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Abstract
This paper is devoted to the study of a new class of implicit state-dependent sweeping
processes with history-dependent operators. Based on the methods of convex analysis,
we prove the equivalence of the history/state dependent implicit sweeping process and
a nonlinear differential equation, which, through a fixed point argument for history-
dependent operators, enables us to prove the existence, uniqueness, and continuous
dependence of the solution in a very general framework. Moreover, we present some
new convergence results with respect to perturbations in the data, including perturba-
tions of the associated moving sets. Finally, the theoretical results are applied to prove
the well-posedness of a history-dependent quasi-static contact problem.
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1 Introduction

The Moreau’s sweeping process is a first-order differential inclusion, involving the
normal cone to a moving set depending on time. Roughly speaking, a point is swept
by a moving closed set. The sweeping process was introduced and deeply studied by
Moreau in a series of papers (see [1–3]) to model an elasto-plastic mechanical system.
Since then, many other applications have been given, such as applications in switched
electrical circuits [4], nonsmooth mechanics [5,6], crowd motion [7], hysteresis in
elasto-plastic models [8], among others. Moreover, due to the development of new
techniques to deal with differential inclusions involving normal cones, new variants
of the sweeping process have been introduced. We can mention the state-dependent
sweeping process, the second-order sweeping process, the implicit sweeping process
[9–12], and some others variants. For more details, we refer to [13–17] and the refer-
ences therein. The aim of this paper is to study the existence, uniqueness, and stability
for a class of history/state-dependent implicit sweeping processes. The latter was intro-
duced in [18] (for the special, case where the moving sets are state-independent) to
model a history-dependent viscoelastic contact problem (see [18, Sect. 4]). Moreover,
the history-dependent implicit sweeping process includes several others models as
studied in [9–11].

In this paper, we aim at extending the results from [11,18] to a more general frame-
work, by using tools from differential equations and convex analysis. Specially, under
general assumptions, we show the equivalence of the history/state-dependent implicit
sweeping process and a nonlinear differential equation for which the existence can be
obtained through a fixed point theorem for history-dependent operators. This equiva-
lence result will play a crucial role in this work, because it allows, on the one hand,
to apply classical existence theorems from differential equations to study the implicit
sweeping processes and, on the other hand, to investigate its parametric stability.

The paper is organized as follows. In Sect. 2, we recall some preliminary mate-
rial and gather the hypotheses needed in the study of history/state-dependent implicit
sweeping processes. Then, Sect. 3 establishes the equivalence of the history/state-
dependent sweeping process and a nonlinear differential equation, aswell as proves the
existence, uniqueness and continuous dependence of the solution for the history/state-
dependent sweeping process. In Sect. 4, we give a stability theorem and a convergence
result for history/state-dependent sweeping process. In Sect. 5, as an illustrative appli-
cation, we study a quasi-static contact problem for viscoelastic materials in which, the
constitutive law is given by a history-dependent process. The paper ends with some
concluding remarks.

2 Mathematical Background and Hypotheses

Let H be a separable Hilbert space endowed with a scalar product 〈·, ·〉 and unit ball
B. The weak convergence of a sequence (xn) to x is denoted by xn⇀x . B(H) denotes
the set of linear and continuous operators over H .

Given a closed and convex set S ⊂ H we define, the convex normal cone to S
at x ∈ S as NS (x) := {ζ ∈ H : 〈ζ, y − x〉 ≤ 0 for all y ∈ S}. For a closed and
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convex set S ⊂ H , we consider the distance function dS : H → R and the projection
projS : H → S over S as the maps

dS(x) := inf
y∈S ‖x − y‖, projS(x) := {y ∈ H : dS(x) = ‖x − y‖}.

Clearly, for a closed and convex set S, the map x 	→ d2S(x) is Fréchet differentiable
with ∇d2S(x) = 2

(
x − projS(x)

)
for all x ∈ H (see, e.g., [19, Corollary 12.31]).

Moreover, the following inclusion holds

x − projS(x) ∈ NS
(
projS(x)

)
for all x ∈ H . (1)

The last inclusion indicates that the map x 	→ (I + NS(·))−1 (x), where I stands for
the identity operator in H , is single-valued and coincides with the projection onto the
closed convex set S, that is,

(I + NS(·))−1 (x) = projS(x) for all x ∈ H . (2)

Given two nonempty closed sets A, B ⊂ H , we recall the Hausdorff distance between
A and B is defined by H(A, B) = max{supx∈A dB(x), supx∈B dA(x)}. Moreover,
for two closed and convex sets A, B ⊂ H the following inequality holds (see [3,
Formula 2.17]):

∥∥projA(x) − projB(y)
∥∥2 ≤ ‖x − y‖2 + 2 [dA(x) + dB(y)]H(A, B). (3)

The following result states continuity properties for the projection onto state-
dependent closed and convex sets.

Lemma 2.1 Let Q be a symmetric and invertible operator in B(H). Let C : [0, T ] ×
H ⇒ H be a set-valued map with nonempty, closed and convex values. Assume that
the following conditions hold.

(a) For all x ∈ H, the set-valued map t 	→ C(t, x) is measurable (that is,
graphC(·, x) is measurable (see, e.g., [20, Chapter 3])) such that there exists
a non negative constant μ ≥ 0 such that for a.e. t ∈ [0, T ] and all x ∈ H

dC(t,x)(0) ≤ μ · (‖x‖ + 1) .

(b) The normal cone of C is hypomonotone-like, in the sense that for a given r > 0,
there exists L̃r ≥ 0 (independent of t) such that if

ai ∈ NC(t,ui ) (bi ) for ai ∈ H , ui , bi ∈ rB, i = 1, 2 and t ∈ [0, T ],

then

〈a1 − a2, b1 − b2〉 ≥ −L̃r‖a1 − a2‖ ‖u1 − u2‖. (4)
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Then the following assertions hold.

(i) For all x, y ∈ H, the map t 	→ projQC(t,x)(y) is measurable.

(ii) For all y ∈ H and a.e. t ∈ [0, T ], the map x 	→ projQC(t,x)(y) is ‖Q‖ · L̃ρ-
Lipschitz continuous on rB, where ρ := max{‖y‖ + μ‖Q‖(r + 1), r}.

Proof Since the sets C(t, x) are closed and convex and the operator Q is invertible,
then the sets QC(t, x) are closed and convex. Therefore, the projection is single-valued
and well defined. The first assertion follows from [21, Theorem III.41]. To prove (ii),
fix y ∈ H and consider x1, x2 ∈ rB. Define zi = projQC(t,xi )(y) for i = 1, 2. Then,
for i = 1, 2,

‖zi‖ ≤ ‖ projQC(t,xi )(y) − projQC(t,xi )(0)‖ + ‖ projQC(t,xi )(0)‖
≤ ‖y‖ + ‖Q‖‖ projC(t,xi )(0)‖
≤ ‖y‖ + μ‖Q‖ (‖xi‖ + 1) ≤ ‖y‖ + μ‖Q‖(r + 1).

Moreover, by virtue of formula (1), we obtain that y− zi ∈ NQC(t,xi ) (zi ) for i = 1, 2,
which is equivalent to Q(y − zi ) ∈ NC(t,xi )

(
Q−1zi

)
for i = 1, 2. Thus, by property

(4), we get that ‖z1 − z2‖2 ≤ L̃ρ‖Q‖‖z1 − z2‖ ‖x1 − x2‖, which implies (ii). �

Remark 2.1 The hypothesis (4) is a weakening of [11, Assumption 2], where similar
conditions were introduced to deal with state-dependent implicit sweeping processes.

