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Abstract We consider a new class of inclusions in Hilbert spaces for which we provide an
existence and uniqueness result. The proof is based on arguments of monotonicity, convexity
and fixed point. We use this result to establish the unique solvability of an associated class
of Moreau’s sweeping processes. Next, we give two applications in Solid Mechanics. The
first one concerns the study of a time-dependent constitutive law with unilateral constraints
and memory term. The second one is related to a frictional contact problem for viscoelastic
materials. For both problems we describe the physical setting, list the assumptions on the
data and provide existence and uniqueness results.

Mathematics Subject Classification 49J40 · 47J20 · 47J22 · 34G25 · 58E35 · 74M10 ·
74M15 · 74G25

Keywords Nonlinear inclusion · Sweeping process · History-dependent operator ·
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1 Introduction

Nonlinear inclusions arise in the study of various boundary value problems and have impor-
tant applications in Mechanics, Physics, Engineering and Economy. Expressed in terms of
multivalued operators, their solvability requires arguments coming from set-valued, convex
and nonsmooth analysis. Time-dependent and evolutionary inclusions represent an impor-
tant ingredient in the study of various classes of variational and hemivariational inequalities,
as illustrated in the books [18, 27–29, 31, 32]. There, various existence results have been
developed, based on surjectivity properties for pseudomonotone operators.
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A convex sweeping process is a differential inclusion governed by the normal cone of a
convex moving set. Such evolution inclusions are strongly involved in the study of unilateral
problems in Solid Mechanics, where the convex sets are related to the elastic-visco-plastic
constitutive law or, alternatively, to the frictional unilateral contact conditions. Sweeping
process problems have been introduced in early seventy’s in the pioneering works of Moreau
[21–23]. Later, many variants of the so-called Moreau’s sweeping process have been de-
veloped in the literature: stochastic ([7]), in bounded variation framework ([11, 24]), with
perturbations ([11, 20]), nonconvex (complement of a convex set ([36]), closed set in R

n ([3,
8, 33]) prox-regular ([8, 11, 26]), subsmooth ([14]), α-far ([15]), state-dependent ([13, 16,
25]), in Banach spaces and manifolds ([4, 5]), truncated ([25, 34]), with velocity constraint
and/or history-dependent operators ([1, 2, 19]), subject to a control ([6]).

Contact process between deformable bodies abound in industry and everyday life. A few
simple example are brake pads with wheels, tires on road, and piston with skirts. Common
industrial processes such as metal forming and metal extrusion involve contact evolution,
too. Stated as strongly nonlinear boundary value problems which usually do not have clas-
sical solutions, the mathematical models of contact lead to a large variety of weak formu-
lations, expressed in terms of variational or hemivariational inequalities. These inequalities
could be elliptic, time-dependent or evolutionary, in function of the type of the mechanical
process, the constitutive laws and the interface laws used in the construction of each model.
Usually, the corresponding unknowns are the displacement or the velocity field and, on oc-
casion, the stress field. Employing such kind of formulations allows the use of standard ar-
guments from the theory of variational and hemivariational inequalities which can be found
in various books, including [18, 27–29]. Currently, there is an interest in variational formu-
lation of contact models in the form of a time-dependent inclusion or a sweeping process,
see [1, 2], for instance. Nevertheless, using such kind of formulations in the study of contact
models requires to adapt the arguments of abstract stationary or differential inclusions and,
very often, to develop new arguments in their analysis and control.

The current paper signs up in this direction and its aim is two folds. The first one is to
provide an existence and uniqueness result for a new class of time-dependent inclusions and
sweeping processes in a real Hilbert space. On this concern, the novelty lies in the special
structure of the considered problems which, inspired by potential applications in Mechanics
of Solids, is governed by two nonlinear operators, and are defined on a possibly unbounded
time interval. The second aim of the present paper is to illustrate the theoretical results in the
study of mathematical models arising in Solid and Contact Mechanics. Thus, we consider a
viscoelastic constitutive law for which we show that the “irregular” part of the stress field can
be determined in a unique way when the evolution of the stress field in time in known. This
result, based on the solution of a time-dependent inclusion, provides a better knowledge of
viscoelastic constitutive laws with long memory term and looking property which describe
the behavior of some real materials like metals, rocks and polymers. Then, we consider a
frictional contact model with viscoelastic materials for which we provide a new variational
formulation, in terms of a sweeping process in which the unknown is the strain field. At
the best of our knowledge, this variational formulation, together with the corresponding
existence and uniqueness result, is new and nonstandard. It has the merit to show that the
sweeping process theory can be used in the study of contact problems and, on this matter,
it could represent an alternative to the classical tools provided by the theory of variational
inequalities.

