invenio as a
complete solution for digital archiving. Following figure illustrates the relationship among
modules and how they are organized.

1http://www.loc.gov/marc/bibliographic/
2http://www.openarchives.org/pmh/

BlogForever Consortium 4 of 78

D4.5: Initial Weblog Digital Repository Prototype January 31, 2013

Figure 2.1: Invenio Overall Architecture

From a more technical aspect, Invenio runs on a GNU/Linux3 system, utilizes an
Apache/Python4 web server and MySQL5 database server. It is written in Python6 pro-
gramming language, with some ad hoc modules developed in C7 and Common Lisp8.
Moreover, web technologies such as JavaScript9, AJAX10, JQuery11 and etc. are also
utilized to add more functionality.

As the design document of the digital repository component D4.4 clearly states, 89
features were identfied to fulfill the requirements for the final digital repository component.
In general, these features describe how Invenio is extended and specify functionalities that
enable an efficient storage for blog preservation and offer rich user interaction such as
advanced weblog related information retrieval, managing a customizable dashboard and
socializing by building a user community.

To be more specific, repository features denote the following extensions to Invenio:

3http://www.gnu.org/gnu/linux-and-gnu.en.html
4http://code.google.com/p/modwsgi/
5http://www.mysql.com
6http://www.python.org
7http://www.open-std.org/jtc1/sc22/wg14
8http://www.common-lisp.net/
9https://developer.mozilla.org/en-US/docs/JavaScript

10https://developer.mozilla.org/en/docs/AJAX
11http://jquery.com/

BlogForever Consortium 5 of 78

D4.5: Initial Weblog Digital Repository Prototype January 31, 2013

• Blog rendering for representation of four main record types: Blog, Blog Post, Page
and Comment
• Blog metadata to define blog specific properties and extend MARC schema used

in Invenio
• Spider communication for communication between the spider and the digital

repository
• BibIngest module for ingestion of submitted material.
• WebTag module for enabling users to tag blogs
• Spam filtering for evaluation of the aggregated blog content.
• Social features for dissemination of blog content in external social platforms and

socialization of users in the platform
• New export options such as METS12, PDF and JPEG
• Billing system for exploitation of added value services

In the light of the abovementioned extensions, following figure represents the overall
architecture of the BlogForever repository design:

Figure 2.2: Digital Repository Overall Architecture

Implementation of these extensions on Invenio is crucial since without these exten-
sions, this project cannot provide a solution for blog preservation in the long-term, which
is the main objective embraced by the BlogForever project. Implementation activities car-
ried out within the scope of T4.5 and the methodology adopted for the development and
evaluation of the digital repository component are explained in the following subsections.

2.2 Implementation

BlogForever Deliverable 4.4 Digital repository component design provides also spec-
ifications for repository features, describing the functionality of each from an observer
point of view. In this way, expected behaviour of a feature is defined and the effort
that is needed to implement the feature is estimated before actual coding and test case
generation. Therefore, these specifications are considered as reference points during the

12http://www.loc.gov/standards/mets/

BlogForever Consortium 6 of 78

D4.5: Initial Weblog Digital Repository Prototype January 31, 2013

implementation phase. The main aim of the implementation phase conducted during T4.5
is to develop these features according to their specifications to achieve a complete digital
repository built on top of Invenio for blog preservation.

The digital repository component development team consists of software developers
from code contributor partners in the BlogForever consortium. Since the digital repos-
itory component is based on Invenio, a great deal of knowledge about it is essential for
development. For this purpose, CERN organized a 3-day hands-on training workshop for
developers to get acquainted with Invenio in June 2011. In this workshop, inner details of
Invenio regarding its core components and their tasks as well as the collaboration workflow
adopted for Invenio development were presented.

After developers from code contributor partners got familiar with Invenio, repository
features were distributed among these partners. Therefore, each code contributor partner
is responsible for implementation and documentation of the features that were assigned
to them.

For code contribution, Git13, which is a distributed revision control and source code
management (SCM) system, is used since Invenio developers use Git to submit their code
to Invenio repositories. Git enables distributed development and provides strong support
for non-linear (branching and merging) development, which is very important and essential
for Invenio development.

Invenio has an official Git repository located at CERN servers and it contains the
official and stable releases. Moreover, the Invenio development organization has a notion
of personal local vs. remote repositories. Since Git enables distributed development, each
developer has a local copy of the entire development history. After developers change the
code in their local copy, they send their local changes to their personal remote repositories,
which are located at CERN servers as well, by using Git. More about Invenio repositories
can be found at “Invenio git repositories”14 page.

A CERN account is needed to enable external developers to have access to CERN
repositories via SSH. Therefore, CERN accounts were created for each software developer
who contributes to the development of the digital repository component.

The collaboration model[2] that is followed in Invenio development adopts a feature
based workflow that suggests creation of a new branch for each new feature. When a new
feature is decided to be integrated, a new development branch, which denotes a slightly
different direction in which development is proceeding, is created. After the feature is
implemented, the development branch is sent to developer’s personal remote repository
and later merged with the master branch of the official repository by the head developer if
the feature is complete. Therefore, a development branch will never affect a stable release
unless someone explicitly merges those changes into the stable release.

Currently, official Invenio repository has various branches for maintenance and devel-
opment. The most important three branches can be described as follows[2]:

• master branch is where the new features are being developed and where the new
feature releases are being made from. The code in master is reviewed and verified,
so that it should be possible to make a new release out of this branch almost at any

13http://git-scm.com/
14http://invenio-software.org/repo

BlogForever Consortium 7 of 78

D4.5: Initial Weblog Digital Repository Prototype January 31, 2013

given point in time. If a new feature is well implemented, tested and considered
stable, it goes directly into the master branch
• maint branch is used for maintenance of the latest stable release and contains code

having a bugfix nature.
• next branch contains code that is cleaned, tested and almost stable, but not fully

master worthy yet. The next branch serves as a kind of stabilisation branch for
master.

Figure 2.3: Branch Workflow in Invenio

For the development of the digital repository component, a new Git repository, named
blogforever, was created by CERN and initially contained a copy of Invenio. The whole
development history can be tracked at “BlogForever official git repo”15 page.

Since the digital repository is based on Invenio, same tools and technologies described
in Section 2.1 are utilized and development of this component adopts exactly the same
workflow described above. In fact, it is already stated in DoW such that “the implemen-
tation of the digital repository will follow an organic growth development model. The
planned modifications to the vanilla Invenio source code will be implemented through
iterations. During these iterations, a new modification or add-on will be implemented,
tested and documented each time.”

Therefore, iterations will focus on the following directions:

• Implementation of new modules within Invenio, to match requirements specific to
weblog archiving, and not covered by existing software
• Customisation and adaptation of existing Invenio modules to match at best users

expectations when navigating/searching the BlogForever web interface

An iteration corresponds to implementation of a repository feature and starts with
either cloning (git clone) the latest release of Invenio or updating the master branch to

15http://invenio-software.org/repo/blogforever/

BlogForever Consortium 8 of 78

D4.5: Initial Weblog Digital Repository Prototype January 31, 2013

the latest version (git pull) into developer’s local repository. Then, the developer creates
a new branch for the feature, changes the related modules of Invenio or adds new modules
according to the feature specification and commits (git commit) all those changes to his
local repository. After that, the developer writes various tests to validate the execution
of the feature and commits them, as well (See Section 2.3 for more detailes). Finally, the
developer pushes (git push) the new branch into his personal remote repository, and this
branch is revised and merged by CERN with the master branch of official BlogForever
repository. The iteration, ends after the documentation of the new feature is completed.
Documentation is performed through implementation descriptions and the details of the
repository features with their implementation descriptions can be found in Chapter 3.2.

Figure 2.4: Git Workflow in BlogForever

The current version of the BlogForever Weblog Digital Repository source code has
been uploaded in the blogforever.eu project portal in the following location: http://
blogforever.eu/wp-content/plugins/wp-filemanager/incl/libfile.php?&path=%2F1.%20Project%
20documents%2FSubmitted%20Deliverables%2FD4 5 InitialWeblogDigitalRepositoryPrototype%
2F&filename=repository.zip&action=download

2.3 Software Testing

Software testing is an important complementary process during implementation and
performed to reveal potential bugs and failures after a feature is implemented. During
software testing, the behaviour of the feature is compared against the expected behaviour
defined in its feature specication. The digital repository utilizes various automated testing
tools for generation and execution of several test cases in order to ensure that a feature
is implemented successfully in the code level. These tools are explained in the following
sections.

BlogForever Consortium 9 of 78

http://blogforever.eu/wp-content/plugins/wp-filemanager/incl/libfile.php?&path=%2F1.%20Project%20documents%2FSubmitted%20Deliverables%2FD4_5_InitialWeblogDigitalRepositoryPrototype%2F&filename=repository.zip&action=download
http://blogforever.eu/wp-content/plugins/wp-filemanager/incl/libfile.php?&path=%2F1.%20Project%20documents%2FSubmitted%20Deliverables%2FD4_5_InitialWeblogDigitalRepositoryPrototype%2F&filename=repository.zip&action=download
http://blogforever.eu/wp-content/plugins/wp-filemanager/incl/libfile.php?&path=%2F1.%20Project%20documents%2FSubmitted%20Deliverables%2FD4_5_InitialWeblogDigitalRepositoryPrototype%2F&filename=repository.zip&action=download
http://blogforever.eu/wp-content/plugins/wp-filemanager/incl/libfile.php?&path=%2F1.%20Project%20documents%2FSubmitted%20Deliverables%2FD4_5_InitialWeblogDigitalRepositoryPrototype%2F&filename=repository.zip&action=download

D4.5: Initial Weblog Digital Repository Prototype January 31, 2013

2.3.1 Unit Tests

Unit testing refers to tests that verify functionalities of a specific section of the source
code. For the digital repository, a unit refers to a class together with its methods and unit
tests involve test cases for classes that provide important functionalities. Therefore, it is
not necessary to write unit tests for each class or its methods. It is also important to note
that unit tests are written free of side-effects, i.e., without altering any parts of database.

After implementing a feature, test cases that cover typical as well as corner case inputs
are prepared. To explore all possibilities, generation of all combinations of test cases for
each method of a class is also preferable.

Since digital repository is mostly written with Pyhton programming language, unit
tests are written with Python’s testing framework. Test files have the same name of the
class to be tested with a suffix unit tests , e.g., unit test file of search engine.py is
search engine unit tests.py .

Unit tests are executed by either calling a global executable or launching a specific
test file.

2.3.2 Regression Tests

Regression testing focuses on discovering defects emerged after a significant code
change. More specifically, it ensures that behaviour of the code is not altered after modi-
fications and the change has not introduced new faults.

Writing regression tests for each feature is an essential step for implementation of the
features due to the fact that completed development branches of implemented features
are integrated into the BlogForever official repository. Moreover, since the features are
being implemented concurrently by several partners, regression tests have a key role in
understanding interoperability of the features and finding potential bugs arised during
integration.

As in the unit testing case, regression tests are written with Python’s testing frame-
work, as well. Test cases include formerly resolved bugs and interactions between different
modules. In addition, Python testing framework also provides a module, which is named
as mechanize and enables simulation of web browsers, and it is used to test overall be-
haviour of the web pages after integration. Although advanced web technologies such as
JavaScript and AJAX can not be tested with this module, it can post form inputs, follow
links and surf on the pages.

Regression test files have the same name with the module or file to be tested with a
suffix regression tests . Since regression tests may cause side effects, such as altering
database content, tests are executed on a testing environment, e.g on a demo site, etc.

2.3.3 Web Tests

Web testing is required for the features that provide user interfaces based on JavaScript
and JQuery where Python’s mechanize module used in regression testing is ineligible.

BlogForever Consortium 10 of 78

D4.5: Initial Weblog Digital Repository Prototype January 31, 2013

Web tests are closer to the end user environment since they involve testing web pages
with utilizing a real browser. During the implementation of digital repository, Firefox16

web browser with Selenium IDE extension17 is used to automize web tests. Selenium18 is
a web application testing tool and enables automation of various web browsers. Selenium
IDE, on the other hand, is a Selenium project implemented as a Firefox extension and
enables recording, editing, and debuging tests. Moreover, it provides a practical way to
write web test cases such as surfing on the web pages, sending AJAX requests, testing
JQuery components and etc.

Namig of web test files follows the similar convention, i.e. web test files have a suffix
web tests following the related file or module name.

2.4 User Testing

BlogForever project aims to design and implement six case studies within the scope
of WP5 in order to evaluate the final BlogForever platform infrastructure. These case
studies will be both generic and domain specific, and will ensure that the implementation
of the platform is successful. Moreover, the impact of the digital repository will also be
evaluated by monitoring system usage and gathering user feedback.

