
SEVENTH FRAMEWORK PROGRAMME
FP7-ICT-2009-6

BlogForever
Grant agreement no.: 269963

D4.4: Digital Repository Component Design

Editor: J. Garćıa Llopis, R. Jiménez Encinar

Revision: First Version

Dissemination Level: Public

Author(s): J. Garćıa Llopis, R. Jiménez Encinar, K. Stepanyan,
Y. Kim, A. Haberfield, Şenan Postacı, G. Gkotsis, P.
Lazaridou, A. Çınar, H. Kalb, V. Banos, S. Arango Docio,
N. Kasioumis, T. Šimko, G. Banu Lateci, E. Pinsent

Due date of deliverable: November 30, 2012

Actual submission date: November 30, 2012

Start date of the project: March 01, 2011

Duration: 30 months

Lead beneficiary name: European Organization for Nuclear Research (CERN)

Abstract:

This report describes in detail the design, architecture and features of the
BlogForever’s weblog digital repository (web application). First of all, we
introduce the Invenio software platform and its merits, explaining the reasons
why we decided it should be the basis for the BlogForever digital repository.
Then we present a review of the past and current work and highlight how
our findings affected and supported some of the key decisions regarding
the design of the repository. Furthermore, we analyze and illustrate how
the the suggested architecture represents a robust weblog digital repository
solution through its various stages: ingestion, management, preservation and
dissemination. Finally, we list the various features.

D4.4: Digital Repository Component Design November 30, 2012

Project co-funded by the European Commission within the Seventh
Framework Programme (2007-2013)

The BlogForever Consortium consists of:

Aristotle University of Thessaloniki (AUTH) Greece

European Organization for Nuclear Research (CERN) Switzerland

University of Glasgow (UG) UK

The University of Warwick (UW) UK

University of London (UL) UK

Technische Universitat Berlin (TUB) Germany

Cyberwatcher Norway

SRDC Yazilim Arastrirmave Gelistrirmeve Danismanlik Ticaret Limited
Sirketi (SRDC)

Turkey

Tero Ltd (Tero) Greece

Mokono GMBH Germany

Phaistos SA (Phaistos) Greece

Altec Software Development S.A. (Altec) Greece

BlogForever Consortium ii

D4.4: Digital Repository Component Design November 30, 2012

Revision History

Version Description of Change Author Date
0.6 First partial draft

(drafting chapters 2, 3, 4, 5, incorporated
contributions of people listed on the cover
page)

CERN
MOKONO
UW
UG
SRDC
UL
TUB

21/11/2012

0.8 Second partial draft
(added more content to chapters 2, 3, 4)

CERN 26/11/2012

0.9 Third partial draft
(added more content to chapters 2, 4 and 5,
review, corrections and feedback)

CERN
UG
UL
SRDC
AUTH

27/11/2012

0.99 Final draft CERN 28/11/2012

1.0 Final version of the deliverable CERN 30/11/2012

BlogForever Consortium iii

Table of Contents

ExecutiveSummary 1

1 Introduction 2

1.1 Purpose and scope . 3

1.2 Overall approach . 3

2 The Invenio Software Platform 4

2.1 Metadata . 5

2.2 Record organization . 6

2.3 Modules . 7

2.3.1 Metadata acquisition . 8

2.3.2 Indexing and ranking . 9

2.3.3 Personalization . 10

2.3.4 Other relevant modules . 11

2.4 Scalability in Invenio . 11

2.4.1 Increasing number of visitors 12

2.4.2 Increasing number of objects 13

2.4.3 Ingestion speed . 13

2.4.4 Multi-database setup . 14

3 Weblogs Structure and Preservation Principles 15

3.1 Weblog structure and semantics . 15

3.1.1 Outline of the data model . 16

3.1.2 Blog core . 17

iv

D4.4: Digital Repository Component Design November 30, 2012

3.1.3 Records within the repository 18

3.1.3.1 Blog as a record . 18

3.1.3.2 Post and Page as a record 19

3.1.3.3 Comment as a record 21

3.1.3.4 Other data associated with a record: Content and
Author . 22

3.1.4 Changes to the data model . 23

3.1.5 Extended data model components 23

3.1.6 Data model and Invenio . 25

3.2 Weblog preservation policies . 25

3.2.1 Target information . 25

3.2.2 Target properties and associations for preservation 27

3.2.3 Workflow for capturing the information and associated prop-
erties . 31

3.2.4 End-user user interface features to support preservation 36

4 The BlogForever Repository Component 38

4.1 Blog management with Invenio . 39

4.1.1 Overall architecture . 39

4.1.2 Ingestion work-flow . 41

4.1.3 BlogForever metadata structure 43

4.1.3.1 Mapping of blog attributes to MARC 46

4.1.4 Data export . 49

4.2 Scalability . 50

4.3 BlogForever user interface . 50

4.3.1 User interface related requirements and features 50

4.3.2 User interface technologies . 51

4.3.2.1 Twitter Bootstrap framework 51

4.3.2.2 Jinja templating . 52

4.3.3 BlogForever user interface prototype 52

BlogForever Consortium v

D4.4: Digital Repository Component Design November 30, 2012

5 Feature Specifications 56

5.1 Mapping of requirements to features 56

5.2 Feature specifications list . 64

5.2.1 High priority features . 66

5.2.2 Medium priority features . 91

5.2.3 Low priority features . 113

6 Conclusions 124

References 125

BlogForever Consortium vi

List of Figures

1.1 BlogForever Platform overview . 2

2.1 Invenio main search page . 4

2.2 CERN Document Server collection tree 7

2.3 Selected Invenio modules overview diagram 8

2.4 Invenio scalability . 12

3.1 Blog core . 17

3.2 Blog core and components . 24

3.3 Cross matching the data model properties to user requirements 27

4.1 Overall architecture . 40

4.2 Repository-spider communication . 42

4.3 Metadata workflow in the repository 43

4.4 Logical view of records structure . 44

4.5 A lower level view of records structure 45

4.6 Metadata architecture . 46

4.7 Twitter-Bootstrap logo . 52

4.8 Jinja logo . 52

4.9 Main search page prototype . 53

4.10 Blog record prototype . 54

4.11 Post record prototype . 54

4.12 Comment record prototype . 55

5.1 Requirements to features process . 57

vii

List of Tables

2.1 Main metadata in Invenio . 6

3.1 Blog record attributes . 19

3.2 Post and page records shared attributes 20

3.3 Post record extended attributes . 21

3.4 Page record extended attributes . 21

3.5 Comment record attributes . 21

3.6 Author entity attributes . 22

3.7 Content entity attributes . 22

3.8 Digital object types commonly embedded within blogs 26

3.9 Technical metadata of structured text 28

3.10 Technical metadata of image . 29

3.11 Technical metadata of document . 29

3.12 Technical metadata of audio . 29

3.13 Technical metadata of moving image 30

3.14 Metadata schema . 35

4.1 Blog record attributes - MARC tags mapping 47

4.2 Post and Page record shared attributes - MARC tags mapping 48

4.3 Post record extended attributes - MARC tags mapping 48

4.4 Page record extended attributes - MARC tags mapping 48

4.5 Comment record attributes - MARC tags mapping 49

5.1 Features/Requirements . 64

5.2 Feature specification template . 65

viii

D4.4: Digital Repository Component Design November 30, 2012

5.3 Feature RF4 . 66

5.4 Feature RF5 . 67

5.5 Feature RF6 . 67

5.6 Feature RF7 . 68

5.7 Feature RF8 . 68

5.8 Feature RF9 . 69

5.9 Feature RF10 . 69

5.10 Feature RF11 . 70

5.11 Feature RF12 . 70

5.12 Feature RF13 . 71

5.13 Feature RF15 . 71

5.14 Feature RF16 . 72

5.15 Feature RF17 . 72

5.16 Feature RF18 . 73

5.17 Feature RF19 . 74

5.18 Feature RF20 . 74

5.19 Feature RF23 . 75

5.20 Feature RF25 . 75

5.21 Feature RF26 . 76

5.22 Feature RF27 . 76

5.23 Feature RF28 . 77

5.24 Feature RF29 . 77

5.25 Feature RF39 . 78

5.26 Feature RF40 . 78

5.27 Feature RF41 . 79

5.28 Feature RF47 . 80

5.29 Feature RF53 . 81

5.30 Feature RF54 . 82

5.31 Feature RF55 . 82

BlogForever Consortium ix

D4.4: Digital Repository Component Design November 30, 2012

5.32 Feature RF66 . 83

5.33 Feature RF69 . 83

5.34 Feature RF70 . 84

5.35 Feature RF78 . 85

5.36 Feature RF80 . 85

5.37 Feature RF81 . 86

5.38 Feature RF84 . 87

5.39 Feature RF85 . 88

5.40 Feature RF86 . 88

5.41 Feature RF87 . 89

5.42 Feature RF88 . 90

5.43 Feature RF89 . 91

5.44 Feature RF1 . 91

5.45 Feature RF2 . 92

5.46 Feature RF3 . 93

5.47 Feature RF14 . 94

5.48 Feature RF21 . 94

5.49 Feature RF22 . 95

5.50 Feature RF24 . 95

5.51 Feature RF30 . 96

5.52 Feature RF31 . 97

5.53 Feature RF32 . 98

5.54 Feature RF33 . 98

5.55 Feature RF34 . 99

5.56 Feature RF35 . 99

5.57 Feature RF36 . 100

5.58 Feature RF37 . 100

5.59 Feature RF38 . 101

5.60 Feature RF42 . 101

BlogForever Consortium x

D4.4: Digital Repository Component Design November 30, 2012

5.61 Feature RF43 . 102

5.62 Feature RF44 . 102

5.63 Feature RF45 . 103

5.64 Feature RF46 . 103

5.65 Feature RF56 . 104

5.66 Feature RF57 . 105

5.67 Feature RF58 . 106

5.68 Feature RF59 . 106

5.69 Feature RF60 . 107

5.70 Feature RF61 . 107

5.71 Feature RF62 . 108

5.72 Feature RF67 . 108

5.73 Feature RF68 . 109

5.74 Feature RF71 . 110

5.75 Feature RF72 . 111

5.76 Feature RF73 . 111

5.77 Feature RF74 . 112

5.78 Feature RF82 . 112

5.79 Feature RF48 . 113

5.80 Feature RF49 . 113

5.81 Feature RF50 . 115

5.82 Feature RF51 . 117

5.83 Feature RF52 . 118

5.84 Feature RF63 . 119

5.85 Feature RF64 . 119

5.86 Feature RF65 . 120

5.87 Feature RF75 . 121

5.88 Feature RF76 . 121

5.89 Feature RF76 . 122

BlogForever Consortium xi

D4.4: Digital Repository Component Design November 30, 2012

5.90 Feature RF78 . 123

5.91 Feature RF83 . 123

BlogForever Consortium xii

D4.4: Digital Repository Component Design November 30, 2012

Executive Summary

The BlogForever platform consists of the two main software components: the
spider component and the repository component. They work independently even if
they share interfaces to communicate. This report identifies and describes design
decisions for the repository component.

A total of 89 features have been identified and described in this report. The features
are based on user requirements identified before in WP4 (The BlogForever Software
Infrastructure, D4.1: User Requirements and Platform Specifications Report [8]) and
they follow the metadata structure and preservation recommendations previously
given by WP2 (Weblog Structure and Semantics, D2.2: Weblog Data Model [19])
and WP3 (The BlogForever Policies, D3.1: Preservation Strategy Report [11]). The
features specify functionalities that enable an efficient storage for blog preservation,
e.g. how to ingest, check, keep and disseminate blog content, and also functionalities
that allow final users to access the information in an structured and intuitive way
through a web interface, allowing them to interact and construct a community
of users that will further enrich the data. To facilitate implementation and the
conducting of Case Studies in WP5 (Case Studies and Validation) of the BlogForever
project, the same template has been used for the feature specifications of the
repository and the spider.

Since the repository design is based in Invenio1, this report introduces the main
functionalities of this software focusing on those that will be more relevant
in the BlogForever repository. Then, the most important decisions taken are
discussed, including the metadata management, the communication with the spider
component, the scalability and the user interface. The outcome of Task 4.4: Design
of the digital repository component -reported in this document- is the list of feature
specifications that is the input for the development of the repository in Task 4.5:
Implementation of the digital repository component.

1https://invenio-software.org/

BlogForever Consortium 1

https://invenio-software.org/

D4.4: Digital Repository Component Design November 30, 2012

Chapter 1

Introduction

The BlogForever project aims to develop solutions for aggregating, preserving,
managing and disseminating blogs. To achieve these goals, the BlogForever project
aims to develop a software platform that enables real-time harvesting of blog
entities and preservation of these blogs to facilitate extensive search and exploration
functionalities of the archived blogs. The software architecture behind the intended
repository system consists of two main components - the weblog spider and the
digital repository. The spider is responsible for crawling all the necessary blog data
and characteristics designated for preservation while the repository is responsible for
long term archiving, preservation and management of the blogs, as well as providing
facilities for further analysis and reuse of the content.

Figure 1.1: BlogForever Platform overview

BlogForever Consortium 2

D4.4: Digital Repository Component Design November 30, 2012

In the following text the words “weblog” and “blog” will be interchangeably used
to describe the same concept, while the weblog spider component and the digital
repository component will be referred to as “spider” and “repository” respectively.

1.1 Purpose and scope

In this document the outcome of Task 4.4 of the BlogForever project will be reported.
In the Task 4.4 the created deliverables have been studied in order to elaborate on
the scope of the modifications required. Reports created in WP2 as well as progress
on the WP3 have been of great value in order to determine the expected repository
functionality and facilitate the design process. In particular, the weblogs semantics
reports (D2.2[19] and D2.3: WebBlog Ontologies [9]) have been of high importance
in order to identify the data types that will be stored in the digital repository and
their special properties and associations, which have great added value. Also the
preservation policies deliverable D3.1[11] contributed notably helping the designers
to create a robust system capable to preserve blog data. The outcome of the current
Task 4.4 will be digital repository component design and will report the design of
the digital repository system based on Invenio providing the development stage a
list of features to be implemented.

The design -and implementation- of the repository will not be done from scratch,
but taking profit of the Invenio software suite developed at CERN 1 (European
Organization for Nuclear Research). The design will be expressed in terms of
what modifications and extensions Invenio needs in order to meet the requirements
previously obtained from D4.1[8].

1.2 Overall approach

Initially, the Invenio software will be studied in order to understand how its structure
and functionalities can best map the project requirements in Chapter 2. In Chapter
3 the existing deliverables will be analyzed in order to extract the most relevant
part of their findings in the design of the BlogForever platform. This design will be
discussed in Chapter 4 introducing the main decisions adopted in order to transform
Invenio from a digital library hosting papers, articles and preprints into a digital
repository hosting weblog content. Finally, Chapter 5 will present the list of feature
specifications.

1http://www.cern.ch/

BlogForever Consortium 3

http://www.cern.ch/

D4.4: Digital Repository Component Design November 30, 2012

Chapter 2

The Invenio Software Platform

This chapter aims to present an overview of the Invenio software platform. In the
first parts, bibliographic metadata support and collections organization are outlined.
Furthermore, platform architecture is described in more detail and the key Invenio
modules are presented. In the last part, Invenio scalability is also addressed from
multiple points of view. The Invenio software platform is one of the cornerstones of
the BlogForever platform, providing the basis of the blog repository component.

Invenio is an open source software package conceived and developed at CERN, which
covers all aspects of digital library management from document ingestion through
classification, indexing, and curation to dissemination[3].

Figure 2.1: Invenio main search page

Since 1993 CERN has developed this free software (licensed under the GNU General
Public Licence (GPL)1) primarily for internal needs as an institutional repository,
managing over 1,000,000 bibliographic records in high-energy physics since 2002,

1http://www.gnu.org/licenses/gpl.html

BlogForever Consortium 4

http://www.gnu.org/licenses/gpl.html

D4.4: Digital Repository Component Design November 30, 2012

organized in more than 500 collections, covering articles, books, journals, photos,
videos, and more.

Nowadays it represents a suite of applications used by about thirty scientific
institutions and universities outside CERN (such as Labordoc in Switzerland, HBZ
Digitalisierte Drucke Portal in Germany and National Repository of Grey Literature
in Czech Republic) and is being co-developed by an international collaboration
including institutes such as DESY2 (Deutsches Elektronen-Synchrotron), EPFL3

(École Polytechnique Fédérale de Lausanne), FNAL4 (Fermi National Accelerator
Laboratory) and SLAC5 (SLAC National Accelerator Laboratory).

From a technical point of view, Invenio runs under GNU/Linux6 systems, a MySQL7

database server and an Apache/Python8 web application server. Its source code
is mainly written in Python9, with some ad hoc modules developed in C10 and
Common Lisp11. The development strategy used to implement Invenio ensures
that it is flexible in every layer. Being based on open standards such as MARC
21[13] and Open Archives Initiative12 metadata harvesting protocol (OAI-PMH),
its interoperability with other digital libraries is guaranteed.

2.1 Metadata

All the bibliographic data in the Invenio system are internally represented in the
MARC 21 format. Each record has their associated metadata stored in the database,
while the fulltext files and other attached files are stored in the Invenio filesystem.
A reference to these files is included in the MARC metadata of the record.

The main reasons why Invenio uses MARC as standard digital format [1]:

• MARC is the standard format in the library world. It is well established and
has been used since 1960s.

• MARC is flexible enough to represent any metadata structure. Therefore,
Invenio can adapt to your needs without altering its internal data structure.

• MARC technology can be well combined with recent technologies like XML.
In fact, whenever bibliographic metadata are to be worked with externally in
a file format, Invenio uses recently standardized MARC XML format provided
by the Library of Congress13.

2http://www.desy.de/
3http://epfl.ch/
4http://fnal.gov/
5http://www.slac.stanford.edu/
6http://www.gnu.org/gnu/linux-and-gnu.en.html
7http://www.mysql.com/
8http://www.modpython.org/
9http://www.python.org/

10http://www.open-std.org/jtc1/sc22/wg14/
11http://www.common-lisp.net/
12http://www.openarchives.org/
13http://www.loc.gov/index

BlogForever Consortium 5

http://www.desy.de/
http://epfl.ch/
http://fnal.gov/
http://www.slac.stanford.edu/
http://www.gnu.org/gnu/linux-and-gnu.en.html
http://www.mysql.com/
http://www.modpython.org/
http://www.python.org/
http://www.open-std.org/jtc1/sc22/wg14/
http://www.common-lisp.net/
http://www.openarchives.org/
http://www.loc.gov/index

D4.4: Digital Repository Component Design November 30, 2012

The most commonly used metadata fields in Invenio are shown in Table 2.1
(following the MARC typographical conventions14)

Metadata concept Proposed MARC 21 representation

Abstract 520 $a

Author, first 100 $a

Author(s), additional 700 $a

Collection identifier 980 $a

Email 8560 $f

Imprint 260 $a,b,c; 300 $a

Keywords 6531 $a

Language 041 $a

OAI identifier 909CO $o

Publication info 909C4 $* [many subfields]

References 999C5 $* [many subfields]

Primary report number 037 $a [unique throughout the system]

Additional report number(s) 088 $a

Series 490 $a,v

Subject 65017 $a

Title 245 $a

URL (e.g. to fulltext) 8564 $u, $z

Table 2.1: Main metadata in Invenio

2.2 Record organization

Records in Invenio are organized into collections. The collections are organized in
a tree, being this collection tree what the end-users see when they start navigating
through the digital library. The collection tree is similar to what other sites call
Web Directories that organize Web into topical categories, such as Yahoo! Directory
and Open Directory Project (ODP).

14http://www.loc.gov/marc/bibliographic/concise/bdintro.html

BlogForever Consortium 6

http://www.loc.gov/marc/bibliographic/concise/bdintro.html

D4.4: Digital Repository Component Design November 30, 2012

Figure 2.2: CERN Document Server collection tree

2.3 Modules

The architecture of Invenio consists of several modules with precisely defined
functionality that works collaboratively but independently inside the system
framework. This supports and facilitates extensions to and development of the
system. In the following sub-sections, a brief description of each of these modules
will be presented by category [2].

A general overview of how some selected Invenio modules interact and what their
relationships are can be found in the diagram of the Figure 2.3.

BlogForever Consortium 7

D4.4: Digital Repository Component Design November 30, 2012

Figure 2.3: Selected Invenio modules overview diagram

The modules in Invenio are named using the following convention: the prefix “Bib”
is used for modules related with bibliographic data and the prefix “Web” is related
with modules that work with the web interface.

2.3.1 Metadata acquisition

The metadata input into an Invenio system can be done in two different ways:

1. Admin-oriented batch mode: OAI Harvest to get data from OAI repositories,
BibConvert to convert any input data into MARC XML, and BibUpload to
upload MARC XML files into Invenio

BlogForever Consortium 8

D4.4: Digital Repository Component Design November 30, 2012

2. Author-oriented interactive mode: WebSubmit or ElmSubmit to submit
documents via Web or via e-mail, respectively. Once the data are uploaded in
Invenio, the metadata can be modified via BibEdit.

A brief description of each of the modules mentioned above is presented:

• OAI Harvest represents the OAI-PMH compatible harvester. It allows the
repository to gather metadata from other OAI-compliant repositories and is
also in charge of OAI-PMH repository management.

• BibConvert allows metadata conversion from any structured or semi-
structured proprietary format into any other format. In both WebSubmit and
ElmSubmit cases, metadata is gathered in raw form and BibConvert is used to
convert it typically to MARC XML, which is used natively in Invenio. Finally,
the record is inserted into the system using BibUpload. BibConvert also allows
conversions between various sequential and semi-structured formats, such as
MODS(Metadata Object Schema) and Dublin Core.

• WebSubmit is a submission system, that permits authorized individuals
(authors, secretaries and repository maintenance staff) to submit individual
documents for ingest into the system.

• ElmSubmit is an email submission gateway that allows automatic document
uploads from trusted sources via email.

• BibUpload allows the uploading of new bibliographic data into the database.
If the record has files attached, such as the fulltext file, a reference to them is
inserted in the MARC metadata and the file is also uploaded into the system,
using BibDocFile to hold them.

• BibCheck allows administrators and catalogers to define a variety of
automated tests on the metadata to see whether the metadata comply with
quality standards. This offers also the possibility of fixing errors.

• BibMatch matches bibliographic data in a MARC XML file against the
database content. With a MARC XML input file, the produced output shows a
selection of records in the input that matches the database content. This way,
it is possible to identify potential duplicate entries before they are uploaded in
a database.

• BibEdit enables manipulate bibliographic data, edit a single record, do global
replacements, and other cataloguing tasks via a web interface. The modified
metadata is re-submitted to the system using BibUpload.

2.3.2 Indexing and ranking

The metadata output from an Invenio system to the end-user is covered by several
modules: BibIndex to index the metadata, BibRank to eventually rank them,
BibFormat to format them for the output, WebSearch to provide search interfaces
and search engine.

A brief description of each of the modules mentioned above is presented:

BlogForever Consortium 9

D4.4: Digital Repository Component Design November 30, 2012

• BibIndex is in charge of indexing metadata, references and fulltext files.

• BibRank enables users to set up a variety of ranking criteria that will be used
later by the search engine.

• WebSearch handles user requests in searching for a certain word or phrases
in the database.

• BibFormat is responsible for the formatting of the bibliographic metadata,
having several types of outputs. It is fully customizable and with great
extendability.