Definition 2.1 An operator R : C ([0, T ]; H) → C ([0, T ]; H) is called history-
dependent if there exists a constant LR ≥ 0 such that

‖(Rx)(t) − (Ry)(t)‖ ≤ LR
∫ t

0
‖x(s) − y(s)‖ ds, x, y ∈ C ([0, T ]; H), t ∈ [0, T ].

An important property of history-dependent operators is provided by the following
fixed point principle (see [22, Theorem 25]).

Lemma 2.2 If R : C ([0, T ]; H) → C ([0, T ]; H) is a history-dependent operator,
then there exists a unique function x∗ ∈ C ([0, T ]; H) such that Rx∗ = x∗.

Now, to study the stability of history/state-dependent implicit sweeping processes,
we recall the concept of Mosco convergence (see, e.g., [23]).

Definition 2.2 (Mosco convergence) Let (Cn) be a sequence of closed subsets of H
andC ⊂ H .We say that the sequence (Cn)n Mosco converges toC , if w- lim supCn ⊂
lim inf C . In that case, we write

M- limCn := lim inf Cn = lim supCn = w- lim inf Cn = w- lim supCn .

Clearly, in finite dimension Mosco convergence is equivalent to convergence in the
sense of Painlevé–Kuratowski.

The following result points out the relationship between Mosco convergence and
convergence of projections (see, e.g., [23, Proposition 3.33]).
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Proposition 2.1 Let (Cn)n be a sequence of nonempty, closed, and convex subsets of
H. Then the following statements are equivalent:

(i) C = M- limCn.
(ii) For all x ∈ H, (projCn

(x))n converges strongly to projC (x) as n → +∞.
(iii) For all x ∈ H, dCn (x) converges to dC (x) as n → +∞.

As a product of Proposition 2.1, we obtain the following convergence result.

Lemma 2.3 Let C ⊂ H be a nonempty, closed and convex set with projC (0) bounded.
If (Qn) ⊂ B(H) is a sequence of invertible operators converging to an invertible
operator Q ∈ B(H), then QC = M- QnC.

Proof Byvirtue of Proposition 2.1, it is enough to prove that for all x ∈ H , dQnC (x) →
dQC (x) as n → +∞.

On the one hand, taking z := Q−1 projQC (y) ∈ C , we obtain

dQnC (x) ≤ ‖x − Qnz‖ ≤ ‖x − Qz‖ + ‖Qz − Qnz‖ = dQC (x) + ‖Qn − Q‖ ‖z‖,

which implies that lim supn→+∞ dQnC (x) ≤ dQC (x).
On the other hand, taking zn := Q−1

n projQnC (x) ∈ C , we obtain

dQC (x) ≤ ‖x − Qzn‖ ≤ ‖x − Qnzn‖ + ‖Qnzn − Qzn‖
= dQnC (x) + ‖ projQnC (x) − QQ−1

n projQnC (y)‖
≤ dQnC (x) + ‖ projQnC (x)‖ · ‖I − QQ−1

n ‖
≤ dQnC (x) + ‖x‖ · ‖I − QQ−1

n ‖ + ‖ projQnC (0)‖ · ‖I − QQ−1
n ‖

≤ dQnC (x) + ‖x‖ · ‖I − QQ−1
n ‖ + ‖Qn‖ ‖ projC (0)‖ · ‖I − QQ−1

n ‖,

which, since projC (0) is bounded, implies that dQC (x) ≤ lim infn→+∞ dQnC (x). �

For the sake of readability, furthermore, we collect the hypotheses used along with

the paper.
Hypotheses on the operator A : H → H :

(HA) A : H → H is linear, bounded, symmetric, and coercive with constant
α > 0, i.e., 〈Ax, x〉 ≥ α‖x‖2 for all x ∈ H .

Remark 2.2 Under (HA), it is well known that there exists an invertible operator P ∈
B(H) such that A = PP . In what follows, we denote Q := (P)−1.

Hypotheses on the map B : H → H :

(HB) B : H → H is a Lipschitz continuous mapping, that is, there exists LB ≥ 0
such that ‖Bx − By‖ ≤ LB‖x − y‖ for all x, y ∈ H .

Hypotheses on the map R : C ([0, T ]; H) → C ([0, T ]; H):
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(HR) R : C ([0, T ]; H) → C ([0, T ]; H) is a history-dependent operator, that is,
there exists LR ≥ 0 such that for all x, y ∈ C ([0, T ]; H), and t ∈ [0, T ]

‖(Rx)(t) − (Ry)(t)‖ ≤ LR
∫ t

0
‖x(s) − y(s)‖ ds.

Hypotheses on the set-valued map C : [0, T ] × H ⇒ H :

(HCx )

(a) For each t ∈ [0, T ], x ∈ H the set C(t, x) is nonempty, closed and convex.
For all x ∈ H , the set-valued map t 	→ C(t, x) is measurable and there
exists a constant μ non-negative such that for a.e. t ∈ [0, T ] and all x ∈ H ,
dC(t,x)(0) ≤ μ (‖x‖ + 1) .

(b) The normal cone of C is hypomonotone-like, i.e., for all r > 0, there exists
L̃r ≥ 0 (independent of t) such that if

ai ∈ NC(t,ui ) (bi ) for ai ∈ H , ui , bi ∈ rB, i = 1, 2 and t ∈ [0, T ],

then 〈a1 − a2, b1 − b2〉 ≥ −L̃r‖a1 − a2‖ ‖u1 − u2‖.

3 Well-Posedness Results for History/State-Dependent Implicit
Sweeping Processes

This section is devoted to study the well-posedness of history/state-dependent implicit
sweeping process, including the existence, uniqueness, and continuous dependence
with respect to the initial data of the problem: find x : [0, T ] → H such that x(0) = x0
and

− ẋ(t) ∈ NC(t,x(t)) (Aẋ(t) + Bx(t) + (Rx)(t)) a.e. t ∈ [0, T ]. (5)

Here, C : [0, T ] × H ⇒ H , A : H → H , B : H → H , andR are assumed to satisfy
hypotheses (HCx ), (HA), (HB) and (HR), respectively.

We follow the ideas developed in [10], to transform the differential inclusion (5)
into a nonlinear differential equation. Particularly, we shall demonstrate that the dif-
ferential inclusion (5) is equivalent to the following nonlinear differential equation:
find x : [0, T ] → H such that x(0) = x0 and

ẋ(t) = −P−1 (QBx(t) + Q(Rx)(t))

+ P−1 projQC(t,x(t)) (QBx(t) + Q(Rx)(t)) a.e. t ∈ [0, T ], (6)

where A = PP , Q := P−1 and QC(t, x) := {Qy : y ∈ C(t, x)}.
Proposition 3.1 Assume, in addition to (HA), that C(t, y) is closed and convex for all
t ∈ [0, T ] and all y ∈ H. Then x is a solution of the differential inclusion (5) if and
only if it is a solution of the Cauchy problem (6).
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Proof Before starting the proof, we observe that under hypothesis (HA), the following
formula holds:

ζ ∈ NC(t,x(t)) (Aẋ(t) + Bx(t) + (Rx)(t))

⇔ Pζ ∈ NQC(t,x(t)) (Pẋ(t) + QBx(t) + Q(Rx)(t)) , (7)

where Q := P−1 is well defined. Let x be a solution of (5). Then, according to (7),
one has for a.e. t ∈ [0, T ]

QBx(t) + Q(Rx)(t) ∈ (
I + NQC(t,x(t))(·)

)
(Pẋ(t) + QBx(t) + Q(Rx)(t)) .