D5.1 lists six case studies with the number of target blogs and their domains as follows:

ID Nature Number of blogs Domain and content

I Small & simple 28 Higher & Further Education UK

II Small & simple 70 Higher & Further Education UK

III Small & complex 356 Multilingual

IV Small & complex 1,000 Multimedia

V Large & complex 2,000 Wide ranging

VI Larce & complex 500,000 Wide ranging

Each case study has a target set of features for testing and validation. Therefore, po-
tential problems will be resolved through the different case studies. Certain characteristics,
which are based on these features, offered by the final BlogForever platform are validated
in WP5 in order to ensure that they are implemented successfully in WP4. Hence, collab-
oration between WP4 and WP5 is essential and this collaboration is illustrated in Figure
2.5. Case studies focus on the following characteristics of the final BlogForever platform:

• Digital preservation
• Data migration
• Quality assurance checking
• Collection curation
• Additional national laws

16http://www.mozilla.org/en-US/firefox/central/
17http://seleniumhq.org/projects/ide/
18http://seleniumhq.org/

BlogForever Consortium 11 of 78

D4.5: Initial Weblog Digital Repository Prototype January 31, 2013

Figure 2.5: Feature Testing Illustration [6]

Implementation of the case studies takes place in two phases. During the first phase,
developed components of both spider and digital repository were tested and evaluated so
that in case of any problematic issues, they will be fixed at earlier stages. After modifying
spider and digital repository in the first phase, the entire system were set up at AUTH
Data Center for the second phase. During this phase, case studies will be repeated till the
end of the project for longer periods of time, and on larger user groups.

Users play a central role during the implementation of the case studies. Several ex-
ternal users including bloggers and other stakeholders as well as internal project members
apart from developers will participate in the testing process, and their feedback will be
gathered and analysed. The analysis will help developers to determine if the developed
software meets the required results and minimize the system problems. External users will
contribute to testing with questionnaires, direct observation and usage of the system and
structured interviews, while case studies researchers and software testers will perform the
internal assessment of the implementation process. Moreover, external users’ interactions
with the BlogForever website will be recorded as logs and these logs will be analyzed to
identify problems, as well.

D5.1 defines the testing process as programme of continual improvement and proposes
that software testing should follow an agile, incremental and iterative development cycles.
As mentioned earlier, this philosophy is adopted in development process as well. D5.1 also
states that “Testing and coding are done incrementally and iteratively, building up each
feature to improve the overall outcome”. Thus, testing is an integral part of the software
development for the BlogForever project and the iterative development cycle can be seen
in Figure 2.6 as a whole.

BlogForever Consortium 12 of 78

D4.5: Initial Weblog Digital Repository Prototype January 31, 2013

Figure 2.6: Iterative Development Cycles [6]

BlogForever Consortium 13 of 78

D4.5: Initial Weblog Digital Repository Prototype January 31, 2013

Chapter 3

Implementation Descriptions

One of the objectives of this deliverable is to describe the implementation activities
of each feature. For this purpose, SRDC created a template called implementation de-
scription template, for documentation of how features are implemented during T4.5. This
template is very similar to the feature specification template introduced in D4.4, but it is
designed to include description of the new feature along with its implementation details.

Feature ID Short feature identifer: RFXX (Repository Feature XX)

Name One sentence clear enough to make someone who has already
read the specification remember the description

Effort Spent Actual implementation time (Possible values: Days/Weeks/-
Months)

Modules Affected
/ Created

Name of the Invenio modules either modified or introduced

Description of the new feature

High level description of the feature. How Invenio is extended or what
kind of functionality is introduced, is described here. A general screenshot indicating
the general execution of the new feature may be included here.

Implementation details

Technical details of the implementation activities are described here. All the files
and modules that are exposed to modifications (i.e adding/ altering classes/methods,
introducing new fields into configuration files, new user interfaces, etc) and how they
are modified are explained in detail. Screenshots of new functionalities are provided
here.

Implemented By Person or partner who implemented the feature

Table 3.1: Implementation Description Template

BlogForever Consortium 14 of 78

D4.5: Initial Weblog Digital Repository Prototype January 31, 2013

It is important to note that, out of 89 repository features, 37 features have been
implemented and 31 features are already in Invenio wihch means that current prototype
has 68 features ready and operational, at the moment. After remaining 21 features are
implemented, digital repository component will be completed.

Section 3.1 lists the features that are already in Invenio and Section 3.2 presents the
implementation descriptions of completed features.

3.1 Features already in Invenio

As mentioned earlier, Invenio is a comprehensive software for digital library manage-
ment. Therefore, it already supports 31 of the repository features that meet the require-
ments of the final BlogForever platform. These features are listed as follows:

Feature ID Feature Name

RF7 Export data using the OAI-PMH protocol

RF8 Export data in Dublin Core schema

RF10 Archive user passwords are stored encrypted in the database

RF11 The web interface is available in many different languages

RF13 UTF-8 is used as the default character encoding in the archive

RF14 Descriptive statistics are offered by record

RF15 Option to disseminate archive content in major social web platforms

RF16 The archive offers an RSS channel of its latest updates and/or users can
receive notification when new content of their interest is added to the
archive

RF18 The archive detects duplicated content and keeps only one copy

RF19 The archive can be indexed by external search engines

RF20 The archive’s statistics are exported as CSV

RF21 The archive offers the option to login using SSO/LDAP

RF27 The archive displays a unique URL (DOI) for each record

RF29 The archive alerts users when there are software updates

RF33 The archive can display only the very core information for each record

RF37 The archive restricts the access to its content to specific IP ranges

RF38 Users can communicate within the archive sharing and exchanging re-
sources

RF39 Free open-source archive software

RF43 For each record the archive stores the search keywords used to find them

RF44 The archive enables pingback/trackback services

RF51 The archive is able to search within external sources

RF55 The archive provides advanced APIs for developers to interact with the
archive’s content

RF60 The archive can export all its content, database entries and file system
for migration

RF74 The archive enables/disables certain functionalities based on the content
rights

RF79 The archive can handle a very large number of content and users

RF80 The archive provides mechanisms to control data redundancy

BlogForever Consortium 15 of 78

D4.5: Initial Weblog Digital Repository Prototype January 31, 2013

RF81 The archive is built based on a modular service-oriented architecture

RF82 The archive can be deployed using a range of different database server
technologies

RF84 The archive offers a complete range of search options to the user

RF85 The archive provides support for OpenURL

RF86 The archive offers functions to edit metadata

BlogForever Consortium 16 of 78

D4.5: Initial Weblog Digital Repository Prototype January 31, 2013

3.2 List of implementation descriptions

Feature ID RF1 (Repository Feature 1)

Name Customizable user dashboard

Effort Spent 2 Weeks

Modules Affected
/ Created

WebSession

Description of the new feature

The current user informative dashboard of Invenio has been upgraded to a
customizable version.

For each information element in “Your Account” page (Your Messages, Your
Searches, etc...), a box, which is able to be dragged-dropped, expanded-collapsed
and created-closed, has been constructed. New templates have been generated for
each box.

Figure 3.1: RF1 - Sample dashboard box

Figure 3.2: RF1 - Configuration box

When the arrow on the top-left corner of the box is clicked, if the box is expanded,
it becomes collapsed and vice versa.

The box can be closed by clicking the “X” symbol on the right-top corner
of the box. When it is closed, it appears in the “Configuration” box on the left.
Also each box can be dragged-dropped by clicking its header and dragging the mouse.

Implementation details

• jQuery is used to provide drag-drop functionality.
• To arrange styles of boxes and “Your Account” page layout, a new CSS file (

inveniodashboard.css) has been created.
• save and insert new box methods were added to WebInterfaceYourAc-

countPages class. save method saves the current state of the boxes to the
database via an AJAX POST request. It is called after each box action. in-

BlogForever Consortium 17 of 78

D4.5: Initial Weblog Digital Repository Prototype January 31, 2013

sert new box method adds a new box to the page. When clicked to the plus
“+” symbol on the “Configuration” box, this method is called via an AJAX
POST request.

Implemented By Şenan Postacı, Alper Çınar (SRDC)

Table 3.3: Implementation Description: RF1

Feature ID RF2 (Repository Feature 2)

Name “Your History” box as part of the user dashboard

Effort Spent 2 Weeks

Modules Affected
/ Created

WebSession, WebBasket

Description of the new feature

A new “Your History” page is constructed in Invenio. This page includes
the user’s history in reverse-chronological order with 16 main categories:

• Downloads
• Comments
• Reviews
• Votes
• Abuse reports
• Subscriptions
• Created groups
• Joined groups
• Viewed records
• Created baskets
• Added items to a basket
• Notes on baskets
• Searches
• Alerts
• Submissions
• Messages

A sample item on “Your History” page can be seen below:

Figure 3.3: RF2 - A sample item on “Your History” page

By clicking “Show Details” button, the activity detail can be seen.

The new box for “Your History” has been created in “Your Account” page. It
includes the last 10 activities. By holding cursor over each item, the activity detail is
shown as a tool-tip.

BlogForever Consortium 18 of 78

D4.5: Initial Weblog Digital Repository Prototype January 31, 2013

Figure 3.4: RF2 - The activity detail as tooltip

A filter component is developed for filtering activity history.

Figure 3.5: RF2 - History filter panel

Based on user’s selections, this component can filter activity history for the
specified time interval.

Implementation details

• A new class, WebInterfaceYourHistoryPages , is created to handle “Your
History” page and two new python modules, webhistory.py and webhis-
tory dblayer.py which include history-related functions, are implemented.
• Following changes are applied in order to track activities related to baskets:

– To get the the history of created baskets, creation date and creation -
date columns are inserted into table user bskBASKET .

– To get the alerts on specific time, type of the column date creation are
changed to datetime from date in the table user query basket .

• Also webbasket dblayer are changed to accommodate this changes.

Implemented By Şenan Postacı, Alper Çınar (SRDC)

Table 3.4: Implementation Description: RF2

Feature ID RF3 (Repository Feature 3)

Name “Share” option in “Your History” box

Effort Spent 2 Weeks

Modules Affected
/ Created

WebSession

Description of the new feature

BlogForever Consortium 19 of 78

D4.5: Initial Weblog Digital Repository Prototype January 31, 2013

Near each activity in the “Your History” and “Your Account” pages a
tiny icon is added.

By clicking this icon, a pop-up message dialog, which is reconstructed on the
server for the corresponding activity and sent back, is displayed. The message dialog
can be expanded and dragged-dropped.

Autocomplete search can be used to find users or groups.

To send message on a later date, if preferred, “Send Later?” section can be filled
by picking a date.

Figure 3.6: RF3 - Sharing activity panel

Implementation details

• To reconstruct activity information, basket type , convert activity -
header on share and generate links methods in webhistory.py are
used. The latter method is used for providing links to the receivers if they have
access to see corresponding page.

• For both user and group search, jQuery-autocomplete mechanism, that queries
keywords on the lists as user types some letters, is utilized.

• For that operation, two new methods are implemented in websession webin-
terface.py under WebInterfaceYourHistoryPages class namely search -
users and search groups . Each time the user types a letter, these methods
are called.

• send method in webmessage webinterface is used for sending message to
the provided users or groups.

• A new JavaScript file activity share.js and a CSS file activity share.css
are created.

Implemented By Şenan Postacı, Alper Çınar (SRDC)

Table 3.5: Implementation Description: RF3

BlogForever Consortium 20 of 78

D4.5: Initial Weblog Digital Repository Prototype January 31, 2013

Feature ID RF4 (Repository Feature 4)

Name Bibformat output templates to display blogs and blog posts
differently

Effort Spent 3 Weeks

Modules Affected
/ Created

WebAccess, WebSearch, Bibformat

Description of the new feature

A different collection has been created to host the different types of records.
The collection information is stored in te MARC tag 980 a in Invenio. The possible
values of the tag and the collection display names are the following:

Tag content Collection name

BLOG Blogs

POST Posts

COMMENT Comments

PAGE Pages

There are BibFormat Templates defined for each type of record, as well as all
the necessary BibFormat Elements. This way, the repository will follow the rules also
defined to choose which BibFormat Templates to use for each record, depending on
the collection they belong to.

Implementation details

The file democfgdata.sql configures these collections by default when the demo
site is created. In the same way, the BibFormat Templates, BibFormat Templates,
and output format rules are configured by default.

Implemented By Raquel Jiménez, Jaime Garćıa (CERN)

Table 3.6: Implementation Description: RF4

Feature ID RF5 (Repository Feature 5)

Name The web interface provides harmonized access and ensures com-
patibility with major browsers

Effort Spent 1 Week

Modules Affected
/ Created

BibFormat

Description of the new feature

The Invenio templating system has been used to harmonize the look and
feel of the content.

BlogForever Consortium 21 of 78

D4.5: Initial Weblog Digital Repository Prototype January 31, 2013

Implementation details

• BibFormat Elements are Python files that given a record return a piece of
HTML. It is normally a small piece of information.

• BibFormat Templates combine many BibFormat Elements and build a complete
rendering of a given record.

• Bibformat Output define a series of rules. Given a record, and depending on the
content of the MARC tags in the metadata, these rules will determine which
BibFormat Template to use.

• See RF4 for more details.

Implemented By Raquel Jiménez, Jaime Garćıa (CERN)

Table 3.7: Implementation Description: RF5

Feature ID RF6 (Repository Feature 6)

Name Latest posts are displayed sorted by addition date

Effort Spent 1 Day

Modules Affected
/ Created

MiscUtil

Description of the new feature

Latest addition lists of posts can be made easily customizable by adminis-
trators. This is done by setting up and running one of the plugins defined under the
directory “modules/websearch/lib/websearch instantbrowse plugins”

Implementation details

The plugin websearch instantbrowse by field.py is set up with its corre-
sponding parameters to the blog posts collection in order to display them sorted by
publication date. This is configured by default into the initial configuration file called
democfgdata.sql .