The indexing and ranking modules are at the core of the Invenio system. Invenio
offers three types of search: filtered search on selected metadata elements, fulltext
keyword search, and reference search. Moreover, Invenio provides the option for
users to customize their search further as a combination of all three types of search.
For example, in the context of weblogs, it would be possible to search for blog
posts containing selected keywords that include a link to entries written by a
selected author. Likewise, the results retrieved by the search engine can be ranked
according to several criteria. The default Invenio installation includes the classical
word-frequency based vector model that permits one to retrieve similar records.
Furthermore, a ranking method machinery based on specific metadata values is
included. Finally, the new experimental ranking features in Invenio include the
capability to rank records by the number of citations and the number of downloads.

2.3.3 Personalization

Invenio interface can be personalized to suit different needs of different end-users.
This functionality is covered by several modules: WebStyle to define the general look
of Invenio pages, WebSession to identify users and their personal configurations,
WebBasket to provide personal baskets or document carts, and WebAlert to set up
personal email notification alerts.

A brief description of each of the modules mentioned above is presented:

• WebStyle is a library of design-related modules that defines look and feel of
Invenio pages.

• WebSession is a session and user management module that supports
differentiation of users.

• WebBasket enables the end users of the system to store the documents they
are interested in in a personal basket or a personal shelf. The concept is similar
to popular shopping carts. A user may own several baskets. A basket can be
either private or public, allowing a simple document sharing mechanism within
a group.

• WebAlert allows the end user to be alerted whenever a new document
matching her personal criteria is inserted into the database. The criteria
correspond to a typical user query as if it would be done via the search interface.

BlogForever Consortium 10

D4.4: Digital Repository Component Design November 30, 2012

• WebComment provides a community-oriented tool to rank documents by the
readers or to share comments on the documents by the readers.

• WebMessage permits the communication between (possibly anonymous) end
users via web message boards, to invite readers to join the groups, etc.

Another important aspect worth mentioning is that since Invenio is being
developed in an international environment, it supports internationalization and
comes translated already in 28 different languages (Afrikaans, Arabic, Bulgarian,
Catalan, Czech, German, Georgian, Greek, English, Spanish, French, Croatian,
Hungarian, Galician, Italian, Japanese, Kinyarwanda, Lithuanian, Norwegian,
Polish, Portuguese, Romanian, Russian, Slovak, Swedish, Ukrainian, Chinese
(China), Chinese (Taiwan))), enabling end-users to dynamically select the language
of their choice.

2.3.4 Other relevant modules

Other important modules in Invenio that complement the modules presented above
are:

• BibSched is the central unit of Invenio. It manages and controls module
access to the bibliographic database, preventing sharing violation threats and
assuring the coherent execution of the database update tasks. This module
manages a task queue with different priorities and is able to manage the parallel
execution of tasks so that there is no conflict among them.

• WebAccess is the module in charge of granting access to users, depending
on their roles (content manager, system administrator, registered user, etc.),
managing user permissions associated with various actions within the system.

• MiscUtil is a collection of miscellaneous facilities that can be used by
developers on the other modules to make their work easier.

2.4 Scalability in Invenio

Scalability is a crucial issue as our aim is to cope with the continuously expanding
social media data streams. Having long time preservation as a project goal, being
able to store large amounts of data and make it accessible in a reasonable time is
absolutely necessary. In this section, various aspects of Invenio scalability as well as
some concrete examples of current practices will be discussed. In order to illustrate
the scalability potential of the repository, the Invenio instance used at CERN will
be taken as an example. This instance is called CDS15 (CERN Document Server)
and has been running since 2002 with great success.

15http://cdsweb.cern.ch/

BlogForever Consortium 11

http://cdsweb.cern.ch/

D4.4: Digital Repository Component Design November 30, 2012

2.4.1 Increasing number of visitors

The high scalability is reached by multiplying the number of workers and database
slaves that serve the users. For a schematic diagram, see Figure 2.4:

Figure 2.4: Invenio scalability

This technique is used in CDS with the following setup:

a) Incoming traffic goes into a box running HAProxy16 (High Availability Proxy).
The box dispatches incoming requests to backend nodes, using typically “round
robin” method for static files and “by-business” method for application web
pages. We also have several dedicated jail rules for certain URLs and certain
user agents so that e.g. /rss hits or bots would not perturb the regular site
operation for regular users.

b) The traffic now reaches boxes running typical Invenio instances. Here, there is
a front-end Apache that serves as another proxy for back-end Invenio WSGI17

(Web Server Gateway Interface) processes. We run 8-30 WSGI processes per
box; the number depends on the available memory and on the nature of the
data.

c) All the WSGI processes connect to the same database master box on the back
end side. It is important to set up MySQL temporary space on a dedicated tmpfs
partition due to many queries acting upon TEXT columns.

d) The database master is being replicated live onto a database slave. Certain read-
only SQL queries are being dispatched by WSGI processes to run on database
slave rather than on database master. This option is still underused, it could be
made more effective.

16http://haproxy.1wt.eu/
17http://wsgi.readthedocs.org/en/latest/

BlogForever Consortium 12

http://haproxy.1wt.eu/
http://wsgi.readthedocs.org/en/latest/

D4.4: Digital Repository Component Design November 30, 2012

e) In addition, we have an independent Solr18 instance for full-text indexing, as well
as Redis19 instance for various caches.

This configuration was used by the CERN Document Server on the July 4th 2012
Seminar on Higgs Boson20 search, hosting images and materials. The setup consisted
of 1 HAProxy node, 3 worker nodes serving Invenio application, 2 virtual nodes
serving static files, 1 database master and 1 database slave. (The machines are not
particularly powerful). There were 7 million user hits that day, with sustained peaks
of about 200 requests served per second and 1000 requests processed by the load
balancer per second. The load on machines was moderate, there was no need for
emergency actions. The Invenio instances were set up as usual.

Note that this multi-node-app-servers, single-node-db-master-server setup can be
further tuned by having several databases for several worker node groups. In the
CDS instance, it was not really necessary to do that so far.

In the BlogForever use case, the current capabilities of Invenio should be enough
load wise even without further measures.

2.4.2 Increasing number of objects

After discussing reader-load-wise scalability, another question is the increasing
number of objects being handled by a single database instance. To take once more
the CERN Document Server example, the total number of records is 1.5 million.
Such a number is conveniently handled by a single-database system. The total
database size including indexes, etc. is about 40 GB, not counting object sizes
(PDFs, JPEGs) obviously (that would be over TB but it does not matter much for
scalability here). Solr fulltext indexes are about 16 GB.

Depending on the nature of the data and on the hardware specifications, it should
be possible to hold comfortably databases of 5-10 million on a single box without
any big architectural changes. The biggest example of an Invenio instance with
regard to data size is ADS21 (Astrophysics Data System) test server that has about
8 million records. The box requires quite some memory, mostly because of a huge
citation map; but this is not the expected scenario in case of BlogForever.

2.4.3 Ingestion speed

Another aspect to consider is ingestion speed. The usual assumption behind Invenio
architecture was that records are uploaded, then modified a few times, and then
they would not change that much. This would bring us to a situation where there
is low number of INSERT and UPDATE statements coming from producers when
compared to the high number of SELECT statements coming from consumers. If

18http://lucene.apache.org/solr/
19http://redis.io/
20http://www.atlas.ch/news/2012/latest-results-from-higgs-search.html
21http://adswww.harvard.edu/

BlogForever Consortium 13

http://lucene.apache.org/solr/
http://redis.io/
http://www.atlas.ch/news/2012/latest-results-from-higgs-search.html
http://adswww.harvard.edu/

D4.4: Digital Repository Component Design November 30, 2012

we take the CERN Document Server as an example, we observe typically up to 20
thousand records updated per day. The system can do comfortably few times more
than that, but it is rarely needed.

There is an important bottleneck we would like to mention: there can be only one
single BibUpload running at any given point in time. This is due to the need to
scan and eliminate duplicates, etc. This limits the general upload speed. In the
CDS internal task manager there are several tickets close to being finished that
will improve the single-database ingestion speed situation, e.g. (i) by separating
uploading incoming information from MARC processing; or (ii) by optimizing
append/correct speed by means of record versions. This shows how the ingestion
performance is being improved in even single database setup - optimize before scaling
out.

2.4.4 Multi-database setup

If a single-database system is not enough to hold all the data, then the problem can
be notably taken via a system of collaborating external Invenio instances. Namely,
we partition data by collections, say hosting “Preprints” on one instance, hosting
“Photos” on another instance, kind of manual partitioning, and one Invenio instance
can query other instances during run time. Most of the processing is running on
given instances in this setup. There is no need for overall inter-node processing
except for searching, sorting, etc.

BlogForever Consortium 14

D4.4: Digital Repository Component Design November 30, 2012

Chapter 3

Weblogs Structure and
Preservation Principles

The primary aims of this chapter are: a) to outline weblog structure and to align
it with the concept of a record in Invenio (Section 3.1), and b) to summarize the
preservation policies associated with these records (Section 3.2). This chapter also
describes the results of the investigation conducted as part of WP2 and WP3.
Firstly, it focuses on the inquiry into the semantics of blogs as part of the Task 2.2:
Weblog semantics within the WP2. The detailed account of the work carried out on
this task is available in the BlogForever report D2.2[19]. The brief summary here is
intended to provide context and justification to the proposed design of the repository.
Secondly, it discusses the preservation policies for aggregating blog content.

3.1 Weblog structure and semantics

The repository software developed as part of BlogForever is expected to capture
the structure of weblogs. The data model developed as a result of studying blogs
provides a useful foundation for designing a system that aggregates weblogs and
keeps their structure intact.

The proposed blog data model was informed by inquiries that aimed to explore the
components, the structure and the semantics of weblogs. It took into consideration
user views from the earlier conducted online survey, and recommendations from the
theoretical inquiry into network analysis, supplemented by the inquiries such as,
the existing conceptual models of blogs, the data models of Open Source blogging
systems, and data types identified from an empirical study of web feeds. The
remainder of this section explains the chosen direction for developing the data model
and provides context to explain the outcomes.

Most frequently, data modeling is conducted by defining the requirements. The
rationale behind drawing a set of requirements is to ensure that the data model
addresses these requirements for the solutions that are being developed [15]. Some
of the primary requirements of the project have already been defined and agreed as

BlogForever Consortium 15

D4.4: Digital Repository Component Design November 30, 2012

part of the project agreement1. However, the study of the structure and semantics
of the blogs extended this list and provided the necessary foundations for developing
the data model. This study enabled to extend the list of requirements and identify
weblog properties that may be necessary to preserve.

The generic requirements of the task of data modeling was to explore the structure of
blogs to be able to accommodate a range of weblogs and their properties. Hence, the
proposed blog data model was developed in a number of consecutive phases. Each of
the phases contributed to the process of informing the development of the proposed
model. At a later stage and in addition to the study, a set of user requirements
was studied, which leads to some minor changes in the data model. This document
includes the changes introduced after the proposal of the model.

For the purposes of the BlogForever project, conceptual and more detailed logical
information levels have been chosen for representing the proposed data model [19].
The decision was based on the necessity to provide both a high level view as well as
the more detailed one. The following section provides an outline of the data model
and the included properties.

3.1.1 Outline of the data model

It is evident that blogs are multi-faceted entities that may require a range of different
data structures to be put in place. However, it is also apparent that most of the
blogs share common features and a general outline. Therefore, the development of
a generic and simple data model to suffice the preservation of the basic components
of the blogs was possible. This basic model - referred here as the core model -
can then be extended to ensure the integrity of captured weblogs and to meet the
requirements of a successful preservation action.

The components of the core model were identified by looking into user views on
blogs, existing models, the structure of their web feeds and types of data distributed
by them. By looking into both technical specification as well as a summary of user
perceptions, it was possible to identify most prominent conceptual components of
weblogs referred to as entities in the proposed model.

These components were further studied in order to identify and to describe their pro-
perties. The properties of these components constitute the data that they carry and
the metadata that are used to describe them. They have been collected and collated
before integrating them into the data model. Once the data type and association
with the entities were identified, the properties have been integrated into the data
model and associated with one of the suggested entities of the model.

The detailed report about the inquiries used for developing the data model is
available in the D2.2 BlogForever report [19]. As a result of developing various
BlogForever prototypes [9] and proposing preservation strategies [11], some minor
changes have been introduced. The following section outlines the model and
highlights the recent changes.

1Grant Agreement Annex I - Description of Work (DoW)

BlogForever Consortium 16

D4.4: Digital Repository Component Design November 30, 2012

3.1.2 Blog core

The inquiry into the structure of blogs suggested that there is an established
vocabulary associated with weblogs. While the vocabulary at times seems to contain
more than one term for referring to the same concept, the use of many terms
has been widely accepted. This observation is confirmed at various stages of the
conducted inquiries to identify the semantic components of blogs. For example, the
review of the existing models of blogs confirms to the established vocabulary and
the use of certain terms. Similar outcomes are revealed after an inquiry into the
existing database structures of Open Source blogs. It seems that the concepts such
as Post, Comment, Page, and Author, appear frequently to describe various sections
of websites referred to as blogs. These conceptual entities have been put together
to form the core of the blog as described in the data model.

This data model describes the weblog data and metadata grouped into entities.
The graphical representation of the data model is shown in the Figure 3.1[19]. The
primary identified entities of a weblog and the interrelation between them is shown
and described by the connected lines. The small triangles indicate the directions of
the relationships.

Figure 3.1: Blog core

The model described above demonstrates a high level view of the blog core. However,
sets of inquiries mentioned above, allowed identifying the properties that can be
associated with each of the entities. These properties were collected and integrated
into a more detailed view, while the vocabulary to describe the properties was further
collated. The selected naming was discussed and adjusted when further clarity was
needed.

BlogForever Consortium 17

D4.4: Digital Repository Component Design November 30, 2012

After the completion of the WP4 task, that aimed to identify user requirements
for the BlogForever system (the detailed account of this work is available in the
BlogForever report D4.1[8]), the data model was revisited. These requirements
were identified as a result of interviews conducted with a range of stakeholders.
The considerations of the requirements led to updating the model with additional
blog properties that would be necessary for providing the services according to the
identified requirements. Feedback that included the tacit knowledge of partners was
also taken into consideration for refining the model.

3.1.3 Records within the repository

This section advances from the previous discussion by presenting and explaining
the identified properties of the entities presented as part of the blog core model
described above. However, it also introduces the notion of the record and discusses
the data model along with the selected records.

While the data model represents the structure of the data contained in blogs, it
is also necessary to identify if blog data can be injected into the repository and,
subsequently, presented to the repository users as records. Records are information
units collected and stored in a repository. Repositories usually contain specific
types of records, for instance book, journal or article records. However, apart from
representing physical objects such as printed books, the records can also represent
digital material. The collection of records can be then indexed and searched by
users. By looking into the core data model we can see that there are a number of
prominent entities associated with a blog. It is likely that users of the repository
will be interested in searching through certain units of information. Taking into
account the above, the following four types of records have been identified: Blog,
Post, Comment and Page.

Each of the record types can be used for implementing a faceted search functionality,
as well as general search by keywords. The keywords entered by the users for
searching through the repository can then be compared with the metadata/data
stored in association with the records. While keyword search can be based on some
complex concepts such as author, the result of the search will be presented as a list
of records of the chosen type.

The following sections describe the attributes of the records as presented within the
blog data model.

3.1.3.1 Blog as a record

A Blog record contains the primary description of the object. With respect to the
data model, it can be described by the attributes presented in Table 3.1 [19].

BlogForever Consortium 18

D4.4: Digital Repository Component Design November 30, 2012

Record Attribute Description

Blog

title Title of the entry
html title Contains the title of the HTML head element
alt title Alternate title may include subtitles of the blog or other titles
alt title type Alternative title type specified the type of the alt title
URI URI of the blog
aliases Alternative URLs/aliases associated with the blog
status code Status code (may reflect whether the blog ceased to exist)
language Retrieved language field, as defined by the blog
encoding Retrieved encoding (character set) field, as defined by the blog
sitemap uri URI of the blog sitemap if exists
platform Platform of the blog powering service, retrieved where available
platform version Versioning information about the platform
webmaster Information about the webmaster where available
hosting ip IP address of the blog
location city Location city based on the hosting details
location country Location country based on the hosting details
last activity date Date as retrieved from the blog, including time zone
post frequency As retrieved from the blog
update frequency As retrieved from the blog
copyright Notes of copyright as retrieved from the blog
ownership rights Notes of ownership rights as retrieved from the blog
distribution rights Notes of distribution rights as retrieved from the blog
access rights Notes of access rights as retrieved from the blog
license License of the content

Table 3.1: Blog record attributes

3.1.3.2 Post and Page as a record

Post and Page records share most of their properties, presenting as well a very
similar structure. For instance, both Post and Page can have a name, a unique
URL, creation date, etc. Hence, the shared attributes have been combined here as
Entry. They are presented in Table 3.2 [19].

BlogForever Consortium 19

D4.4: Digital Repository Component Design November 30, 2012

Record Attribute Description

Entry

title Title of the entry
subtitle Subtitle of the entry if available
URI Entry URI
aliases Alternative URLs/aliases associated with the entry
alt identifier (UR) A common alternative identifier similar to DOI
date created Retrieved from the blog or obtained from the date/time crawling,

including time zone
date modified Retrieved from the blog or obtained from the date/time crawling,

including time zone
version Auto-increment: derived version number (versioning support)
status code Information about the state of the post: active, deleted, updated

(versioning support)
response code HTTP response code
geo longitude Geographic positioning information
geo latitude Geographic positioning information
access restriction Information about accessibility of the post
has reply Derived property (as in SIOC2)
last reply date Derived property (as in SIOC), including time zone
num of replies Derived property (as in SIOC)
child of ID of entry parent if available

Table 3.2: Post and page records shared attributes

While Page and Post are similar in their properties, they are conceptually different.
Posts are Entries published by the blog Author, appear in a chronological order
or in categories, and are distributed by web feeds. On the other hand, Pages are
Entries which content is not distributed via web feeds and they are not displayed in
a chronological order either. However, Pages usually contain relevant information
that may describe the Author, and/or provide basic information about the Blog.
Hence capturing Pages in addition to Posts is considered important. A different
template is used for Pages and this is the only property exclusively associated with
them.

The attributes of the Entry are then extended to include the attributes relevant for
the Post and the Page record, which are presented in the following Tables 3.3 and
3.4 [19].

2Semantically-Interlinked Online Communities, http://sioc-project.org/

BlogForever Consortium 20

http://sioc-project.org/

D4.4: Digital Repository Component Design November 30, 2012

Record Attribute Description

Post

type Custom type of the post if specified (e.g. WordPress): attachment,
page/post or other custom type

posted via Information about the service used for posting if specified
previous URI URI to the previous post is available
next URI URI to the next post if available
author See Section 3.1.3.4
content See Section 3.1.3.4

Table 3.3: Post record extended attributes

Record Attribute Description

Page
template Information about the design template if available and if different

from the general blog
author See Section 3.1.3.4
content See Section 3.1.3.4

Table 3.4: Page record extended attributes

3.1.3.3 Comment as a record

Comments are published by others or the Author him/herself as a response to
the original Page/Post/Comment. Comments appear along with the published
Entry/Comment and provide an opportunity for readers to voice their views. The
control over the publication of the Comments is held by the authors/administrators
of the Blog. The properties of the Comment are presented in Table 3.5 [19].

Record Attribute Description

Comment

subject Subject of the comment as retrieved
URI URI of the comment if available
status Information about the state of the comment: active, deleted,

updated (versioning support)
date added Date comment was added or retrieved, including time zone
date modified Date comment was modified or retrieved as modified,

including time zone
addressed to URI Implicit reference to a resource
geo longitude Geographic positioning information
geo latitude Geographic positioning information
has reply Derived property (also SIOC)
num replies Derived property (also SIOC)
is child of post Indicates information about the parent post
is child of comment Indicates information about the parent comment
author See Section 3.1.3.4
content See Section 3.1.3.4

Table 3.5: Comment record attributes

BlogForever Consortium 21

D4.4: Digital Repository Component Design November 30, 2012

3.1.3.4 Other data associated with a record: Content and Author

In addition to the properties discussed along with records, it is necessary to highlight
the existence of other data associated with records. Most prominent types of data
associated with records are: Author data and published Content. These data, unlike
other entities, cannot be described using a single property. For example, Authors
can have a first/second name, a username or a URL to a user profile. Furthermore,
these data can be associated to more than one type of record. For example, Pages,
Posts and Comments can all be associated with a specific Author. Yet, Author is
not being considered as a separate record, as the search results are more likely to
require the Content published by the Authors. Hence, it makes sense to separate the
description of the Author from the tables describing records. The same argument
can be held for the published Content. To make sure that searching through various
types of information integrated into the published Content can be organized, the
Content is being categorized, yet associated with all the relevant records (which are
Posts, Pages and Comments). The properties of the Author and the Content are
presented in Tables 3.6 and 3.7 [19].

Entity Attribute Description

Author

username Username of the profile
name Author name credentials where available
profile uri URI to the profile
avatar uri URI to the avatar file
name displayed Name of the poster as displayed
role Role of the user
email displayed Email address of the poster as displayed
is anonymous Boolean property to indicate anonymity

Table 3.6: Author entity attributes

Entity Attribute Description

Content

full content Full content as extracted
full content format Content format associated with the conceptual entity (e.g.

Comment, Post)
note Additional notes if available
encoding Information on encoding of the content
copyright Notes of copyright as retrieved from the blog
ownership rights Notes of ownership rights as retrieved from the blog
distribution rights Notes of distribution rights as retrieved from the blog
access rights Notes of access rights as retrieved from the blog
license License of the content

Table 3.7: Content entity attributes

BlogForever Consortium 22

D4.4: Digital Repository Component Design November 30, 2012

3.1.4 Changes to the data model

Since the development of the data model some refinement changes were proposed.
The following has been accommodated and highlighted in italic font in the tables
presented above:

• Entity Content: An additional property called full content format is added to
capture sections of the HTML page that correspond to conceptual elements
such as Comment or Entry. This is needed to eliminate the transfer of the full
content of HTML from the Spider side when it is not necessary and to simplify
the task of further processing of the section.

• Entities Blog and Entry: A property called aliases (if more than one, a set
of properties or a new entity with one-to-many relationship) is necessary to
capture the URL aliases that a Blog Entry or a Blog may have.

• Entity Author: A property called role to indicate the role of the user would
be needed (e.g. contributor, editor, administrator, moderator).

3.1.5 Extended data model components

Capturing the data associated with the core of the blog may not be sufficient for some
preservation initiatives. Hence, the repository should be able to capture additional
properties. Towards this aim, the core blog model was extended (i.e. extended data
model) to be able to accommodate additional data exhibited in blogs.

This section outlines the components of the extended data model. It introduces
additional entities that are grouped according to their nature. These groups are
referred here as categories. The categories capture various aspects of blogs and
provide a descriptive foundation to enable preservation of additional blog data.
While the changes within the defined components are possible, they represent
a necessary foundation that can be used for capturing additional information
if necessary. An example for possible extension can be the integration of
additional technical metadata fields into the Categorized Content for addressing
the requirements of the project.