Moreover, we have that
(
I + NQC(t,x(t))(·)

)−1 = projQC(t,x(t)) (see (2)). Hence, for
a.e. t ∈ [0, T ]

Pẋ(t) + QBx(t) + Q(Rx)(t) = projQC(t,x(t)) (QBx(t) + Q(Rx)(t)) ,

which shows that x is a solution of (6). Reciprocally, let x be a solution of (6). Then,
for a.e. t ∈ [0, T ],

Pẋ(t) = − QBx(t) − Q(Rx)(t) + projQC(t,x(t)) (QBx(t) + Q(Rx)(t))

∈ −NQC(t,x(t))
(
projQC(t,x(t)) (QBx(t) + Q(Rx)(t))

)

∈ −NQC(t,x(t)) (Pẋ(t) + QBx(t) + Q(Rx)(t)) ,

where we have used the inclusion (1). Therefore,

− Pẋ(t) ∈ NQC(t,x(t)) (Pẋ(t) + QBx(t) + Q(Rx)(t)) a.e. t ∈ [0.T ],

which proves, according to formula (7), that x is a solution of (5). �

FromProposition 3.1, we are able to state themain result of this section, concerning the
well-posedness result for problem (5). It is worth noting that, contrary to the existence
results for the sweeping process, we do not require that the variation of themoving sets
is absolutely continuous or Lipschitz continuous in the sense of Hausdorff distance.
Additionally, the following result generalizes the recent one [18, Theorem 12], by
considering state-dependent moving sets without absolute continuity conditions on
time. Moreover, it extends the results from [11, Theorem 3.1] and [9, Theorem 3.1],
by considering history-dependent operators.

Theorem 3.1 Assume that (HA), (HB), (HR) and (HCx ) hold. Then for any x0 ∈ H
there exists a unique x ∈ AC ([0, T ]; H) satisfying (5). Moreover, the map x0 	→
x(x0) : H → AC ([0, T ]; H) is locally Lipschitz continuous.

Remark 3.1 We emphasize that the method to prove Theorem 3.1 follows the ideas
developed in [10], which is of a different nature to the methods used in [9,11,18].
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Proof The proof is divided into four steps.
Step 1: Given w ∈ C ([0, T ]; H), there exists a unique solution x : [0, T ] → H such
that x(0) = x0 and

ẋ(t) ∈ −NC(t,x(t)) (Aẋ(t) + Bw(t) + (Rw)(t)) a.e. t ∈ [0, T ]. (8)

�

Proof of Step 1 Fix R > 0 such that ‖w‖C([0,T ];H) ≤ R and let us consider the map
F : [0, T ] × H → H defined by

F(t, x) := −P−1 (z(t)) + P−1 projQC(t,x) (z(t)) ,

where z(t) := QBw(t) + Q(Rw)(t). Firstly, as a consequence of (HB), (HCx ) and
Lemma 2.1, for all x ∈ H , the map t 	→ F(t, x) is measurable on [0, T ]. We now
claim that there exist c, d ∈ L1(0, T ) with c(t) ≥ 0 and d(t) ≥ 0 for all t ∈ [0, T ]
(depending on w) such that for a.e. t ∈ [0, T ] and all x ∈ H

‖F(t, x)‖ ≤ c(t)‖x‖ + d(t).

In fact, by assumptions (HB) and (HCx ), we find

‖F(t, x)‖ ≤ ‖P−1‖dQC(t,x(t)) (QBw(t) + Q(Rw)(t))

≤ ‖P−1‖ · ‖QBw(t) + Q(Rw)(t)‖ + ‖P−1‖dQC(t,x)(0)

≤ ‖P−1‖ · ‖QBw(t) + Q(Rw)(t)‖ + ‖P−1‖ ‖Q‖dC(t,x)(0)

≤ ‖P−1‖ · ‖QBw(t) + Q(Rw)(t)‖ + ‖P−1‖ ‖Q‖ μ · (‖x‖ + 1)

≤ c(t)‖x‖ + d(t),

where c and d are the integrable functions defined by:

c(t) := ‖P−1‖ ‖Q‖ μ,

d(t) := ‖P−1‖ · ‖QBw(t) + Q(Rw)(t)‖ + ‖P−1‖ ‖Q‖ μ.

Third, by virtue of Lemma 2.1, for all r > 0, a.e. t ∈ [0, T ] and all x, y ∈ rB

‖F(t, x) − F(t, y)‖ ≤ ‖P−1‖ ‖Q‖L̃ρ‖x − y‖,

where ρ := max{R + μ‖Q‖(1 + r), r} and L̃ρ is the constant given by (HCx ).
Therefore, according to [24, Theorem 10.5], the differential Eq. (6) has a unique
solution x(w) defined on [0, T ], which is absolutely continuous. Finally, the existence
and uniqueness of solution for the differential inclusion (8) are obtained directly from
Proposition 3.1, which ends the proof of Step 1. �
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According to Step 1, for any w ∈ C ([0, T ]; H) there exists a unique absolutely
continuous solution x = x(w) of problem (8).Now,we introduce the solutionmapping
S : C ([0, T ]; H) → AC ([0, T ]; H) ⊂ C ([0, T ]; H) defined by Sw = x(w). Let
FixS be the set of fixed points of S, i.e.,

FixS := {x ∈ C ([0, T ]; H) | x = Sx}.

Step 2: There exists a constant M0 > 0 such that for all x ∈ FixS it holds

‖x‖C([0,T ];H) ≤ M0. (9)

Proof of Step 2 Indeed, let x ∈ FixS, i.e., x(0) = x0 and for a.e. t ∈ [0, T ]

−ẋ(t) = P−1 (QBx(t) + Q(Rx)(t)) − P−1 projQC(t,x(t)) (QBx(t) + Q(Rx)(t)) .

Hence, for all t ∈ [0, T ], it has

x(t) = x0 − P−1
∫ t

0
(QBx(s) + Q(Rx)(s)) ds

+ P−1
∫ t

0
projQC(s,x(s)) (QBx(s) + Q(Rx)(s)) ds.

Therefore, for all t ∈ [0, T ], the following estimates hold

‖x(t)‖ ≤ ‖x0‖ + ‖P−1‖
∫ t

0
dQC(s,x(s)) (QBx(s) + Q(Rx)(s)) ds

≤ ‖x0‖ + ‖P−1‖
∫ t

0
‖QBx(s) + Q(Rx)(s)‖ds + ‖P−1‖

∫ t

0
dQC(s,x(s))(0) ds

≤ ‖x0‖ + ‖P−1‖ ‖Q‖
∫ t

0
(‖Bx(s) − B0‖ + ‖(Rx)(s) − (R0)(s)‖) ds

+ ‖P−1‖ ‖Q‖T (‖B0‖ + ‖R0‖C([0,T ];H)

) + ‖P−1‖ ‖Q‖
∫ t

0
μ (‖x(s)‖ + 1) ds

≤ ‖P−1‖ ‖Q‖ (LB + LRT )

∫ t

0
‖x(s)‖ ds + ‖P−1‖ ‖Q‖

∫ t

0
μ‖x(s)‖ ds

+ ‖x0‖ + ‖P−1‖ ‖Q‖T (‖R0‖C([0,T ];H) + ‖B0‖) + ‖P−1‖ ‖Q‖μT .