Implemented By Raquel Jiménez Encinar (CERN)

Table 3.8: Implementation Description: RF6

Feature ID RF9 (Repository Feature 9)

Name The archive stores and displays accordingly all record metadata
received from the spider

Effort Spent 2 Weeks

Modules Affected
/ Created

BibUpload

BlogForever Consortium 22 of 78

D4.5: Initial Weblog Digital Repository Prototype January 31, 2013

Description of the new feature

The BibUpload module has been extended to allow that a script can run
before and/or after the upload as a plugin. A pre-ingestion plugin has been
developed to transform the metadata coming from the spider to the format that
BibUpload and Invenio can understand.
After the records have been inserted in the repository, the techniques described in
RF4 and RF5 are used to display the metadata.

Implementation details

The bibupload command has been extended to accept extra arguments for pre-
and post- ingestion plugins. In BlogForever, the command to be used to upload
a new record coming from the spider would be ’bibupload batchupload –replace
metadata to insert.xml –pre-plugin=bp pre ingestion –post-plugin=bp post inges-
tion’. The file bp pre ingestion.py will be run before the upload takes place,
transforming the METS file coming from the spider into MARCXML. The METS
content is parsed in order to extract the MARCXML that contains. The metadata
is also enriched in several aspects:

• FFT tags are inserted with references to every attached file downloaded from
the spider.

• Metadata tags are inserted linking each record to other existing records, like the
parent record

• The parent record license and visibility are propagated to the being uploaded
record.

Implemented By Raquel Jiménez, Jaime Garćıa (CERN)

Table 3.9: Implementation Description: RF9

Feature ID RF12 (Repository Feature 12)

Name The archive can import METS

Effort Spent 1 Week

Modules Affected
/ Created

BibUpload

Description of the new feature

The archive is able to process METS files. For this propose, a pre-ingestion
plugin is implemented to manage the METS files retrieved from the spider. One of
the goals of this plugin is to parse the METS file, to extract the MARC living inside
and to transform and to enrich it with the corresponding tags.

Implementation details

BlogForever Consortium 23 of 78

D4.5: Initial Weblog Digital Repository Prototype January 31, 2013

The pre-ingestion plugin is defined in modules/bibupload/lib/prepro-
cess/bp pre ingestion.py file. The Python module xml.dom.minidom is used to
parse the given METS file. For more information about the pre-ingestion plugin see
RF9.

Implemented By Jaime Garćıa (CERN)

Table 3.10: Implementation Description: RF12

Feature ID RF17 (Repository Feature 17)

Name The archive displays a disclaimer about the originality of the
content

Effort Spent 2 Days

Modules Affected
/ Created

BibFormat

Description of the new feature

A disclaimer is displayed in every detailed record page saying that the
corresponding blog, post, page or comment, is just an archived copy of the original
one.

Implementation details

This is implemented in the webstyle template.py file using HTML and
Python. The disclaimer says that the presented content is just an archived copy,
not the original. A link to the original element is also offered.

Figure 3.7: RF17 - Disclaimer

Implemented By Raquel Jiménez Encinar (CERN)

Table 3.11: Implementation Description: RF17

Feature ID RF22 (Repository Feature 22)

Name “Your Preferences” box as part of the user dashboard

Effort Spent 1 Week

Modules Affected
/ Created

WebSearch, WebSession

Description of the new feature

BlogForever Consortium 24 of 78

D4.5: Initial Weblog Digital Repository Prototype January 31, 2013

A new box containing recommended records based on user search criteria
has been added into “Your Account” page.

Figure 3.8: RF22 - “Recommended for you” box

Implementation details

• Two new database tables, query term and user query term have been
created. Moreover, log query terms function has been implemented into
search engine.py to keep history of the search terms used by each user.

• webrecommend.py module that contains functions to recommend the records
to the users has been developed. These functions are:

– get unread records : Returns the record ids that is not viewed by given
user.

– get query terms : Returns list of the query terms that provided user
searched.

– get recommended content : Returns the unread records based on word
similarity with the query terms of the provided user.

• Three configuration parameters have been added into websession config.py
:

– CFG RECOMMENDATION RANK METHOD : The name of the
word similarity ranking method

– CFG RECOMMENDED CONTENT NUMBER : The number of
records recommended in “Your Account” page.

– CFG MOST FREQUENT TERM NUMBER : The number of most
frequent terms considered in recommendation.

BlogForever Consortium 25 of 78

D4.5: Initial Weblog Digital Repository Prototype January 31, 2013

• tmpl recommended content box method is added into websession tem-
plates.py to construct the body of the recommendation box.

• Some minor changes have been applied in the websession templates.py and
websession webinterface.py to add new box.

Implemented By Alper Çınar (SRDC)

Table 3.12: Implementation Description: RF22

Feature ID RF23 (Repository Feature 23)

Name The archive stores the comments of blog posts and displays them
as part of the blog posts

Effort Spent 3 Days

Modules Affected
/ Created

BibFormat

Description of the new feature

Comments of blog posts are displayed to the user together with the spe-
cific blog post. The two latest comments are displayed by default. If the user wants
to see all the comments needs to click on the “Show all comments” link.

Implementation details

A new BibFormat element called “bfe post comments” is created. HTML,
JavaScript and Python is used. This element is used in the BibFormat template
“PostHTML.bft”.

Implemented By Raquel Jiménez Encinar (CERN)

Table 3.13: Implementation Description: RF23

Feature ID RF24 (Repository Feature 24)

Name Links to other sources within the blog posts and comments are
displayed separately

Effort Spent 1 Week

Modules Affected
/ Created

WebBlog

Description of the new feature

The repository displays in the detailed record page of a blog post a menu
with all the links used as references. If any of these links is pointing to a content
already stored into the archive, a link to the corresponding record is offered.
Reference links can be either provided by the spider or is the repository who extracts
them in case the spider does not provide them.

BlogForever Consortium 26 of 78

D4.5: Initial Weblog Digital Repository Prototype January 31, 2013

Implementation details

A new BibFormat element called “BFT LINKS MENU” is created for this pro-
pose, which is used in the BibFormat template “PostHTML.bft”. This element also
displays the link to the archived content in case the reference link is pointing to a
content already stored in the archive.

Figure 3.9: RF24 - Links to other sources menu

Implemented By Raquel Jiménez Encinar (CERN)

Table 3.14: Implementation Description: RF24

Feature ID RF25 (Repository Feature 25)

Name The archive displays the tags of a blogs and blog posts

Effort Spent 3 Days

Modules Affected
/ Created

BibFormat

Description of the new feature

Tags associated with blogs and blog posts are displayed in the detailed
record page as links in such way that a search by the corresponding tag is triggered
by clicking on it. Tags are provided by the spider and the repository get and display
them using a BibFormat element.

Implementation details

BlogForever Consortium 27 of 78

D4.5: Initial Weblog Digital Repository Prototype January 31, 2013

The new BibFormat element “BFT TAGS” is created which is used in the Bib-
Format templates “BlogHTML.bft”, “PostHTML.bft”

Figure 3.10: RF25 - Tags

Implemented By Raquel Jiménez Encinar (CERN)

Table 3.15: Implementation Description: RF25

Feature ID RF26 (Repository Feature 26)

Name BlogUploader command line to upload, update and delete a list
of blogs

Effort Spent 3 Weeks

Modules Affected
/ Created

WebBlog

Description of the new feature

In order to let administrators to edit a list of blogs and to insert, delete
or update them into the repository, a new command line tool has been implemented.

Implementation details

A new command line tool called “bloguploader” is implemented. The following
modes are offered:

• Insert a blog (-i, –blog insert): This option let admins insert a list of blogs in the
archive. Each blog is represented by its url, title (optional), topic and license.
E.g: http://blogforever.eu,BlogForever,topic1,license1
http://blogs.physicstoday.org/,,topic1,license3

• Delete a blog (-d, –blog delete): This option let admins delete a list of blogs from
the archive. Each blog is represented just by its url. E.g: http://blogforever.eu
http://blogs.physicstoday.org/

• Update a blog (-U, –blog update): This option let admins update a list of blogs
in the archive. Each blog is represented by its url, title (optional), topic and
license.
E.g: http://blogforever.eu,BlogForever,topic2,license2
http://blogs.physicstoday.org/,Physicstoday,topic1,license2

The input file is a CSV file where the elements of each row (blog elements) are
separated by commas. The output file is a marcxml file that contains all the records
to be inserted, deleted or updated by bibupload.

BlogForever Consortium 28 of 78

http://blogforever.eu
http://blogs.physicstoday.org/
http://blogforever.eu
http://blogs.physicstoday.org/
http://blogforever.eu
http://blogs.physicstoday.org/

D4.5: Initial Weblog Digital Repository Prototype January 31, 2013

Implemented By Raquel Jiménez Encinar (CERN)

Table 3.16: Implementation Description: RF26

Feature ID RF28 (Repository Feature 28)

Name The archive displays the author of blog posts and comments

Effort Spent 3 Days

Modules Affected
/ Created

BibFormat

Description of the new feature

The author of blog posts and comments are displayed with them as a link
in such way that a search by author is triggered by clicking on it. The author is
displayed in both, the brief record and the detailed record.

Implementation details

The BibFormat templates “Post HTML brief.bft” and “Comment HTML -
brief.bft” are enriched with the BibFormat element “BFE AUTHORS”. On the other
hand, the BibFormat templates “PostHTML.bft” and “CommentHTML.bft” are en-
riched with the new BibFormat elements “BFE POST AUTHOR” and “BFE COM-
MENT AUTHOR” respectively.

Implemented By Raquel Jiménez Encinar (CERN)

Table 3.17: Implementation Description: RF28

Feature ID RF31 (Repository Feature 31)

Name The archive offers a complete blog submission interface to sub-
mit, modify and delete blogs/posts

Effort Spent 1 Month

Modules Affected
/ Created

WebSubmit, WebBlog

Description of the new feature

The archive offers a complete submission interface to let users and admins
to submit new blogs, to modify certain specific metadata of a blog, and to delete
either a blog (as result all its comments and blog posts will be deleted) or a single
blog post.

Implementation details

BlogForever Consortium 29 of 78

D4.5: Initial Weblog Digital Repository Prototype January 31, 2013

To offer a complete blog submission interface, two new document types has been
created:

• Blog Submission(BSI), which will be used by administrators. The developed
actions are:

– Submit a Blog: form to let admins submit a blog. Users should provide the
URL of the blog, title, license (see RF53) and topic. The blog is submitted
directly.

Figure 3.11: RF31 - Submit a blog

– Modify a Blog: form to let admins modify specific metadata of a blog.
Users should provide the URL of the blog and select the field/s they want
to modify. The blog is modified directly.

Figure 3.12: RF31 - Modify a blog

– Delete a Blog: form to let admins delete a blog and all its descendants.
Users should provide the URL of the blog. The blog and all its descendants
are deleted directly.

BlogForever Consortium 30 of 78

D4.5: Initial Weblog Digital Repository Prototype January 31, 2013

Figure 3.13: RF31 - Delete a blog

– Delete a Post: form to let admins delete a post. Users should provide the
URL of the post. The post is deleted directly.

Figure 3.14: RF31 - Delete a post

• Blog Submission (Refereed)(BSIREF), which will be used by users and referees.
The developed actions are:

– Submit a Blog: form to let users submit a blog. Users should provide the
URL of the blog, title, license (see RF53) and topic. Users should wait for
the referee’s decision.

– Approve Blog Submission: form to let referees approve or reject a submit-
ted blog.

– Modify a Blog: form to let users modify specific metadata of a blog. Users
should provide the URL of the blog and select the field/s they want to
modify. Users should wait for the referee’s decision.

– Approve Blog Modification: form to let referees approve or reject modifi-
cations on the metadata of a blog.

BlogForever Consortium 31 of 78

D4.5: Initial Weblog Digital Repository Prototype January 31, 2013

– Delete a Blog: form to let users delete a blog and all its descendants. Users
should provide the URL of the blog. Users should wait for the referee’s
decision.

– Approve Blog Deletion: form to let referees approve or reject the deletion
of a blog.

– Delete a Post: form to let users delete a post. Users should provide the
URL of the post. Users should wait for the referee’s decision.

– Approve Post Deletion: form to let referees approve or reject the deletion
of a post.

New websubmit functions have been also implemented in order to customize
the submission. Functions to send e-mails or to display messages to the user
after every action, functions to send e-mails to the referee giving him the option
to reject or approve an action, function to check the validation of a partic-
ular URL, function to carry out the deletion of blogs and/or posts. All the
defined functions are: APM Mail Final Decision to User, APM Print Success,
APO Mail Final Decision to User, APO Print Success, APP Mail Final Decision -
to User, APP Print Success, APS Mail Final Decision to User, APS Print Success,
DBI Mail Approval Request to Referee, DBI Mail Blog Deleted to User, DBI Mail -
Notification to User, DBI Print Success, DPI Mail Approval Request to Referee,
DPI Mail Notification to User, DPI Mail Post Deleted to User, DPI Print Suc-
cess, MBI Mail Approval Request to Referee, MBI Mail Blog Modified to User,
MBI Mail Notification to User, MBI Print Success, SBI Mail Approval Request -
to Referee, SBI Mail Blog Submitted to User, SBI Mail Notification to User,
SBI Print Success, Make Delete Records, Check URL.

The new forms have been created through the WebSubmit admin interface.
Once this is done, all the code that has been written is dumped into a file and the
file democfgdata.sql is enriched with that code.