The categories enable storing the following types of blog data:

• Blog Context: descriptive data provided by the bloggers themselves

• Network and Linked Data: a range of network data

• Community: information about the user base

• Categorized Content: descriptive data about the captured content

• Standard and Ontology Mapping: additional structures enabling mapping into
other standards

• Semantics: information generated based on the analysis of the captured content

• Spam Detection: spam mark-up and associated descriptive data

BlogForever Consortium 23

D4.4: Digital Repository Component Design November 30, 2012

• Crawling Info: specifics about the crawling

• Ranking, Category and Similarity: various measures based on the analysis of
existing data

• Feed: information about the web feeds used

The graphical representation of the categories in relation to the blog core is
presented in Figure 3.2.

Figure 3.2: Blog core and components

There are primarily two types of categories described in the data model. The
first type of category requires the data to be collected and extracted from
the blog. The second type includes primarily derived properties and relies
on the data already collected and stored in the repository. These two types
of categories are represented in the diagram in different colours. The details
about each of the components are accessible from the original D2.2 BlogForever
report [19].

It is a common practice to anticipate some changes within the data model
at the later stages of the project development. After initiating the design of
the spider, some elements have already been discussed and modified. Due
to agile methods adopted for the design and development of the repository
component, some additional changes to the data model can be expected. We
have put in place a mechanism for tracking and documenting these changes
using an internal wiki. New suggestions are being added to the wiki, and the
history of accepted changes is recorded.

BlogForever Consortium 24

D4.4: Digital Repository Component Design November 30, 2012

3.1.6 Data model and Invenio

Achieving the aims of this project that revolve around solutions for preserving,
managing and disseminating blogs requires a carefully designed software
application. Using Invenio (already described in Section 2) for developing
a repository system, provides a range of advantages. The system is designed
and is shown to be capable of providing the functionality that is necessary
for digital repository management and use. Reusing these functional facilities
reduces the time required for designing and developing these from scratch.
However, Invenio is not designed to work with blog records, so it requires some
customization and adaptation of the system. This customization includes the
changes necessary to be introduced to Invenio’s database system. Otherwise
the system will not be able to store, version, update or provide faceted search
functionality using the above discussed records. Hence, the proposed data
model can be used to inform the changes required to be added to the current
structure of Invenio. However, due to possible changes to the structure of
blogs in the future, it would be beneficial to design the database in a way that
enables easier maintenance according to future possible changes.

3.2 Weblog preservation policies

This section is intended to summarize some of the key results from the deliverable
D3.1 [11] that is deemed relevant to the repository software design. In particular, the
current section describes the information, associated properties, and relationships
targeted for capture to support preservation, in view of preservation objectives
within BlogForever. The section ends with a summary of how these will be described
and transmitted using controlled vocabularies, selected metadata schemas, and
transmission standards.

3.2.1 Target information

In BlogForever we aim to capture information on three levels: micro-level, macro-
level, and community-level. On the macro-level, there are four repository record
types supported within BlogForever: Blog, Post, Comment, Page, which were
already described in Section 3.1.3.

On the micro-level, the blog records come with associated embedded content. The
six most common types of content associated to blogs are presented in Table 3.8
[11].

BlogForever Consortium 25

D4.4: Digital Repository Component Design November 30, 2012

Content type Example file formats Common extensions

Structured text

Hyper Text Markup Language HTML, HTM
Extensible HyperText Markup Language XHTML, XHT
Extensible Markup Language XML
PHP Script Page PHP
HTML File Containing Server Side Directives SHTML
Cascading Style Sheet CSS

Image

Portable Network Graphics PNG
Graphics Interchange Format GIF
Bitmap BMP
JPEG JPG
Scalable Vector Graphics SVG

Documents

MS Word for Windows Document DOC
MS Office Open XML DOCX
OpenDocument Text ODT
Portable Document Format PDF
Plain Text File TXT
MS Excel Workbook XLS
MS Excel for Windows XLSX
OpenDocument Spreadsheet ODS
MS PowerPoint PPT
MS PowerPoint for Windows PPTX
OpenDocument Presentation ODP

Audio
MPEG 1/2 Audio Layer 3 MP3
Waveform Audio WAV

Moving image

MPEG-1 Video Format, MPEG-2 Video Format MPEG, MPG
Audio/Video Interleaved Format AVI
QuickTime MOV
3GPP Audio/Video File 3GPP
Macromedia FLV FLV

Executables

Postscript AI, EPS, EPSF, PS
Base64-encoded bytes MM, MME
UNIX tar file, Gzipped GZ, TGZ, Z, ZIP
Compressed archive fle ZIP
Gzip compressed archive file GZ
Tape Archive Format TAR
Zip Format ZIP
Executable file EXE, DLL, MSI
XPInstall XPI
Atom Syndication Format feed ATOM
Really Simple Syndication feed RSS
Resource Description Framework RDF
Really Simple Discovery RSD
JavaScript JS

Table 3.8: Digital object types commonly embedded within blogs

BlogForever Consortium 26

D4.4: Digital Repository Component Design November 30, 2012

A blog is a form of social network media. As such, each blog record type does not
stand on its own but must be interpreted in relation to other blogs, posts, comments
and how they share technology, form networks and share information. The profile
of the community from which the blog arises supports the end-user by allowing
them to interpret the blog’s authenticity, reliability and integrity. Three types of
profiles, as a proxy of community-level information, have been recommended in
D3.1[11]: a profile on the basis of technical characteristics, network structure, and
user generated categorizations.

The properties associated to the three levels of information types (i.e. four record
types, embedded content and community level profiles) that support preservation
will be summarized in the next section.

3.2.2 Target properties and associations for preservation

The properties deemed significant for digital preservation in association to the four
record types of Section 3.1.3 were described, in deliverable D3.1[11], as macro-
level properties. These properties comprise those properties identified in Section
3.1.3 which , in particular, support stakeholder requirements examined in the work
submitted as part of the D4.1 BlogForever report [8].

The deliverable D4.1[8], presents an integrated analysis of results from stakeholder
interviews and results from the questionnaire survey reported in D2.1: Survey
implementation report [6]. That is, it represents user requirements on several levels
(e.g. blogger community, content managers and system administrators) examined
using two independent methods for scoping user needs. This deliverable forms
the foundation of the features being implemented in WP4. This ensures that the
properties on the macro-level significant for preservation are being captured. An
example of how properties of blog components on the micro-level are matched to
user requirements to capture significant properties is illustrated in Figure 3.3.

Figure 3.3: Cross matching the data model properties to user requirements

The properties that support the preservation of micro-level content embedded within
each record type relies on their render-ability over time and has been studied in
many digital preservation initiatives already. An investigation of previous work in
the identification of core technical metadata was presented in D3.1[11] and adapted
to yield the properties presented in the tables below with respect to five of the six
most common media types (structured text, image, document, audio, and moving

BlogForever Consortium 27

D4.4: Digital Repository Component Design November 30, 2012

image) defined in the previous Table 3.8. These properties represent the technical
metadata of content embedded within blog records to support renderability.

Object type Semantic unit

Structured text

Title
Creator
Date
Keywords
Rights
Div
Span
Language
Paragraph
Line break
Headings
Emphasis
Bold
Italics
Underline
Strong emphasis
Strikethrough
Horizontal rule
Inserted text
Deleted text
Samp
Cite
Defined terms (DFN)
Code
Abbreviation
Acronym
Quotations
Subscript / Superscript
Address
Button
List elements
Table elements
Image
Link
Applet
Frame
Frameset

Table 3.9: Technical metadata of structured text

BlogForever Consortium 28

D4.4: Digital Repository Component Design November 30, 2012

Object type Semantic unit

Image

Image width
Image height
X sampling frequency
Y sampling frequency
Bits per sample
Samples per pixle
Extra samples

Table 3.10: Technical metadata of image

Object type Semantic unit

Document

PageCount
WordCount
CharacterCount
ParagraphCount
LineCount
GraphicsCount
Language
Fonts
FontName
IsEmbedded
Features

Table 3.11: Technical metadata of document

Object type Semantic unit

Audio

Duration
Bit depth
Sample rate
Number of channels
Sound field
Sound map location for each channel
Description
Originator
OriginatorReference
OriginationDate
OriginationTime
Coding history
Quality report
Cue Sheet

Table 3.12: Technical metadata of audio

BlogForever Consortium 29

D4.4: Digital Repository Component Design November 30, 2012

Object type Semantic unit

Moving image

imageStreams
audioStreams
Lenght
Width
Height
bibDepth
colourModel
colourSpace
pixelAspectRatio
frameRate
Lossess
CompressionRatio
Codec
Interlace
Metadata

Table 3.13: Technical metadata of moving image

A weblog, as a form of social network media, carries the potential as an information
source for the community. A community can be defined by three aspects:

• The styles, conventions, and types of information used by the community

• The level and patterns of interaction taking place between the community

• The scope and stability of concepts shared within the community

While all these are high-level concepts difficult to define objectively as specific
properties of the blog, there are proxies of each dimension that is represented by
formal characteristics exhibited by the webpage. These proxies and properties of
blogs presented by community-level are:

• Shared technical characteristics

1. Properties:

– Type and number of media
– Type and number of platforms in use
– Types and number of formats in use
– Layout characteristics

2. Proxies:

– Variety and number of HTML tags such as: , <a>, <embed>,
<video>, <object>, <audio>, <iframe>

– Attribute values of HTML tags such as: <meta>, <link>, <script>
– Variety and numbers of file extension patterns in the HTML tag

attributes
– Variety and number of layout HTML tags such as: , <div>,

<frame>, <style>, ,

BlogForever Consortium 30

D4.4: Digital Repository Component Design November 30, 2012

• Community network structure

1. Properties:

– How many resources the target blog cites (internal, external)
– How many resources cite the target blog

2. Proxies:

– Resources included as the attribute value of HTML tags: ,
<script>, <a>, <link> (internal or external)

– Link back information
– Collection based link statistics

• Shared user generated categorization

1. Properties:

– Types and numbers of user generated categories
– Number of shared categories across blog collections

2. Proxies:

– Categories and tags associated to blog posts

The properties related to network structure and user generated categories are
already being extracted as part of the properties arising from the data model
and user requirements. The technical characteristics of the original HTML code
of the page is available as part of the original HTML code as received from the
HTTP request for the webpage stored using a preservation friendly format (e.g. the
digital forensics format aff3) as provenance information and a digital finger print of
the blogging community. The community-level properties, as described before, are
subject for consideration to be recorded as partial evidence of authenticity, integrity,
and reliability, and, should ideally be exposed to the end-user community through
the user interface.

3.2.3 Workflow for capturing the information and associated
properties

A workflow for capturing the information (Section 3.2.1) and associated properties
(Section 3.2.2) was proposed to map repository features (Section 5.1) to the
recommendations of the Reference Model for an Open Archival Information System4

in a way that meets the needs of weblog preservation.

Going through all the preservation recommendations defined in D3.1[11], we saw
that most of them were already fulfilled explicitly or implicitly in the existing
repository features. Just four new repository features were created in order to meet
all the preservation recommendations.

The 17 preservation service recommendations were split into sub-recommendations
to make easier the mapping between them and the repository features. How

3http://afflib.org/
4http://www.iso.org/iso/iso catalogue/catalogue tc/catalogue detail.htm?csnumber=24683

BlogForever Consortium 31

http://afflib.org/
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=24683

D4.4: Digital Repository Component Design November 30, 2012

the preservation recommendations were matched with the repository features is
described in detail below:

1. Receive submission

a) An interface to the Crawler (spider), usable by the repository managers

• RF31 - The archive offers a complete blog submission interface
to submit, modify and delete blogs/posts, includes implicitly this
functionality

b) A submission interface, allowing Producers to submit blogs in the forms of
Submission Information Package (SIP)

• RF31 - The archive offers a complete blog submission interface
to submit, modify and delete blogs/posts, includes implicitly this
functionality

c) The SIP will probably be a METS wrapper which contains the original XML
data as crawled by the spider, along with MARC and MIX metadata, and
links to locally-attached files

• RF12 - The archive can import METS

2. Quality assurance

a) The repository should perform validation of the transmitted content to
ensure that the transmission was successful and that the content is eligible
for admission to the repository

• RF40 - The archive validates the content received from the spider

3. Generate descriptive information

a) Functions to create and edit the descriptive metadata are already imple-
mented in Invenio. If the producer supplies metadata with their SIP, it’s
acceptable for the repository staff to enhance this metadata and create an
”Updated SIP” in OAIS terms (already implemented in Invenio)

• New feature defined: RF86 - The archive offers functions to edit
metadata

4. Generate Archival Information Package (AIP)

a) The repository should transform a submitted SIP into an archival AIP

• New feature defined: RF87 - The archive transforms the SIPs received
from the spider to AIPs

b) The creation of an AIP will involve storing the content in two different
databases

• New feature defined: RF88 - The archive stores the content of the AIPs
in two different databases for preservation purposes

c) There would be a submission ID stored in the METS header, so all the stored
data in both databases would be characterized by that UID and would be
the OAIS AIP

BlogForever Consortium 32

D4.4: Digital Repository Component Design November 30, 2012

• This is going to be in the platform, and in fact it has already been
implemented, but we don’t see how this is a feature on its own. It is more
an implementation decision in the spider-repository communication and
the metadata architecture

d) There may also be a recommendation for normalization or format-shifting
(i.e. migration) of the media attachments found in blogs, such as text and
images

• New feature defined: RF89 - The archive carries out the normalization
and/or migration of the media attachments

5. Co-ordinate updates

a) The repository must should move AIPs into archival storage, and store
descriptive information in the database

• RF9 - The archive stores and displays accordingly all the record
metadata received from the spider

6. Receive data

a) The repository should move an AIP into permanent storage

• This is covered by features matched with recommendation 4.

7. Manage storage hierarchy

a) The repository should implement a backup strategy

• RF80 - The archive provides mechanisms to control data redundancy

8. Replace media and migration strategy

a) The repository should be capable of reproducing the AIPs over time. This
includes error checking for media failure in storage, but also the migration
of file formats when necessary

• RF60 - The archive can export all its content, database entries and file
system for a migration

9. Error-checking

a) The repository should provide assurance that the storage and data transfer
process has not corrupted the AIP

• This fuctionality is included in the design of RF9 (The archive stores and
displays accordingly all the record metadata received from the spider),
and also Invenio has the capability of periodically checking the data
correctness.

10. Disaster recovery

a) The repository should duplicate the contents of the archive and store the
copies in a remote facility

• RF80 - The archive provides mechanisms to control data redundancy

11. Administer database

BlogForever Consortium 33

D4.4: Digital Repository Component Design November 30, 2012

a) The repository should have a database which contains descriptive informa-
tion and system information

• This is covered by features matched with recommendation 4.

12. Perform queries

a) The repository database should perform queries that can locate and retrieve
blogs in response to requests

• RF84 - The archive offers a complete range of search options to the user

13. Generate report

a) The repository system should create reports (e.g. on size of holdings in the
archive, or usage statistics)

• RF20 - The archive’s statistics are exported as CSV

14. Receive database updates

a) The repository system should add, modify or delete database information
in response to updates, such as ingest or access requests.

• RF18 - The archive detects duplicated content and keeps only one copy
• RF55 - The archive provides advanced APIs for developers to interact

with the archive’s content

15. Co-ordinate access activities

a) The repository should provide a user interface to the archive holdings

• RF5 - The web interface provides harmonized access and ensures
compatibility with major browsers

16. Generate DIP

a) The repository should allow an AIP to be converted into a DIP automatically

• RF7 - Export data using the OAI-PMH protocol
• RF8 - Export data in Dublin Core schema
• RF59 - Export data using XML
• RF62 - Export records as PDF and JPEG

17. Deliver response

a) The repository should deliver responses to consumers

• RF3 - “Share” option in ”Your History” box
• RF30 - Users are able to bookmark records, also using external

bookmarking engines
• RF38 - Users can communicate within the archive sharing and

exchanging resources
• RF50 - The archive offers the option to disseminate newly archived

content in external social platforms

BlogForever Consortium 34

D4.4: Digital Repository Component Design November 30, 2012

Metadata schemas for generating the AIP comprising the properties outlined in
Section3.2.2 have also been recommended in the deliverable D3.1[11]. We refer to
D3.1 for the criteria and selection process that led to the final recommendation.
Here, we summarize the schemas selected for five of six object types described in
Section 3.2.1. The type “executable” was not included in the current framework
as it was agreed in the project earlier on that, while we will retrieve and store
executables where we can, the focus of the repository, in establishing the archival
information package of the repository, would be placed on the embedded content of
the blog. The selected metadata schemas are summarized in Table 3.14.

Metadata type Description Metadata
schema

Descriptive
metadata

To locate and retrieve the blog and per-
form search queries in the repository

MARCXML5

Administrative
metadata

Information related to establishing the au-
thenticity, integrity, reliability and usabil-
ity of the object

Provenance
metadata

Metadata related to Provenance, Preser-
vation, and Rights

Provenance and
preservation

Provenance relates to source information
and acquisition method (e.g. URI, crawler
version, dates). Preservation relates to
scheduled and performed changes to the
data and metadata

PREMIS6

Rights metadata For example: ownership, copyright, mod-
ification rights, access rights, and licenses

PREMISRights7

Technical
metadata

Metadata related to renderability

Structured Text For example, number and positions of
divisions

TextMD8

Image For example still image resolution MIX9

Audio For example sound sample rate AES57-201110

Moving image For example video frame rate MPEG/7, Ver-
sion 10, 200411

Document For example, length of the document Florida Digital
Archive/Har-
vard University
Archive Docu-
ment Metadata12

Table 3.14: Metadata schema

5http://www.loc.gov/marc/marcxml.html
6http://www.loc.gov/standards/premis/
7http://www.loc.gov/standards/premis/Rights-in-the-PREMIS-Data-Model.pdf
8http://www.loc.gov/standards/textMD/
9http://www.loc.gov/standards/mix/

10http://www.loc.gov/standards/amdvmd/audiovideoMDschemas.html
11http://mpeg.chiariglione.org/standards/mpeg-7/mpeg-7.htm
12http://fclaweb.fcla.edu/uploads/

BlogForever Consortium 35

http://www.loc.gov/marc/marcxml.html
http://www.loc.gov/standards/premis/
http://www.loc.gov/standards/premis/Rights-in-the-PREMIS-Data-Model.pdf
http://www.loc.gov/standards/textMD/
http://www.loc.gov/standards/mix/
http://www.loc.gov/standards/amdvmd/audiovideoMDschemas.html
http://mpeg.chiariglione.org/standards/mpeg-7/mpeg-7.htm
http://fclaweb.fcla.edu/uploads/

D4.4: Digital Repository Component Design November 30, 2012

Note that the metadata types presented in the left hand side column of Table
3.14 reflects the structure of the Metadata Encoding and Transmission Standard
(METS)[14] which categorize metadata into two high level sections: sections
for descriptive metadata (dmdSec) and administrative metadata (amdSec). The
administrative metadata, in turn, are divided into subcategories: a section related
to provenance (digiProv) and related to technical specifications of embedded content
(techMD). Provenance relates to any information that provides evidence of the
authenticity and reliability of the data and metadata, which includes information
on previous custodians of the information and any existing rights associated to the
information.

The association with METS is reflective of the fact that the metadata for each
component will be wrapped, encoded, and exposed using METS. The policies for
how this will be wrapped within METS was described thoroughly in D3.1[11].

In addition to the METS object implemented and associated to each blog record,
it is essential that a METS profile describing the purpose of the repository and the
types of objects and formats supported within the repository is made available at a
fixed URI within the repository.

The principles governing the management of the information ingested into the
BlogForever repository was proposed in the METS profile and example included
in the deliverable D3.1[11]. The profile stipulates:

• The controlled vocabularies and syntax to be used to fill metadata values (e.g.
ISO standards for describing time, date, geographic locations)

• The set of external metadata schemas that are being incorporated into the
METS standard (e.g. MIX for image objects), and how they will be included
within the native METS syntax, that is which section will contain the
information

• Any tools that might be employed for object characterization

• Description and structural rules for employment in writing METS objects

The profile should be considered to be a work in progress to be adapted, if necessary
as the implementation of the repository continues to unfold. The final profile should
be made available with a fixed public URI within the repository and also submitted
for inclusion in a public registry such a the Library of Congress13. A draft examples
of the METS profile and METS object are included in Appendix of the deliverable
D3.1[11].

3.2.4 End-user user interface features to support preservation

In addition to core information capture, storage, description and encoding strategies
described in above sections, to support continued repository improvement and

13http://www.loc.gov/standards/premis/

BlogForever Consortium 36

http://www.loc.gov/standards/premis/

D4.4: Digital Repository Component Design November 30, 2012

preservation activities, in D3.1[11], user interface features for end-users were
suggested. These features are:

• To add recommendation features: for example, a request to have a blog
harvested triggers the recommendation that other related blogs be harvested

• To allow end-users to contribute missing metadata values

• To allow users to request items missing or items that would add value to a
target blog to be harvested

• To allow end-users to broadcast access problems to the community and request
solutions (for example, migration request)

• To allow end-users to contribute solutions to access problems publicly

• To allow end-users outwith the repository to cite the material in the repository

• To document all of the above activities and make it transparent and public
within the community

These features are designed to fill the gap for missing content and metadata, add
value to existing content (by adding associated content and providing citation
mechanisms), to stimulate community-based solutions to meet stakeholder needs
and make the processes transparent.

Most of these features are already being supported in Invenio (e.g. methods
for the citation of content). In addition, the community-level information and
properties discussed in Sections 3.2.1 and 3.2.2 could be made transparent to the
community through the interface to provide evidential support for end-users to gauge
and contribute to maintaining authenticity, integrity and reliability of repository
information.

BlogForever Consortium 37

D4.4: Digital Repository Component Design November 30, 2012

Chapter 4

The BlogForever Repository
Component

The BlogForever platform consists of two main components, the BlogForever spider
[10] and the BlogForever repository.

The BlogForever project will extend and adapt the globally acknowledged and widely
used Invenio package already described in detail in Chapter 2 to implement the
repository. Its flexibility and performance make it a comprehensive solution for the
management of document repositories of large size and render it as an ideal basis
for the BlogForever repository design and construction.

In this chapter the process followed to carry out the repository component design
will be introduced. As mentioned before, the repository design takes the Invenio
suite as starting point and builds a Blog repository on top of it, merging the novel
features with the Invenio existing ones. As mentioned and described in previous
sections, the main inputs of this deliverable are the data model from D2.2[19],
the preservation recommendations from D3.1[11] and the list of requirements from
D4.1[8]. We will outline how these three inputs were considered in order to elaborate
the list of repository features that will be incorporated on the top of Invenio in order
to fulfill the BlogForever project requirements.

The 153 requirements coming from D4.1[8] were grouped by the designers when
they considered that one functionality would make the repository meet all the
requirements of the group. At the same time, other requirements needed more than
one functionality to be fulfilled, so they were split in sub-requirements. Therefore,
this allowed us to create a new list of features that needed to be in the repository
and the many-to-many mapping to the requirements. Since the requirements of
D4.1[8] were classified in three different categories (essential, recommended and
optional) this information was used to determine the priority of the features as high,
medium or low. The features were labeled with unique identifiers depending on the
component that needed to implement the described functionality: the repository
features are those starting by “RF” and the spider features are those starting
by “SF”. The spider features were discussed in D4.2: Weblog spider component
design[10], while in this document (specifically in Section 5) we will focus on the
repository features.