Thus, from Gronwall’s inequality, we obtain that for all t ∈ [0, T ]

‖x(t)‖ ≤ k0 exp

(
‖P−1‖ ‖Q‖

∫ t

0
(LB + LRT + μ) ds

)
,

where k0 is defined by

k0 = ‖x0‖ + ‖P−1‖ ‖Q‖T (‖R0‖C([0,T ];H) + ‖B0‖) + ‖P−1‖ ‖Q‖μT .
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Therefore, inequality (9) holds for M0 > 0 given by

M0 := k0 exp
(
‖P−1‖ ‖Q‖(LB + LRT )T + ‖P−1‖ ‖Q‖μT

)
,

which ends the proof of Step 2. �

We introduce the M0-radial retraction, PM0 : C ([0, T ]; H) → C ([0, T ]; H),

defined by

PM0(x) :=
⎧
⎨

⎩

x if ‖x‖C([0,T ];H) ≤ M0,
M0x

‖x‖C([0,T ];H)

if ‖x‖C([0,T ];H) > M0.

It is obvious that PM0 is uniformly bounded andLipschitz continuous. Further, consider
the mapping SM0 : C ([0, T ]; H) → C ([0, T ]; H) given by

SM0(w) := S (
PM0(w)

)
for all w ∈ C ([0, T ]; H).

It is clear from Step 2 and the definition of PM0 that FixS ⊂ FixSM0 .
Step 3: The operator SM0 is history-dependent.

Proof of Step 3 Let wi ∈ C ([0, T ]; H) and denote xi = SM0(wi ) for i = 1, 2. We
observe that ‖PM0(w)‖C([0,T ];H) ≤ M0 for all w ∈ C ([0, T ]; H), and thus, it is
possible to find r > 0 such that for all w ∈ C ([0, T ]; H)

max{‖SM0(w)‖C([0,T ];H), ‖Aẋi + B(PM0(w)) + R(PM0(w))‖∞} ≤ r i = 1, 2.

Next, due to (HCx ), it follows that for a.e. t ∈ [0, T ]

〈−ẋ1(t) + ẋ2(t),
(
Aẋ1(t) + B(PM0(w1))(t) + R(PM0(w1))(t)

)〉
− 〈−ẋ1(t) + ẋ2(t),

(
Aẋ2(t) + B(PM0(w2))(t) + R(PM0(w2))(t)

)〉
≥ −L̃r‖ẋ1(t) − ẋ2(t)‖ ‖x1(t) − x2(t)‖,

which implies that for a.e. t ∈ [0, T ]

〈Aẋ1(t) − Aẋ2(t), ẋ1(t) − ẋ2(t)〉
≤ L̃r‖ẋ1(t) − ẋ2(t)‖ ‖x1(t) − x2(t)‖

+ ‖ẋ1(t) − ẋ2(t)‖ ‖B(PM0(w1))(t) − B(PM0(w2))(t)‖
+ ‖ẋ1(t) − ẋ2(t)‖ ‖(R(PM0(w1))(t) − (R(PM0(w2))(t)‖.

(10)

Moreover, according to (HA), for a.e. t ∈ [0, T ], it reads

α‖ẋ1(t) − ẋ2(t)‖2 ≤ 〈Aẋ1(t) − Aẋ2(t), ẋ1(t) − ẋ2(t)〉. (11)
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Thus, by combining inequalities (10) and (11), we obtain that for a.e. t ∈ [0, T ]

‖ẋ1(t) − ẋ2(t)‖ ≤ L̃r

α
‖x1(t) − x2(t)‖ + 1

α
‖B(PM0(w1))(t) − B(PM0(w2))(t)‖

+ 1

α
‖(R(PM0(w1))(t) − (R(PM0(w2))(t)‖

≤ L̃r

α
‖x1(t) − x2(t)‖ + LBLPM0

α
‖w1(t) − w2(t)‖

+ LRLPM0

α

∫ t

0
‖w1(s) − w2(s)‖ ds,

(12)

where LPM0
> 0 is the Lipschitz constant of PM0 . Notice that for all t ∈ [0, T ]

‖x1(t) − x2(t)‖ =
∥∥∥∥

∫ t

0
(ẋ1(s) − ẋ2(s))ds

∥∥∥∥ ≤
∫ t

0
‖ẋ1(s) − ẋ2(s)‖ds,

integrating (12) over [0, t] implies for all t ∈ [0, T ]

‖x1(t) − x2(t)‖ ≤ L̃r

α

∫ t

0
‖x1(s) − x2(s)‖ds + LBLPM0

α

∫ t

0
‖w1(s) − w2(s)‖ds

+ LRT LPM0

α

∫ t

0
‖w1(s) − w2(s)‖ds

Now, we are in position to use to Gronwall’s inequality (see, e.g., [25, Proposi-
tion 2.4.1]), to obtain that for all t ∈ [0, T ]

‖x1(t) − x2(t)‖ ≤ 1

α
exp

(
L̃r T

α

) (
LBLPM0

+ LRT LPM0

) ∫ t

0
‖w1(s) − w2(s)‖ds,

which is equivalent to

‖SM0(w1)(t) − SM0(w2)(t)‖

≤ 1

α
exp

(
L̃r T

α

)(
LBLPM0

+ LRT LPM0

) ∫ t

0
‖w1(s) − w2(s)‖ds

for all t ∈ [0, T ]. This means SM0 is a history-dependent operator. �

Step 4: The operator SM0 has a unique fixed point.

Proof of Step 4 By using Lemma 2.2, the operator SM0 has a unique fixed point x∗ ∈
C ([0, T ]; H), i.e., x∗ = SM0x

∗. However, since the operator SM0 takes values in the
space AC ([0, T ]; H), we deduce that x∗ ∈ AC ([0, T ]; H) too. A simple calculation
shows that ‖x∗‖C([0,T ];H) ≤ M0 (see Step 2). Therefore, x∗ = SM0(x

∗) = S(x∗).We
conclude that x∗ is also the unique fixed point of S. Hence x∗ = Sx∗ is a solution to
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problem (5), which proves the existence part in Theorem 3.1.Whereas, the uniqueness
part follows directly from the uniqueness of the fixed point operator S, guaranteed by
Lemma 2.2. �

Step 5: The operator x0 	→ x(x0) : H → AC ([0, T ]; H) is locally Lipschitz contin-
uous.

Proof of Step 5 Let x10 , x
2
2 ∈ H , and for i = 1, 2 denote by xi ∈ AC ([0, T ]; H) the

solution of problem (5) corresponding to the initial data xi0. By the same arguments
used in Step 2, it is not difficult to find r > 0 and L̃r > 0 (depending on x10 and x20 )
such that for all t ∈ [0, T ] and i = 1, 2,

max{‖x‖C([0,T ];H), ‖Aẋ + B(x) + R(x)‖∞} ≤ r ,

‖x1(t) − x2(t)‖ ≤ ‖x10 − x20‖ + 1

α
eL̃r T /α (LB + T LR)

∫ t

0
‖x1(s) − x2(s)‖.

Thus, by applying Gronwall’s inequality (see, e.g., [25, Proposition 2.4.1]), we find
that

‖x1(t) − x2(t)‖ ≤ Lr
0‖x10 − x20‖ for all t ∈ [0, T ], (13)

for some constant Lr
0 > 0. Moreover, from (13), we have (see (12))

‖ẋ1(t) − ẋ2(t)‖ ≤ Lr
1‖x10 − x20‖ for a.e. t ∈ [0, T ], (14)

for some Lr
1 > 0. Finally, combining the inequalities (13) and (14), we obtain

‖x1 − x2‖AC([0,T ];H) ≤ (Lr
0 + Lr

1)‖x0 − x1‖,

which completes the proof of the theorem. �

Remark 3.2 A detailed analysis of the previous proof reveals that Theorem 3.1 is
still valid if in (HCx ) we request that μ ∈ L1(0, T ) and L̃r ≡ L . We denote these
hypotheses as (H′

Cx ).