In addition of this, two options are offered in the detailed record page to delete
or to modify a record directly. These actions are “Ask for Deletion” and “Ask for
Modification”. In order to implement this, two new BibFormat elements have been
created: “bfe ask for deletion” and “bfe ask for modification”. By clicking on these
options the user is redirected to the WebSubmit interface to performs the wished
action. It goes to BSI if the user is admin, otherwise it goes to BSIREF.

In order to manage submissions, two new restricted and hidden collections have
been created:

• Provisional Blogs: contains all the submitted (approved) blogs
• Rejected Blogs: contains the blogs rejected by the referee

On the other hand, in order to manage the restrictions on the collections men-
tioned above the file access control config.py has been amended creating new
roles, new authorizations and new restrictions.

Implemented By Raquel Jiménez Encinar (CERN)

Table 3.18: Implementation Description: RF31

BlogForever Consortium 32 of 78

D4.5: Initial Weblog Digital Repository Prototype January 31, 2013

Feature ID RF32 (Repository Feature 32)

Name Users are able to remove their personal data

Effort Spent 3 Days

Modules Affected
/ Created

WebSession, WebAccess

Description of the new feature

A user is able to disable his/her account. This service can be accessed
from https://<site-address>/youraccount/edit. Before confirmation, the user is
able to select an option to delete the personal data completely or keep it in the
database. If the former one is selected, all the user information except the shared
data related with groups, public baskets and messages is deleted from database. The
site administrator is able to enable/disable this selection.

To make sure that only authorized users are performing this operation, an addi-
tional password affirmation is also needed.

Figure 3.15: RF32 - Personal data removal interface

If the user data is kept, the user is able to reactivate his/her account by signing
in with same email/nickname and password. If the user tries to register with same
credentials, s/he is encouraged to log in to reactivate his/her account.

Figure 3.16: RF32 - Registration failure message

When the user reactivates his/her account, a “welcome message” appears and the
user can access his/her personal data.

Figure 3.17: RF32 - “Welcome back” message

Implementation details

BlogForever Consortium 33 of 78

D4.5: Initial Weblog Digital Repository Prototype January 31, 2013

• Since password confirmation is not possible for external login method, users
using external login are not able to remove their accounts until they get new
password.

• CFG ACCESS CONTROL ENABLE SUSPENDED ACCOUNTS
parameter has been added in invenio.conf . It defines whether the user
accounts can be suspended or not. If this is not set to 1, deactivation option is
not provided.

• To distinguish suspended users from other user types, value 3 is set to note
column of the user table in database.

• In webuser.py , remove user and deactivate user functions which
handle database transactions have been implemented.

• To find tables with user data, tables with column id user or uid are queried
in remove user function. The query can be extended by adding new column
names to the query list in the same function.

• New message with key 21 that is related to reactivation has been inserted to
CFG WEBACCESS WARNING MSGS dictionary in access control -
config.py .

• loginUser and registerUser functions in webuser.py have been modified.
• In websession webinterface.py , delete method has been reimplemented,

login and register functions have been edited.
• In webaccount.py , perform delete function has been reimplemented.
• In websession templates.py , tmpl user preferences and tmpl ac-

count delete functions have been modified.

Implemented By Şenan Postacı(SRDC)

Table 3.19: Implementation Description: RF32

Feature ID RF35 (Repository Feature 35)

Name The archive displays other blogs that were viewed by people
who also viewed the current blog

Effort Spent 2 Days

Modules Affected
/ Created

BibRank

Description of the new feature

The repository displays in the tab “Usage statistics” of the detailed blog
record page, the list of blogs that were viewed by people who also viewed the current
blog. Each viewed blog will be showed with the number of different people who had
viewed it.

Implementation details

The query located in the file bibrank downloads similarity.py in the function
“calculate reading similarity list()” is amended grouping the records by blog collec-
tion, in order to get all the blogs that were viewed by people who also read a specific

BlogForever Consortium 34 of 78

D4.5: Initial Weblog Digital Repository Prototype January 31, 2013

blog. The final result offers the name of the blogs that were viewed by people who also
viewed the current blog with the number of users who viewed each of those blogs.

Implemented By Raquel Jiménez Encinar (CERN)

Table 3.20: Implementation Description: RF35

Feature ID RF40 (Repository Feature 40)

Name The archive validates the content received from the spider

Effort Spent 1 Day

Modules Affected
/ Created

BibUpload, BibIngest

Description of the new feature

The module BibIngest described in RF87 provides a method that calcu-
lates the md5 hash of every file fetched from the spider and compares it with the
md5 hash provided by the spider. This method is used in bp pre ingestion.py in
the pre-ingestion processing described in RF9.

Implementation details

See BibIngest module described in RF87.

Implemented By Nikolaos Kasioumis (CERN)

Table 3.21: Implementation Description: RF40

Feature ID RF41 (Repository Feature 41)

Name The archive detects and eliminates spam content

Effort Spent 3 Weeks

Modules Affected
/ Created

BlogSpam, BibSched

Description of the new feature

BlogSpam daemon is scheduled to run periodically and check all reposi-
tory records to identify spam content. Spam records are flagged with a special
MARC tag 911s as spam (1) or not spam (0).

Implementation details

BlogSpam is based on URL blacklists such as SpamHaus a to identify spam.

The operation of the BlogSpam module can be summarized as follows:

BlogForever Consortium 35 of 78

D4.5: Initial Weblog Digital Repository Prototype January 31, 2013

1. BlogSpam iterates over all records
2. For each record, it checks if metadata element 520 u exists (URL). If not the

record is skipped because the spam classification is performed based on the
record URL.

3. If there is a URL, it checks if the metadata element 911 u (the spam flag) exists.
If True, this item is already classified and its skipped.

4. If the record does not have 911 $u, the spam classifier is checking if it is spam
and it is saving the outcome in element 911 u.

After the daemon process has been completed, the admin should run bibindex
and webcol to see the changes in the records.

Configuration file: etc/blogspam/blogspam.cfg

Command line execution: sudo -u www-data /opt/invenio/bin/blogspam

ahttp://www.spamhaus.org

Implemented By Vangelis Banos (AUTH)

Table 3.22: Implementation Description: RF41

Feature ID RF45 (Repository Feature 45)

Name The archive is able to inter-operate with federated search engine
dbwiz (SRU Server)

Effort Spent 3 Weeks

Modules Affected
/ Created

BibFormat, WebSearch, WebStyle

Description of the new feature

SRU is a standard XML-focused search protocol for Internet search queries.
Support for the SRU protocol has been added in Invenio.

Implementation details

Any 3rd party software or web user can perform http requests in the SRU
server implemented at /sru URL endpoint. Results are formatted using XML and
the specific SRU schemas described in http://www.loc.gov/standards/sru/resources/
schemas.html.

Example request: http://bf3.itc.auth.gr/sru?version=1.1&operation=
searchRetrieve&query=information&maximumRecords=10&
recordSchema=dc

SRU 1.2 service. parameters:

• operation → (searchRetrieve, explain, scan, CQL)
• version → only 1.2 is supported

BlogForever Consortium 36 of 78

http://www.loc.gov/standards/sru/resources/schemas.html
http://www.loc.gov/standards/sru/resources/schemas.html

D4.5: Initial Weblog Digital Repository Prototype January 31, 2013

• query (search query)
• startRecord (int)
• maximumRecords (int)
• recordPacking (xml is default, other is string)
• recordSchema →http://www.loc.gov/standards/sru/resources/schemas.html
• resultSetTTL → not supported
• stylesheet → Reference:http://www.loc.gov/standards/sru/specs/common.

html#stylesheet
• extraRequestData → not supported

scan and CQL are not supported yet

Implemented By Apostolos Papadopoulos (ALTEC), Vangelis Banos (AUTH)

Table 3.23: Implementation Description: RF45

Feature ID RF47 (Repository Feature 47)

Name Description of how to cite archived records is presented promi-
nently with each record

Effort Spent 3 Days

Modules Affected
/ Created

BibFormat

Description of the new feature

A user needs to link and cite the content of the archive. Therefore, the
way how to link and how to cite a record is presented prominently in the detailed
view of the record by a format element.

Implementation details

A new format element called bfe citation box.py is created. This element
displays the description of how users should cite any content in the archive. This
description includes:

• For blogs:
“title” (record creation date). record url Retrieved from the original “original -
url”

Figure 3.18: RF47 - How to cite box for blogs

• For blog posts:
author. “title”. Blog: “blog title”. (record creation date) record url. Retrieved
from the original “original url”

BlogForever Consortium 37 of 78

http://www.loc.gov/standards/sru/resources/schemas.html
http://www.loc.gov/standards/sru/specs/common.html#stylesheet
http://www.loc.gov/standards/sru/specs/common.html#stylesheet

D4.5: Initial Weblog Digital Repository Prototype January 31, 2013

Figure 3.19: RF47 - How to cite box for blog posts

• For comments:
author. Blog post: “blog title”. (record creation date) record url. Retrieved
from the original “original url”

Figure 3.20: RF47 - How to cite box for comments

Implemented By Raquel Jiménez Encinar (CERN)

Table 3.24: Implementation Description: RF47

Feature ID RF48 (Repository Feature 48)

Name The archive provides the option to translate its content on de-
mand

Effort Spent 2 Weeks

Modules Affected
/ Created

BibFormat, WebBasket, WebComment, WebMessage, Web-
Style

Description of the new feature

Content of records, messages, reviews, comments and notes on baskets can
be translated. The language used by the user determines the language of the
translation.

BlogForever Consortium 38 of 78

D4.5: Initial Weblog Digital Repository Prototype January 31, 2013

Figure 3.21: RF48 - A translated record

The user can translate the corresponding part by clicking “Translate” link over
the context. Moreover, the text of the “Translate” link appears in the language of the
user. In the sample, the user using the platform in English translates the message in
German to English.

Figure 3.22: RF48 - Translate link in a message

The user is able to undo the translation by clicking “Show Original” link.

Figure 3.23: RF48 - A translated content can be reverted to its original

Implementation details

• Google translate gadget has been utilized for translation task.
• “Translate” link is added over the records, messages, reviews, comments and

notes on baskets to translate the content.
• To add “Translate” link, webstyle templates.py , webmessage tem-

plates.py , webcomment templates.py , webbasket templates.py and
some of the format templates in “bibformat” have been changed.

BlogForever Consortium 39 of 78

D4.5: Initial Weblog Digital Repository Prototype January 31, 2013

Implemented By Şenan Postacı, Alper Çınar (SRDC)

Table 3.25: Implementation Description: RF48

Feature ID RF53 (Repository Feature 53)

Name The archive respects content licenses and displays useful infor-
mation about them

Effort Spent 2 Weeks

Modules Affected
/ Created

WebSubmit, WebSearch, WebAccess

Description of the new feature

This feature can be split in 2 parts:

• In order to display the license information captured by the spider, a BibFormat
Element has been created that displays this information, and that element has
been used in the convenient BibFormat Templates.

• The administrators (or any user allowed to do it) submit a new URL to be
crawled using WebSubmit are asked for the visibility that the Blog (and all the
child records: posts, comments and pages) should have. The three options are:

– Public - Everybody will have access to the content.
– Restricted - Only registered users will have access to the content.
– Private - Only you will have access to the content.

These visibility options are propagated to the child records when they are
fetched from the spider (see RF9 for more details on pre-ingestion processing).
This information is stored in the MARC metadata in the field 980 (collection)
and used afterwards in the WebAccess configuration, allowing the access to the
content to the appropriate users.

Implementation details

See RF31 for more details on WebSubmit. The files democfgdata.sql and
access control config.py contain the default configuration that will be installed,
and the following collections RESTRICTEDCONTENT and PRIVATECONTENT
are included. If the content is not tagged with one of these values in the 980 MARC
tag it is considered to be Public.

Implemented By Raquel Jiménez, Jaime Garćıa (CERN)

Table 3.26: Implementation Description: RF53

Feature ID RF54 (Repository Feature 54)

BlogForever Consortium 40 of 78

D4.5: Initial Weblog Digital Repository Prototype January 31, 2013

Name The archive keeps all the different versions of a record

Effort Spent 1 Week

Modules Affected
/ Created

BibIngest

Description of the new feature

Versioning is enabled for every data object stored in the digital repository.
When any data object is modified, a new version of it is kept in the ingestion
database mongoDB. Therefore, the repository stores all the different versions of all
the data objects.

Implementation details

A new parameter called “version” is added to the usage settings of the module
BibIngest, which is keeping the last version of each record. A new config variable
called “CFG BIBINGEST VERSIONING” is also added in order to manage versions,
if True, whenever an ingestion package is updated old versions are kept.

Implemented By Nikolaos Kasioumis (CERN)

Table 3.27: Implementation Description: RF54

Feature ID RF57-58-61 (Repository Feature 57-58-61)

Name The archive provides a ranking method based on the user rating
of content (RF57)
A user can rank archived content based on specific users’ content
rating (RF58)
The archive ranks blogs based on their views and downloads
(RF61)

Effort Spent 1 Week

Modules Affected
/ Created

Bibrank

Description of the new feature

This feature adds two different ranking method templates to the existing
ones: “Number of Record Views” (record view) and “Average Review Score”
(average score). The admin can add these two methods as ranking methods as it can
be seen in the following images:

BlogForever Consortium 41 of 78

D4.5: Initial Weblog Digital Repository Prototype January 31, 2013

Figure 3.24: RF57-58-61 - New ranking method on adding ranking method admin
interface

Figure 3.25: RF57-58-61 - Ranking methods on BibRank admin interface

The user can rank the search results with these new ranking methods by selecting
one of them in the Advanced Search panel..