BlogForever Consortium 38

D4.4: Digital Repository Component Design November 30, 2012

Later on, D3.1[11] proposed a list of 17 recommendations for the repository design.
According to this WP3 deliverable, following these recommendations will make the
repository a robust preservation archive. In the design process we considered each
one of these recommendations, comparing them with the list of features coming
from the requirements. We found that some recommendations were impossible to
be included in the repository design since the recommendations were related to
policies or hardware. Among the rest of the recommendations, most of them were
already fulfilled explicitly or implicitly in the existing features. Finally, only four new
features were needed to be added in order to meet all the D3.1[11] recommendations.
How the recommendations were matched with the features is described in detail in
Section 3.2.3. The complete list of features can be found in Chapter 5.

In the following sections the most relevant high level design decisions will be
discussed.

4.1 Blog management with Invenio

A metadata structure has been developed in cooperation with WP3. As already
explained in D3.1[11] and D4.2[10], the metadata standard chosen is METS. The
structure of the METS profile that we defined is presented in D3.1[11].

4.1.1 Overall architecture

As mentioned in the introduction of this chapter, Invenio is the base of the
BlogForever repository. In order to fulfill the requirements of the project, new
modules and features have been designed to be incorporated on the top of it. These
novel modules and features are:

• BibIngest module: This module is very important from the preservation
point of view since this module is the responsible of storing the submitted
material (ingestion packages) in its original format covering, at the same
time, the requirements of the Open Archival Information System (OAIS)
specification for the acquisition and storage of the Submission Information
Package (SIP).

• WebTag module: The WebTag module will enable users to add free-form
tags to blog records. Tags could easily be used for self-organization, it will
be possible for a user to show all blog records tagged with a concrete tag and
other related navigations.

• Spam filtering: The integration of this system will improve the archive’s
fidelity and integrity. Whenever BlogForever’s spider captures new content,
it will be evaluated using the spam detection web services before proceeding
to archiving and digital preservation facilities. The filters work by combining
information about spam captured on a large set of weblogs and then using
those spam rules to block future spam.

BlogForever Consortium 39

D4.4: Digital Repository Component Design November 30, 2012

• Billing system: This system has been designed to allow the system’s
administrators to exploit added value services. For instance, disk space in the
digital repository could be free until users reach a specific quota. Additional
disk space could be available for a monthly fee.

• Spider communication: An spider-repository API has been design in order
to develop the communication between these independent components. There
are two directions defined:

1. repository - spider: The repository informs the spider that new blogs were
submitted. The urls of these blogs are sent to the spider.

2. spider - repository: The spider finishes crawling blogs and the repository
retrieves all the crawled content.

• Export options: BlogForever repository comes with new options to export
records such as “Export to METS”, “Export to PDF” and “Export to JPEG”.

• Social features: New social features such as display blogs that were read by
people who also viewed a specific blog, disseminate newly archived content in
external social platforms, subscribe and navigate activities of other users, etc.
will be integrated into the repository.

• Blog rendering: New blog templates will be defined in order to represent the
four types of records: Blog, Blog Post, Page and Comment.

• Blog metadata: In order to define the blog related properties, and therefore,
define the internal BlogForever MARC schema to represent all the BlogForever
related metadata, the Invenio MARC schema has been extended.

The Figure 4.1 represents an abstraction of the BlogForever repository design
including the modules and features described above.

Figure 4.1: Overall architecture

BlogForever Consortium 40

D4.4: Digital Repository Component Design November 30, 2012

4.1.2 Ingestion work-flow

In this sub-section the blog-related metadata management will be described. How
the data arrives to the repository will be presented in first place, how it is stored
and used will be next and finally the dissemination options will be introduced.

A communication protocol has been defined between the spider and the repository
components. In the spider side, as mentioned in D4.2[10], an API interface has been
developed, which is accessible via a web service that the repository is able to use.
On the other hand, in the repository side, a plug-in system has been designed. The
repository needs a series of commands to send to the spider, but this library should
not be specific to one spider. Instead, the repository code has been designed in a
way that allows future developers to extend it in an easy way by writing a plug-
in that translates the set of commands used in the repository code to the specific
syntax of the corresponding spider. The plug-in of the BlogForever spider will be
developed within the project.

This design enhances the interoperability of both components, allowing the spider
to be used by other repositories and also allowing the repository to potentially use
other spiders. This interoperability is further enhanced if we consider that the
metadata container chosen for the communication is the same METS profile defined
in D3.1[11].

The entry point for data is the repository. Blog URLs can be inserted to the system
using a submission form in the web interface. There is also a command-line tool
that allows the submission of a batch of new URLs, but this option is only available
for administrators. The access to this form is in principle authorized only to content
managers, but the administrators can open it to any registered user. Should this
happen, their submission would go though a refereeing process where designated
content managers would be responsible of the approval or rejection of the suggested
new blog. Once the new blog is approved to be in the repository, an Invenio record is
created. This record will have only the information that the submitter provides (the
blog URL and the title) and it will be stored temporarily in a hidden collection (only
administrators and content managers have access to it). As soon as this happens,
the repository will use the spider API to send the information about this new blog
that needs to be crawled.

In the Section 2 the module BibSched was introduced. In parallel with the
submission procedure and the push action to the spider, the repository will have a
daemon running as a BibSched task. It will run periodically querying the spider to
check if there are any new content available to be downloaded. The frequency of
the check can be easily customized thanks to BibSched. The spider response will
be a list of the object IDs for the new content available. These objects correspond
to future repository records, and as such they can be a Blog, a Page, a Post, or a
Comment. The repository will then go through the list of objects and will download
the METS file as well as all the files attached to it. This includes images, videos
and other files that the blog author might include in the content of the blog, and
also a copy of the HTML and CSS files in the original server response. The Figure
4.2 shows a diagram of the repository-spider communication.

BlogForever Consortium 41

D4.4: Digital Repository Component Design November 30, 2012

Figure 4.2: Repository-spider communication

Once all the content is downloaded in the repository side, there will be a call to
BibUpload. Two plug-in systems have been designed allowing developers to pre and
post process the records before and after the upload. The upload will then have 3
phases:

1. Pre-process: The MARC metadata embedded in the METS file is extracted.
Then, it is enriched with FFT1 (“Fulltext File Transfer”) tags corresponding
to each file downloaded from the spider and also the connections with other
existing records are established. Since the metadata includes the URL of the
parent Blog in the case of Posts and Pages and the parent Post or Comment
in case of Comments, the presence of these related records will be checked
and included in the MARC metadata. This does not alter the SIP since the
MARC information in the METS file remains unaltered. It is only the internal
management copy of Invenio that is enriched.

1http://cdsweb.cern.ch/help/admin/bibupload-admin-guide

BlogForever Consortium 42

http://cdsweb.cern.ch/help/admin/bibupload-admin-guide

D4.4: Digital Repository Component Design November 30, 2012

Figure 4.3: Metadata workflow in the repository

2. Upload: The BibUpload task will start, inserting the record in the Invenio
databases in the usual way. Also, the attached files will be copied to
the corresponding directories where Invenio (the BibDocFile module, more
precisely) can manage them.

3. Post-process: Finally, and only if the upload process has been successful,
the original METS document retrieved from the spider will be stored into a
document-oriented database. The characteristics of this database will be better
explained in the next subsection.

All this communication between the repository and the spider (querying and
downloading files) will be done using the spider’s API. The Figure 4.3 represents
the metadata workflow in the repository. Starting in the submission, then the
communication with the spider and finally the ingestion and storage.

4.1.3 BlogForever metadata structure

In the data model defined in deliverable D2.2[19] there are three kinds of entities:
Blog, Entry and Comment. An Entry can be both a Post or a Page. All these
entities became different kind of records in the repository design, as explained in
Section 3.1.3. The decision adopted is to have all the records as first-class citizens
in the system and to include in their metadata links to other records in order to
keep the original structure, instead of having a hierarchical structure of 3 layers
(Blog, Post/Page, Comment). Following the input from WP2 detailed in 3.1.3, four
different kinds of records have been designed. But the difference between them is
not the structure, but which tags will be present in the MARC metadata. The only
difference in the behaviour is how they are rendered when the records are displayed in
the web interface. There are two reasons behind this decision: this approach is much
more flexible in the parent-child structure, allowing nested comments (Comments
may address Posts and Pages, but also other Comments [19]) and it also fits much
better in the Invenio architecture. An example of the logical structure of the four
kinds of records can be found in the Figure 4.4.

BlogForever Consortium 43

D4.4: Digital Repository Component Design November 30, 2012

Figure 4.4: Logical view of records structure

This view does not correspond with the way the records are stored in the repository.
In the database, all the records share a common space and are not split in different
holders for each record type. The information of the kind of record is stored in
the MARC tag 980, as shown in Table 2.1. The relationships between the records
are preserved including them in the metadata - mainly the parent record. The
bubbles in Figure 4.5 do not reflect the reality but a conceptual splitting of the
records in collections. It represents the same example than Figure 4.4 but the lines
representing parent-child relationships have been replaced by tags that behave as
links pointing to other records. In order to make these relationships more visible,
the boxes representing records have been colored depending on the type of record
they represent, and the tags inside a record that point to another record have been
colored depending on the type of the record they point to.

BlogForever Consortium 44

D4.4: Digital Repository Component Design November 30, 2012

Figure 4.5: A lower level view of records structure

The Figure 4.6 shows the internal structure of an Invenio record, that can be
considered as an OAIS AIP. An Invenio record mainly consists of three components.
The MARC metadata, stored in the database, holds not only the information
describing the record but also links to other related records. The second component
is the BibDocFile module, where the attached files are stored. These are the files
coming from the spider (original HTML and CSS files, pictures, etc.) and are used
to display the record in the web interface. The third component is the database
already introduced in the post-process phase of the ingestion work-flow. In the
repository design MongoDB[4] was chosen for this purpose, which is a scalable, high-
performance, open-source and document-oriented database. A new Invenio module
called BibIngest[3], has been designed to hold the submission METS files and to
cover the needs of persistent storage of submitted material by using MongoDB. Since
BibDocFile, BibIngest, and Invenio’s MARC support versioning, this characteristic
will be exploited by the repository in its preservation features.

BlogForever Consortium 45

D4.4: Digital Repository Component Design November 30, 2012

Figure 4.6: Metadata architecture

4.1.3.1 Mapping of blog attributes to MARC

As explained in Section 2, Invenio uses MARC 21 internally to represent the
bibliographic metadata. This MARC schema has been chosen as a starting point
in order to define the internal BlogForever MARC schema and to represent all the
BlogForever related metadata.

In the previous Section 3.1.3, four type of records were identified to be stored in the
BlogForever repository: Blog, Post, Comment and Page, as well as the attributes
that define each of them. What is intended to present in the tables below (following
the MARC typographical conventions2) is the set of MARC tags chosen to represent
all these attributes and to compose, therefore, the BlogForever MARC schema.

2http://www.loc.gov/marc/bibliographic/concise/bdintro.html

BlogForever Consortium 46

http://www.loc.gov/marc/bibliographic/concise/bdintro.html

D4.4: Digital Repository Component Design November 30, 2012

Record Attribute/Metadata concept MARC 21 representation

Blog

title 245 $a
subtitle 245 $b
URI 520 $u
aliases 100 $g
status code 952 $a
language 041 $a
encoding 532
sitemap uri 520
platform 781 $a
platform version 781 $b
webmaster 955 $a
hosting ip 956 $a
location city 270 $d
location country 270 $b
last activity date 954 $a
post frequency 954 $b
update frequency 954 $c
copyright 542
ownership rights 542
distribution rights 542
access rights 542
license 542 $f

Table 4.1: Blog record attributes - MARC tags mapping

BlogForever Consortium 47

D4.4: Digital Repository Component Design November 30, 2012

Record Attribute/Metadata concept MARC 21 representation

Entry (Post and Page)

title 245 $a
subtitle 245 $b
full content 520 $a
full content format 520 $b
author 100 $a
URI 520 $u
aliases 100 $g
alt identifier (UR) 0247 $a
date created 269 $c
date modified 260 $m
version 950 $a
status code 952 $a
response code 952 $b
geo longitude 342 $g
geo latitude 342 $h
access restriction 506
has reply 788 $a
last reply date 788 $c
num of replies 788 $b
child of 760 $o $4 $w

Table 4.2: Post and Page record shared attributes - MARC tags mapping

Record Attribute/Metadata concept MARC 21 representation

Post

type 336
posted via 781 $a
previous URI 780
next URI 785

Table 4.3: Post record extended attributes - MARC tags mapping

Record Attribute/Metadata concept MARC 21 representation

Page template 962

Table 4.4: Page record extended attributes - MARC tags mapping

BlogForever Consortium 48

D4.4: Digital Repository Component Design November 30, 2012

Record Attribute/Metadata concept MARC 21 representation

Comment

subject 245 $a
author 100 $a
full content 520 $a
full content format 520 $b
URI 520 $u
status 952 $a
date added 269 $c
date modified 269 $m
addressed to URI 789 $u
geo longitude 342 $g
geo latitude 342 $h
has reply 788 $a
num replies 788 $b
is child of post 773 $o $4 $w
is child of comment 773 $o $4 $w

Table 4.5: Comment record attributes - MARC tags mapping

4.1.4 Data export

The Invenio data export capabilities have been extended in the design. The blog-
related content and its metadata can be exported in a variety of ways, enhancing
interoperability. The available options are the following:

• OAI-PMH: The Open Archives Initiative metadata harvesting protocol
(OAI-PMH) can be used in Invenio to import and also export data.

• XML: The metadata is automatically converted and exported in a variety of
XML standards: BibTeX3, MARC, MARCXML, DC4, EndNote5, RefWorks6

and METS.

• PDF and JPEG: Blog content can be downloaded in a human-friendly
printable format. Including the child posts are included when a Blog record is
exported in this format will be optional.

• SRU: External machines are able to query the repository using the standarized
querying syntax of SRU7 and retrieve metadata in MARC or DC formats.

3http://www.bibtex.org/
4http://dublincore.org/
5http://endnote.com/
6http://www.refworks-cos.com/refworks/
7http://www.loc.gov/standards/sru/

BlogForever Consortium 49

http://www.bibtex.org/
http://dublincore.org/
http://endnote.com/
http://www.refworks-cos.com/refworks/
http://www.loc.gov/standards/sru/

D4.4: Digital Repository Component Design November 30, 2012

4.2 Scalability

After describing the scalability techniques used in Invenio instances and why they
are important, in Section 2.4, the recommended for potential administrators of the
BlogForever repository will be described in this section.

Concerning the BlogForever case, it is possible to have several repository instances
(∼10), each holding different kinds of blogs, each having its own API connection to
spider, each having its own BibUpload queue, etc. In other words, these repository
instances would be fully dissociated. And then there would be one repository above
them that would not hold any data, but would simply dispatch user queries in
“external hosted collection” style. Depending on the nature of data, this setup
could easily hold several tens of millions of records and more.

The next step on the scalability ladder is the situation where it is not practical to
setup “manual” horizontal partitioning based on the document corpus specifics, in
the way mentioned above. Here, automatic sharding would be suitable. This is
currently not possible out of the box. The solution would be to take the previous
technique and bring it to non-search scenarios too. The master instance would
basically keep consecutive sequence of record IDs from 1 to 100 million, say, with
notes that record 17 lives on shard 1 as record 10, record 18 lives on shard 2 as
record 7, etc. An automated layer would then be called by master BibUpload to
dispatch create/replace/update/delete tasks to shards. Ditto for search queries,
similar to hosted search. This setup could be nested. This will allow for full
automatic sharing, without having to think too much of document corpus based
partitioning. This solution is already being implemented by the Invenio team at
CERN and it is expected to be usable by March 2013.

4.3 BlogForever user interface

The repository requirements address the need for attention to a qualitative user
interface experience for users of the repository. The design of the existing interface,
adopted from Invenio, did not fully meet these requirements, and a decision was
made to seek out a modern, standards-compliant, mobile-adaptive framework from
which to develop the design for the front-end of the repository.

4.3.1 User interface related requirements and features

The major user interface requirements related to the front-end design of the
repository, which have been extracted from the BlogForever D4.1 report [8], are:

• UI1 - Web interface

• UI16 - Easy to learn/Intuitive

• UI14 - User interface for mobiles

BlogForever Consortium 50

D4.4: Digital Repository Component Design November 30, 2012

• UI15 - Search interface

• FR37 - Web portal

• FR43 - Access to content in a harmonized way

These requirements are covered by the following defined features (see the description
of these features in Section 5.2):

• RF5 - The web interface provides harmonized access and ensures compatibility
with major browsers

• RF77 - The archive provides a mobile version

So far, these features are not met by the existing Invenio archive design. With
no templating function, the interface is built directly into the Python code, and
provides an old-fashioned visual design, a mark-up structure that reduces the ability
to customize the interface and to add new features. Small font sizes provide poor
readability, and the page mark-up is not optimized for accessibility.

However, Invenio has reached the point where it is useful to rewrite part of the code
base using a new software stack in order to keep flexibility, manageability of growing
number of modules, and speed-up prototyping and development of new ones[12].
This includes an upgrade to the existing Invenio interface providing a more modern
appearance, a responsive and accessible design, and an uncluttered interface with
clear, simple terminology to assist users to easily and logically navigate through the
repository.

Taking advantage of all this work, the development of the BlogForever user interface
will be carried out using the same technologies that have been adopted to improve
the existing Invenio interface. These technologies will be described in the next
sub-section.

4.3.2 User interface technologies

In this sub-section are described the adopted technologies by Invenio in order to
achieve the goal described above, and therefore, the technologies that will be used
by the front-end BlogForever programmers.

4.3.2.1 Twitter Bootstrap framework

The Twitter Bootstrap[5] framework solves many of the problems mentioned above
with the existing interface. It is a fully modern HTML58/CSS39 responsive
framework, so full mobile functionality is already built in, and its existing CSS
styles include high quality typography that is ideal for a text-heavy resource such
as the BlogForever repository.

8http://www.w3schools.com/html/html5 intro.asp
9http://www.css3.com/

BlogForever Consortium 51

http://www.w3schools.com/html/html5_intro.asp
http://www.css3.com/

D4.4: Digital Repository Component Design November 30, 2012

As a fully-fleshed out framework with existing classes and HTML structures for most
interface elements, it allows for very fast development of attractive and functional
front-end features. It is widely supported by a community of developers and
designers, which allows BlogForever to take advantage of existing resources from the
community such as “FontAwesome”10 icons and “Bootswatch”11 color templates,
and because of its well-structured HTML and CSS mark-up, it will be very easy
for individual repository owners to customise the appearance of their front-ends to
match institutional style guidelines.

Figure 4.7: Twitter-Bootstrap logo

4.3.2.2 Jinja templating

The use of Jinja templating[17] introduces a templating function into the repository,
so that the code for the visual display of the repository can be maintained and edited
separately to the back-end components. This allows faster and easier customization
of the user interface and provides a more modular code framework that is easier to
maintain.

Figure 4.8: Jinja logo

4.3.3 BlogForever user interface prototype

The design of the BlogForever user interface started with the design and development
of a user interface prototype. What has been done so far is the development of some

10http://fortawesome.github.com/Font-Awesome/
11http://bootswatch.com/

BlogForever Consortium 52

http://fortawesome.github.com/Font-Awesome/
http://bootswatch.com/

D4.4: Digital Repository Component Design November 30, 2012

mock-ups taking advantage of all the work already done in Bootstrap. These mock-
ups will be improved as long as the development takes place. The first mock-up
(Figure 4.9) corresponds to the main search page of the BlogForever repository.

Figure 4.9: Main search page prototype

The focus is on clear as well as accessible text-based navigation and features, with
the search box front and center, and the “browse” functions immediately below.
The built-in JQuery12 functions allowed for fast development of front-end features
such as the log-in drop-down, advanced search functions and tabbed browsing of
records.

The next images (Figures 4.10, 4.11, 4.12) correspond to the developed mock-ups
for each of the type of records that will be stored in the BlogForever repository:
Blog, Entry(Post and Page, due to the fact that both types of record have a similar
template just the mock-up for Post is showed) and Comment.

12http://jquery.com/

BlogForever Consortium 53

http://jquery.com/

D4.4: Digital Repository Component Design November 30, 2012

Figure 4.10: Blog record prototype

Figure 4.11: Post record prototype

BlogForever Consortium 54

D4.4: Digital Repository Component Design November 30, 2012

Figure 4.12: Comment record prototype

The design is content-driven, with blog post and comment content being highlighted
first to invite reading, discovery and browsing actions by users, followed by
comments and then associated metadata and post-related functions. The user is
kept informed about their location in the repository with breadcrumbing of blog
title, blog post and comments, so that information is always presented in context.

Bootstrap’s built-in responsive styles mean that the mock-ups are already fully
mobile-compatible, and the clear, readable typography ensures a coherent visual
experience throughout the repository. Further development of an HTML cleaning
and parsing tool strengthens the unified display of content in the repository.

The speed of development in a Bootstrap interface means that as BlogForever
features and requirements are refined through the Case Study process [18], the front-
end will be able to be rapidly modified to meet these needs without long development
periods. The work done to introduce the Jinja templating layer and the Twitter
Bootstrap framework lay a strong base from which to continue developing a high
quality, responsive and user-focused interface for the BlogForever repository.

BlogForever Consortium 55

D4.4: Digital Repository Component Design November 30, 2012

Chapter 5

Feature Specifications

In this chapter, the final list of repository features and associated specifications
is presented. As we already mentioned in Chapter 4, during the design phase of
the BlogForever repository, the requirements defined in D4.1[8] were used as input
to define repository features. The definition of requirement and feature can be
summarized as follows [16] [20]:

• A requirement is a capability that a product must possess or something a
product must do in order to ultimately satisfy a customer need. A requirement
tends to be more granular, and is usually written with the implementation in
mind.

• A feature is a set of related requirements that allows the user to satisfy a
business objective or need. A feature tends to be a “higher-level” objective
than a requirement (and is usually more focused on business needs rather than
implementation).

The rest of this section is structured as follows: in Section 5.1 the methodology
of mapping requirements to features is explained. In Section 5.2 the feature
specifications are presented in detail.

5.1 Mapping of requirements to features

Using the knowledge gathered during the requirements analysis we were able to
identify a list of features. This was done by functionally decomposing the domain
(the BlogForever platform) into subject areas. The Figure 5.1 shows the followed
steps in the process of mapping requirements to features.

BlogForever Consortium 56

D4.4: Digital Repository Component Design November 30, 2012

Figure 5.1: Requirements to features process

Therefore, the set of requirements was thematically grouped together and mapped
to a single feature. On the other hand, some requirements were broken down and
mapped to more than one features since they were described by distinct sets of
software attributes.

The list of the 89 features that were created as result of the process described above
is presented in Table5.1.