The following result, consequence of Theorem 3.1, Proposition 3.1 and (3), reveals
that the unique solution of (5) is Lipschitz provided the variation of the moving sets
is continuous, which generalizes the main result of [18].

Corollary 3.1 Assume, in addition to the hypotheses of Theorem 3.1, that exist LC ≥ 0
and a continuous function v : [0, T ] → R+ such that

sup
z∈H

|dC(t,x)(z) − dC(s,y)(z)| ≤ |v(t) − v(s)| + LC‖x − y‖ x, y ∈ H , s, t ∈ [0, T ].

Then, the unique solution given by Theorem 3.1 belongs to W 1,∞ ([0, T ]; H). More-
over, the operator x0 	→ x(x0) : H → W 1,∞ ([0, T ]; H) is Lipschitz.
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We end this section, by considering the caseR ≡ 0. The following result generalizes
the main result of [11], by relaxing the hypotheses on the continuity on the moving
sets (see [11, Theorem 3.1]).

Corollary 3.2 Assume that hypotheses (HA), (HB) and (HCx ) hold. Then for any
x0 ∈ H there exists a unique x ∈ AC ([0, T ]; H) satisfying x(0) = x0 and

ẋ(t) ∈ −NC(t,x(t)) (Aẋ(t) + Bx(t)) a.e. t ∈ [0, T ].

Moreover, the map x0 	→ x(x0) : H → AC ([0, T ]; H) is Lipschitz continuous.

4 Stability of History/State-Dependent Implicit Sweeping Processes

In this section, we are concerned with the study of some new convergence results with
respect to perturbations in the data, including perturbation of the associated moving
sets, for the history/state-dependent implicit sweeping process (5). These results, in
some sense, can be seen as stability results for the solution map of the problem (5).
We refer to [26,27] for similar results about the sweeping process and some relevant
differential variational inequalities.

In what follows, we assume that (HA), (HB), (HR) and (HCx ) hold always. For
each n ∈ N fixed, let us consider the following perturbed problem:

{
−ẋ(t) ∈ NCn(t,x(t)) (An ẋ(t) + Bnx(t) + (Rnx)(t)) a.e. t ∈ [0, T ],
x(0) = xn0 ,

(15)

where (An, Bn,Rn,Cn) satisfy the following conditions:

(Hn
A) Let An : H → H be a linear, bounded, symmetric operator satisfying:

(a) There exists α > 0 such that 〈Anx, x〉 ≥ α‖x‖2 for all x ∈ H .
(b) An = Pn Pn with Pn → P .

(Hn
B) Let Bn : H → H be Lipschitz continuous mapping satisfying:

(a) There exists LB ≥ 0 such that

‖Bnx − Bn y‖ ≤ LB‖x − y‖ for all x, y ∈ H .

(b) For all x ∈ H , the sequence (Bnx) strongly converges to Bx .

(Hn
R) Let Rn : C ([0, T ]; H) → C ([0, T ]; H) be such that

(a) There exists LR ≥ 0 satisfying

‖(Rnx)(t) − (Rn y)(t)‖ ≤ LR
∫ t

0
‖x(s) − y(s)‖ ds

for all x, y ∈ C ([0, T ]; H) and t ∈ [0, T ].
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(b) For all x ∈ C ([0, T ]; H),Rnx converges toRx in C ([0, T ]; H).

(Hn
Cx ) Let Cn : [0, T ] × H ⇒ H be a set-valued map satisfying:

(a) Cn satisfies (HCx ).
(b) For all t ∈ [0, T ] and every sequence (xn)n converging to x , the sequence

{Cn(t, xn)} Mosco-converges to C(t, x) (see Definition 2.2).

Theorem 4.1 Assume that (Hn
A), (Hn

B), (Hn
R) and (Hn

Cx ) hold. Then, the following
assertions hold.

(i) For each n ∈ N, the problem (15) has a unique solution xn ∈ AC ([0, T ]; H).
(ii) If xn0 → x0 in H and xn → x in C ([0, T ]; H), then x ∈ AC ([0, T ]; H) and x is

a solution of (5) with x(0) := x0.

Proof Assertion (i) follows directly from Theorem 3.1. We now prove (ii). In fact,
Proposition 3.1 indicates that xn satisfies xn(0) = x0 and

ẋn(t) = −P−1
n (QnBnxn(t) + Qn(Rnxn)(t))

+ P−1
n projQnCn(t,xn(t)) (QnBnxn(t) + Qn(Rnxn)(t)) a.e. t ∈ [0, T ],

where Qn = (Pn)−1 is well defined. Thus, for each n ∈ N and all t ∈ [0, T ]

xn(t) = xn0 − P−1
n

∫ t

0
(QnBnxn(s) + Qn(Rnxn)(s)) ds

+ P−1
n

∫ t

0
projQnCn(s,xn(s)) (QnBnxn(s) + Qn(Rnxn)(s)) ds.

(16)

However, the convergence xn → x in C ([0, T ]; H) and assumptions (Hn
A), (Hn

B)

and (Hn
R), guarantee that, as n → +∞, for all s ∈ [0, T ]

{
xn(0) = xn0 → x(0) =: x0
zn(s) := QnBnxn(s) + Qn(Rnxn)(s) → z(s) := QBx(s) + Q(Rx)(s).

(17)

Moreover, according to (Hn
Cx ) and Proposition 2.1, it follows that for all y ∈ H

projQnCn(t,xn(t))(y) → projQC(t,x(t))(y) as n → +∞. (18)

Consequently, combining (17) and (18) with the nonexpansiveness of the distance, we
get that projQnCn(t,xn(t))(zn(t)) → projQC(t,x(t))(z(t)) as n → +∞. Hence, by using
this convergence and the dominated convergence theorem, we can pass to the limit in
(16) to obtain that x is a solution of (6). Finally, by Proposition 3.1 and Theorem 3.1,
x ∈ AC ([0, T ]; H) solves (5), which completes the proof. �


Now, we present a novel convergence result with respect to perturbations in the
data for the differential Eq. (5). Unlike Theorem 4.1, the moving sets are not affected
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by the perturbations. Thus, we are interested in the stability of history/state-dependent
implicit sweeping process: Find xn : [0, T ] → H such that xn(0) = xn0 and

− ẋn(t) ∈ NC(t,xn(t)) (An ẋn(t) + Bnxn(t) + (Rnxn)(t)) a.e. t ∈ [0, T ]. (19)

Now, we present the main result of this section.

Theorem 4.2 Assume, in addition to (Hn
A), (Hn

B), (Hn
R) and (HCx ), that there exists

LC ≥ 0 such that for all t ∈ [0, T ]

|dC(t,x)(z) − dC(t,y)(z)| ≤ LC‖x − y‖ for all x, y, z ∈ H . (20)

Then, the following assertions hold.

(i) For each n ∈ N, the problem (19) has a unique solution xn ∈ AC ([0, T ]; H).
(ii) If xn0 → x0 strongly in H, then xn → x in C ([0, T ]; H) as n → +∞, where x is

the unique solution of (5) with x(0) = x0.