Figure 3.26: RF57-58-61 - Ranking methods on advanced search panel

“Number of Record Views” ranking method calculates the number of the visits
to the record. Each visit to the same record is counted as 1 if visits occured within a
minute. In the example below, first and second records are viewed 38 and 32 times,
respectively.

BlogForever Consortium 42 of 78

D4.5: Initial Weblog Digital Repository Prototype January 31, 2013

Figure 3.27: RF57-58-61 - Ranking by record view number

“Average Review Score” calculates the average scores of the records. In the
example below, records have average score of 4.5, 3.0 and 2.5 respectively.

Figure 3.28: RF57-58-61 - Ranking by average score

Implementation details

• 2 new ranking templates have been implemented: template average -
score.cfg and template record view.cfg

• template record view.cfg has a parameter time interval that decides the
interval to delete consequent record views, i.e., it does not matter how many
times a user views a record in a given time interva, it counted only once.

BlogForever Consortium 43 of 78

D4.5: Initial Weblog Digital Repository Prototype January 31, 2013

• 4 new functions have been implemented in bibrank tag based indexer.py :
– record view : executes bibrank engine method for record view rank-

ing method
– record view exec : Ranks total number of record visits without checking

the user ip
– average score : executes bibrank engine method for average score

ranking method
– average score exec : Ranks average review score for records

• 2 new files have been created: bibrank record view indexer.py and
bibrank average score indexer.py

– bibrank record view indexer contains the functions that are used for
indexing visit counts of each record.

– bibrank average score indexer contains the function that are used for
indexing average review score of each record.

Implemented By Şenan Postacı, Alper Çınar (SRDC)

Table 3.28: Implementation Description: RF57-58-61

Feature ID RF59 (Repository Feature 59)

Name Export data using XML (METS, MARC)

Effort Spent 2 Weeks

Modules Affected
/ Created

BibUpload, MiscUtil

Description of the new feature

The repository already offers several formats to export content as XML,
both in the main search page and in the detail record page. A new output format to
export records is added: METS (Metadata Encoding & Transmission Standard).

Implementation details

A new BibFormat element called “bfe mets” is created. This element retrieves
the METS of the corresponding record from the mongoDB and displays it to the
user. A new row is added into the “format” table in the database corresponding to
the METS output format, where:

column name value

name METS

code xmets

description Metadata Encoding & Transmission Standard

content type text/xml

This is how this new option looks like on the main search page:

BlogForever Consortium 44 of 78

D4.5: Initial Weblog Digital Repository Prototype January 31, 2013

Figure 3.29: RF59 - METS option in main search page

This is how this new option looks like on the detailed record page:

Figure 3.30: RF59 - METS option in detailed record page

This is the result we get when we choose to export a record to METS format:

Figure 3.31: RF59 - Record exported as METS

Implemented By Raquel Jiménez Encinar (CERN)

Table 3.29: Implementation Description: RF59

Feature ID RF62 (Repository Feature 62)

Name Export as PDF, JPEG, etc

Effort Spent 4 Weeks

Modules Affected
/ Created

BibFormat, WebSearch, WebStyle, MiscUtil

Description of the new feature

Pdf and jpeg have been added as new export options.

BlogForever Consortium 45 of 78

D4.5: Initial Weblog Digital Repository Prototype January 31, 2013

Figure 3.32: RF62 - PDF and JPEG as export options

Pdfs are created in latex template. First the record in html form (with its css
style) is converted to latex source. The latex source is later, with XeLaTeX engine,
converted to pdf file.

Figure 3.33: RF62 - Jpeg of a record

Jpegs of the records are created by taking snapshots of the records.

Implementation details

• A new bibformat element namely bfe latex main template.py responsible
for pdf has been created. The header section(title, authors and date) of the
latex code is constructed in this module.

• Record fields with tag ’520 a’ and ’520 b’ are used as record body. The
record body is in html form(the records in blogforever.cern.ch demo site are also
in html form).

• To parse html formatted data and convert it to latex template, bibformat -
pdf with latex template.py and bibformat pdf with latex template -
config.py modules have been implemented.

• The bibformat pdf with latex template config.py module contains
configuration parameters for html to pdf conversion. Most of the parameters
are related with latex representation of html tags and styles. Each html tag,
css rule or special html character has possible latex representation as value. An
example of this:

CFG_BIBFORMAT_LATEX_REPRESENTATION_OF_HTML_TAGS = {

.

BlogForever Consortium 46 of 78

D4.5: Initial Weblog Digital Repository Prototype January 31, 2013

’h1’ : {’end’: ’}\n’, ’start’: ’\n\\section{\n’},

’h2’ : {’end’: ’}\n’, ’start’: ’\n\\subsection{\n’},

’h3’ : {’end’: ’}\n’, ’start’: ’\n\\subsubsection{\n’}

.

}

CFG_BIBFORMAT_LATEX_REPRESENTATION_OF_CSS_RULES = {

.

’text-decoration’: {

’underline’: {

’start’:r’\underline{’,

’end’:’}’

},

’overline’: {

’start’:r’$\overline{’,

’end’:’}$’

},

’line-through’: {

’start’:r’\sout{’,

’end’:’}’

}

}

.

}

The config file also contains regular expressions to parse html and css data and
optional parameters.
To successfully run this feature, there are some configuration parameters
related with auxiliary tools such as XeLaTeX or path to directory where pdfs
and jpegs will be saved. They have default values, however, it would be a good
idea to check whether these configuration parameters coincide with your system
settings. All parameters are described with comments.
There are also some configuration parameters affecting run time behaviours of
this feature. For example, CFG BIBFORMAT CSS FILES consists of
paths to the css files to be used for the record page.

• The bibformat pdf with latex template.py module is like an engine that
performs the conversion. PdfWithLatexTemplateHtmlParser class ex-
tending python HTMLParser class parses the html data, finds start and end
tags and calls applicable converter function. The LatexConverter class con-
sists of converter functions. Most of the html tags are simply mapped from the
dictionaries in config file. However, some of them, e.g., table, tr, td, img, font
need extra effort.

• The style of the html based record is also taken into consideration if css rules
are provided.

– Css style can be provided in two ways. One way is that the path to the
css files can be added (CFG BIBFORMAT CSS FILES) list under
config file. The other method is that the css rules, in string type, can be
provided to CssParser class.

– Rules are parsed and kept as dictionary. For advanced style process, pos-
sible selectors, e.g., div p, #id, .classname #id, tag > #id .classname, are

BlogForever Consortium 47 of 78

D4.5: Initial Weblog Digital Repository Prototype January 31, 2013

constructed first and then if there are any rules defined for a selector, it is
applied to latex code.

– At present, basic and most frequently used style rules are handled. How-
ever, extra effort is needed for remaining rules and more complex style
selectors.

• After html to latex conversion is completed, a pdf file is created with XeLaTeX
engine. For this operation LaTeX TeX Live distribution must be installed. To
install TeX Live install-texlive command is added into Makefile.
After the ”PDF” link is clicked, under <yourwebdir>/export/, a temporary
directory for the user is created. The directory name is the user’s session key.
When different users simultaneously use this feature, to prevent conflicts this
mechanism is applied. Pdf file(s) are generated under users’ temporary direc-
tories. Later, the pdf content is written into req response object and the
content type of the req response object is set to application/pdf.

• For exporting a record as jpeg, its snapshot is taken and then the snapshot is
provided to the user. To take the snapshot a record page is created without any
header or footer. The url of the “snapshot page” is provided to the “phantomjs”
webkit tool which is used for taking the screenshot. To install “phantomjs” tool,
one of the commands install-phantomjs-64bits or install-phantomjs-
32bits in Makefile can be used.
• “simplr” (simple record page) and “jpeg” output formats are created for this

operation. The former one is responsible for creating the “snapshot” page which
includes only record content. When a request is made for the latter one, under
bibformat.py , create jpeg function is called which runs “phantomjs” to
create the image of the record.

• The “phantomjs” tries to connect the site from outside without any login in-
formation of the user. Therefore, it is impossible for it to access the restricted
records even if the user has permission to access. To enable “phantomjs” access
to the restricted collections, the user’s session key is provided in the url. For
example:
https://your site url/record/105/export/recordcontent?
ln=en&session=a407af957cde04031a99793a21fe643f
If the session key is validated and verified that the user has permission to access
the corresponding record, then the “snapshot page” is created and the snapshot
is taken. recordcontent method has been added in class WebInterfac-
eRecordExport in websearch webinterface.py to do so.

• If the number of records to be converted to pdf/jpeg is more than one, then
each pdf/jpeg is generated and all of them are zipped. The users are able to
download this zip.
• All output files are removed after they are provided to the user. Therefore, for

concurrent requests, the files may be deleted before they are provided to the
request owners. To prevent this, jpegs and pdfs are created in a temporary
directory which is unique for the user and after the work is done this directory
is removed completely.

Implemented By Şenan Postacı(SRDC)

Table 3.30: Implementation Description: RF62

BlogForever Consortium 48 of 78

D4.5: Initial Weblog Digital Repository Prototype January 31, 2013

Feature ID RF64 (Repository Feature 64)

Name The archive offers the option to login using external (universal)
credentials

Effort Spent 3 Weeks

Modules Affected
/ Created

MiscUtil, WebAccess, WebSession

Description of the new feature

This feature introduces three external login systems: OpenID, OAuth1
and OAuth2.

Users can login with third party sites like facebook, google, twitter etc. as well
as the internal login system.

This feature lets the user choose the third party site in the login page.

Figure 3.34: RF64 - External login providers

When the user selects one of these providers, s/he is redirected to login page of
the 3rd party site. After logged in successfully, the user redirected back to the internal
system.

Adding an OpenID provider (Verisign Example)

1. Add configurations of verisign into CFG OPENID CONFIGURATIONS
in access control config.py , {0} will be replaced by the input of the login
form.

CFG OPENID CONFIGURATIONS = {
...,

’verisign’ : {
’identifier’ : ’0.pip.verisignlabs.com’ ,

’trust email’ : False

},
...

}

Since verisign lets the users change their email address, set ’trust email’
False (or do not add ’trust email’ key)

2. Add ’verisign’ to CFG OPENID PROVIDERS to start to use verisign.

CFG OPENID PROVIDERS = [

...,

BlogForever Consortium 49 of 78

D4.5: Initial Weblog Digital Repository Prototype January 31, 2013

’verisign’ ,

...

]

3. To edit the label of the form displayed in the login page, add

CFG EXTERNAL LOGIN FORM LABELS = {
...,

’verisign’ : ’Your VeriSign username’ ,

...,

}

otherwise it will be verisign username .

4. Add two images verisign icon 24.png and verisign icon 48.png
-which are 24px*24px and 48px*48px respectively- into image folder
. . . /invenio/var/www/img/

Adding an OAuth2 provider (FourSquare Example):

1. Add your application to provider site:

Figure 3.35: RF64 - Adding an application to FourSquare

Application web site and callback url (redirect url) should be CFG -
SITE SECURE URL and CFG SITE SECURE URL /youraccoun-
t/login?login method=oauth2&provider=foursquare respectively. The value
of the provider parameter in the redirect URI should be same as the key
added into CFG OAUTH2 CONFIGURATIONS in access control -
config.py .

BlogForever Consortium 50 of 78

D4.5: Initial Weblog Digital Repository Prototype January 31, 2013

The provider will give you Consumer Key and Consumer Secret. (Here Client
ID and Client Secret)

Figure 3.36: RF64 - Client ID and Secret obtained from FourSquare

2. Find the authorize url and access token url of the provider. For foursquare they
are:
• access token url: https://foursquare.com/oauth2/access token
• authorize url: https://foursquare.com/oauth2/authorize

3. Find the url to get the user information. (It is generally an
url which needs access token in parameters) For foursquare it is:
https://api.foursquare.com/v2/users/self?oauth token= {access token}

4. Add the configurations to the CFG OAUTH2 CONFIGURATIONS in
access control config.py and enable the provider by adding the CFG -
OAUTH2 PROVIDERS :

CFG OAUTH2 CONFIGURATIONS = {
...,

’foursquare’ : {
’consumer key’ :

’10W21EJQ2LO2QRQSVPCLVVIAZGHI5OTAID2U5HINLDA04WGA’ ,

’consumer secret’ :

’KPACSPYLQVTG114LIAA3ITWUZ14VTKER2ZXA2OOH22CSS4W4’ ,

’access token url’ :

’https://foursquare.com/oauth2/access token’ ,

’authorize url’ :

’https://foursquare.com/oauth2/authorize’ ,

’request url’ :

’https://api.foursquare.com/v2/users’

’/self?oauth token={access token}’ ,

’debug’ : 1

},
...

}

CFG OAUTH2 PROVIDERS = [

...,

’foursquare’ ,

...

]

5. Go to login page and login with foursquare. Since it is not configured yet, only
the json object we get from provider will be displayed after logging in. Now we
need to find the email and the id of the user from that json object:

BlogForever Consortium 51 of 78

D4.5: Initial Weblog Digital Repository Prototype January 31, 2013

{
...,

’response’ : {
’user’ : {

...,

’id’ : ’30362394’ ,

...,

’contact’ : {
...,

’email’ : ’some-email’ ,

...

},
...

}
},
...