BlogForever Consortium 57

D4.4: Digital Repository Component Design November 30, 2012

Feature Requirements

RF1 - Customizable user dashboard UI13 - Customizable user dashboard

RF2 - “Your History” box as part of the
user dashboard

UI3 - History of own activities in the archive

RF3 - “Share” option in “Your History”
box

UI14 - Subscribe and navigate activities of
other users

RF4 - Bibformat output templates to
display blogs and blog posts differently

DR11 - Differentiate between blog and blog
post

RF5 - The web interface provides har-
monized access and ensures compatibility
with major browsers

UI1 - Web Interface
FR37 - Web portal
FR43 - Access to content in a harmonized
way

RF6 - Latest posts are displayed sorted
by addition date

UI6 - Latest posts

RF7 - Export data using the OAI-PMH
protocol

IR4 - Expose parts of the archive via OAI-
PMH based on specified criteria
IR6 - Facilities to enable interoperability

RF8 - Export data in Dublin Core schema

IR3 - Export data using OAI-PMH protocol
and Dublin Core schema
IR6 - Facilities to enable interoperability

RF9 - The archive stores and displays
accordingly all record metadata received
from the spider

DR17 - Metadata for blogs
DR21 - Long term digital preservation

RF10 - Archive user passwords are stored
encrypted in the database

SR1 - Passwords are stored encrypted

RF11 - The web interface is available in
many different languages

FR46 - Internationalization
UI29 - Multiple language support

RF12 - The archive can import METS

DR22 - METS
IR6 - Facilities to enable interoperability
DR21 - Long term digital preservation
OP2 - OAIS

RF13 - UTF-8 is used as the default
character encoding in the archive

FR51 - UTF8 the default character encoding
DR21 - Long term digital preservation

RF14 - Descriptive statistics are offered
by record

FR3 - Descriptive statistics for the archive
DR15 - Visits of blogs and blog posts
FR5 - Descriptive statistics for a single blog
or blog post
DR12 - Demographics

RF15 - Option to disseminate archive
content in major social web platforms

FR7 - User dissemination channels for blog
post
UI16 - Easy to learn/Intuitive
UI28 - Integration/Combination with other
systems

BlogForever Consortium 58

D4.4: Digital Repository Component Design November 30, 2012

RF16 - The archive offers an RSS channel
of its latest updates and/or users can
receive notification when new content of
their interest is added to the archive

FR12 - Notification about changes in the
archive
UI16 - Easy to learn/Intuitive
UI28 - Integration/Combination with other
systems

RF17 - The archive displays a disclaimer
about the originality of the content

UI21 - Archived content is clearly stated as
such
DR3 - Disclaimer
UI16 - Easy to learn/Intuitive

RF18 - The archive detects duplicated
content and keeps only one copy

FR23 - Detection of duplicates
DR21 - Long term digital preservation

RF19 - The archive can be indexed by
external search engines

EI4 - Accessible via search machines

RF20 - The archive’s statistics are ex-
ported as CSV

EI5 - Export as CSV
UI28 - Integration/Combination with other
systems

RF21 - The archive offers the option to
login using SSO/LDAP

IR1 - Single Sign On/Interoperates with
Authentication System especially LDAP

RF22 - “Your Preferences” box as part of
the user dashboard

UI33 - User profiles
UI16 - Easy to learn/Intuitive

RF23 - The archive stores the comments
of blog posts and displays them as part of
the blog posts

DR13 - Comments
DR21 - Long term digital preservation
FR54 - What to archive: text and comments

RF24 - Links to other sources within
blog posts and comments are displayed
separately

UI17 - Display references (links) to other
sources inside or outside the archive
UI16 - Easy to learn/Intuitive

RF25 - The archive displays the tags of
blogs and blog posts

UI7 - Tags for blogs and blog posts

RF26 - BlogUploader command line to
upload, update and delete a list of blogs

FR15 - Selection of blogs to archive
UI16 - Easy to learn/Intuitive

RF27 - The archive displays a unique
URL (DOI) for each record

DR2 - URI and metadata for referencing/c-
iting
IR8 - Digital Object Identifier
IR6 - Facilities to enable interoperability

RF28 - The archive displays the author
of blog posts and comments

DR4 - Display the author of the blog, blog
post, comment

RF29 - The archive alerts users when
there are software updates

SM2 - Software updates

RF30 - Users are able to bookmark
records, also using external bookmarking
engines

FR10 - Bookmarking of blog posts
UI16 - Easy to learn/Intuitive

BlogForever Consortium 59

D4.4: Digital Repository Component Design November 30, 2012

RF31 - The archive offers a complete blog
submission interface to submit, modify
and delete blogs/posts

FR32 - Add user suggested blogs to the
archive
UI34 - Simple submission by authors
UI35 - Workflow to manage blog submis-
sions
FR1 - Deletion by the blog author
OP2 - OAIS
DR21 - Long term digital preservation

RF32 - Users are able to remove their
personal data

DR18 - Remove private data of archive users

RF33 - The archive can display only the
very core information for each record

UI8 - Overview with metadata and summary
UI24 - Display with only core information
UI22 - Density of displayed information

RF34 - The archive displays and suggests
similar records to the user

UI19 - Display similar blogs and posts

RF35 - The archive displays other blogs
that were viewed by people who also
viewed the current blog

UI20 - Display blogs that were read by
people who have read a specific blog

RF36 - The archive identify and stores
the topic of blogs and blog posts to let
users navigate through the archive by
topic

FR34 - Topic/Subject detection
UI23 - Categories/Topics are shown in
different tabs
FR8 - Topics (Categories) for blogs and blog
posts

RF37 - The archive restricts the access to
its content to specific IP ranges

SR2 - Access restricted to IP range

RF38 - Users can communicate within
the archive sharing and exchanging re-
sources

UI30 - Creation of a community of providers
and recipients within the archive platform
FR19 - Sharing and collaboration

RF39 - Free open-source archive software
LR5 - Open source software license is
preferable

RF40 - The archive validates the content
received from the spider

RA2 - Correct information in the archive
FR47 - Data integrity
DR21 - Long term digital preservation
OP2 - OAIS

RF41 - The archive detects and elimi-
nates spam content

FR42 - Weblog content validation and spam
filtering

RF42 - The archive extracts bibliographic
metadata from content embedded in blogs

FR30 - Extract bibliographic metadata from
blog contents

RF43 - For each record the archive stores
the search keywords used to find them

DR16 - Search key words
UI15 - Search interface

RF44 - The archive enables pingback/-
trackback services

EI3 - Pingback, Trackback

RF45 - The archive is able to inter-
operate with federated search engine db-
wiz (SRU Server)

IR5 - Connection with federated search
engine dbwiz

BlogForever Consortium 60

D4.4: Digital Repository Component Design November 30, 2012

RF46 - Users can create personal collec-
tions of their favorite blogs

FR20 - Favorite list of blogs and topics
UI16 - Easy to learn/Intuitive

RF47 - Description of how to cite
archived records is presented prominently
with each record.

UI5 - Citation is presented prominently
UI16 - Easy to learn/Intuitive

RF48 - The archive provides the option
to translate its content on demand

FR9 - Content translation

RF49 - The archive distinguishes institu-
tional/corporate blogs from personal blogs

DR19 - Distinguish institutional/corporate
blogs from personal blogs

RF50 - The archive offers the option
to disseminate newly archived content in
external social platforms

FR33 - Dissemination of newly archived
items in external social platforms (ex. Twit-
ter) in connection with author profiles

RF51 - The archive is able to search
within external sources

UI18 - Search in external sources

RF52 - Users can tag archived records
with personal tags

UI32 - Tagging system

RF53 - The archive respects content
licenses and displays useful information
about them

DR1 - Rights and Licenses
LR1 - Copyright laws
LR2 - Privacy laws
LR3 - Additional national laws
LR4 - License of the content
DR23 - Mashup activities
FR39 - Digital rights management

RF54 - The archive keeps all the different
versions of a record

OP1 - Versioning
DR21 - Long term digital preservation

RF55 - The archive provides advanced
APIs for developers to interact with the
archive’s content

OP3 - APIs for developers

RF56 - The archive provides a journal
view of the new blog posts

FR22 - Summaries/Journals about new
archive content
UI2 - Magazine/Journal view
UI16 - Easy to learn/Intuitive

RF57 - The archive provides a ranking
method based on the user rating of con-
tent

FR11 - Recommendation system
UI31 - Ranking of archived posts
FR27 - Ranking of blogs and blog posts

RF58 - A user can rank archived content
based on specific users’ content rating

FR11 - Recommendation system
UI31 - Ranking of archived posts
FR27 - Ranking of blogs and blog posts

RF59 - Export data using XML

EI1 - API for external clients to query data
EI2 - Data access/export as XML
FR4 - Blog export
IR6 - Facilities to enable interoperability
UI28 - Integration/Combination with other
systems

BlogForever Consortium 61

D4.4: Digital Repository Component Design November 30, 2012

RF60 - The archive can export all its
content, database entries and file system
for migration

SM3 - Data export for migration

RF61 - The archive ranks blogs based on
their views and downloads

FR31 - Define important blogs and filter
junk
FR27 - Ranking of blogs and blog posts

RF62 - Export records as PDF and JPEG

FR17 - Print/Export as PDF, JPEG
IR6 - Facilities to enable interoperability
UI28 - Integration/Combination with other
systems

RF63 - The archive keeps snapshots of all
the different designs of a blog

FR53 - Snapshot versions of blog designs in
the archive

RF64 - The archive offers the option to
login using external (universal) credentials

FR55 - Universal Login and central login

RF65 - The archive analyzes blog links
and stores the connections between them
separately

DR9 - Connections/Links

RF66 - The archive provides a histori-
cal/chronological blogs navigation

UI11 - Historical/Chronological view on a
blog
UI26 - Historical/Chronological view on
blogs combined with corresponding statistics

RF67 - The archive fetches and stores
embedded content

FR54 - What to archive: text and comments
DR14 - Embedded objects

RF68 - The archive provides information
diffusion analysis mechanisms

FR36 - Memetraking and trend detection

RF69 - The archive facilitates searching
by providing fuzzy indexing and stemming

FR38 - Multidimensional indexing
UI15 - Search interface

RF70 - The archive can provide services
under some cost using a billing system

FR40 - Billing system
FR25 - Paid access/Billing system

RF71 - The archive provides a personal-
ized annotating and highlighting tool for
users

UI12 - Annotations and Highlighting

RF72 - The archive provides a visualiza-
tion of the blogs network structure

FR18 - Analyze the network structure of
blogs
UI9 - Network view on topics, blogs, posts,
authors, etc.
UI27 - Dynamic network view on topics,
blogs, posts, etc.
EI6 - Export links between blog content

RF73 - The archive recommends blogs to
users based on the ratings and preferences

FR28 - Recommend a cluster of blogs
according to user preferences

RF74 - The archive enables/disables cer-
tain functionalities based on the content
rights

UI10 - Available services depend on the
content rights

BlogForever Consortium 62

D4.4: Digital Repository Component Design November 30, 2012

RF75 - The archive can do sentiment
analysis on the content

FR21 - Sentiments analysis on blog post
level

RF76 - The archive detects content’s
originality and ranks it accordingly

FR35 - Detection and ranking of the origi-
nality
UI31 - Ranking of archived posts
FR27 - Ranking of blogs and blog posts

RF77 - The archive provides a mobile
version

UI14 - User interface for mobiles
UI16 - Easy to learn/Intuitive

RF78 - The archive displays content after
filtering it with user preferences

UI25 - Filtered, personalized aggregation of
content for end-users
FR45 - Personalized filtering services

RF79 - The archive can handle a very
large number of content and users

CS1 - Amount of archived blogs
CS2 - Amount of blog posts per day
CS3 - Amount of users
PR2 - Storage data concurrently
PR1 - Amount of blog posts to capture
CS4 - Clustering and high availability
architectures

RF80 - The archive provides mechanisms
to control data redundancy

SP2 - Mechanisms to avoid data loss
RA1 - Recovery of the system
SM1 - Migration/Updating without down
time

RF81 - The archive is built based on a
modular service-oriented architecture

CS5 - Modularity

RF82 - The archive can be deployed
using a range of different database server
technologies

SP1 - Support for different SQL-data bases

RF83 - The archive provides multiple
different views of the archive for each user

FR24 - User specific collections/projects

RF84 - The archive offers a complete
range of search options to the user

FR16 - Search by author
FR13 - Keyword/Metadata search
FR14 - Full-text search
FR44 - Advanced searching
FR26 - Context-sensitive search by keyword
UI16 - Easy to learn/Intuitive
UI15 - Search interface

RF85 - The archive provides support for
OpenURL

IR7 - Open URL support
IR6 - Facilities to enable interoperability

RF86 - The archive offers functions to
edit metadata

DR17 - Metadata for blogs
DR21 - Long term digital preservation
OP2 - OAIS

RF87 - The archive transforms the SIPS
received from the spider to AIPS

DR17 - Metadata for blogs
DR21 - Long term digital preservation
OP2 - OAIS

BlogForever Consortium 63

D4.4: Digital Repository Component Design November 30, 2012

RF88 - The archive stores the content of
the AIPS in two different databases for
preservation purposes

RA2 - Correct information in the archive
PR2 - Storage data concurrently
DR21 - Long term digital preservation
OP2 - OAIS

RF89 - The archive carries out the
normalization and/or migration of the
media attachments

DR21 - Long term digital preservation
OP2 - OAIS

Table 5.1: Features/Requirements

5.2 Feature specifications list

A functional specification does not define the inner workings of the proposed system;
it does not include the specification of how the system function will be implemented.
Instead, it focuses on what various agents outsides (people using the program,
computer peripherals, or other computers, for example) might “observe” when
interacting with the system. A typical functional specification might state the
following: “When the user clicks the OK button, the dialogue is closed and the
focus is returned to the main window in the state it was in before this dialogue was
displayed.” One of the primary purposes for functional specifications is to decide
on what the program is to achieve before making the more time-consuming effort of
writing source code and test cases, followed by a period of debugging. In prototypical
systems development, functional specifications are typically written after or as part
of requirements analysis. After this, typically the software development and testing
team write source code and test cases using the functional specification as the
reference. While testing is performed, the behaviour of the program is compared
against the expected behaviour, as defined in the functional specification.

Therefore, following the methodology described above, once we had defined the
whole list of features showed in the previous Section 5.1, we wrote the corresponding
functional specification and the expected software behaviour for each of them.
In order to simplify the work of writing these specifications and to make their
presentation more clear to the reader, a template was designed. This template is
presented in Table 5.2.

BlogForever Consortium 64

D4.4: Digital Repository Component Design November 30, 2012

Field Description

Feature ID Short feature identifier: RFXX (Repository Feature XX)

Name One sentence clear enough to make someone who has already read
the specification remember the description

Priority The priority is set taking into consideration the priority of
the requirements associated and the use case it is included in.
(Possible values: High/Medium/Low)

Effort Expected implementation time (Possible values: Days/Weeks/-
Months)

Components Invenio modules affected

Requirements Requirements related to the feature according to table 5.1

Description High level description of the feature

Logical constraints Basic high level technical details and logical constraints

Notes and questions Other comments/suggestions

Assigned to Person or partner in charge of the development

Table 5.2: Feature specification template

Having said this, in Sections 5.2.1, 5.2.2 and 5.2.3 will be presented each of the
features specifications that have been written, listing them by priority:

1. High priority features: Implies that the software will not be acceptable unless
these features are provided in an agreed manner

2. Medium priority features: Implies that these are features that would enhance
the software product, but would not make it unacceptable if they are absent

3. Low priority features: Implies a class of functions that may or may not be
worthwhile. This gives the supplier the opportunity to propose something that
exceeds the Software Requirements Specification.

Given that some features were already available in Invenio out-of-the-box or needed
only a small customization from the administrator side (but no development), it
was decided to fill their templates as follows:

• Since there is no development needed, the “Effort” field will read “Already in
Invenio”.

• For the same reason, the “Assigned to” field will be empty.

• The “Components” field will reflect roughly which Invenio modules offer this
functionality.

BlogForever Consortium 65

D4.4: Digital Repository Component Design November 30, 2012

5.2.1 High priority features

Feature ID RF4

Name
Bibformat output templates to display blogs and blog
posts differently

Priority High
Effort Days
Components BibFormat
Requirements DR11 - Differentiate between blog and blog post

Description

A different Bibformat template will be designed and
developed to display blogs and blog posts. Therefore,
new Bibformat elements should be created to build these
templates.

Logical Constraints

The blog template should contain:

• Title and url of the corresponding blog

• All the blog posts of the blog (with option “Show
all posts/Show less posts”)

The post blog template should contain:

• Title of the corresponding blog post

• All the comments of the blog post (with option
“Show all comments/Show less comments”)

• Url of the parent blog

• Navigation menu containing all the other blog
posts that belong to the same blog

Notes and Questions
Assigned to CERN

Table 5.3: Feature RF4

Feature ID RF5

Name
The web interface provides harmonized access and
ensures compatibility with major browsers

Priority High
Effort Days
Components BibFormat

Requirements
UI1 - Web Interface
FR37 - Web portal
FR43 - Access to content in a harmonized way

BlogForever Consortium 66

D4.4: Digital Repository Component Design November 30, 2012

Description

Blogs and blog posts should have a common way of being
displayed since different blogs may have different layouts
and different menu structure and this could confuse
users.

Logical Constraints
Blogs and blog posts Bibformat templates will be quite
similar.

Notes and Questions
Assigned to CERN

Table 5.4: Feature RF5

Feature ID RF6
Name Latest posts are displayed sorted by addition date
Priority High
Effort Weeks
Components WebSearch, WebColl
Requirements UI6 - Latest posts

Description
The goal of this feature is to create general infrastructure
where latest addition lists can be made easily customiz-
able by administrators.

Logical Constraints

• We can have various latest addition listing algo-
rithm living as small Python files in a plugin di-
rectory such as “Sort by addition date”, “Sort by
title”, etc.

• New database table “collection latestadditions”
will permit admins to decide which lister plugin
will be used for which collection

• WebSearch Admin UI should be enhanced to allow
such configuration

Notes and Questions
Assigned to CERN

Table 5.5: Feature RF6

Feature ID RF7
Name Export data using the OAI-PMH protocol
Priority High
Effort Already in Invenio
Components OAIHarvest

Requirements
IR4 - Expose parts of the archive via OAI-PMH based
on specified criteria
IR6 - Facilities to enable interoperability

BlogForever Consortium 67

D4.4: Digital Repository Component Design November 30, 2012

Description

The repository metadata will be exported using the
OAI-PMH protocol. Other machines will be able to
download metadata by giving the appropriate com-
mands using an HTTP request.

Logical Constraints

An XSLT (Extensible Stylesheet Language Transforma-
tions) template to make the XML output more human-
readable will be used when displaying the metadata in
a browser.

Notes and Questions

The metadata will be able to be exported in both MARC
and DC formats.
Example of how to use it: http://cdsweb.cern.ch/oai2d?
verb=ListRecords&metadataPrefix=oai dc

Assigned to
Table 5.6: Feature RF7

Feature ID RF8
Name Export data in Dublin Core schema
Priority High
Effort Already in Invenio
Components BibExport, BibConvert

Requirements
IR3 - Export data using OAI-PMH protocol and Dublin
Core schema
IR6 - Facilities to enable interoperability

Description
The repository will be able to transform the metadata to
Dublin Core schema and include it as an export option
in the web interface as well as in OAI-PMH (see RF7)

Logical Constraints
There has to be a mapping between the MARC tags and
Dublin Core tags.

Notes and Questions
Assigned to

Table 5.7: Feature RF8

Feature ID RF9

Name
The archive stores and displays accordingly all record
metadata received from the spider

Priority High
Effort Weeks
Components BibUpload, BibFormat

Requirements
DR17 - Metadata for blogs
DR21 - Long term digital preservation

BlogForever Consortium 68

http://cdsweb.cern.ch/oai2d?verb=ListRecords&metadataPrefix=oai_dc
http://cdsweb.cern.ch/oai2d?verb=ListRecords&metadataPrefix=oai_dc

D4.4: Digital Repository Component Design November 30, 2012

Description

A pre-ingestion plugin should be implemented in order
to extract the MARC metadata embedded in the METS
files produced by the spider, and to enrich this MARC
metadata with the schema used by Invenio.
This pre-ingestion process will be executed before
calling BibUpload.

Once BibUpload finishes, all the blog metadata
are stored into the repository and ready to be displayed
to the user.

Logical Constraints
Notes and Questions
Assigned to CERN

Table 5.8: Feature RF9

Feature ID RF10

Name
Archive user passwords are stored encrypted in the
database

Priority High
Effort Already in Invenio
Components WebSession, WebAccess
Requirements SR1 - Passwords are stored encrypted

Description
User passwords should be stored into the database
encrypted using some industry-standard cipher, such as
the Message-Digest Algorithm 5 (MD5).

Logical Constraints
Notes and Questions
Assigned to

Table 5.9: Feature RF10

BlogForever Consortium 69

D4.4: Digital Repository Component Design November 30, 2012

Feature ID RF11

Name
The web interface is available in many different lan-
guages

Priority High
Effort Already in Invenio
Components MiscUtil

Requirements
FR46 - Internationalization
UI29 - Multiple language support

Description
The BlogForever repository should be support all the
European Languages, therefore, users can easily switch
to the language of their choice in the interface.

Logical Constraints
Notes and Questions
Assigned to

Table 5.10: Feature RF11

Feature ID RF12
Name The archive can import METS
Priority High
Effort Days
Components BibUpload

Requirements

DR22 - METS
IR6 - Facilities to enable interoperability
DR21 - Long term digital preservation
OP2 - OAIS

Description
The archive should be able to import the METS files
produced by the spider (see RF9)

Logical Constraints
Notes and Questions
Assigned to CERN

Table 5.11: Feature RF12

Feature ID RF13

Name
UTF-8 is used as the default character encoding in the
archive

Priority High
Effort Already in Invenio
Components All modules

Requirements
FR51 - UTF8 the default character encoding
DR21 - Long term digital preservation

Description

The default character encoding used in the archive
should be UTF-8 (UCS Transformation Format—8-bit)
in order to be able to represent every character in the
Unicode character set.

BlogForever Consortium 70

D4.4: Digital Repository Component Design November 30, 2012

Logical Constraints
Notes and Questions
Assigned to

Table 5.12: Feature RF13

Feature ID RF15

Name
Option to disseminate archive content in major social
web platforms

Priority High
Effort Already in Invenio
Components WebStyle

Requirements
FR7 - User dissemination channels for blog post
UI16 - Easy to learn/Intuitive
UI28 - Integration/Combination with other systems

Description
In the detailed view of a records there will be a series of
buttons to allow users to share a link to the record they
are viewing.

Logical Constraints

At least the following sharing options will be avail-
able: email, LinkedIn, Twitter, Facebook, Google and
del.icio.us
The respective APIs of the different platforms will be
used in the implementation.

Notes and Questions
Assigned to

Table 5.13: Feature RF15

Feature ID RF16

Name
The archive offers an RSS channel of its latest updates
and/or users can receive notification when new content
of their interest is added to the archive

Priority High
Effort Already in Invenio
Components

Requirements
FR12 - Notification about changes in the archive
UI16 - Easy to learn/Intuitive
UI28 - Integration/Combination with other systems

BlogForever Consortium 71

D4.4: Digital Repository Component Design November 30, 2012

Description

A user of the archive should be able to subscribe to
blogs or topics s/he is interested in, and gets notified
when new content is added to those blogs and/or topics.

Invenio already offers an RSS feed per collection,
so users are notified when new content comes to any of
the collections they subscribed to. Therefore, for topics
it should be exactly the same, there will be an RSS
feed per topic (which actually are collections), in a way
that users could subscribe to them and then receive
notifications when new content is added to any of those
topics. On the other hand, in the case of blogs, there
will not be an RSS feed per blog, but users will be able
to set alerts specifying the blog/s from they would like
to receive notification of latest updates.

Logical Constraints
Notes and Questions
Assigned to CERN

Table 5.14: Feature RF16

Feature ID RF17

Name
The archive displays a disclaimer about the originality
of the content

Priority High
Effort Days
Components WebStyle

Requirements
UI21 - Archived content is clearly stated as such DR3 -
Disclaimer UI16 - Easy to learn/Intuitive

Description
A disclaimer will be displayed in every detailed record
page saying that the corresponding blog, post, page or
comment, is just an archived copy of the original one.