Proof The assertion (i) is a consequence of Theorem 3.1. To prove the conclusion (ii),
let x be the unique solution of (5) with x(0) = x0 and let us consider the intermediate
problem: find x̃n : [0, T ] → H such that x̃n(0) = xn0 and

− ˙̃xn(t) ∈ NC(t,x(t))

(
An ˙̃xn(t) + Bnx(t) + (Rnx)(t)

)
a.e. t ∈ [0, T ]. (21)

Assume that x̃n ∈ C ([0, T ]; H) is the unique solution to problem (21). Then, by
similar arguments to be given in the proof of Proposition 3.1, it follows that for all
t ∈ [0, T ]

x̃n(t) = xn0 + P−1
n

∫ t

0
projQnC(s,x(s)) (QnBnx(s) + Qn(Rnx)(s)) ds

− P−1
n

∫ t

0
(QnBnx(s) + Qn(Rnx)(s)) ds.

(22)

Let x ∈ C ([0, T ]; H) be the unique solution to the problem (5) associated to x0.
Define zn(t) := QnBnx(t) + Qn(Rnx)(t) and z(t) := QBx(t) + Q(Rx)(t). Then,
for all t ∈ [0, T ], we have

x(t) = x0 + P−1
∫ t

0
projQC(s,x(s)) (z(s)) ds − P−1

∫ t

0
(z(s)) ds. (23)
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Combining (22) and (23), we get that for all t ∈ [0, T ]

x̃n(t) − x(t) = xn0 − x0 − (P−1
n − P−1)

∫ t

0
(z(s)) ds

− P−1
n

∫ t

0
(zn(s) − z(s)) ds

+ P−1
n

∫ t

0

[
projQnC(s,x(s))(zn(s)) − projQnC(s,x(s))(z(s))

]
ds

+ P−1
n

∫ t

0

[
projQnC(s,x(s))(z(s)) − projQC(s,x(s))(z(s))

]
ds

+ (P−1
n − P−1)

∫ t

0
projQC(s,x(s))(z(s)) ds.

Now, we recall that P−1
n → P−1, Pn → P and Qn = (Pn)−1 → (P)−1 = Q. Thus,

by a careful calculation, we get for all s ∈ [0, T ]

‖zn(s) − z(s)‖ ≤ ‖QnBnx(s) + Qn(Rnx)(s) − QnBx(s) − Qn(Rx)(s)‖
+ ‖QnBx(s) + Qn(Rx)(s) − QBx(s) − Q(Rx)(s)‖

≤ ‖Qn‖ (‖Bnx(s) − Bx(s)‖ + ‖(Rnx)(s) − (Rx)(s)‖)
+ ‖Qn − Q‖ (‖Bx(s)‖ + ‖(Rx)(s)‖) .

Moreover, by virtue of Lemma 2.3, (HCx )(a) and Proposition 2.1, for a.e. s ∈ [0, T ],
projQnC(s,x(s))(z(s)) → projQC(s,x(s))(z(s)) as n → +∞.

Besides, hypotheses (Hn
B) and (Hn

R) guarantee that for all s ∈ [0, T ], Bnx(s) →
Bx(s) and (Rnx)(s) → (Rx)(s). Passing to the limit in (22),we conclude that x̃n → x
in C ([0, T ]; H) as n → +∞.
Let xn be the unique solution to problem (15). Then, for all t ∈ [0, T ], it has

xn(t) = xn0 + P−1
n

∫ t

0
projQnC(s,xn(s)) (QnBnxn(s) + Qn(Rnxn)(s)) ds

− P−1
n

∫ t

0
(QnBnxn(s) + Qn(Rnxn)(s)) ds.

(24)
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Combining (22) and (24), we have that for all t ∈ [0, T ]

‖xn(t) − x̃n(t)‖ ≤ ‖P−1
n ‖ ‖Qn‖(LB + LRT )

∫ t

0
‖xn(s) − x(s)‖ds

+ 2‖P−1
n ‖

∫ t

0
dQnC(s,xn(s)) (zn(s))H (QnC(s, xn(s)), QnC(s, x(s))) ds

+ 2‖P−1
n ‖

∫ t

0
dQnC(s,x(s)) (zn(s))H (QnC(s, xn(s)), QnC(s, x(s))) ds

≤ ‖P−1
n ‖ ‖Qn‖(LB + LRT )

∫ t

0
‖xn(s) − x(s)‖ ds

+ 2‖P−1
n ‖

∫ t

0
mn(s)H (QnC(s, xn(s)), QnC(s, x(s)) ds,

where mn is defined by

mn(s) := ‖QnBnx(s)‖ + ‖Qn(Rnx)(s)‖ + ‖Qn‖μ (‖xn(s)‖ + ‖x(s)‖ + 2) .

The latter inequality combined with (20) implies

‖xn(t) − x̃n(t)‖ ≤ ‖P−1
n ‖ ‖Qn‖(LB + LRT )

∫ t

0
‖xn(s) − x(s)‖ ds

+ 2‖P−1
n ‖ ‖Qn‖LC

∫ t

0
mn(s)‖xn(s) − x(s)‖ ds.

Moreover, by employing the same arguments from the proof of Theorem 3.1, we are
able to find a constant M2 > 0 such that ‖xn‖C([0,T ];H) ≤ M2 for all n ∈ N. From the
two previous inequalities, there exists a non-negative integrable function k∗, which is
independent of n, such that for all t ∈ [0, T ]

‖x̃n(t) − x̃n(t)‖ ≤
∫ t

0
k∗(s)‖xn(s) − x(s)‖ ds.

Therefore, we conclude that for all t ∈ [0, T ]

‖xn(t) − x(t)‖ ≤ ‖xn(t) − x̃n(t)‖ + ‖x̃n(t) − x(t)‖
≤

∫ t

0
k∗(s)‖xn(s) − x(s)‖ ds + ‖x̃n(t) − x(t)‖.

Whereas, Gronwall’s inequality indicates that

‖xn(t) − x(t)‖ ≤ ‖x̃n − x‖C([0,T ];H) exp

(∫ t

0
k∗(s)ds

)
for all t ∈ [0, T ].
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Finally, due to the convergence x̃n → x in C ([0, T ]; H), we obtain the convergence
that the sequence (xn) converges to x in C ([0, T ]; H), as n → ∞, which ends the
proof. �


5 A History-Dependent Quasi-static Contact Problem

In this section, we apply our theoretical results to study the well-posedness of a quasi-
static contact problem for viscoelastic materials in which the constitutive law for the
viscoelasticmaterial is given by a history-dependent process.We refer to [18,20,22,28]
for more details on quasi-static contact problems.

The physical setting of the contact model is described as follows. We assume that
a viscoelastic body occupies a bounded domain Ω in R

d , d = 2, 3, with a Lipschitz
continuous boundary Γ := ∂Ω such that the boundary is decomposed into four
mutually disjoint and measurable parts ΓD , ΓN , ΓC1 and ΓC2 with meas(ΓD) > 0.