}

Now we can complete the configuration, delete the ’debug’ key and insert the
path of the e-mail and ID. (ID is required)

CFG OAUTH2 CONFIGURATIONS = {
...,

’foursquare’ : {
’consumer key’ :

’10W21EJQ2LO2QRQSVPCLVVIAZGHI5OTAID2U5HINLDA04WGA’ ,

’consumer secret’ :

’KPACSPYLQVTG114LIAA3ITWUZ14VTKER2ZXA2OOH22CSS4W4’ ,

’access token url’ :

’https://foursquare.com/oauth2/access token’ ,

’authorize url’ :

’https://foursquare.com/oauth2/authorize’ ,

’request url’ :

’https://api.foursquare.com/v2/users’

’/self?oauth token={access token}’ ,

’id’ : [’response’ , ’user’ , ’id’],

’email’ : [’response’ , ’user’ , ’contact’ ,

’email’]

},
...

}

Note that, since the email is reached by jsonobject[’response’][’user’][
’contact’][’email’], the path of the e-mail should be specified in configuration
as ’email’ : [’response’ , ’user’ , ’contact’ , ’email’] and id is similar.

6. Add foursquare icon 24.png and foursquare icon 48.png into
the image folder (.../invenio/var/www/img/).

BlogForever Consortium 52 of 78

D4.5: Initial Weblog Digital Repository Prototype January 31, 2013

Some providers need extra arguments when authorizing user. These arguments
should be specified in ’authorize parameters’ key of the configuration.

For example, facebook needs scope parameter in authorize url to get the email.
Then we need to set:

CFG OAUTH2 CONFIGURATIONS = {
...,

’facebook’ : {
...,

’authorize_parameters’ : {
’scope’ : ’email’

},
},
...

}

Adding an OAuth1 provider:
Adding OAuth1 provider is very similar to add OAuth2 provider. The differences

are:

• OAuth1 provider needs request token url and additional parameters for re-
quest url (whose keys are ’request token url’ and ’request parameters’
respectively)

• Callback url should be in the form of CFG SITE SECURE URL /yourac-
count/login?login method=oauth1&provider=providername

Implementation details

• 3 new external authentication modules added: external authentication -
openid.py , external authentication oauth1.py and external authen-
tication oauth2.py . Unlike the other external authentication methods, these
methods have to fetch external ID of the user. E-mail and nickname are op-
tional. If the email cannot be fetched, the system generates a unique email for
the user.

• This feature depends on 2 packages: python-openid and rauth which can be
installed by running make install-openid-package and make install-oauth-
package, respectively.

• To enable/disble these authentication methods, CFG OPENID AUTHEN-
TICATION , CFG OAUTH1 AUTHENTICATION and CFG -
OAUTH2 AUTHENTICATION parameters have been added into in-
venio.conf

• New module containerutils.py , which contains the functions for basic con-
tainers such as dict, list and string, created.

• The function remove temporary emails , which deletes the auto-generated
emails from an email list, has been added into mailutils.py .

• The table oauth1 storage has been inserted into the database to store re-
quest tokens.

BlogForever Consortium 53 of 78

D4.5: Initial Weblog Digital Repository Prototype January 31, 2013

• Unique key of the table userEXT had been removed since a user may have
multiple external accounts.

• Some variables have been added into access control config:
– CFG TEMP EMAIL ADDRESS : Template of the temporary email

address for the users logged in with an external provider which does not
supply their email address.

– CFG OPENID PROVIDERS : The list of the activated OpenID
providers.

– CFG OAUTH1 PROVIDERS : The list of the activated OAuth1
providers.

– CFG OAUTH2 PROVIDERS : The list of the activated OAuth2
providers.

– CFG OPENID CONFIGURATIONS : A dictionary to configure the
OpenID providers. Its keys are the name of the providers and values are
also dictionaries which has at most 2 keys:
∗ ’identifier’ (required): The identifier url of the OpenID provider.

The user name area should be replaced by {0} .
Example: openid.aol.com/{0}

∗ trust email (optional): Set it False (or do not add it to keys)
for the providers which let the user change his/her email during login
process. Otherwise, set it True .

– CFG OAUTH1 CONFIGURATIONS : A dictionary to configure the
OAuth1 providers. Its keys are the name of the providers and values are
also dictionaries which has at most 12 keys (6 required, 6 optional):
∗ consumer key (required): The Consumer Key (Client ID, Ap-

plication ID) obtained from the OAuth1 provider.
∗ consumer secret (required): The Consumer Key (Client Secret,

Application Secret) obtained from the OAuth1 provider.
∗ authorize url (required): The url to redirect the user to authoriza-

tion page.
∗ authorize parameters (optional): A dictionary of additional pa-

rameters of the authorization. Parameter name and the value cor-
responds to key and the value of the dictionary, respectively. (ie
url?param=value) corresponds to { ’param’ : ’value’ })

∗ request token url (required): A url to get the request token and
request token secret.

∗ access token url (required): A url to exchange the request token
with the access token.

∗ request url (optional): A url to get the information of the user.
∗ request parameters (optional): The dictionary of the additional

parameters of the request url . (similar to authorize parameters)
∗ id (required): The path of the external ID of the user in the returned

JSON object from provider. (usage: if the ID is gathered by jsonobject[
’response’][’user’][’id’], this value should be [’response’ , ’user’
, ’id’])

∗ email (optional): The path of the e-mail of the user in the returned
JSON object from provider. Usage is similar to id .

∗ nickname (optional): The path of the nickname of the user in the
returned json object from provider. Usage is similar to id .

BlogForever Consortium 54 of 78

D4.5: Initial Weblog Digital Repository Prototype January 31, 2013

∗ debug (optional): Debug mode of the OAuth1 provider. 1 for
activate, 0 for deactivate. If it is activated, it does not log in, just
displays the json object returned from provider after login screen to
figure out where the ID, e-mail and nickname is.

– CFG OAUTH2 CONFIGURATIONS : A dictionary to configure the
OAuth2 providers. Its keys are the name of the providers and values are
also dictionaries which has at most 10 keys (6 required, 4 optional):
∗ consumer key , consumer secret , authorize url , authorize -

parameters , id , email , nickname and debug are the same
as CFG OAUTH1 CONFIGURATIONS

∗ access token url (required): A url to get the access token.
∗ request url (optional): A url to get the user information. Access

token (Oauth token) area should be replaced by {access token}
(ie. url?access token={access token})

• Suitable warning messages are inserted into CFG WEBACCESS WARN-
ING MSGS in access control config.py

• The function external user warning has been added into webaccount.py
, which returns the warning if the email of the user is auto-generated.
• The variable warning list in the function perform display account in

webaccount.py has been extended with warning of the external user.
• Variables has been added into websession config.py :

– CFG EXTERNAL LOGIN LARGE : The list of provider names. De-
cides which login buttons will be displayed 48x48px in the login page. The
order of the list also changes the order of the login buttons.

– CFG EXTERNAL LOGIN BUTTON ORDER : The list deciding
the order of the login buttons in the login page. The activated but un-
ordered buttons will be displayed alphabetically after the ordered ones.

– CFG EXTERNAL LOGIN FORM LABELS : The dictionary whose
keys are OpenID providers which needs username for their identifier urls
and values are the label of the input in login form.

• The functions tmpl external login button , tmpl external login form
and tmpl external login panel are added into websession templates.py
to construct the external login panel in login page.

• openid , oauth1 , oauth2 methods have been added into websession we-
binterface.py . These functions redirects the user authorization url or displays
messages in case of errors.

• loginUser function in webuser.py is regulated to accommodate
OpenID/OAuth authentication.

Implemented By Alper Çınar (SRDC)

Table 3.31: Implementation Description: RF64

Feature ID RF67 (Repository Feature 67)

Name The archive fetches and stores embedded content

Effort Spent 3 Weeks

Modules Affected
/ Created

BibUpload, WebSchedule

BlogForever Consortium 55 of 78

D4.5: Initial Weblog Digital Repository Prototype January 31, 2013

Description of the new feature

The repository fetches the embedded content using the spider’s API. Af-
terwards, it uses BibUpload to insert the metadata and the embedded files into the
repository databases, as described in RF9.

Implementation details

The script spider repository communication.py establishes a connection
with the spider, retrieves the list of new records, and for each one of them downloads
the files (metadata and embedded content) and calls the BibUpload module that
inserts them into the repository.

Implemented By Raquel Jiménez, Jaime Garćıa (CERN)

Table 3.32: Implementation Description: RF67

Feature ID RF70 (Repository Feature 70)

Name 6 weeks

Effort Spent WebAccess, WebSession

Modules Affected
/ Created

The archive can provide services under some cost using a billing
system

Description of the new feature

This feature introduces “premium access to collections” system.

Admin may restrict collections for some cost for finite/infinite time interval.

Premium packages can be managed easily from the admin panel. (Configure
Webaccess ⇒ Manage Premium Packages)

Admin may add premium packages for collections:

BlogForever Consortium 56 of 78

D4.5: Initial Weblog Digital Repository Prototype January 31, 2013

Figure 3.37: RF70 - Adding new premium package panel

Current premium packages can be monitored, edited or deleted:

Figure 3.38: RF70 - Monitoring premium packages in admin panel

- Edits the premium package (Displays same form as adding new one)
- Deletes the premium package

- Moves the premium package up and down respectively. The order of the
premium packages can be changed through these buttons.

After the premium packages are added, collections become restricted.

Figure 3.39: RF70 - A restricted collection that requires premium package to display

After edit or delete operations, if a collection loses its premium packages, that
collection becomes unrestricted.

Figure 3.40: RF70 - Warning message indicates that the collection is restricted

After clicking search button, if the user has not bought a premium package, the
list of the premium packages related to that collection are shown.

BlogForever Consortium 57 of 78

D4.5: Initial Weblog Digital Repository Prototype January 31, 2013

Figure 3.41: RF70 - Available premium packages to display current collection

User selects a suitable package and payment method:
1) Credit card

Figure 3.42: RF70 - A form to purchase a premium package with credit card

The user can buy premium packages with his/her credit card through the form.
This is the last screen before completing the transaction. After clicking the upgrade
button, if the transaction fails, an error message is shown:

BlogForever Consortium 58 of 78

D4.5: Initial Weblog Digital Repository Prototype January 31, 2013

Figure 3.43: RF70 - The error message states that the credit card information is
wrong

Otherwise, a confirmation page is loaded.

Figure 3.44: RF70 - Confirmation page that also displays the premium packages the
user have

2) PayPal Express Checkout

Figure 3.45: RF70 - PayPal express checkout screen

User may choose PayPal express checkout if s/he has a PayPal account. Clicking
“Checkout with PayPal” button redirects the user to the PayPal page to login and
confirm the transaction. After clicking “Continue Button”, user is redirected back to
Invenio site, and confirms his/her order.

Figure 3.46: RF70 - PayPal transaction confirmation page

User clicks the checkout with PayPal button and confirms the transaction.

BlogForever Consortium 59 of 78

D4.5: Initial Weblog Digital Repository Prototype January 31, 2013

Figure 3.47: RF70 - Confirmation page that also displays the premium packages the
user have

Users may see their premium group memberships via “Your account page”:

Figure 3.48: RF70 - “Your Account” page displaying current premium groups the
user joined

A user may extend his/her premium group membership by clicking button.

The admin may see the transaction history and premium members from the admin
panel:

Figure 3.49: RF70 - The admin panel displaying payment history

Admin may give a premium package to a user via the ”Upgrade User” form.

BlogForever Consortium 60 of 78

D4.5: Initial Weblog Digital Repository Prototype January 31, 2013

Figure 3.50: RF70 - The admin panel displaying current users joined premium groups

The admin can disable paying with credit card, paypal express checkout or whole
premium service by invenio.conf file. Credit card payment can be done by PayPal
or Ogone payment gateways. Admin can select payment methods to use in inve-
nio.conf . Also the API credentials of PayPal and Ogone can be set in this file.

If the administrator disables the premium service, all the collections become un-
restricted. If s/he enables it back, they will become restricted again.

Implementation details

• 12 new variables added into invenio.conf :
– CFG PREMIUM SERVICE : 1 for enabling, 0 for disabling the

premium service. If this variable is changed 1 to 0 , all of the pre-
mium collections become open collections and the information about these
premium collections are saved on accROLE accACTION accARGU-
MENT inactive table in the database. On the contrary, If this variable
is changed from 0 to 1 , all of the saved information about premium
collections are backed up, premium collections become restricted again.

– CFG TEST PREMIUM SERVICE : 1 for use test servers of the
payment gateways, otherwise 0 .

– CFG CREDIT CARD PAYMENT GATEWAY : The payment
gateway used for buying with credit card. It may have 3 options: “pay-
pal” , “ogone” or “” (blank). If it is blank, paying with credit card
becomes disabled.

– CFG USE PAYPAL EXPRESS CHECKOUT : The variable to de-
cide to use “Paypal Express Checkout” or not. 1 for enabling, 0 for
disabling.

– CFG PAYPAL API USERNAME , CFG PAYPAL API PASS-
WORD , CFG PAYPAL API SIGNATURE , CFG PAYPAL -
API VERSION : The credentials to use PayPal API.

– CFG OGONE API PSPID , CFG OGONE API USERID ,
CFG OGONE API PSWD : The credentials to use OGone API.

– CFG PREMIUM GROUP SUFFIX : The suffix of the premium
group names.