Logical Constraints
A link to the the original element (Blog, Blog Post,
Comment, Page) will be displayed.

Notes and Questions
Assigned to CERN

Table 5.15: Feature RF17

Feature ID RF18

Name
The repository detects duplicated content and keeps
only one copy

Priority High
Effort Days
Components BibMatch

BlogForever Consortium 72

D4.4: Digital Repository Component Design November 30, 2012

Requirements
FR23 - Detection of duplicates
DR21 - Long term digital preservation

Description

Duplicates of any content will be automatically detected
and only one copy of this content will be kept in the
repository. This will be done by re-using the existing
command-line tool in Invenio called BibMatch.
BibMatch matches bibliographic data in a MARCXML
file against the database content. With a MARCXML
input file, the produced output shows a selection
of records in the input that matches the database
content. Therefore, it is possible to identify potential
duplicate entries before they are uploaded in a database.

This tool offers flexible matching options such as:

1. print-new, (the default behaviour) which will print
out unmatched records

2. print-match, which will print out matched records

3. print-ambiguous, which will print out records that
matches more than one existing record

4. print-fuzzy, which will print out records that match
the longest words in existing records

In our case we will have a BibMatch daemon that will
be run in the background periodically in a way that
duplicates are detected and only one copy of these
records is kept into the repository.

Logical Constraints
Notes and Questions
Assigned to CERN

Table 5.16: Feature RF18

Feature ID RF19
Name The archive can be indexed by external search engines
Priority High
Effort Already in Invenio
Components WebSearch, Bibindex
Requirements EI4 - Accessible via search machines

Description
In order to facilitate external search engines indexing,
several techniques are recommended.

BlogForever Consortium 73

D4.4: Digital Repository Component Design November 30, 2012

Logical Constraints

• Expose the metadata, using direct links in the
record detailed view.

• Use site maps that let the external search engine
better understand the structure of the web site.

• Include tags like GoogleScholar in the header.

Notes and Questions
Assigned to

Table 5.17: Feature RF19

Feature ID RF20
Name The archive’s statistics are exported as CSV
Priority High
Effort Already in Invenio
Components WebStat

Requirements
EI5 - Export as CSV
UI28 - Integration/Combination with other systems

Description
The usage statistics associated to the collections should
be computed and exported as CSV (Comma-Separated
Values) files.

Logical Constraints

The platform should be able to create usage data
associated to the collections and be able to display the
datasets in a standardized and reliable way onto CSV
files. The users are able to download the corresponding
CSV file from the repository interface.

Notes and Questions Only for admin statistics
Assigned to

Table 5.18: Feature RF20

Feature ID RF23

Name
The archive stores the comments of blog posts and
displays them as part of the blog posts

Priority High
Effort Days
Components BibFormat

Requirements
DR13 - Comments
DR21 - Long term digital preservation
FR54 - What to archive: text and comments

BlogForever Consortium 74

D4.4: Digital Repository Component Design November 30, 2012

Description

The blog post bibformat template should be enriched
with a new bibformat element in order to obtain all the
comment records of a specific blog post and, therefore,
display them to the user together with the specific blog
post.

Logical Constraints
Notes and Questions
Assigned to CERN

Table 5.19: Feature RF23

Feature ID RF25
Name The archive displays the tags of blogs and blog posts
Priority High
Effort Days
Components BibFormat
Requirements UI7 - Tags for blogs and blog posts

Description
The blog post and blog bibformat templates should
be enriched with a new bibformat element in order to
obtain all the tags associated to them.

Logical Constraints
Notes and Questions
Assigned to CERN

Table 5.20: Feature RF25

Feature ID RF26

Name
BlogUploader command line to upload, update and
delete a list of blogs

Priority High
Effort Days
Components WebBlog

Requirements
FR15 - Selection of blogs to archive
UI16 - Easy to learn/Intuitive

Description
A new command line tool should be implemented in
order to let admins to edit a list of blogs and to insert,
delete or update them into the archive.

BlogForever Consortium 75

D4.4: Digital Repository Component Design November 30, 2012

Logical Constraints

• The following modes should be offered:

– insert list of blogs: -i, –blog insert

– delete list of blogs: -d, –blog delete

– update list of blogs: -U, –blog update

• The input file could be a CSV file where the data
to be included depends on the mode:

– Insert: url,[title],topic,license

– Delete: url

– Update: url,[title],topic,license

Notes and Questions
Assigned to CERN

Table 5.21: Feature RF26

Feature ID RF27

Name
The archive displays a unique URL (DOI) for each
record

Priority High
Effort Already in Invenio
Components BibUpload, MiscUtil

Requirements
DR2 - URI and metadata for referencing/citing
IR8 - Digital Object Identifier
IR6 - Facilities to enable interoperability

Description

Digital Object Identifier (DOI) is a permanent identifier
given to an electronic resource that, in contrast to a
URL, does not depend on the electronic document’s
location.

Logical Constraints

Records will be stamped with DOIs in their metadata,
and this information will be ready to be indexed allowing
users and external machines to search digital objects by
DOI.

Notes and Questions The MARC tag to be used may be the 0247a.
Assigned to

Table 5.22: Feature RF27

Feature ID RF28

Name
The archive displays the author of blog posts and
comments

Priority High
Effort Days

BlogForever Consortium 76

D4.4: Digital Repository Component Design November 30, 2012

Components BibFormat

Requirements
DR4 - Display the author of the blog, blog post,
comment

Description
The blog post and comment bibformat templates should
be enriched with a new bibformat element in order to
display the author.

Logical Constraints
The author will be displayed as a link in such way that
a search by author is triggered by clicking on it.

Notes and Questions
Assigned to CERN

Table 5.23: Feature RF28

Feature ID RF29

Name
The archive alerts the user when there are software
updates

Priority High
Effort Days
Components WebSession
Requirements SM2 - Software updates

Description
When the system is updated, the users should be
informed about the update and they should be able to
see change-log.

Logical Constraints

• A warning about system’s last update will appear
on the users’ your account page when the users log
in.

• The change-log will be displayed in your account
page too or there will be a link that directs the
users to the page displaying the details of the
update.

• The changes will be specified in a manner that the
user will be able to understand easily what are the
changes.

Notes and Questions
Assigned to SRDC

Table 5.24: Feature RF29

Feature ID RF39
Name Free open-source archive software
Priority High
Effort Already in Invenio

BlogForever Consortium 77

D4.4: Digital Repository Component Design November 30, 2012

Components All modules
Requirements LR5 - Open source software license is preferable

Description
The BlogForever repository should be licensed under an
open source software license license. This should be
stated on the website and in the source code.

Logical Constraints
Notes and Questions
Assigned to

Table 5.25: Feature RF39

Feature ID RF40

Name
The archive validates the content received from the
spider

Priority High
Effort Days
Components BibIngest

Requirements

RA2 - Correct information in the archive
FR47 - Data integrity
DR21 - Long term digital preservation
OP2 - OAIS

Description

The repository stores the information correctly as users
can found it in the original blog. In order to be sure
that this is done properly, the repository will validate
all the information coming from the spider by using
the cryptographic hash function MD5 (Message-Digest
Algorithm 5).

In case the repository finds that any content coming
from the spider has not the same MD5 hash, an alert
will be sent to the spider communicating that something
was wrong and the content should be sent again to the
repository.

Logical Constraints The validation will be done at pre-ingestion time.
Notes and Questions
Assigned to CERN

Table 5.26: Feature RF40

Feature ID RF41
Name The archive detects and eliminates spam content
Priority High
Effort Months
Components BibUpload
Requirements FR42 - Weblog content validation and spam filtering

BlogForever Consortium 78

D4.4: Digital Repository Component Design November 30, 2012

Description

The repository checks new records to specify if they
can be classified as spam. The record URI is used for
checking against popular online services providing an
API for this purpose. If a record is identified as spam,
it is flagged by adding a specific element to its metadata.
The following 3rd party services will be used for spam
identification:

• http://www.spamhaus.org/

• http://www.phishtank.com/

• http://www.uribl.com/

• http://www.surbl.org/

Logical Constraints
The classification will take place only once, right after
ingestion

Notes and Questions
Assigned to AUTH

Table 5.27: Feature RF41

Feature ID RF47

Name
Description of how to cite archived records is presented
prominently with each record.

Priority High
Effort Days
Components BibFormat

Requirements
UI5 - Citation is presented prominently
UI16 - Easy to learn/Intuitive

Description
A user needs to link and cite the content of the archive.
Therefore, the way how to link and how to cite a record
should be presented prominently with the content.

BlogForever Consortium 79

http://www.spamhaus.org/
http://www.phishtank.com/
http://www.uribl.com/
http://www.surbl.org/

D4.4: Digital Repository Component Design November 30, 2012

Logical Constraints

• A new bibformat element should be created which
will display the description of how users should cite
any content of the archive.

• Citation description for blogs will read: “ti-
tle”(record creation date). record url Retrieved
from the original “original url”

• Citation description for blog posts will
read: author. “title”. Blog: “blog title”.
(record creation date). record url Retrieved from
the original “original url”

• Citation description for comments will
read: author. Blog post: “blog title”.
(record creation date). record url Retrieved
from the original “original url”

Notes and Questions
Assigned to CERN

Table 5.28: Feature RF47

Feature ID RF53

Name
The archive respects content licenses and displays useful
information about them

Priority High
Effort Weeks
Components WebSearch, BibFormat, WebBlog

Requirements

DR1 - Rights and Licenses
LR1 - Copyright laws
LR2 - Privacy laws
LR3 - Additional national laws
LR4 - License of the content
DR23 - Mashup activities
FR39 - Digital rights management

Description

The system should respect any content license informa-
tion. Therefore, the archive should detect, store, pre-
serve and display to the user all digital rights and au-
thority information on the blog content.

BlogForever Consortium 80

D4.4: Digital Repository Component Design November 30, 2012

Logical Constraints

• License information should be displayed to users
every time they views a blog detailed record

• The user will be able to view copyright information
of the content

• The archive will follow copyright laws on both
international and national level

• The archive will follow privacy and data protection
laws

• The archive will respect any additional laws of
organizations or authorities in the country in which
the archive is running

• The archive will respect the license under which
the content is published

• Content from other sources should be identified
and associated with a disclaimer around copyright
infringement to protect the archive and hosting
institution, which can be easily found by the user

• The platform will support a fully functional and
robust Digital Rights Management (DRM) system

• The system will support Open Digital Rights
Language (ODRL), which is supported by the
W3C

Notes and Questions
List of licenses to be discussed. Suggestion: Cre-
ative Common Licenses, http://creativecommons.org/
licenses/

Assigned to CERN
Table 5.29: Feature RF53

Feature ID RF54
Name The archive keeps all the different versions of a record
Priority High
Effort Days
Components BibIngest

Requirements
DR21 - Long term digital preservation
OP1 - Versioning

Description

Versioning will be enabled for every data object stored in
the digital repository. When any data object is modified,
a new version of it will be kept in the ingestion database
storage. Therefore, the repository will store all the
different versions of all the data objects.

BlogForever Consortium 81

http://creativecommons.org/licenses/
http://creativecommons.org/licenses/

D4.4: Digital Repository Component Design November 30, 2012

Logical Constraints

• This feature should be covered within the
BibIngest module by adding a new parameter
called version to the usage settings.

• As ingestion database storage we could use
mongoDB.

Notes and Questions
Assigned to CERN

Table 5.30: Feature RF54

Feature ID RF55

Name
The archive provides advanced APIs for developers to
interact with the archive’s content

Priority High
Effort Already in Invenio
Components All modules
Requirements OP3 - APIs for developers

Description

The repository should provide APIs for developers to
interact with weblog data in order to read and write
data, configure the repository and perform maintenance
actions.

Logical Constraints
Notes and Questions
Assigned to

Table 5.31: Feature RF55

Feature ID RF66

Name
The archive provides a historical/chronological naviga-
tion

Priority High
Effort Weeks
Components WebSearch

Requirements
UI11 - Historical/Chronological view on a blog
UI26 - Historical/Chronological view on blogs combined
with corresponding statistics

Description

The user will be able to navigate a blog’s content and
layout through its timeline and display it as it was in a
specific date. The navigation will be possible through a
slider.

BlogForever Consortium 82

D4.4: Digital Repository Component Design November 30, 2012

Logical Constraints

• The user will be able to navigate a blog’s timeline
using a slider that is provided in the detailed record
page

• When the user adjust the slider in a particular
date, the system will display:

– blog posts

– comments

that were published at that date and the corre-
sponding snapshot of the layout of blog

Notes and Questions
Assigned to CERN

Table 5.32: Feature RF66

Feature ID RF69

Name
The archive facilitates searching by providing fuzzy
indexing and stemming

Priority High
Effort Months
Components BibIndex, WebSearch

Requirements
FR38 - Multidimensional indexing
UI15 - Search interface

Description

The user should be able to retrieve any record that
is likely to be relevant to his search arguments. The
results should be records that contain either the exact
arguments or similar spelling variations.

Logical Constraints

• The user should have the option to rank the dis-
played returned results according to the similarity
between the search arguments and the words con-
tained in results

• The user should have the option to search in-
tentionally a truncated term in order to retrieve
records that contain variations of this term

Notes and Questions
Assigned to CERN

Table 5.33: Feature RF69

BlogForever Consortium 83

D4.4: Digital Repository Component Design November 30, 2012

Feature ID RF70

Name
The archive can provide services under some cost using
a billing system

Priority High
Effort Weeks
Components WebAccess, WebSession

Requirements
FR25 - Paid access/Billing system
FR40 - Billing system

Description

The admin should be able to restrict the collections
with an infinite/finite time interval for some cost.

The users should be able to buy the right to access
restricted collections with their credit cards or PayPal
accounts.

Logical Constraints

• The admin will be able to create premium packages
which contain right to access to one or more
collections with some time interval for some cost.

• The users will not access the restricted collections
without purchasing corresponding premium pack-
age.

Notes and Questions
Assigned to SRDC

Table 5.34: Feature RF70

Feature ID RF79

Name
The archive can handle a very large number of content
and users

Priority High
Effort Already in Invenio
Components All modules

Requirements

CS1 - Amount of archived blogs
CS2 - Amount of blog posts per day
CS3 - Amount of users
PR2 - Storage data concurrently
PR1 - Amount of blog posts to capture
CS4 - Clustering and high availability architectures

BlogForever Consortium 84

D4.4: Digital Repository Component Design November 30, 2012

Description

The number of blogs can vary from some thousands
up to one million or more. Therefore, the archive
should be able to handle large amount of archived blogs.
Moreover, the archive should be able to handle large
amount of daily added blog posts.
The number of the users increases with the increase of
the number of blogs/blog posts, as well. The archive
should also be able to handle large amount of users.

Logical Constraints
The performance of the archive will not be effected by
the number of users and the blogs/blog posts.

Notes and Questions
Assigned to

Table 5.35: Feature RF78

Feature ID RF80

Name
The archive provides mechanisms to control data redun-
dancy

Priority High
Effort Already in Invenio
Components MiscUtil

Requirements
SP2 - Mechanisms to avoid data loss
RA1 - Recovery of the system
SM1 - Migration/Updating without down time

Description

The data should be recoverable. To avoid data loss there
should be periodic or manual backups. A mechanism
that minimizes data redundancy due to backups should
be implemented.

Logical Constraints

The administrator will be able to specify the period of
the backups. The administrator will be able to manually
backup the system. The administrator will be able to
recover the archive by selecting a backup. There may
be an option to backup/recover specific content rather
than the whole.

Notes and Questions
To avoid data redundancy, an incremental backup
strategy may be applied.

Assigned to
Table 5.36: Feature RF80

Feature ID RF81

Name
The archive is built based on a modular service-oriented
architecture

Priority High
Effort Already in Invenio
Components All modules

BlogForever Consortium 85

D4.4: Digital Repository Component Design November 30, 2012

Requirements CS5 - Modularity

Description

The system architecture should be divided in modules
with clear boundaries and well documented interfaces
between them. A module should be easily extracted
from the system or inserted to the system.

Logical Constraints
How to insert a new module or create an API on the
system will be defined clearly.

Notes and Questions
Assigned to

Table 5.37: Feature RF81

Feature ID RF84

Name
The archive offers a complete range of search options to
the user

Priority High
Effort Already in Invenio
Components WebSearch

Requirements

FR16 - Search by author
FR13 - Keyword/Metadata search
FR14 - Full-text search
FR44 - Advanced searching
FR26 - Context-sensitive search by keyword
UI16 - Easy to learn/Intuitive
UI15 - Search interface

Description

The repository will include a very fast search engine
optimized for large repositories (millions of documents)
on simple infrastructures, combining metadata and
fulltext search in a simple Google-like query language.

Advanced users will be also given the opportunity
to perform advanced queries, such as find document
written by Ellis from years 2000 to 2010, mentioning
“higgs boson” in the fulltext, referring to documents
written by Randall, and cited more than 50 times.

BlogForever Consortium 86

D4.4: Digital Repository Component Design November 30, 2012

Logical Constraints

Search modes:

• Simple search: The default search mode is simple
search that basically provides users with one input
box where users can type their query, followed by
a possibility to choose one of the common indexes
to search within.

• Advanced search: The advanced search interface
provides users with explicit tools to play with
such as change the matching type from the default
word matching to phrase searching or the regular
matching, use boolean queries in several indexes,
etc.

Searching techniques:

• Ranges: “->”, e.g.: muon decay year:1983->1992

• Combined searches (metadatafulltext)

• Regular expressions

Notes and Questions
Assigned to

Table 5.38: Feature RF84

Feature ID RF85
Name The archive provides support for OpenURL
Priority High
Effort Already in Invenio
Components WebSearch

Requirements
IR7 - Open URL support
IR6 - Facilities to enable interoperability

Description

OpenURL is a standardized format of Uniform Resource
Locator (URL) intended to enable Internet users to
more easily find a copy of a resource that they are
allowed to access. The OpenURL standard is designed
to enable linking from information resources such as
abstracting and indexing databases (sources) to library
services (targets), such as academic journals, whether
online or in printed or other formats. The linking is
mediated by ”link resolvers”, or ”link-servers”, which
parse the elements of an OpenURL and provide links to
appropriate targets available through a library by the
use of an OpenURL knowledge base.
The repository should offer an OpenURL link resolver
to resolves OpenURL to content directly hosted in the
corresponding repository.

BlogForever Consortium 87

D4.4: Digital Repository Component Design November 30, 2012

Logical Constraints
Notes and Questions
Assigned to CERN

Table 5.39: Feature RF85

Feature ID RF86
Name The archive offers functions to edit metadata
Priority High
Effort Already in Invenio
Components BibEdit

Requirements
DR17 - Metadata for blogs
DR21 - Long term digital preservation
OP2 - OAIS

Description

Content managers are able to edit and enhance meta-
data submitted to the repository by the content provider
and/or the weblog spider.
End-users are able to submit missing metadata and cor-
rections to existing metadata.
Metadata submitted by end-users, content managers,
and content providers will be distinguished, stored, and
managed accordingly to meet the policies of the reposi-
tory.

Logical Constraints

When metadata is edited the database must be updated.
The history of metadata edit to be recorded as prove-
nance metadata in METS.
This feature is inter-linked with RF89

Notes and Questions
The repository must determine how to represent, vali-
date and integrate the three different types of metadata
edit.

Assigned to
Table 5.40: Feature RF86

Feature ID RF87

Name
The archive transforms the SIPS received from the
spider to AIPS

Priority High
Effort Weeks
Components BibUpload, BibIngest

Requirements
DR17 - Metadata for blogs
DR21 - Long term digital preservation
OP2 - OAIS

BlogForever Consortium 88

D4.4: Digital Repository Component Design November 30, 2012

Description

The content of the submitted blog must be transformed
into an Archival Information Package (AIP).
The AIP consists of the following:

1. Parsed blog content.

2. Raw HTML from the blog.

3. Categorised content of the blog.

4. Reference information.

5. Descriptive metadata.

6. Rights metadata.

7. Provenance metadata.

8. Preservation metadata.

9. Fixity information.

10. Packaging information.

Logical Constraints

1. The parsed blog is delivered as XML.

2. The reference information provided as a permanent
URI.

3. The technical metadata is expected to be delivered
using the schemas recommended in Section 3.2.

4. Descriptive metadata is delivered using MAR-
CXML.

5. provenance and preservation metadata including
the fixity information is delivered using PREMIS
and PREMISRights.

6. The package is delivered using METS.

Notes and Questions

The metadata schemas, controlled vocabulary, syntax,
and encoding is further discussed in Section 3.2 and the
deliverable D3.1 [11](Chapter 5 and METS profile and
example drafts included in the Appendix).

Assigned to CERN
Table 5.41: Feature RF87

BlogForever Consortium 89

D4.4: Digital Repository Component Design November 30, 2012

Feature ID RF88

Name
The archive stores the content of the AIPS in two
different databases for preservation purposes

Priority High
Effort Weeks
Components BibIngest

Requirements

RA2 - Correct information in the archive
PR2 - Storage data concurrently
DR21 - Long term digital preservation
OP2 - OAIS

Description

A copy of the MARC metadata (i.e. the descriptive
information) would be stored in the “Main Storage
Database” where it would be processed in order to ex-
tract information and retained for further processing
and output.
The METS file as submitted would be stored in a sepa-
rate “Ingestion Database” for preservation purposes.

Logical Constraints
The information must be updated when metadata is
edited (see RF86).

Notes and Questions
Assigned to CERN

Table 5.42: Feature RF88

Feature ID RF89

Name
The archive carries out the normalization and/or migra-
tion of the media attachments

Priority High
Effort Weeks
Components BibUpload

Requirements
DR21 - Long term digital preservation
OP2 - OAIS

Description

The content manager must be able to specify selected
formats for conversion to target formats (see RF90 and
Section 3.2) included in blog records.
The repository must offer the ability to carry out migra-
tion on access: that is, by HTTP content-negotiation by
clients accessing the content. Additionally, ideally, the
repository should provide the possibility of carrying out
at two additional points: at ingest, as a batch process
after ingest.

BlogForever Consortium 90

D4.4: Digital Repository Component Design November 30, 2012

Logical Constraints

The system must be able to re-direct content specified
by the content manger for conversion at ingest.
The system must be able to redirect content stored in
selected formats specified by the content manager for
conversion.
The system must be able to redirect stored content for
conversion to requested formats upon end-user access.
The system administrator must be able to specify the
tools for converting these formats to target formats.

Notes and Questions
Assigned to CERN

Table 5.43: Feature RF89

5.2.2 Medium priority features

Feature ID RF1
Name Customizable user dashboard
Priority Medium
Effort Weeks
Components WebSession
Requirements UI13 - Customizable user dashboard

Description

The current user informative dashboard of Invenio
(called “Your Account”) will be updated to customiz-
able dashboard. The user will be able to permanently
choose what information is visible in his/ her dashboard,
and if possible in what order. Available information will
include Invenio features such as “Your Baskets”, “Your
Searches”, “Your Messages” etc. It should be relatively
easy for future developers to add new available features.

Logical Constraints

• The user will be able to choose his/her available
features from a drop down menu.