The paper is organized as follows. Section 2 is devoted to the notation and the pre-
liminaries of Convex and Nonlinear Analysis needed throughout the paper. In Sect. 3, we
introduce the time-dependent inclusion we are interested in, then we prove its unique solv-
ability (see Theorem 3.1). Such a well-posedness is then apply (Theorem 4.1) to a variant
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of Moreau’s sweeping process in Sect. 4. The inclusion and the sweeping process consid-
ered are described through a family of time-dependent convex sets {K(t)}t∈I satisfying a
specific assumption denoted by (K). Various examples of convex moving set enjoying such
an assumption (K) are provided in Sect. 5. Note that part of these examples are useful in
various applications arising in Solid and Contact Mechanics. Next, in Sect. 6 we consider a
viscoelastic constitutive law with unilateral constraints for the strain field and illustrate the
use of Theorem 3.1 in the study of this law. Finally, in Sect. 7, we introduce a mathematical
model which describes the frictional contact of a nonlinear viscoelastic body. We provide a
variational formulation of the model then we illustrate the use of Theorem 4.1 to obtain its
unique weak solvability.

2 Preliminaries

The material presented in this section is standard and, for this reason, we present it without
proofs. More details can be found in the books [12, 17, 31, 32], for instance.

In the whole paper, all vector spaces will be real vector spaces. We use R+ for the set of
nonnegative reals, that is, R+ := [0,+∞[. The letter T stands for an extended nonnegative
real, i.e., T ∈ R+ ∪{+∞} and I := [0, T ]∩R. Throughout the paper, X represents a Hilbert
space endowed with an inner product (·, ·)X and its associated norm ‖ · ‖X := √

(·, ·)X . The
set of parts of X is denoted by 2X .

Convex sets and nonlinear operators. Let K be a nonempty closed convex subset of X

and f ∈ X be a vector. It is well known that there is a unique element u ∈ X such that

u ∈ K and dK(f ) = ‖f − u‖X,

or, equivalently,

u ∈ K and ‖f − u‖X ≤ ‖f − v‖X for all v ∈ K.

Here and everywhere below, we use dS for the distance function to a subset S ⊂ X, that is

dS(x) := inf
y∈S

‖x − y‖X for all x ∈ S.

The element u ∈ K is called the projection of f on K and is denoted by PKf . Such an
element is characterized through the following equivalence

u = PKf ⇐⇒ u ∈ K, (u, v − u)X ≥ (f, v − u)X for all v ∈ K. (2.1)

The operator PK : X → K is called the projection operator on K and, in general, is nonlin-
ear. Moreover, it is nonexpansive, i.e.,

‖PKf1 − PKf2‖X ≤ ‖f1 − f2‖X for all f1, f2 ∈ X (2.2)

and monotone, that is,

(PKf1 − PKf2, f1 − f2)X ≥ 0 for all f1, f2 ∈ X. (2.3)
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Inequalities similar to (2.2) and (2.3) are satisfied for various nonlinear operators. Here,
we recall that an operator A : X → X is said to be Lipschitz continuous provided that there
exists LA > 0 such that

‖Au − Av‖X ≤ L‖u − v‖X for all u,v ∈ X

and strongly monotone whenever there exists mA > 0 such that

(Au − Av,u − v)X ≥ mA‖u − v‖2
X for all u,v ∈ X.

It is known (see, e.g., [31, Theorem 1.24]) that a strongly monotone Lipschitz continuous
operator A : X → X is invertible. In such a case, the inverse A−1 is also strongly monotone
and Lipschitz continuous.