• Callback functionality is added for updating config.py :
– Some modifications are occurred in cli cmd update config py function

in inveniocfg.py . This function calls the “callback functions” specified
in CONFIG PY CALLBACK in inveniocfg callback.py after up-
dating config.py .

– CONFIG PY CALLBACK is a dictionary that takes variable names
as keys and callback functions as values. Callback functions should get

BlogForever Consortium 61 of 78

D4.5: Initial Weblog Digital Repository Prototype January 31, 2013

2 arguments: old value and new value, the prototype of the callback
functions is following:

sample_callback_function(old_value=None, new_value=None)

• 5 new tables added into database:
– premium : Keeps the information (name, details, duration, price and

display order) about premium packages.
– hstPAYMENT : Keeps the payment history.
– collection usergroup role : keeps the collection - usergroup - role map-

ping.
– premium collection : keeps the premium package - collection mapping.
– accROLE accACTION accARGUMENT inactive : keeps the the

premium roles when the premium service is inactive.
– expire column is added into user usergroup table. This column keeps

the expiration date of the group membership of a user. Expiration dates of
the premium group memberships are calculated when the user purchased
a premium package. The expiration dates of any other group memberships
are 9999-12-31 23:59:59 as default.

• Whether a collection needs a premium group membership to be accessed
is checked when displaying corresponding collection. acc authorize action
function in access control engine.py is modified to accommodate billing
system. It can be viewed if the premium service is enabled and if there is a
premium group to access that collection. If a user does not have a right to
access that collection, the list of the premium packages that allows to access is
displayed.

• The admin panel to manage premium packages is introduced. With the ad-
min panel, premium packages can be added, edited and deleted. In addition,
their display order may be changed. Payment history can be monitored and the
list of the users who have premium membership can be displayed in the admin
page. To achieve these functionalities, some functions have been implemented in
webaccessadmin lib.py and webaccessadmin.py . Also webaccessad-
min.js and webaccessadmin.min.js have been added to make the interface
more useful.

• The new module WebPayment has been introduced. It handles the cases
about premium service, contains necessary functions and classes.

– webpayment.py contains the following functions:
∗ add new premium package : Adds a new premium package and

arranges the roles and authorizations for the corresponding collections.
∗ edit premium package : Edits an existing premium package, ar-

ranges the roles and authorizations about the corresponding collec-
tions. If a collection loses its premium packages after editing, that
collection becomes unrestricted.

∗ fix premium table parameters : Arranges the parameters of
add new premium package and edit premium package func-
tions in case of any problematic parameter.

∗ create new premium group : Creates a premium group to access
the restricted collection. If a group that has the same name as the
premium group is created by a user, the user-created group is renamed.

∗ add role and authorization : Adds/edits the roles and authoriza-
tions to access premium collections.

BlogForever Consortium 62 of 78

D4.5: Initial Weblog Digital Repository Prototype January 31, 2013

∗ display possible packages : Displays the packages that requires to
access the collection given in the arguments.

∗ get package collection map : Returns the map of which premium
packages allow to access which collections.

∗ upgrade user : Gives a user a premium package stated in the argu-
ments.

∗ delete premium package : Deletes the given premium package. If
a collection loses its premium packages after deleting, that collection
becomes unrestricted.

∗ cfg premium service callback : callback function of the CFG -
PREMIUM SERVICE variable. If the premium services are dis-
abled, it makes all the collections unrestricted. If the premium services
are enabled back, it makes corresponding collections restricted again.

– webpayment dblayer.py contains the database related functions of
WebPayment module.

– webpayment base.py contains required classes to implement payment
gateways:
∗ CreditCard : This class is inherited from dict class. It just ensures

that the dictionary contains card number, name on the card, expiration
date and security code.

∗ PaymentGatewayResponse : This class is also inherited from dict
class. It ensures that the dictionary contains corresponding premium
package, success state of the transaction, transaction ID, error mes-
sages and additional data if exits.

∗ PaymentGateway : This is an abstract class from which all of the
payment gateways should be inherited. The fields which should be
overridden are following:
· SERVER : The URL of the payment gateway API.
· TEST SERVER : The test URL of the payment gateway.
· additional inputs : Some payment gateways require more data

than the credit card information. This field is used to specify the
additional information required to payment gateway. Its type is:
[{ ’legend’ : str , ’inputs’ : [{ ’title’ : str , ’name’ : str ,
’type’ : str }]}]

. legend : The title of the input set

. title : The title of the input

. name : The name of the input

. type : can be ’text’ or ’country-select’ , to construct
Selecting Country input, ISO codes of the countries are added
into websession config.py as COUNTRY ISO CODES
variable.

For example, in ogone there is no additional inputs and form in
the web interface is following:

Figure 3.51: RF70 - Ogone purchase with credit card from

BlogForever Consortium 63 of 78

D4.5: Initial Weblog Digital Repository Prototype January 31, 2013

However, in PayPal it is specified as:

additional inputs = [{
’legend’ : ’Personal Information’ ,

’inputs’ : [{
’title’ : ’First Name’ ,

’name’ : ’fname’ ,

’type’ : ’text’ }, {
’title’ : ’Last Name’ ,

’name’ : ’lname’ ,

’type’ : ’text’ }]
}, {
’legend’ : ’Address Information’ ,

’inputs’ : [{
’title’ : ’Street’ ,

’name’ : ’street’ ,

’type’ : ’text’ }, {
’title’ : ’City’ ,

’name’ : ’city’ ,

’type’ : ’text’ }, {
’title’ : ’State / Province’ ,

’name’ : ’state’ ,

’type’ : ’text’ }, {
’title’ : ’Zip / Postal Code’ ,

’name’ : ’zip’ ,

’type’ : ’text’ }, {
’title’ : ’Country’ ,

’name’ : ’country’ ,

’type’ : ’country-list’ }]
}]

and the credit card form is following:

Figure 3.52: RF70 - PayPal purchase with credit card from
· name : the name of the payment gateway
· accept types : list of the credit card types that accepted. It

may contains PaymentGateway . VISA , PaymentGate-

BlogForever Consortium 64 of 78

D4.5: Initial Weblog Digital Repository Prototype January 31, 2013

way . MASTERCARD , PaymentGateway . DISCOVER
, PaymentGateway . AMERICANEXPRESS and Pay-
mentGateway . MAESTRO constants.
· If the payment gateway is used for buying with credit card, pro-

cess method should be overridden:
. process : This method should make the credit card transac-
tion and return the response (PaymentGatewayResponse)
including transaction id if succeeded, error messages if failed.

· If the payment gateway redirects the user to a 3rd party site to
complete the payment, construct checkout url , get trans-
action details and complete transaction methods should be
overridden.

. construct checkout url : Returns the response with 3rd
party site URL to checkout in the ’data’ field of the response.
If it fails, it should return response with error messages. The
return URL when calling the payment gateway api should be in
the form of CFG SITE SECURE URL /youraccount/up-
grade?payment method=methodname&page=review&id -
package=premiumpackageid If you want to show the user
what s/he is buying, page parameter should be review and
override get transaction details , or you may complete the
payment after returning from 3rd party site by setting page
parameter as complete .
. get transaction details : Checks if the transaction is appro-
priate for the payment gateway. If it is, it returns the HTML
code of the button for completing the transaction in ’data’ key
of the response. Otherwise, it should return a response with er-
ror messages. If you want to skip this step, just do not override
this function.
. complete transaction : Should complete the transaction.
If the transaction is succeeded, it should return a response with
transaction id. Otherwise, it should return a response with error
messages.

– webpayment paypal.py and webpayment ogone.py modules con-
tain classes derived from PaymentGateway . These two both contain
necessary methods to buying with credit card. In addition, webpay-
ment paypal.py contains methods for completing payment in 3rd party
site (PayPal Express Checkout).

• The payment methods implemented should be added into access control -
config.py .

– CFG CREDIT CARD PAYMENT METHODS is a dictionary
which contains the classes implemented for purchasing with credit card.
Its keys are the names of the payment methods (with uppercase letters)
and values are only the corresponding classes (not instances).

– CFG PAYMENT METHODS is also a dictionary which contains all
the payment methods for purchasing with 3rd party site (like PayPal Ex-
press Checkout). Its values are the names of the payment methods and
values are the corresponding class. In addition it has the key ’cc’ for
credit card payment whose value is determined by invenio.conf .

BlogForever Consortium 65 of 78

D4.5: Initial Weblog Digital Repository Prototype January 31, 2013

• Required functions to accommodate billing system have been added into we-
baccount.py

– perform display payment complete : Displays the message after buy-
ing a premium package.

– perform display credit card form : Displays the credit card form in
the buy with credit card page according to active payment gateway.

– New argument prem has been added into perform display account
funtion to display premium group memberships of the user in Your Ac-
count page

• Current user group system is changed a little to accommodate premium groups
– perform request leave group in webgroup.py now checks if the

group is a premium group and displays an error message if it is.
– get groups and get groups by user status functions in webgroup -

dblayer.py are checks the membership expiration date of the users.
– New functions for premium groups have been added into webgroup -

dblayer.py
– New group join policy from premium groups (’PG’) has been added into

CFG WEBSESSION GROUP JOIN POLICY in websession -
config.py

• upgrade method has been added into WebInterfaceYourAccountPages in
websession webinterface.py . A user may reach this page when necessary,
i.e., visiting a premium collection without corresponding premium group or
extending premium group membership.

Implemented By Alper Çınar (SRDC)

Table 3.33: Implementation Description: RF70

Feature ID RF71 (Repository Feature 71)

Name The archive provides a personalized annotating and highlighting
tool for users

Effort Spent 4 weeks

Modules Affected
/ Created

Bibformat, Miscutil, WebSearch, WebSession, WebStyle

Description of the new feature

An icon has been placed at the right of the page to activate annotating
and highlighting feature. This icon can only be visible when a user logs in, otherwise
it is not displayed.

BlogForever Consortium 66 of 78

D4.5: Initial Weblog Digital Repository Prototype January 31, 2013

Figure 3.53: RF71 - The icon to activate highlighting

When the icon is clicked, a color palette containing highlight colors appears and
previously saved highlighted items are loaded. Four colors are choosen as default.
These can be changed from configuration file.Palette has also two more options, re-
move all and undo.

Actions which can be undone by undo operation:

• Creating Highlight
• Extending Highlight
• Deleting Highlight
• Adding Note
• Editing Note
• Deleting Note
• Remove All

After activating highlight, an orange box appears around the record, which defines
the borders of the editable area.

BlogForever Consortium 67 of 78

D4.5: Initial Weblog Digital Repository Prototype January 31, 2013

Figure 3.54: RF71 - Color palette

The user is able to highlight the record by holding mouse button and dragging
the cursor.

Figure 3.55: RF71 - Highlighting a part of text

When mouse is rolled over an highlighted area, an edit icon is displayed.

Figure 3.56: RF71 - The icon to edit highlighted text

When edit icon is clicked, an edit menu providing of 3 options namely Ad-
d/Edit annotation, Delete highlight and Change color appears.

Figure 3.57: RF71 - The edit menu of an highlighted text

A box appears when the user clicks on Add Annotation so that, the user can
enter his/her annotation and save it.

Figure 3.58: RF71 - Adding annotation for a text

After the note is saved, the text of the corresponding highlight becomes shadowed.

BlogForever Consortium 68 of 78

D4.5: Initial Weblog Digital Repository Prototype January 31, 2013

Figure 3.59: RF71 - An annotated text

When a highlighted text that has annotation is clicked, the corresponding note
can be seen. It can be edited and saved or removed completely.

Figure 3.60: RF71 - Displaying/editing an annotation

When the color palette is closed, a new icon to retrieve the color palette appears
just below the highlight activation icon.

Figure 3.61: RF71 - The icon to retrieve color palette

Highlighted texts can be extended. If the selected text contains any highlighted
part and if the selection color is same with its color, they are merged. Moreover, two
neighbor highlighted part are merged, if they have same color after a color change is
applied.

Since there are different nodes in HTML based records, the user selection is
resulted in divided highlighted parts. When the user adds an annotation to one of

BlogForever Consortium 69 of 78

D4.5: Initial Weblog Digital Repository Prototype January 31, 2013

them, it is also added to all highlight nodes with the same identifier. Highlighted
parts still seem divided, but they are logically unified.

If selection contains a part of a MathJax expression, it highlights whole MathJax
element in order not to ruin structure of MathJax.

Implementation details

• To enable highlighting feature for any content, it is just enough to surround the
content with <div class=’highlightable’></div> tags.

• selectionRange object is mainly used for highlight. Therefore, this feature is
applicable on Internet Explorer from version 9.
• To highlight the selected text, an element with tag highlight is inserted around

the selection.
• A highlight element does not contain any other highlight elements.
• The main aim is keeping the highlight elements with minimum depth in DOM

tree. To do so, after each selection, the recently inserted highlight nodes are
traversed. If all its siblings are highlight nodes, then just highlight the parent
instead of all children. This reduces costs to save highlights.
• For each text selection, the resulted highlight nodes are given same identi-

fier to logically unify them. This identifier is unique for each selection. The
identifiers are also used as annotation ids.
• Highlights are saved as serialized JSON string. On page load, the dom tree is

reconstructed with this JSON object. An example json string:

{
"leaves":{

"43":[{"s": 22, "e": 35,"a": 0, "id": "2",

"n": 0, "c": "rgb(255, 255, 0)"}],
"73":[{"s": 357, "e": 406, "a": 1, "id": "0",

"n": 0, "c": "rgb(255, 255, 0)"}]
},

"nodes":{
"57":{"c": "rgb(255, 255, 0)", "id": "1", "a": 0}
}

}

’leaves’ key corresponds to highlight elements around text nodes. It has keys
as numbers which are ids of each dom element. These ids are assigned when
highlight mode is on. For the highlight nodes around text nodes, their parent
nodes are used as keys i.e 43, 73. Highlight nodes under them are listed in
dictionary format.