• For each feature the user should be able to:

– add or remove it

– (possibly) adjust its position

– (possibly) adjust its size

• The user’s preferences should be stored perma-
nently

Notes and Questions
Assigned to SRDC

Table 5.44: Feature RF1

BlogForever Consortium 91

D4.4: Digital Repository Component Design November 30, 2012

Feature ID RF2
Name “Your History” box as part of the user dashboard
Priority Medium
Effort Days
Components WebSession
Requirements UI3 - History of own activities in the archive

Description

The user should have the option to add the feature:
“Your Activity” to his/her customizable dashboard.
This feature will gather and display information about
the latest user’s activities within the repository. These
will include activities such as: user searches, user actions
on baskets, user messages etc.

Logical Constraints

• The user will be able to add this feature from a
drop down menu in his/her dashboard.

• The user should be able to

– add this feature

– remove this feature

– (possibly) adjust the feature’s position in the
dashboard

• The user’s preference about this feature should be
stored permanently

Notes and Questions
Assigned to SRDC

Table 5.45: Feature RF2

Feature ID RF3
Name “Share” option in “Your History” box
Priority Medium
Effort Days
Components WebSession
Requirements UI4 - Subscribe and Navigate activities of other users

Description

The user should be able to share his activities within the
archive with other users. Through the “Your Activity”
feature in the user’s customizable dashboard, the option
“Share...” should be available, either as an icon, or a
link. Choosing to share an activity the user should be
able to send a message to any other user within the
archive, mentioning the said activity.

BlogForever Consortium 92

D4.4: Digital Repository Component Design November 30, 2012

Logical Constraints

• The user will be able to click on the “Share...”
option, for each activity

• The “Share...” option will open a dialog where the
user will be able to choose to whom he/she can
share the chosen activity with.

Notes and Questions
Assigned to SRDC

Table 5.46: Feature RF3

Feature ID RF14
Name Descriptive statistics are offered by record
Priority Medium
Effort Weeks
Components WebSession

Requirements

FR3 - Descriptive statistics for the archive
DR15 - Visits of blogs and blog posts
FR5 - Descriptive statistics for a single blog or blog post
DR12 - Demographics

Description

For each record, there should be descriptive statistics
which are:

• the number of visitors, downloads and comments

• overall rating

• who visited record and how often?

• list of records viewed by the users who visited this
record

• which search keywords lead to the record

For generic (platform related) statistics, there should be
the following:

• amount of records and categories

• the number of users, total page view

• most popular records, groups, baskets

• demographic statistics

The usage statistics of each record will be extended
to contain specified categories above. To gather
demographic statistic, the registration form will become
more detailed (e.g., nationality, sex, age, profession)

BlogForever Consortium 93

D4.4: Digital Repository Component Design November 30, 2012

Logical Constraints

• The user will be able to see the statistics from the
“Usage Statistics” tab in each record.

• The user will be able to reach the generic statistics
by visiting “Platform Statistics” page.

Notes and Questions
Assigned to SRDC

Table 5.47: Feature RF14

Feature ID RF21
Name The archive offers the option to login using SSO/LDAP
Priority Medium
Effort Already in Invenio
Components WebAccess

Requirements
IR1 - Single Sign On/Interoperates with Authentication
System especially LDAP

Description

The single sign-on (SSO) property provides access
control to multiple related systems. The secure access
to a Lightweight Directory Access Protocol (LDAP)
repository is required. The system should provide the
corresponding LDAP authentication.

Logical Constraints
The user logs in once and gains access to all systems
without being prompted to log in again at each of them.

Notes and Questions Internal interface requirement.
Assigned to

Table 5.48: Feature RF21

Feature ID RF22
Name “Your Preferences” box as part of the user dashboard
Priority Medium
Effort Days
Components WebSession

Requirements
UI33 - User profiles
UI16 - Easy to learn/Intuitive

Description

Each user in the system should have a user profile and
is able to access this profile via a personal user page.
From the user page, the users should be able to access
all user related pages and set user preferences.

BlogForever Consortium 94

D4.4: Digital Repository Component Design November 30, 2012

Logical Constraints

• The user page will be user friendly and consist of
boxes each of which will be related with one user
action (messages, alerts, searches, history, etc.)

• User preferences and user profile will be taken
into consideration for some actions like similar
blog/record recommendation, user history.

Notes and Questions
Maybe merge with RF1. Another box in the user
dashboard that shows recommended content.

Assigned to SRDC
Table 5.49: Feature RF22

Feature ID RF24

Name
Links to other sources within blog posts and comments
are displayed separately

Priority Medium
Effort Days
Components BibFormat

Requirements
UI17 - Display references (links) to other sources inside
or outside the archive
UI16 - Easy to learn/Intuitive

Description
The user interface will display in a clear way the links
used as references when showing a blog post.

Logical Constraints

• Creates on the detailed record page of every post a
menu containing all the reference links within each
blog post.

• Offers a link to the corresponding record when a
reference link points to an archived record.

Notes and Questions
Assigned to CERN

Table 5.50: Feature RF24

Feature ID RF30

Name
Users are able to bookmark records, also using external
bookmarking engines

Priority Medium
Effort Already in Invenio
Components WebBasket

BlogForever Consortium 95

D4.4: Digital Repository Component Design November 30, 2012

Requirements
FR10 - Bookmarking of blog posts
UI16 - Easy to learn/Intuitive

Description

There should be a tool that would allow repository
users to bookmark content that they are currently
viewing. As well this tool should allow the bookmarking
of the current document within other external social
bookmarking services. The integration of the repository
with the world of social bookmarking is provided.

Logical Constraints
The user should click on the provided links to related
content, either within the repository or elsewhere on the
web, as specified by the provided bookmarking service.

Notes and Questions
Assigned to

Table 5.51: Feature RF30

Feature ID RF31

Name
The archive offers a complete blog submission interface
to submit, modify and delete blogs/posts

Priority Medium
Effort Weeks
Components WebSubmit

Requirements

FR32 - Add user suggested blogs to the archive
UI34 - Simple submission by authors
UI35 - Workflow to manage blog submissions
FR1 - Deletion by the blog author
OP2 - OAIS
DR21 - Long term digital preservation

Description

The archive will offer a complete submission interface
to let users and admins to submit nee blogs, to modify
certain specific metadata of a blog, and to delete either
a blog (as result all its comments and blog posts will be
deleted) or a single blog post.

BlogForever Consortium 96

D4.4: Digital Repository Component Design November 30, 2012

Logical Constraints

• Adds action on detailed record page to let users to
delete a blog or post record. (“Ask for Deletion”)

• Adds action on detailed record page to let users to
modify blog metadata. (“Ask for Modification”)

• Creates blog submission interface for users (refer-
eed) and admins:

– Blog Submission Actions (for admins): Sub-
mit a Blog, Modify a Blog, Delete a Blog,
Delete a Post

– Blog Submission (Refereed) Actions (for
users): Submit a Blog, Approve Blog Submis-
sion, Modify a Blog, Approve Blog Modifica-
tion, Delete a Blog, Approve Blog Deletion,
Delete a Post, Approve Post Deletion

• Creates two new collections in order to manage
the submission Provisional Blogs (contains the
submitted blogs), Rejected Blogs (contains the
rejected blogs)

Notes and Questions
Assigned to CERN

Table 5.52: Feature RF31

Feature ID RF32
Name Users are able to remove their personal data
Priority Medium
Effort Days
Components WebSession, WebAccess
Requirements DR18 - Remove private data of archive users

Description
The users should be able to deactivate/activate their
accounts. The users should be able to completely remove
their accounts.

BlogForever Consortium 97

D4.4: Digital Repository Component Design November 30, 2012

Logical Constraints

• The users will access this feature from their “Your
Account” page.

• Password confirmation will be required to deacti-
vate or remove the account.

• If the user selects to remove her/his personal data
too, database entries only related with that user
should also be deleted. However, entries related
with other users too such as messages, comments,
etc. should be kept.

• If the user selects to keep her/his personal data,
s/he will have the option of activation of her/his
account.

• When the user tries to log in with an inactive
account credentials, the system will simply accepts
the user and load her/his personal data.

• There may be an option that enables/disables the
option of suspension of the accounts.

Notes and Questions
Assigned to SRDC

Table 5.53: Feature RF32

Feature ID RF33

Name
The archive can display only the very core information
for each record

Priority Medium
Effort Already in Invenio
Components BibFormat

Requirements
UI8 - Overview with metadata and summary
UI22 - Density of displayed information
UI24 - Display with only core information

Description

The user can adjust the density of the displayed
information. A user can see a blog post free of
redundant elements like advertisements, so only the
text and images/videos of it will be displayed. This
overview should show at least the title, author, amount
of comments, and a brief summary of the content (Brief
format).

Logical Constraints
Notes and Questions
Assigned to

Table 5.54: Feature RF33

BlogForever Consortium 98

D4.4: Digital Repository Component Design November 30, 2012

Feature ID RF34

Name
The archive displays and suggests similar records to the
user

Priority Medium
Effort Days
Components BibClassify
Requirements UI19 - Display similar blogs and posts

Description

When displaying a post, links to other posts on the same
subject should be displayed as suggestions. In a blogs
page exists a component with similar blogs (blogs with
analogous topics). Suggestions of similar blogs and posts
are showed when displaying a blog or post “View similar
records“ in the detailed records page.

Logical Constraints
Notes and Questions
Assigned to CERN

Table 5.55: Feature RF34

Feature ID RF35

Name
The archive displays other blogs that were viewed by
people who also viewed the current blog

Priority Medium
Effort Days
Components BibRank

Requirements
UI20 - Display blogs that were read by people who have
read a specific blog

Description

The repository will display to the user the list of blogs
that were viewed for people who also viewed the current
blog. With each viewed blog will be showed the number
of different people who viewed it.

Logical Constraints
Notes and Questions
Assigned to CERN

Table 5.56: Feature RF35

Feature ID RF36

Name
The archive identify and stores the topic of blogs and
blog posts to let users navigate through the archive by
topic

Priority Medium
Effort Weeks
Components BibUpload, WebSearch

BlogForever Consortium 99

D4.4: Digital Repository Component Design November 30, 2012

Requirements
FR34 - Topic/Subject detection
UI23 - Categories/Topics are shown in different tabs
FR8 - Topics (Categories) for blogs and blog posts

Description

Users are presented with the option of viewing content
under different categories. Users should be presented
with the appropriate tool to select from a list of
predetermined categories to output filtered blog content.
Displaying all the posts from a category on a page could
help visitors of the archive to find older blogs content.

Logical Constraints
The specific categories are created internally via tem-
plates or plugins.

Notes and Questions
Assigned to CERN

Table 5.57: Feature RF36

Feature ID RF37

Name
The archive restricts the access to its content to specific
IP ranges

Priority Medium
Effort Already in Invenio
Components WebAccess, WebSearch
Requirements SR2 - Access restricted to IP range

Description
Access to the platform content should be controlled by
the use of sets of IP addresses

Logical Constraints

The BlogForever platform should be responsible for
issuing and terminating control, verifying the status
of authorized users, providing lists of valid sets of IP
addresses if applicable, and updating such lists on a
regular basis.

Notes and Questions
Assigned to

Table 5.58: Feature RF37

Feature ID RF38

Name
Users can communicate within the archive sharing and
exchanging resources

Priority Medium
Effort Already in Invenio
Components WebSession, WebMessage, WebComment

Requirements
UI30 - Creation of a community of providers and
recipients within the archive platform
FR19 - Sharing and collaboration

BlogForever Consortium 100

D4.4: Digital Repository Component Design November 30, 2012

Description

The users should able to use share button from different
pages of Invenio to share records, comments, etc.. In
addition, a user can share his/her basket with specific
users, not only share with a group or public, which is
currently available.

Logical Constraints

• The users will be able to click a “Share” button,
for each content.

• The users will be able to invite specific users to
access his/her basket with specified access rights.

Notes and Questions RF3 can be extended
Assigned to

Table 5.59: Feature RF38

Feature ID RF42

Name
The archive extracts bibliographic metadata from con-
tent embedded in blogs

Priority Medium
Effort Days
Components BibIngest

Requirements
FR30 - Extract bibliographic metadata from blog
contents

Description

The BlogForever archive will extract bibliographic
metadata (e.g. Title, Author) from PDF documents,
LaTeX files and image files that are attached to blogs,
or embedded in the post of a blog. The extraction
will be done using reference management software, such
as EndNote, RefWorks, or BibTeX which are already
supported in Invenio. The extracted metadata will be
stored in the database and used to populate an index.
Users will be able to search and browse the metadata
for the attachments, using a special web interface.

Logical Constraints
Notes and Questions
Assigned to CERN

Table 5.60: Feature RF42

Feature ID RF43

Name
For each record the archive stores the search keywords
used to find them

Priority Medium
Effort Already in Invenio

BlogForever Consortium 101

D4.4: Digital Repository Component Design November 30, 2012

Components MiscUtil

Requirements
DR16 - Search key words
UI15 - Search interface

Description
The system will be able to store the keywords used for
each search and provide to the user the option to retrieve
the used keywords and execute the past searches again.

Logical Constraints

• The user will have to type one or more keywords
and press “Search” in order to be stored in the
system

• The user can display the list of his past searches
through his account settings menu

• The displayed list of past searches will be in
chronological order

• For each one of the searches the user will be able
to view:

– the collections in which the search was exe-
cuted

– time and date of last execution

• The user will be able to execute any past search
using exactly the same search settings he had used
before

Notes and Questions
Assigned to

Table 5.61: Feature RF43

Feature ID RF44
Name The archive enables pingback/trackback services
Priority Medium
Effort Already in Invenio
Components WebLinkBack
Requirements EI3 - Pingback, Trackback

Description
There should be a mechanism that keeps track of the
links, references to the content in the system.

Logical Constraints

Linkback methods like pingback or trackback will be
used. Spam filters will be used to prevent spam links or
pingback method may be used which is less susceptible
to spamming.

Notes and Questions
Assigned to

Table 5.62: Feature RF44

BlogForever Consortium 102

D4.4: Digital Repository Component Design November 30, 2012

Feature ID RF45

Name
The archive is able to inter-operate with federated search
engine dbwiz (SRU Server)

Priority Medium
Effort Months
Components WebSearch
Requirements IR5 - Connection with federated search engine dbwiz

Description

Search/Retrieval via URL (SRU) protocol support will
be implemented in BlogForever. The admin of a dbwiz
installation will be able to add the BlogForever SRU
Server URI to its system in order to be able to perform
queries using SRU protocol. Results from BlogForever
will appear in dbwiz federated search.

Logical Constraints
The CQL implementation required to have full SRU
protocol support is quite complex.

Notes and Questions SRU standard: http://www.loc.gov/standards/sru
Assigned to AUTH

Table 5.63: Feature RF45

Feature ID RF46

Name
Users can create personal collections of their favourite
blogs

Priority Medium
Effort
Components WebBasket

Requirements
FR20 - Favourite list of blogs and topics
UI16 - Easy to learn/Intuitive

Description
Users should be able to define personal collections of
blogs.

Logical Constraints
This should be covered by using baskets or by using tags
(see RF52)

Notes and Questions
Assigned to CERN

Table 5.64: Feature RF46

Feature ID RF56

Name
The archive provides a journal view of the new blog
posts

Priority Medium
Effort Weeks
Components WebBlog

Requirements
FR22 - Summaries/Journals about new archive content
UI2 - Magazine/Journal view of the new blog posts
UI16 - Easy to learn/Intuitive

BlogForever Consortium 103

http://www.loc.gov/standards/sru

D4.4: Digital Repository Component Design November 30, 2012

Description

The system will archive every blog post and the
corresponding comments, if there are any. The user will
be able to display for each record the full text of the
post and the comments.

Logical Constraints

• The user will have to click the option “Detailed
record” to display a record from his search results

• The record will be displayed in the main frame

• Below the record, the user will have the option to
find a set of attached files that will include:

– the full text of the post

– the comments of the post (if there were any)

Notes and Questions
Assigned to CERN

Table 5.65: Feature RF56

Feature ID RF57

Name
The archive provides a ranking method based on the
user rating of content

Priority Medium
Effort Days
Components BibRank

Requirements
FR11 - Recommendation system
UI31 - Ranking of archived posts
FR27 - Ranking of blogs and blog posts

BlogForever Consortium 104

D4.4: Digital Repository Component Design November 30, 2012

Description

The BlogForever archive is providing a set of services
that allow the recommendation of content among users.
Explicit recommendation is taking place by allowing
users to share records with selected users of the archive
through direct sharing gestures. For example, user X
has found an interesting blog post and forwards the
record to his friend Y . This forwarding is facilitated
through an internal messaging system developed for
the archive. Therefore, sending a recommendation
to another user is equal to automating the process
of sending another message to a user, which includes
completing the body of the message with the desired
link. Optionally, this type of message may be tagged
as a specific type in order to differentiate from ordinary
user-to-user messages.
Contrary to explicit, implicit recommendation is facil-
itated by the system and the user has no direct con-
trol over the content he receives as a recommendation.
Through feedback received by the users on records, the
content is processed and recommended to users with
similar taste. In order to support the above service,
powerful models such as Support Vector Machines are
deployed and run periodically in order to estimate affin-
ity between content and users.

Logical Constraints

For the end user, recommendations appear as supple-
mentary information in the archive’s pages. The infor-
mation provided may be dependent on the record shown
(i.e. recommended records based on the currently visit-
ing record) or not (i.e. special page for messages with
recommendations from other users).
For the case of explicit recommendation, a messaging
system is required. This messaging system allows the
communication among users through simple messages.
In order to describe a message, the sender and the
receiver, as well as the title (optional) and body of the
message must be completed.
For the case of implicit recommendation, the system sets
up a periodic calculation of relevant information through
a configuration page. This page, which is accessed
and maintained by the administrator, allows entering
information such as the frequency of the calculations as
well as the amount or persistence of recommendations
shown to users.

Notes and Questions
Assigned to SRDC

Table 5.66: Feature RF57

BlogForever Consortium 105

D4.4: Digital Repository Component Design November 30, 2012

Feature ID RF58

Name
A user can rank archive content based on specific users’
content rating

Priority Medium
Effort Days
Components BibRank

Requirements
UI31 - Ranking of archived posts
FR27 - Ranking of blogs and blog posts
FR11 - Recommendation system

Description
The users should be able to search the records by the
average score calculated with only scores given by some
specific users.

Logical Constraints

• The users will be able to create lists of users that
they trusts.

• Only ratings of the users who are in a trusted list
will be used to rank the records.

• The users will be able to select user list(s) among
their already created lists to rank the records.

Notes and Questions
Assigned to SRDC

Table 5.67: Feature RF58

Feature ID RF59
Name Export data using XML
Priority Medium
Effort Already in Invenio
Components WebSearch, BibExport

Requirements

EI1 - API for external clients to query data
EI2 - Data access/export as XML
FR4 - Blog export
IR6 - Facilities to enable interoperability
UI28 - Integration/Combination with other systems

Description
The repository will offer different formats to export
content as XML. This formats are: MARCXML,
EndNote, RSS, OAI DC, RefWorks, MODS, SRU

Logical Constraints
Notes and Questions
Assigned to

Table 5.68: Feature RF59

BlogForever Consortium 106

D4.4: Digital Repository Component Design November 30, 2012

Feature ID RF60

Name
The archive can export all its content, database entries
and file system for migration

Priority Medium
Effort Already in Invenio
Components MiscUtil
Requirements SM3 - Data export for migration

Description
The system should provide the option to export all
archive data so that they can be migrated to another
system.

Logical Constraints

• The system will export the data in a widely known
and standardized file format

• The exported data will consist of:

– the blog content and elements that were
crawled

– metadata with information regarding the
preservation process in the system

Notes and Questions
Assigned to

Table 5.69: Feature RF60

Feature ID RF61

Name
The archive ranks blogs based on their views and
downloads

Priority Medium
Effort Days
Components BibRank

Requirements
FR27 - Ranking of blogs and blog posts
FR31 - Define important blogs and filter junk

Description
The users should be able to search the records by their
view count. The users should be able to search the
records by their download count.

Logical Constraints
New ranking methods to rank the records will be
introduced: to rank the records by their download and
to rank the records by their view count .

Notes and Questions
Assigned to SRDC

Table 5.70: Feature RF61

BlogForever Consortium 107

D4.4: Digital Repository Component Design November 30, 2012

Feature ID RF62
Name Export records as PDF and JPEG
Priority Medium
Effort Weeks
Components BibFormat, WebSearch, WebStyle
Requirements FR17 - Print/Export as PDF, JPEG

Description

The users should be able to export the records as PDF or
JPEG. To construct the PDF file, first latex code should
be created from the record in HTML form. If CSS style
of the record is present, it should also be applied. Later,
with latex tools (pdflatex, xelatex, etc.), latex to PDF
conversion should be completed and the PDF file should
be provided to the users.

Logical Constraints • The PDF file should be constructed based on a
latex template.

Notes and Questions
Assigned to SRDC

Table 5.71: Feature RF62

Feature ID RF67
Name The archive fetches and stores embedded content
Priority Medium
Effort Days
Components BibUpload

Requirements
FR54 - What to archive: text and comments
DR14 - Embedded objects

Description
All the embedded objects of blogs are downloaded from
the spider. These objects should be stored in the archive
at pre-ingestion time.

Logical Constraints
To amend the pre-ingestion plugin (see RF9) in order to
enrich the MARC metadata of each record (Blog, Blog
Post, Page, Comment) with FFT tags.

Notes and Questions
Assigned to CERN

Table 5.72: Feature RF67

Feature ID RF68

Name
The archive provides information diffusion analysis
mechanisms

Priority Medium
Effort Weeks

BlogForever Consortium 108

D4.4: Digital Repository Component Design November 30, 2012

Components BibClassify
Requirements FR36 - Memetracking and trend detection

Description

The archive provides the user with a set of tools that
allow detecting the provenance of various topics, phrases
and memes. In addition to their provenance, the archive
provides the full history of a given meme, allowing for
the user to adjust the time of content and study the
spread and the diffusion of information in the archive.
To support the above mechanisms, the archive detects
influential memes and processes them according to time.
An interface that maps this information diffusion to
aggregations and their visualisations is provided by the
system. This analysis is conducted by taking into
account the network of blogs that reside in the archive
and adopts the state-of-the-art technologies.

Logical Constraints

Memetracking and trend detection are expected to be
complex and resource-costly services. The mechanisms
that are deployed are expected to run periodically, at
a low priority and configured by the administrator of
the archive. Some initial input for the mechanisms
may be provided by external social media analytics
providers or the administrator himself. Concerning
the end-user, exporting mechanisms are provided, such
as the generation of reports, allowing printing of the
visualisations and social media sharing.

Notes and Questions
Assigned to CERN

Table 5.73: Feature RF68

Feature ID RF71

Name
The archive provides a personalized annotating and
highlighting tool for users

Priority Medium
Effort Weeks
Components WebSearch, WebSession
Requirements UI12 - Annotations and Highlighting

Description
The users should be able to highlight any part of a
record. The users should be able to annotate the part
they highlighted.

BlogForever Consortium 109

D4.4: Digital Repository Component Design November 30, 2012

Logical Constraints

• There will be a tool to highlight the content in the
record page.

• The users will be able to highlight any part of the
record.

• The users will be able to choose the highlighting
color, clear all of the highlights on a record and
undo their move.

• The users will be able to erase their highlights.

• The users will be able to change the color of their
highlights.

• The users will be able to annotate the highlighted
text.

• The users will be able to edit or delete their
annotations.