For the sake of convenience, we shall adopt the following standard notation. Denote
by ν = (νi ) and x ∈ Ω = Ω ∪ ∂Ω the unit outward normal vector on boundary and
the position vector in the body, respectively. In what follows, the indices i , j , k, l
run from 1 to d, and the summation convention over repeated indices is used. For
simplicity, we often will not explicitly indicate the dependence on the variable x.
Let (Sd , ‖ · ‖Sd ) be the space of second order symmetric tensors on R

d . The inner

products and norms in R
d and S

d are defined by u · v = uivi , ‖v‖Rd = (v · v)
1
2 for

all u = (ui ), v = (vi ) ∈ R
d , σ : τ = σi jτi j , ‖τ‖Sd = (τ : τ )

1
2 for σ = (σi j ),

τ = (τi j ) ∈ S
d , respectively. Besides, we use the notation u = (ui ), σ = (σi j ),

and ε(u) = (εi j (u)), εi j (u) = 1
2

(
ui, j + u j,i

)
, i, j = 1, . . . , d, to stand for the

displacement vector, the stress tensor, and the linearized strain tensor, respectively.
For a vector w on the boundary, its normal and tangential components are formulated
by wν = w · ν and wτ = w − wνν, accordingly. For the stress tensor σ , its normal
and tangential components on the boundary are denoted by σν = (σν) · ν and σ τ =
σν − σνν, respectively. Set Q = Ω×]0, T [, Σ = Γ ×]0, T [, ΣD = ΓD×]0, T [,
ΣN = ΓN×]0, T [, ΣC1 = ΓC1×]0, T [, and ΣC2 = ΓC2×]0, T [.

The classical formulation of the contact model reads as follows.

PROBLEM 5.1 Find a displacement field u : Q → R
d and a stress field σ : Q →

S
d such that

σ (t) = Aε(u′(t)) + Bε(u(t)) +
∫ t

0
R(t − s)ε(u(s)) ds inQ, (25)

Div σ (t) + f 0(t) = 0 inQ, (26)

u(t) = 0 onΣD, (27)

σ (t)ν = f N (t) onΣN , (28)
{−σν(t) = pν(uν(t) − g)

σ τ (t) = 0
onΣC1 , (29)
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⎧
⎪⎨

⎪⎩

−σν(t) = F,

‖σ τ (t)‖Sd ≤ μ|σν(t)|,
−σ τ (t) = μ|σν(t)| u′

τ (t)
‖u′

τ (t)‖
Rd

if u′
τ (t) �= 0

onΣC2 , (30)

u(0) = u0 inΩ. (31)

To understand the contact model, we now give a short description of its equations
and relations. First, Eq. (25) represents a general constitutive law for viscoelastic
materials with long memory in which A, B and R are the linear viscosity operator,
nonlinear elasticity operator, and the relaxation tensor, respectively. In fact, this kind of
constitutive law has been considered and studied in the literature, for example, [20,22].
The equality (26) is called the equation of equilibrium, where “Div” denotes the
divergence operator

Divσ = (σi j, j ) =
(

∂σi j

∂x j

)
,

and f 0 denotes the density of volume forces. The boundary conditions (27) and (28)
characterize the physical phenomena that the viscoelastic body is clamped on ΓD and
it is subjected to the density f N of surface tractions on ΓN . On boundary ΓC1 , the
contact is described by the normal compliance condition (29) and frictionless (see,
for instance [29,30]). However, the relation (30) illustrates a version of Tresca’s law
of dry friction, in which the normal stress on the contact boundary is assumed to be
given (see, for instance [31] and the references therein). Here, F is a positive function,
μ ≥ 0 denotes the coefficient of friction and, therefore, μF represents the friction
bound. Finally, condition (31) is the initial condition in which u0 stands for the initial
displacement field.

To obtain the weak formulation of Problem 5.1, let us introduce the following
function spaces

H = {v ∈ H1(Ω;Rd) | v = 0 on ΓD}, V = L2(Ω;Sd).

By virtue of Korn’s inequality, since meas(ΓD) > 0, it is possible to prove that H is
a Hilbert space endowed with the inner product

〈u, v〉H =
∫

Ω

ε(u(x)) : ε(v(x)) dx for u, v ∈ H ,

and the associated norm ‖ · ‖H . Moreover, V is also a Hilbert space equipped with the
inner product

〈σ , τ 〉V =
∫

Ω

σ (x) : τ (x) dx for all σ , τ ∈ V,

and the associated norm ‖ · ‖V .
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Consider the trace operator γ : H → L2(ΓC ;Rd), withΓC = ΓC1 ∪ΓC2 , it follows
from Korn’s inequality that

‖v‖L2(ΓC ;Rd ) ≤ ‖γ ‖ · ‖v‖H for all v ∈ H .

On the other hand, let us introduce a function space

Q∞ = { E = (Ei jkl) | Ei jkl = E j ikl = Ekli j ∈ L∞(Ω), 1 ≤ i, j, k, l ≤ d },

which endowedwith the norm ‖E‖Q∞ = max1≤i, j,k,l≤d ‖Ei jkl‖L∞(Ω) is a realBanach
space.

Further, we impose the following hypotheses.
H(A): A ∈ Q∞ and it satisfies Aε · ε ≥ LA‖ε‖2

Sd
for all ε ∈ S

d for some LA > 0.

H(B): B : Ω × S
d → S

d is such that

(a) there exists LB > 0 such that ‖B(x, ε1) − B(x, ε2)‖Sd ≤ LB‖ε1 − ε2‖Sd for all
ε1, ε2 ∈ S

d , a.e. x ∈ Ω.

(b) the mapping x 	→ B(x, ε) is measurable on Ω for all ε ∈ S
d .

(c) the mapping x 	→ B(x, 0) belongs to V .
H(R): R ∈ C([0, T ];Q∞).

H(pν): pν : ΓC1 × R → R+ is such that

(a) there exists Lν > 0 such that |pν(x, r1)−pν(x, r2)| ≤ Lν |r1−r2| for all r1, r2 ∈ R

a.e. x ∈ ΓC1 .
(b) x 	→ pν(x, r) is measurable on ΓC1 for all r ∈ R.
(c) the mapping pν(x, r) = 0 for all r ≤ 0 and a.e. x ∈ ΓC1 .

H( f ): f 0 ∈ L2(0, T ; L2(Ω;Rd)), f N ∈ L2(0, T ; L2(ΓN ;Rd)), F ∈ L2(ΓC2),

F(x) ≥ 0 a.e. x ∈ ΓC2 , μ ∈ L∞(ΓC2), μ(x) ≥ 0 a.e. x ∈ ΓC2 , g ∈ L2(ΓC1),
g(x) ≥ 0 for a.e. x ∈ ΓC1 .

By a standard procedure, it is not difficult to obtain the following weak formulation
of Problem 5.1 as folllows.

PROBLEM 5.2 Find a displacement field u : [0, T ] → H such that

〈Aε(u′(t)) + Bε(u(t)) +
∫ t

0
R(t − s)ε(u(s)) ds, ε(v) − ε(u′(t))〉V

+
∫

ΓC2

F(vν − u′
ν(t)) dΓ +

∫

ΓC2

μF‖vτ‖Rd dΓ −
∫

ΓC2

μF‖u′
τ (t)‖Rd dΓ

+
∫

ΓC1

pν(uν(t) − g(x))(vν − u′
ν(t)) dΓ ≥ 〈 f (t), v − u′(t)〉H

for all v ∈ H and a.e. t ∈ [0, T ],
u(0) = u0 in Ω,

where f ∈ L2(0, T ; H) is such that for all v ∈ H and t ∈ [0, T ]

〈 f (t), v〉H = 〈 f 0(t), v〉L2(Ω;Rd ) + 〈 f N (t), v〉L2(ΓN ;Rd ).
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Our main result for Problem 5.2 reads as follows.

Theorem 5.3 Under the hypotheses H(A), H(B), H(R), H(pν) and H( f ), then, for
any initial displacement u0 ∈ H, Problem 5.2 has a unique solution u = u(u0) ∈
AC ([0, T ]; H). Moreover, the map u0 	→ u(u0) defined from H into AC ([0, T ]; H)

is locally Lipschitz continuous.