– ’s’ denotes start position
– ’e’ denotes end position
– ’a’ denotes whether that highlight element has an annotation. if yes 1 ,

otherwise 0 values are used.
– ’id’ denotes id ’high anno id’ attr value of the highlight nodes. It

is used to keep track of seperated highlight nodes which are result of a
selection. For example, the user makes a selection starting from a <p>
element and ending to another <div> . There are more than one highlight

BlogForever Consortium 70 of 78

D4.5: Initial Weblog Digital Repository Prototype January 31, 2013

nodes as a result of this selection. This value is also used for annotation
id.

– ’n’ denotes the child number that the indices are valid on.
– ’c’ denotes the color.

’nodes’ key corresponds to a node level highlighting information. For nodes,
there is no need to save indices, it is enough to keep color information, since
each node will have a unique identifier (57 in example above) and they will be
highlighted directly. The ’c’ , ’id’ , and ’a’ keys have same meanings as
above.

• Each change is directly saved into the database.
• Before loading highlights, record’s last modification date and highlight date are

compared to understand whether the record is changed or not. If the comparison
indicates a change on the record, the user is warned about possible distortion
on highlights.

• Two new tables namely bibrec highlights and bibrec annotations have
been inserted into database to keep highlights and annotations.

• In websession webinterface.py , savehighlights , loadhighlights ,
saveannotation , getannotation and removeannotation methods have
been added for communication between server and client sides.

• In webuser.py , check bibrec modification date , set user bibrec an-
notation , get user bibrec annotation , delete user bibrec annotation
, set user bibrec highlights , get user bibrec highlights functions have
been implemented for database transactions.

• In websession templates.py , tmpl highlight tools , tmpl annota-
tion box , tmpl color palette methods have been implemented to create
html codes for highlight tools such as color palette and annotation box.

• In dateutils.py , difference between times function has been inserted to
calculate elapsed time in units such as second, minute, hour etc.

• CFG COLOR PALETTE parameter has been added to define highlight
colors. As default, four colors have been set.

• Also in inveniocfg.py and search engine.py , some minor modifications
have been made.

Implemented By Şenan Postacı, Alper Çınar (SRDC)

Table 3.34: Implementation Description: RF71

Feature ID RF73 (Repository Feature 73)

Name The archive recommends blogs to users based on the ratings
and preferences

Effort Spent 1 Week

Modules Affected
/ Created

BibRank, WebSearch

Description of the new feature

A new ranking method to rank the records by their weighted averages has
been developed.

BlogForever Consortium 71 of 78

D4.5: Initial Weblog Digital Repository Prototype January 31, 2013

Figure 3.62: RF73 - Ranking with weighted averages of the records

A portalbox which shows the Top Rated Records has been added into main page.

Figure 3.63: RF73 - Portalbox displaying top rated records

A portalbox which shows last added records has been added into main page.

Figure 3.64: RF73 - Portalbox displaying recently added records

Implementation details

• Portal boxes have become associated with ranking methods.
– bibrank portalbox table, which keeps which ranking method is related

with which portal box in which language, has benn inserted into database.

BlogForever Consortium 72 of 78

D4.5: Initial Weblog Digital Repository Prototype January 31, 2013

– update bibrank portalbox and drop bibrank portalbox functions
have been added into bibrank record sorter.py .
∗ update bibrank portalbox function updates the portal boxes when

bibrank is run.
∗ drop bibrank portalbox function removes the entries related to

given bibrank method when either the ranking method is deleted or
the variable keeping the number of records shown in portalbox is set
to 0 .

– tmpl top rated records portalbox and tmpl added content por-
talbox methods have been added into websearch templates.py , which
are the templates of the “top rated records” and “added content” portal-
boxes, respectively.

• Ranking with “Weighted Average” has been introduced.
– To rank the records by their weighted average, bibrank weighted av-

erage indexer.py module has been created. This module contains the
function weighted average to index which calculates the weighted av-
erage with “Bayesian estimate” which is the following formula:

N

N + m
∗A +

m

N + m
∗G

where
∗ N: the number of reviews of corresponding record
∗ m: minimum number of reviews required to calculate the rank of the

record
∗ A: Average score of corresponding record
∗ G: Average score of all of the records

– bibrank weigted average template.cfg containing the parameters
for the ranking method has been created. These parameters are:
∗ show relevance : 1 to show the score on search page, 0

otherwise.
∗ minimum review number : minimum number of reviews required

to be ranked
∗ display on portalbox count : the number of the records will be

displayed on the portalbox. If it is 0 , portalbox disappears and
entries related to that ranking method is removed from database.

• Archived content indexer has been added as a ranking method to create “Re-
cently Added Records” portalbox.

– bibrank archived content indexer.py has been introduced to rank
the records in a time interval.

– template recently archived content.cfg containing the parameters
for the ranking method. These parameters are:
∗ latest records number : the number of the lastly added records, if

0 , ranks all of them.
∗ date type : creation for ranking by creation date, modification

for ranking by modification date.
∗ start date : the beginning of the time interval.
∗ end date : the end of the time interval.
∗ interval : the sql like time interval. (i.e. 3 HOUR , 1 DAY)
∗ display on portalbox count : the number of the records will be

displayed on the portalbox. If it is 0 , portalbox disappears and
entries related to that ranking method is removed from database.

BlogForever Consortium 73 of 78

D4.5: Initial Weblog Digital Repository Prototype January 31, 2013

• Some modifications have been occurred in bibrank.py and bibrank tag -
based indexer.py to accommodate new ranking method.

• Regression tests for bibrank weighted average indexer and bibrank -
archived content indexer modules have been added into bibrank regres-
sion tests.py

Implemented By Alper Çınar (SRDC)

Table 3.35: Implementation Description: RF73

Feature ID RF87 (Repository Feature 87)

Name The archive transforms the SIPS received from the spider to
AIP

Effort Spent 1 Month

Modules Affected
/ Created

BibUpload, BibIngest

Description of the new feature

A new module BibIngest has been developed to host ingestion packages.

The BibIngest module:

• implements the four basic functions of persistent storage: create, read, update
and delete (CRUD). Other functions are provided as well, such as validation of
the ingestion package etc.

• exposes a single interface that provides the functions mentioned above.
• is able to use a variety of storage engines in the background, as chosen and

configured by the administrator.
• is able to transparently support a variety of operations on any of the background

storage engines used.
• is extensible enough to accommodate different types of ingestion packages.

Implementation details

In the current implementation of the module the client interface can be found
in bibingest.py . bibingest.py is responsible of instantiating the storage en-
gine (using Invenio’s pluginutils) and it provides functions on it such as get in-
gestion package(id) , get many ingestion packages(**kwargs) , store in-
gestion package(**kwargs) , remove many ingestion packages(**kwargs) ,
validate ingestion package(content, md5 hash) etc.

Some of these functions take an arbitrary number of arguments to be translated
and parsed by the storage engine. The current implementation expects arguments in
the current format: fieldname operator = value. Both fieldname and operator are

BlogForever Consortium 74 of 78

D4.5: Initial Weblog Digital Repository Prototype January 31, 2013

optional but of course at least one of them should be there. Examples: id = 5, id in
= [1,2,3,4,7,9], id from = 5, id and to = 15, id sort by asc = True, limit = 20, etc.

For the time being some configuration options for the module exist in bibingest -
config.py . These include the storage engine name and lists of accepted field names
and operators.

An interface class is provided to be inherited and respected by the class imple-
mentations of the various storage engines in filebibingest engine interface.py.

All the storage engine implementations go inside the engines directory (engi-
nes/*.py). Each engine should define a class that inherits the base class from
bibingest engine interface.py and implements its methods. Since bibingest.py is us-
ing pluginutils, each of these engines should include a global function whose name is
the same as the module’s name (example: mongodb.py should provide the function
mongodb()). This function should return an instance of the engine’s class.

Each engine is responsible for the translation, parsing and implementation of the
various fields and operators. An engine has been developed using MongoDB and it is
used in the BibUpload post-process described in RF9 to store the SIPs.

Implemented By Raquel Jiménez, Jaime Garćıa, Nikolaos Kasioumis (CERN)

Table 3.36: Implementation Description: RF87

Feature ID RF88 (Repository Feature 88)

Name The archive stores the content of the AIPS in two different
databases for preservation purposes

Effort Spent 1 Week

Modules Affected
/ Created

BibUpload, BibIngest

Description of the new feature

The AIPs are stored in two different databases. In one of them the SIP is
stored as received from the spider using BibIngest, and a second copy is used as a
working copy and stored in the Invenio metadata database.

Implementation details

Details on how this is done can be found in RF9 and RF87.

Implemented By Raquel Jiménez, Jaime Garćıa, Nikolaos Kasioumis (CERN)

Table 3.37: Implementation Description: RF88

BlogForever Consortium 75 of 78

D4.5: Initial Weblog Digital Repository Prototype January 31, 2013

Chapter 4

Conclusions and Future Work

BlogForever digital repository component is reponsible for collecting, preserving and
presenting the blog data captured by the spider component. The essential effort to accom-
plish these tasks was introduced in D4.4 Digital Repository Component Design as a list of
repository features, and in this report, implementation details of these features planned
to be in BlogForever digital repository prototype were presented.

The implementation of the digital repository was planned as enhancements on CERN’s
Invenio digital library software as iterative cycles rather than implementing a repository
from scratch. An agile development method that involves implementation in conjunction
with validation was adopted.

To fullfill repository requirements, repository features have been implemented on the
vanilla Invenio source. Invenio’s modular architecture makes it easily customizable and ex-
pandable. In addition, both conveniently modifiable structure of Invenio and easy branch-
ing and merging model of Git make the feature based workflow of Invenio applicable to
digital repository development. Therefore, same workflow has been adopted in the devel-
opment of the digital repository, as well.

The features were distributed among the code contributor partners, and each part-
ner is responsible for implementation and documentation of the corresponding features
assigned to them. Alongside coding and documenting, the essential tests of each feature
is needed to be written as well. Especially, the regression tests have an important role in
the integration phase. If necessary, unit tests and web tests were prepared as well to be
sure that the feature works without any failures.

The documentation of the features have been carried out through implementation
descriptions. An implementation description table has a strict format and introduces
the intended result of the feature and describes the technical details of implementation.
This document mainly consists of these implementation descriptions prepared by the code
contibutor partners.

Future work involves implementation of the remaining features, cases studies and
validation of the digital repository on new set of weblogs. Moreover, through case studies,
WP5 will evaluate the BlogForever platform whether it fulfills the requirements or not
and based on the feedback retrieved from platform users, developers will continue to make
necessary modifications on the features until a complete system is developed in WP4.

BlogForever Consortium 76 of 78

D4.5: Initial Weblog Digital Repository Prototype January 31, 2013

Finally, the outcome of this deliverable D4.5 and outcome of D4.3: Initial Weblog
Spider Prototype[5] will be integrated and finalized in Task 4.6 Integration and Standard-
ization yielding the final BlogForever platform.

BlogForever Consortium 77 of 78

D4.5: Initial Weblog Digital Repository Prototype January 31, 2013

References

[I] BlogForever. Description of work, 2011.

[II] Git Workflow in Invenio. http://invenio-software.org/wiki/tools/git/workflow, [Re-
trieved January 15, 2012].

[III] H. Kalb, N. Kasioumis, J. Garćıa Llopis, Şenan Postacı, and S. Arango-Docio. D4.1:
User Requirements and Platform Specifications. Work package, Technische University
at Berlin (TUB), December 2011. Work Package Four Deliverables.

[IV] J. Garćıa Llopis, R. Jiménez Encinar, K. Stepanyan, Y. Kim, A. Haberfield, Şenan
Postacı, G. Gkotsis, P. Lazaridou, A. Çınar, H. Kalb, V. Banos, S. Arango Docio,
N. Kasioumis, T. Šimko, G. Banu Laleci, and E. Pinsent. D4.4: Digital Reposi-
tory Component Design. Work package, European Organization for Nuclear Research
(CERN), November 2012. Work Package Four Deliverables.

[V] M. Rynning. D4.3: Initial Weblog Spider Prototype. Work package, CyberWatcher,
September 2012. Work Package Four Deliverables.

[VI] P. Sleeman, S.Arango-Docio, E. Pinsent, G. Gkotsis, T. Farrell, S. Kopidaki, and
M. Rynning. D5.1: Design and Specification of Case Studies. Work package, University
of Londond (UL), June 2012. Work Package Five Deliverables.

BlogForever Consortium 78 of 78

	ExecutiveSummary
	1 Introduction
	1.1 Background

	2 The Weblog Digital Repository Implementation
	2.1 BlogForever and Invenio
	2.2 Implementation
	2.3 Software Testing
	2.3.1 Unit Tests
	2.3.2 Regression Tests
	2.3.3 Web Tests

	2.4 User Testing

	3 Implementation Descriptions
	3.1 Features already in Invenio
	3.2 List of implementation descriptions

	4 Conclusions and Future Work
	References