The (obviously convex) function ψK : X →R∪ {+∞} defined by

ψK(u) :=
{

0 if u ∈ K,

+∞ if u /∈ K

is called the indicator function of K . Its subdifferential in the sense of convex analysis is the
multivalued operator ∂ψK : X → 2X defined for every u ∈ X through

∂ψK(u) :=
{ { ξ ∈ X : (ξ, v − u)X ≤ 0 ∀v ∈ K } if u ∈ K,

∅ otherwise.
(2.4)

As usual, the subdifferential ∂ψK of the function ψK is called the outward normal cone of
K in the sense of convex analysis and is denoted by NK , that is,

NK(u) := ∂ψK(u) for all u ∈ X.

We derive from (2.4) that the following equivalence holds for all u, ξ ∈ X:

ξ ∈ NK(u) ⇐⇒ u ∈ K, (ξ, v − u)X ≤ 0 for all v ∈ K. (2.5)

Moreover, combining the equivalences (2.1) and (2.5) yield

w − PKw ∈ NK

(
PKw

)
for all w ∈ X. (2.6)

History-dependent and almost history-dependent operators. For a normed space (Y,

‖ · ‖Y ), we denote by C(I ;Y ) the space of continuous functions defined on I with values in
Y , i.e.,

C(I ;Y ) = { v : I → Y : v is continuous}.
The case T ∈ R (i.e., I = [0, T ]) leads to the space C([0, T ];Y ) which is a normed space
equipped with the norm ‖ · ‖C([0,T ];Y) defined by

‖v‖C([0,T ];Y) := max
t∈[0,T ]

‖v(t)‖Y for all v ∈ C([0, T ];Y ).

It is well known that C([0, T ];Y ) is a Banach space whenever Y is also a Banach space.
The case I = R+ leads to the space C(R+;Y ). If Y is a Banach space then C(R+;Y ) can
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be organized in a canonical way as a Fréchet space, i.e., a complete metric space in which
the corresponding topology is induced by a countable family of seminorms.

The vector space of continuously differentiable functions on I with values in Y is denoted
by C1(I ;Y ). Obviously, for any function v : I → Y , the inclusion v ∈ C1(I ;Y ) holds if and
only if v ∈ C(I ;Y ) and v̇ ∈ C(I ;Y ). Here and below, v̇(·) stands for the derivative of the
function v(·). For a function v ∈ C1(I ;Y ), the equality below will be used in various places
of this manuscript:

v(t) =
∫ t

0
v̇(s) ds + v(0) for all t ∈ I.

Everywhere in this paper, given two normed spaces Y and Z and an operator S : C(I ;Y ) →
C(I ;Z), for any function u ∈ C(I ;Y ) we use the shorthand notation Su(t) to represent the
value of the function Su at the point t ∈ I , that is, Su(t) := (Su)(t).

We end this section with two important classes of operators defined on the space of
continuous functions.

Definition 2.1 Let (Y,‖ · ‖Y ) and (Z,‖ · ‖Z) be two normed spaces. An operator
S : C(I ;Y ) → C(I ;Z) is called:

a) history-dependent (h.d. for short), if for any nonempty compact set J ⊂ I , there exists
a real LS

J > 0 such that for all u1, u2 ∈ C(I ;Y ) and all t ∈ J ,

‖Su1(t) − Su2(t)‖Z ≤ LS
J

∫ t

0
‖u1(s) − u2(s)‖Y ds.

b) almost history-dependent (a.h.d. for short), if for any nonempty compact set J ⊂ I ,
there exist lSJ ∈ [0,1) and a real LS

J > 0 such that for all u1, u2 ∈ C(I ;Y ) and all t ∈ J ,

‖Su1(t) − Su2(t)‖Z ≤ lSJ ‖u1(t) − u2(t)‖Y + LS
J

∫ t

0
‖u1(s) − u2(s)‖Y ds. (2.7)

It is readily seen that any h.d. operator is an a.h.d. operator. Let us mention here that such
operators are deeply involved in Contact Mechanics and Nonlinear Analysis. Indeed, due to
their fixed point properties, a.h.d. operators are very useful to establish the well-posedness
of various classes of nonlinear equations and variational inequalities. In this paper, we shall
use the following fixed point result.