• The annotations and notes will be saved into
database. The users will be able to load them later.

Notes and Questions
Assigned to SRDC

Table 5.74: Feature RF71

Feature ID RF72

Name
The archive provides a visualization of the blogs network
structure

Priority Medium
Effort Weeks
Components WebSearch

Requirements

FR18 - Analyze the network structure of blogs
UI9 - Network view on topics, blogs, posts, authors, etc.
UI27 - Dynamic network view on topics, blogs, posts,
etc.
EI6 - Export links between blog content

Description

The connections between two blog entities (e.g. posts)
can be aggregated to a network. Various network views
are possible for the different entities in the repository,
for example, networks among blogs, posts or authors.
The repository will provide the possibility of simple
network visualization and, thus, the option of a visual
exploration to the experienced end-user.

BlogForever Consortium 110

D4.4: Digital Repository Component Design November 30, 2012

Logical Constraints

• The network visualization will utilize the connec-
tions that would be provided by the feature RF65.

• The network visualization will be either included
as part of the repository or accomplished via
the communication with an external visualizer.
The implementation will be decided according to
performance considerations due to the fact that
the rendering for network graphics can be source
consuming.

Notes and Questions
Assigned to TUB

Table 5.75: Feature RF72

Feature ID RF73

Name
The archive recommends blogs to users based on the
ratings and preferences

Priority Medium
Effort Days
Components WebSearch, WebSession

Requirements
FR28 - Recommend a cluster of blogs according to user
preferences

Description
The system should find the records/blogs that the user
may interested in and display them.

Logical Constraints

• The records/blogs that the user may interested in
will be offered in the account page.

• The recommended records/blogs may be listed in
the order of ratings of the records/blogs that they
are similar to.

• The recommended records/blogs will be similar to
the ones that the user’s most visited, rated or
favourite records/blogs.

• To find the recommended records/blogs, ranking
methods such as word similarity, content tags,
times referenced/cited will be used.

Notes and Questions
Assigned to SRDC

Table 5.76: Feature RF73

BlogForever Consortium 111

D4.4: Digital Repository Component Design November 30, 2012

Feature ID RF74

Name
The archive enables/disables certain functionalities
based on the content rights

Priority Medium
Effort Already in Invenio
Components WebAccess
Requirements UI10 - Available services depend on the content rights

Description

Digital content could be available with different rights.
Services and functionalities should only be used by the
users/user groups with required rights. The user inter-
face should support these rights by enabling/disabling
the allowed services/functionalities.

Logical Constraints

The admin will be able to restrict the services/function-
alities. The admin will be able to give rights to specific
users or user groups for restricted services/functional-
ities. The system will check if the user has necessary
rights to use corresponding service/functionality. If the
user doesn’t have the rights, s/he will not be able to use
that service/functionality.

Notes and Questions
Assigned to

Table 5.77: Feature RF74

Feature ID RF82

Name
The archive can be deployed using a range of different
database server technologies

Priority Medium
Effort Already in Invenio
Components
Requirements SP1 - Support for different SQL-databases

Description
The archive should support different SQL-databases to
ease the administration for different institutions.

Logical Constraints

There will be a list of sql based databases that the
system supports. The admin will be able to choose
one of the supported databases and the system will use
specified database.

Notes and Questions
Assigned to

Table 5.78: Feature RF82

BlogForever Consortium 112

D4.4: Digital Repository Component Design November 30, 2012

5.2.3 Low priority features

Feature ID RF48

Name
The archive provides the option to translate its content
on demand

Priority Low
Effort Days
Components WebSession, WebAccess
Requirements FR9 - Content translation

Description
Users should be able to translate the content of the
records, comments, reviews and messages.

Logical Constraints

• Google’s translate gadget will be accessible for
each page and the users will be able to translate
the content (e.g., record, comment, review and
message) by selecting the language from this
gadget.

Notes and Questions
Assigned to SRDC

Table 5.79: Feature RF48

Feature ID RF49

Name
The archive distinguishes institutional/corporate blogs
from personal blogs

Priority Low
Effort
Components

Requirements
DR19 - Distinguish institutional/corporate blogs from
personal blogs

Description

Since the repository size can become very big, it would
be easier to navigate if institutional/corporate blogs
would be separated from personal blogs, therefore, they
could be also searched separately.

Logical Constraints
A MARC tag will be used to classify blogs in these two
groups.

Notes and Questions
Assigned to CERN

Table 5.80: Feature RF49

BlogForever Consortium 113

D4.4: Digital Repository Component Design November 30, 2012

Feature ID RF50

Name
The archive offers the option to disseminate newly
archived content in external social platforms

Priority Low
Effort Weeks
Components WebAlert

Requirements
FR33 - Dissemination of newly archived items in
external social platforms (ex. Twitter) in connection
with author profiles

Description

This feature concerns the blog authors and aims at
increasing their awareness on the BF activity through
social media. Every user of the repository who has a
weblog archived, may select to link his BF account to
one or more social media platforms. In order to achieve
this, we assume that the blogger has or creates a user
account and its corresponding profile in the social media
platform. The BF archive will have to verify that the
two user accounts belong to the same person.
The user accounts’ cross-matching and verification takes
place through technologies, such as OAuth or OpenID.
In any case, the user grants the permission to the BF
archive to access and confirm that he is the owner of
the social media account that he claimed. Afterwards,
the BF repository is adding this information to the user
profile and is using it for disseminating newly archived
content.
More specifically, for every record inserted in the
archive, which belongs to a blogger verified by the above
process, the BF social media account will publish a short
message including the user account and the link to the
record. In order to avoid having the official BF social
media account overloaded, the messages posted will be
personalized and not visible to every friend or follower
of the BF archive. For example in Twitter, the BF ac-
count will mention the blogger’s account or in the case
of Facebook a post on the user’s wall might be more ap-
propriate. Alternatively, the BF account may post on
behalf of the blogger as follows:
“John Smith - Hello World archived by @BlogForever-
Archive.”

BlogForever Consortium 114

D4.4: Digital Repository Component Design November 30, 2012

Logical Constraints

• The bloggers must be able to connect their social
media accounts without the need to provide their
credentials (i.e. username and password), since the
BF archive supports open authentication methods.

• The BF archive allows opting out and removing
the linkage between accounts.

• The feature may provide the option to select the
frequency of updates or similar customizations.

Notes and Questions
Assigned to SRDC

Table 5.81: Feature RF50

Feature ID RF51
Name The archive is able to search within external sources
Priority Low
Effort Already in Invenio
Components WebSearch
Requirements UI18 - Search in external sources

BlogForever Consortium 115

D4.4: Digital Repository Component Design November 30, 2012

Description

This feature allows the administrator of the BlogForever
archive to setup additional sources for searching. More
specifically, the administrator can choose to make use
of web services that support open searching, such
as OpenSearch1 or other RESTFul services. While
the above services require a technical expertise to
understand them, the administrator of the archive
should be able to select from a drop-down menu between
a list of popular search engines. Some more options,
which are not mandatory and depend on the web service
to be consumed, may be provided that describe the
settings of the search results provided to the end-user
(e.g. following a link is opening a new window, the
summary of the resource is provided, the banner or the
name of the provider or the destination is visualised
etc.).
The provision of this feature will allow users of the
platform to access resources provided by third parties,
such as blog search engines as well as other social
media content providers or aggregators. Depending on
the technology used, a short summary of the external
resource may be provided. In every case, the link to this
external resource is clearly visualised so as to illustrate
that following this link will lead the user to a website
outside the BlogForever website archive.

1http://en.wikipedia.org/wiki/OpenSearch

BlogForever Consortium 116

http://en.wikipedia.org/wiki/OpenSearch

D4.4: Digital Repository Component Design November 30, 2012

Logical Constraints

• Adding a new source for searching contains a pre-
existing list of search engines. This allows the
administrator of the archive to learn from the
examples provided and add a new source.

• Adding a new source is supported with some cus-
tomization options with respect to the behaviour
of the system. For example, the administrator of
the platform may select:

– if clicking a link opens in new window,

– whether a link displays the address
of the search engine (for example,
http://blogsearch.com) or the address of the
record (for example http://example.com/my-
new-blog-post) or both.

– the metadata that describe the record,

– the maximum number of search results pro-
vided by external search engines.

• Search results linking to external sources must
be clearly illustrated, such that the end-user will
expect that following them will result in exiting
the archive.

Notes and Questions
Assigned to

Table 5.82: Feature RF51

Feature ID RF52
Name Users can tag archived records with personal tags
Priority Low
Effort Weeks
Components WebTag
Requirements UI32 - Tagging system

Description

The user will be able to assign tags to the records with
his personal metadata. With the tags, the user will
be able to organize the records in personal collections
according to his preferences. The user should have the
option to choose freely the words he wants to use as tags.
Tagging feature is served through the user baskets. The
user will assign a tag to a record by adding the record
to the homonymous basket.

BlogForever Consortium 117

D4.4: Digital Repository Component Design November 30, 2012

Logical Constraints

• The user will be able to assign tags to the records
that:

– he adds in his personal basket

– are already included in his personal basket

• The user will have anytime the option to:

– edit or delete tags, when displaying the cor-
responding basket through the options “Edit
basket” and “Delete basket” correspondingly

– create new tags, in the “Display baskets”
menu through the option “Create basket”

– add more tags to a record, in the “Display
baskets” menu through the option “Copy
item” with which he will be directed to copy
the record to another basket

– remove a tag from a record, in the “Display
baskets” view through the option “Remove
item” in the corresponding basket

• The user will be able to create a new tag or use
one of those he previously created

• The user will be asked to assign a tag every time
he adds a new record in his personal basket

• User’s tags will be also visible to all archive users

Notes and Questions
Assigned to CERN

Table 5.83: Feature RF52

Feature ID RF63

Name
The archive keeps snapshots of all the different designs
of a blog

Priority Low
Effort Days
Components BibUpload
Requirements FR53 - Snapshot versions of blog designs in the archive

Description

The system archives a snapshot of the layout design of
blogs each time there is any modification. The snapshots
will be provided to the user as attached, detailed image
files.

BlogForever Consortium 118

D4.4: Digital Repository Component Design November 30, 2012

Logical Constraints

• The snapshots will be available for blog items

• The snapshots will be in JPEG format

• The user will be able to view the snapshots of
current and past versions of a blog’s design as
attached files below the detailed record of blog

• The snapshot of the latest version can also been
viewed by clicking the snapshot icon next to each
blog item in the search results

Notes and Questions
Assigned to CERN

Table 5.84: Feature RF63

Feature ID RF64

Name
The archive offers the option to login using external
(universal) credentials

Priority Low
Effort Weeks
Components WebSession, WebAccess
Requirements FR55 - Universal Login & Central Login

Description
Users should be able to login to the platform with their
Facebook, Google+ and Twitter accounts.

Logical Constraints

• Users who logged in with external accounts will be
able to share contents from platform.

• When the user logged in with external account,
s/he will be able to access all archives that s/he
has permission to access.

Notes and Questions
Assigned to SRDC

Table 5.85: Feature RF64

Feature ID RF65

Name
The archive analyzes blog links and stores the connec-
tions between them separately

Priority High
Effort Weeks
Components WebBlog
Requirements DR9 - Connections/Links

BlogForever Consortium 119

D4.4: Digital Repository Component Design November 30, 2012

Description

Blogs and inherent entities (posts, comments, authors)
can be related to other entities. These relations
occur either as explicit hyperlinks (e.g. link, blogroll)
or as implicit relations (e.g. co-occurrences). The
BlogForever repository will make these connections
visible and navigable in the user interface.

Logical Constraints

• Explicit connections will be differentiated in:

– external links, when destination is outside the
repository

– internal links, when destination is also an
archived resource in the repository.

Furthermore, explicit links will be also differenti-
ated in:

– Citations

– Blogroll

– Pingback/Trackback

• Among the implicit connections, the following will
be generated:

– Blog-Connection: One or more posts of a blog
A link to one or more posts of a blog B

– Author-Citations: One or more posts or
comments written by author A link to one or
more posts or comments written by author B

– Author-Co-Citations: One or more posts or
comments written by author A link to the
same resource than one or more posts or
comments written by author B

Notes and Questions
Assigned to TUB

Table 5.86: Feature RF65

Feature ID RF75
Name The archive can do sentiment analysis on the content
Priority Low
Effort Months
Components BibClassify
Requirements FR21 - Sentiments analysis on blog post level

Description
To give the users an idea about the blog post’s attitude
sentiments of the post should be analysed.

BlogForever Consortium 120

D4.4: Digital Repository Component Design November 30, 2012

Logical Constraints

Sentiment analysis will be run by the administrator.
The user should be able to see the sentiment scores of
the contents. The users will be able to add a search
criteria that ranks the results based on their sentiment
scores.

Notes and Questions
Assigned to CERN

Table 5.87: Feature RF75

Feature ID RF76

Name
The archive detects content’s originality and ranks it
accordingly

Priority Low
Effort Months
Components BibRank

Requirements
FR35 - Detection and ranking of the originality
UI31 - Ranking of archived posts
FR27 - Ranking of blogs and blog posts

Description

The archive is analyzing the content of a blog and
processes it in order to assess its novelty. In order to
achieve this, computational linguistics technologies are
deployed, such as n-grams. The feature is built on top
of services provided by RF67. For the end-user, an
originality index is displayed for each blog, which will
approximate the novelty of the content. Optionally, the
text that appears to be most original will be annotated.
For the remaining of the text, mechanisms that annotate
near-duplicate statements will allow tracing back to the
original author or other external sources.

Logical Constraints

The mechanism that analyzes the originality of blog
content is expected to be expensive and erratic. A
disclaimer about the quality of the results presented
is required. Additionally, the mechanism should be
invoked periodically in a semi-supervised manner. The
administrator of the blog should be able to intervene
and bypass the results of the process in order to reduce
the number of false assessments.

Notes and Questions
Assigned to SRDC

Table 5.88: Feature RF76

BlogForever Consortium 121

D4.4: Digital Repository Component Design November 30, 2012

Feature ID RF77
Name The archive provides a for mobile version
Priority Low
Effort Months
Components All modules

Requirements
UI14 - User interface for mobiles
UI16 - Easy to learn/Intuitive

Description
The users should be able to view the mobile phone
supported pages from their mobile phones.

Logical Constraints

New web page templates to accommodate the screen
of the mobile phones will be introduced. (Optional)
Surfing on the Internet via mobile operators costs some
for the users. Therefore, there will be some regulations:

• The CSS files will be separated into modules not
to load unnecessary ones. Moreover, they will be
minimized to get rid of unnecessary white spaces.

• The minimized versions of the JavaScript files will
be loaded to pages.

Notes and Questions
Assigned to MOKONO

Table 5.89: Feature RF76

Feature ID RF78

Name
The archive displays content after filtering it with user
preferences

Priority Low
Effort Weeks
Components WebSearch, BibRank, BibFormat

Requirements
UI25 - Filtered, personalized aggregation of content for
end-users
FR45 - Personalized filtering services

Description

There should be a personalized service that allows
registered users to systematically filter their searches
based on their individual research interests. Moreover,
the users should be able to use personalized list of
favorite blogs/blog posts. This list could also be filled
automatically with blogs and posts matching certain
searching criteria inserted by the user. The users should
be able to configure a personalized filter for the content
view in the platform, including old and new content.

BlogForever Consortium 122

D4.4: Digital Repository Component Design November 30, 2012

Logical Constraints

The platform will be able to display different contents for
each user according to their configurations. The users
will be able to use personalized list of favorite blogs/blog
posts. The users will be able to add a blog/blog post
to their favorite lists. The favorite lists will be able
to be filled by the search keywords automatically. The
users will be able to save their search keywords and
information. These keywords and information will be
able to be used by the user later.

Notes and Questions
Assigned to CERN

Table 5.90: Feature RF78

Feature ID RF83

Name
The archive provides multiple different views of the
archive for each user

Priority Low
Effort Weeks
Components WebSearch
Requirements FR24 - User specific collections/projects

Description
The users should be able to save their searching
preferences to search always in one specific collection
or topic.

Logical Constraints
The users will be able to save their search preferences.
The preferences would be appended automatically at the
end of every search query.

Notes and Questions
Assigned to CERN

Table 5.91: Feature RF83

BlogForever Consortium 123

D4.4: Digital Repository Component Design November 30, 2012

Chapter 6

Conclusions

The overall BlogForever system architecture was presented. The BlogForever
platform consists of two main components: the spider is responsible of fetching
the blog data, extract entities and present them in a structured format, while the
repository is responsible of hosting the data, preserve it and make it available
in a web interface. The communication between these components is done using
APIs and open standards like METS, keeping the dependence between them in
a minimum. While the spider component design was presented in D4.2[10], this
document focused on the repository component design. The repository is reusing
the already existing Invenio digital library software platform, as stated in the
Description of Work (DoW).

Some relevant Invenio characteristics were introduced. Invenio already has a
modular architecture composed of ∼40 modules that makes it easily expandable.
Invenio’s flexibility and expandability has been proved during this design process,
making the design process intuitive. This makes us pretty confident that the
resulting repository design is also flexible for potential future extensions.

The mapping between the existing components and the blog archive use case was
discussed. Some components needed adaptation to our BlogForever use case (e.g.
ingestion process) while new components needed to be designed (OAIS, spam, tags).
The improvements to the user web interface design were discussed presenting also
UI mockups.

The mapping of mandatory/optional features to concrete requirements was
described as well as their prioritization. The priorities have influence on the
development plan. We shall be using agile development method, so that components
will be developed via rapid prototyping and then, tested and feedback from tests,
will be taken back into development continuously. We shall also work by use case
schedule in collaboration with WP5. Finally at later stages we shall introduce nice
UI for the end users.

BlogForever Consortium 124

References

[I] CDS Document Server. http://cds.cern.ch. [Retrieved November 22, 2012],
2012.

[II] Invenio documentation. http://invenio-demo.cern.ch/help/admin/. [Retrieved
November 25, 2012], 2012.

[III] Invenio Project. http://invenio-software.org/. [Retrieved November 11, 2012],
2012.

[IV] mongoDB. http://www.mongodb.org/. [Retrieved March 22, 2012], 2012.

[V] Twitter Bootstrap. http://twitter.github.com/bootstrap/. [Retrieved Novem-
ber 7, 2012], 2012.

[VI] S. Arango-Docio, V. Banos, K. Stepanyan, and M. Joy. D2.1: Survey
Implementation Report. Work package, University of London, August 2011.
Work Package Two Deliverables.

[VII] J. Caffaro and S. Kaplun. Invenio: A Modern Digital Library for Grey
Literature. Technical report, Twelfth International Conference on Grey
Literature, Prague, Czech Republic, December 2010.

[VIII] H. Kalb, N. Kasioumis, J. Garćıa Llopis, S. Postaci, and S. Arango-Docio.
D4.1: User Requirements and Platform Specifications Report. Work package,
B. Consortium (Ed.): Technische Universität Berlin, December 2011. Work
Package Four Deliverables.

[IX] H. Kalb, Y. Kim, and P. Lazaridou. D2.3: Weblog Ontologies. Work package,
A. I. Cristea & M. Joy (Eds.): Technische Universität Berlin (TUB), May 2012.
Work Package Two Deliverables.

[X] Hendrik Kalb, Paraskevi Lazaridou, and Matthias Trier. D4.2: Weblog spider
component design. Work package, B. Consortium (Ed.): Technische Universität
Berlin (TUB), June 2012. Work Package Four Deliverables.

[XI] Y. Kim, S. Ross, K. Stepanyan, E. Pinsent, P. Sleeman, S. Arango-Docio,
H. Kalb, et al. D3.1 Preservation Strategy Report. Work package, Y. Kim &
S. Ross (Eds.): University of Glasgow, September 2012. Work Package Three
Deliverables.

125

http://cds.cern.ch
http://invenio-demo.cern.ch/help/admin/
http://invenio-software.org/
http://www.mongodb.org/
http://twitter.github.com/bootstrap/

D4.4: Digital Repository Component Design November 30, 2012

[XII] Jǐŕı Kunčar and Tibor Šimko. New Features and Technologies in Current and
Future Invenio Versions. Technical report, European Organization for Nuclear
Research (CERN), October 2012.

[XIII] Library of Congress. MARC 21 Format for Bibliographic Data, 1999 edition.

[XIV] Library of Congress. METS, October 2012.

[XV] P. Ponniah. Data modeling fundamentals: a practical guide for IT
professionals. Hoboken, New Jersey, USA: Wiley-Blackwell, 2007.

[XVI] Suzanne Robertson and James C. Robertson. Mastering the Requirements
Process. Addison-Wesley, 2nd edition, March 2006.

[XVII] A. Ronacher. Jinja2 (The Python Template Engine). http://jinja.pocoo.org.
[Retrieved November 7, 2012], 2012.

[XVIII] P. Sleeman E. Pinsent G. Gkotsis T. Farrell S. Kopidaki M. Rynning S.
Arango-Docio. D5.1: Design and Specification of Case Studies. Work package,
University of London, June 2012. Work Package Five Deliverables.

[XIX] K. Stepanyan, M. Joy, A. Cristea, Y. Kim, E. Pinsent, and S. Kopidaki.
D2.2: Weblog Data Model. Work package, B. Consortium (Ed.): University of
Warwick (UW), October 2011. Work Package Two Deliverables.

[XX] Karl E. Wiegers. Software Requirements. Microsoft Press, 2nd edition, 2003.

BlogForever Consortium 126

http://jinja.pocoo.org

	ExecutiveSummary
	1 Introduction
	1.1 Purpose and scope
	1.2 Overall approach

	2 The Invenio Software Platform
	2.1 Metadata
	2.2 Record organization
	2.3 Modules
	2.3.1 Metadata acquisition
	2.3.2 Indexing and ranking
	2.3.3 Personalization
	2.3.4 Other relevant modules

	2.4 Scalability in Invenio
	2.4.1 Increasing number of visitors
	2.4.2 Increasing number of objects
	2.4.3 Ingestion speed
	2.4.4 Multi-database setup

	3 Weblogs Structure and Preservation Principles
	3.1 Weblog structure and semantics
	3.1.1 Outline of the data model
	3.1.2 Blog core
	3.1.3 Records within the repository
	3.1.3.1 Blog as a record
	3.1.3.2 Post and Page as a record
	3.1.3.3 Comment as a record
	3.1.3.4 Other data associated with a record: Content and Author

	3.1.4 Changes to the data model
	3.1.5 Extended data model components
	3.1.6 Data model and Invenio

	3.2 Weblog preservation policies
	3.2.1 Target information
	3.2.2 Target properties and associations for preservation
	3.2.3 Workflow for capturing the information and associated properties
	3.2.4 End-user user interface features to support preservation

	4 The BlogForever Repository Component
	4.1 Blog management with Invenio
	4.1.1 Overall architecture
	4.1.2 Ingestion work-flow
	4.1.3 BlogForever metadata structure
	4.1.3.1 Mapping of blog attributes to MARC

	4.1.4 Data export

	4.2 Scalability
	4.3 BlogForever user interface
	4.3.1 User interface related requirements and features
	4.3.2 User interface technologies
	4.3.2.1 Twitter Bootstrap framework
	4.3.2.2 Jinja templating

	4.3.3 BlogForever user interface prototype

	5 Feature Specifications
	5.1 Mapping of requirements to features
	5.2 Feature specifications list
	5.2.1 High priority features
	5.2.2 Medium priority features
	5.2.3 Low priority features

	6 Conclusions
	References