Proof We shall apply Theorem 3.1 to prove the desired conclusion. To this end, first,
we show that Problem 5.2 is equivalent to a history/state-dependent sweeping process,
i.e., problem (5).

Let A, B : H → H and R : C([0, T ]; H) → C([0, T ]; H) defined by

〈Au, v〉H = 〈A(ε(u)), ε(v)〉V , (32)

〈Bu, v〉H = 〈B(ε(u)), ε(v)〉V , (33)

〈(Rw)(t), v〉H = 〈 ∫ t

0
R(t − s)ε(w(s)) ds, ε(v)

〉
V (34)

for all u, v ∈ H , all w ∈ C([0, T ]; H) and all t ∈ [0, T ]. Also, we consider the
functions ϕ : H → R and P : H → H defined by

ϕ(v) =
∫

ΓC2

μF
(
vν + ‖vτ‖Rd

)
dΓ for all v ∈ H ,

〈P(u), v〉 =
∫

ΓC1

pν(x, uν(x) − g(x))vν(x) dΓ for all v ∈ H .

Under the above definitions, it is easy to see that Problem 5.2 can be rewritten equiv-
alently as the problem: find u : [0, T ] → H such that u(0) = u0 and

〈Au′(t) + Bu(t) + (Ru)(t) − f (t) + Pu(t), v − u′(t)〉H
+ϕ(v) − ϕ(u′(t)) ≥ 0 for all v ∈ H and a.e. t ∈ [0, T ],

From the definition of ϕ and hypotheses H( f ), it can observe that ϕ is a convex
and continuous function. So, we can directly reformulate the above inequality to the
following differential inclusion problem: find a displacement field u : [0, T ] → H
such that u(0) = u0 and

f (t) − Au′(t) − Bu(t) − (Ru)(t) − Pu(t) ∈ ∂ϕ(u′(t)) a.e. t ∈ [0, T ].

Also ϕ is convex and positively homogeneous of degree 1 (i.e., ϕ(λu) = λϕ(u) for
all λ > 0 and u ∈ H ). A simple calculating gives

∂ϕ(0H ) = { ξ ∈ H | ϕ(v) ≥ 〈ξ , v〉H for all v ∈ H }.

For simplicity, we denote C0 := ∂ϕ(0H ). Obviously, it holds

ϕ(v) = sup
ξ∈C0

〈ξ , v〉H = σC0(v) = I ∗
C0

(v) for all v ∈ H ,
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where I ∗
C0

is the Legendre–Fenchel conjugate of the indicator function IC0 . The latter
combined with the facts

∂ϕ(v) = ∂ I ∗
C0

(v), ϕ∗(v) = I ∗∗
C0

(v) = IC0(v),

and ξ ∈ ∂ϕ(v) ⇔ v ∈ ∂ IC0(ξ) ⇔ v ∈ NC0(ξ), implies that for a.e. t ∈ [0, T ]

f (t) − Au′(t) − Bu(t) − (Ru)(t) − Pu(t) ∈ ∂ϕ(u′(t))
⇐⇒ −u′(t) ∈ NC0

(
f (t) − Au′(t) − Bu(t) − (Ru)(t) − Pu(t)

)

⇐⇒ −u′(t) ∈ NC0+Pu(t)− f (t)
( − Au′(t) − Bu(t) − (Ru)(t)

)

⇐⇒ −u′(t) ∈ NC(t,u(t))
(
Au′(t) + Bu(t) + (Ru)(t)

)
,

where C(t, u(t)) := f (t) − C0 − Pu(t) = f (t) − ∂ϕ(0H ) − Pu(t). To conclude,
we can see that Problem 5.2 is equivalent to the following history/state-dependent
sweeping process: find u : [0, T ] → H such that u(0) = u0 and

−u′(t) ∈ NC(t,u(t))
(
Au′(t) + Bu(t) + (Ru)(t)

)
for a.e. t ∈ [0, T ].

It remains us to verify that all conditions of Theorem 3.1 are valid. Indeed, hypothesis
H(A) implies that operator A defined in (32) is linear, bounded, symmetric and coer-
cive with constant α = LA, i.e., (HA) holds. From hypotheses H(B) and H(R), it is
not difficult to corroborate that operators B and R defined in (33) and (34) satisfy con-
ditions (HB) and (HR), respectively. Further, we shall demonstrate that the set-valued
map C : [0, T ] × H ⇒ H enjoys hypothesis (H′

Cx ) (see Remark 3.2). It is clear that
for all u ∈ H the mapping t 	→ C(t, u) = f (t) − ∂ϕ(0) − Pu is measurable and

dC(t,u)(0H ) = inf
v∈C(t,u)

‖v‖H ≤ ‖Pu‖H + ‖ f (t)‖H + dC0(0H ). (35)

Moreover, through the definition of P and Hölder’s inequality, we obtain

‖Pu‖H ≤ sup
w∈H ,‖w‖=1

∫

ΓC1

pν(x, uν(x) − g(x))wν(x) dΓ

≤ ‖γ ‖
( ∫

ΓC1

|pν(x, uν(x) − g(x))|2 dΓ
) 1

2

≤ ‖γ ‖Lν

(∫

ΓC1

|uν(x) − g(x)|2 dΓ
) 1

2

≤ ‖γ ‖Lν

√
2
(‖γ ‖ · ‖u‖H + ‖g‖L2(ΓC1 )

)
.

Thus, due to the last inequality and (35), we get

dC(t,u)(0H ) ≤ μ(t)(1 + ‖u‖H ) for all u ∈ H and a.e. t ∈ [0, T ],
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where μ ∈ L1(0, T ) is the function defined by

μ(t) := ‖γ ‖Lν

√
2max{‖γ ‖, ‖g‖L2(ΓC1 )} + ‖ f (t)‖H + dC0(0H ).

Hence, (H′
Cx )(a) holds. Next, fix r ∈ R and for i = 1, 2, let wi ∈ NC(t,ui )(vi ) with

u1, vi ∈ rB. Then wi ∈ NC(t,ui )(vi ) = N f (t)−∂ϕ(0H ) (vi + Pui ). By virtue of the
monotonicity of the normal cone, it follows that

〈w1 − w2, v1 + Pu1 − v2 − Pu2〉H ≥ 0.

Therefore,

〈w1 − w2, v1 − v2〉H ≥ −‖w1 − w2‖H‖Pu1 − Pu2‖H
≥ −‖γ ‖2Lν‖w1 − w2‖H‖u1 − u2‖H .

So, we conclude that condition (H′
Cx )(b) holds with L̃r = ‖γ ‖2Lν ∀r ∈ R+.

We are now in position to apply Theorem 3.1 (see Remark 3.2) to conclude that
Problem 5.2 has a unique solution and the map u0 	→ u(u0) is locally Lipschitz
continuous from H into AC ([0, T ]; H), which ends the proof. �


6 Conclusions

In this paper, we prove the well-posedness and parametric stability for history/state
dependent implicit sweeping processes. Ourmethod relies on the equivalence between
the implicit sweeping process and a nonlinear differential equation. An important
continuation of this work is to study problems of optimal control for implicit sweeping
processes,which, up to our knowledge, have not been considered yet. In themechanical
context, these problems consist of leading the stress tensor as close as possible to a
given target (see [32–34] and the references therein). It seems that our approach could
be fruitful, especially, to obtain optimality conditions. This research will be pursued
in the future.
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