Theorem 2.2 Let Y be a Banach space and let � : C(I ;Y ) → C(I ;Y ) be an almost
history-dependent operator. Then, � has a unique fixed point, i.e., there exists a unique
element η∗ ∈ C(I ;Y ) such that �η∗ = η∗.

A proof of Theorem 2.2 can be found in [32, p. 41–45]. There, the main properties of
history-dependent and almost history-dependent operators are stated and proved, together
with various examples and applications.

We now end this section with the following result on history-dependent operators.

Theorem 2.3 Let (Y,‖ · ‖Y ) and (Z,‖ · ‖Z) be Banach spaces. Assume that S : C(I ;Y ) →
C(I ;Z) is a history-dependent operator and A is an operator which satisfies the following
condition {

A : Y → Z is a linear continuous invertible operator and

there exists mA > 0 such that ‖Ay‖Z ≥ mA‖y‖Y for all y ∈ Y.
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Then the operator A + S : C(I ;Y ) → C(I ;Z) is invertible and its inverse is of the form
A−1 +R : C(I ;Z) → C(I ;Y ), where R : C(I ;Z) → C(I ;Y ) is a history-dependent oper-
ator.

A proof of Theorem 2.3 can be found in [32, p. 55–56]. Note that here and below, A +S
represents a shorthand notation for the operator which maps any function u ∈ C(I ;X) to the
function t �→ Au(t) + Su(t) ∈ C(I ;Y ). Notation A−1 +R has a similar meaning.

3 A Time-Dependent Inclusion

In this section we state and prove an existence and uniqueness result for a time-dependent
inclusion involving nonlinear operators. Throughout this section and the following one, we
consider a set-valued mapping K : I → 2X and two operators A : X → X, S : C(I ;X) →
C(I ;X). With the above notation at hands, we introduce the following inclusion problem.

Problem 1 Find a function u : I → X such that

−u(t) ∈ NK(t)

(
Au(t) + Su(t)

)
for all t ∈ I. (3.1)

In the study of (3.1) we consider the following assumptions.

(K) The set-valued mapping K : I → 2X has nonempty closed and convex values and for
each t ∈ I and each sequence {tn} ⊂ I converging to t , one has

PK(tn)u → PK(t)u in X, for any u ∈ X.

(A) The operator A is strongly monotone and Lipschitz continuous for some reals
mA,LA > 0, respectively.

(H) For any nonempty compact set J ⊂ I , there exist two reals lSJ > 0 and LS
J > 0 such

that for all u1, u2 ∈ C(I ;X) and t ∈ J the inequality (2.7) holds with Y = Z = X.

Note that examples of families {K(t)}t∈I which satisfies assumption (K) will be pre-
sented in Sect. 5 below. We now state and prove our existence and uniqueness result for
Problem 1.

Theorem 3.1 Assume that (K), (A), (H) hold. Moreover, assume that for any nonempty
compact set J ⊂ I the following smallness condition holds:

lSJ < mA. (3.2)

Then, Problem 1 has a unique solution with regularity u ∈ C(I ;X).

The proof of Theorem 3.1 is carried out in several steps, based on a number of prelimi-
nary results that we present in what follows.

Lemma 3.2 Let K be a nonempty closed convex subset of X, B : X → X an operator and
z, η ∈ X. Then, the following statements are equivalent:

(a) z = PK

(
z − B(z − η)

)
;

(b) there exists ρ > 0 such that z = PK

(
z − ρB(z − η)

)
;

(c) z = PK

(
z − ρB(z − η)

)
for all ρ > 0.
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Proof According to (2.1), for every real ρ > 0 we have the equivalence

z = PK

(
z − ρB(z − η)

) ⇐⇒ z ∈ K, (z, v − z)X ≥ (
z − ρB(z − η), v − z

)
X

∀v ∈ K

which can be rewritten as

z = PK

(
z − ρB(z − η)

) ⇐⇒ z ∈ K, ρ
(
B(z − η), v − z

)
X

≥ 0 ∀v ∈ K. (3.3)

Then, taking ρ = 1 leads to the equivalence

z = PK

(
z − B(z − η)

) ⇐⇒ z ∈ K,
(
B(z − η), v − z

)
X

≥ 0 ∀v ∈ K. (3.4)

On the other hand, it is readily seen that(
B(z − η), v − z

)
X

≥ 0 ∀v ∈ K

⇐⇒ ∃ρ > 0, ρ
(
B(z − η), v − z

)
X

≥ 0 ∀v ∈ K (3.5)

⇐⇒ ∀ρ > 0, ρ
(
B(z − η), v − z

)
X

≥ 0 ∀v ∈ K.

It remains to combine the equivalences (3.3)–(3.5) to conclude the proof. �

Lemma 3.3 Let K a nonempty closed convex subset of X and let B : X → X be a strongly
monotone Lipschitz continuous operator. Then, for each η ∈ X there exists a unique element
zη ∈ X such that

zη = PK

(
zη − B(zη − η)

)
.

Proof Fix η ∈ X. Since B is strongly monotone and Lipschitz continuous, there exists mB >

0 and LB > 0 such that

(Bu − Bv,u − v)X ≥ mB‖u − v‖2
X and ‖Bu − Bv‖X ≤ LB‖u − v‖X, (3.6)

for all u, v ∈ X. Pick any real ρ > 0 such that

0 < ρ <
2mB

L2
B

(3.7)

and consider the operator �ρ : X → X defined by

�ρz := PK

(
z − ρB(z − η)

)
for all z ∈ X. (3.8)

Thanks to the smallness assumption (3.7), we obviously have

kρ :=
√

1 + ρ2L2
B − 2ρmB ∈ (0,1). (3.9)

Fix any z1, z2 ∈ X and set ui := zi −η, for i = 1, 2. We use the definition of �ρ in (3.8),
the nonexpansivity (2.2) of the projection operator PK and (3.6) to see that

‖�ρz1 − �ρz2‖2
X ≤ ‖(z1 − ρB(z1 − η)

) − (
z2 − ρB(z2 − η)

)‖2
X

= ‖(u1 − u2) − ρ
(
Bu1 − Bu2

)‖2
X
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= ‖u1 − u2‖2
X − 2ρ

(
u1 − u2,Bu1 − Bu2

) + ρ2‖Bu1 − Bu2‖2
X

≤ (
1 + ρ2L2

B − 2ρmB

)‖u1 − u2‖2
X.

Taking into account the equality u1 − u2 = z1 − z2, we obtain

‖�ρz1 − �ρz2‖2
X ≤ (

1 + ρ2L2
B − 2ρmB

)‖z1 − z2‖2
X. (3.10)

Combining (3.10) and (3.9), we then see that �ρ is a contraction on X. Thus, we are in a
position to apply the Banach fixed point theorem to get a unique zη ∈ X such that �ρzη = zη .
We now combine (3.8) and implication (b) =⇒ (a) in Lemma 3.2 to conclude the proof. �

Lemma 3.4 Assume that (K) holds and let B : X → X be a strongly monotone Lip-
schitz continuous operator. Then, for each η ∈ C(I ;X), there exists a unique function
zη ∈ C(I ;X) such that

zη(t) = PK(t)

(
zη(t) − B

(
zη(t) − η(t)

))
for all t ∈ I. (3.11)

Proof Let η ∈ C(I ;X). Note that the existence of an element zη(·) which satisfies (3.11) is
a direct consequence of Lemma 3.3. We now prove the continuity of the function zη(·). Fix
any t ∈ I and consider a sequence (tn)n∈N of elements of I which converges to t . For each
n ∈ N denote Kn := K(tn), σn := η(tn) zn := zη(tn), and ωn := zn −ρB(zn −σn) with ρ > 0
given. Set also K := K(t), σ := η(t), z := zη(t), and ω := z − ρB(z − σ). With the above
notation at hands, using Lemma 3.2 we see that

z = PKω and zn = PKnωn for all n ∈N. (3.12)

Let ρ > 0 be such that (3.7) hold and let kρ be defined by (3.9) where, recall, mB,LB > 0
are the constants which appear in (3.6). Then, using (3.12), we get

‖zn − z‖X ≤ ∥∥PKω − PKnω
∥∥

X
+ ∥∥PKnω − PKnωn

∥∥
X

. (3.13)

We now estimate each of the two terms in the right hand side of (3.13). To this end we set

u := z − σ and un := zn − σn for all n ∈N. (3.14)

Let n ∈ N. Thanks to (3.14), we see that∥∥PKnω − PKnωn

∥∥
X

≤ ‖ω − ωn‖X = ‖z − ρB(z − σ) − zn + ρB(zn − σn)‖X

= ‖u − un − ρ(Bu − Bun) + σ − σn‖X

≤ ‖u − un − ρ(Bu − Bun)‖X + ‖σ − σn‖X (3.15)

Next, arguments similar to those used in the proof of (3.10) yield

‖u − un − ρ(Bu − Bun)‖X ≤ kρ‖u − un‖X. (3.16)

We now combine inequalities (3.13), (3.15) and (3.16) to see that

‖zn − z‖X ≤ ∥∥PKω − PKnω
∥∥

X
+ kρ‖u − un‖X + ‖σ − σn‖X.
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On the other hand (3.14) implies that

‖un − u‖X ≤ ‖zn − z‖X + ‖σn − σ‖X

and, therefore, the last two inequalities yield

(1 − kρ)‖zn − z‖X ≤ ∥∥PKω − PKnω
∥∥

X
+ (1 + kρ)‖σn − σ‖X. (3.17)

We now use (3.17), the inclusion kρ ∈ (0,1), the assumption (K) and the continuity of the
function η : I → X to obtain that zn = zη(tn) → zη(t) = z in X, as n → ∞. This shows that
the function zη : I → X is continuous. The existence part of the lemma is then established.
The uniqueness part is a direct consequence of the uniqueness property provided by Lemma
3.3. �

Lemma 3.5 Assume that (K) and (A) hold. Then, for each η ∈ C(I ;X), there exists a
unique function uη ∈ C(I ;X) such that

−uη(t) ∈ NK(t)

(
Auη(t) + η(t)

)
for all t ∈ I.

Proof Let η ∈ C(I ;X). Denote by zη ∈ C(I ;X) the function obtained in Lemma 3.4 with
B := A−1, where A−1 represents the inverse operator of A. Consider the function uη : I → X

defined by

uη(t) := A−1
(
zη(t) − η(t)

)
for all t ∈ I

and note that uη ∈ C(I ;X). It is readily seen that

zη(t) = PK(t)

(
zη(t) − uη(t)

)
for all t ∈ I. (3.18)

Next, (3.18) and (2.6) entail that

−uη(t) ∈ NK(t)

(
zη(t)

)
for all t ∈ I.

The existence part of the lemma is then established.
We now focus on the uniqueness part. Let u1, u2 ∈ C(I ;X) be two functions such that

−u1(t) ∈ NK(t)

(
Au1(t) + η(t)

)
and − u2(t) ∈ NK(t)

(
Au2(t) + η(t)

)
for every t ∈ I . Fix any t ∈ I . Then, for i = 1,2, we have

Aui(t) + η(t) ∈ K(t),
(
ui(t),Aui(t) + η(t) − v

)
X

≤ 0 for all v ∈ K(t).

We derive from this (
u1(t),Au1(t) + η(t) − (Au2(t) + η(t))

)
X

≤ 0

and (
u2(t),Au2(t) + η(t) − (Au1(t) + η(t))

)
X

≤ 0.

Adding the latter inequalities yields(
u1(t) − u2(t),Au1(t) − Au2(t)

)
X

≤ 0.

Finally, we use the strong monotonicity of the operator A to get that u1(t) = u2(t) which
completes the proof. �
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Lemma 3.5 allows us to consider the operator � : C(I ;X) → C(I ;X) defined by

�η := Suη for all η ∈ C(I ;X). (3.19)

We have the following result.

Lemma 3.6 Assume that (K), (A), (H) and (3.2) hold. Then, the operator � has a unique
fixed point η∗ ∈ C(I ;X).

Proof According to Theorem 2.2, it is enough to prove that the operator � : C(I ;X) →
C(I ;X) is an almost history-dependent operator. Let η1, η2 ∈ C(I ;X). Using Lemma 3.5,
we find two continuous functions u1 := uη1 : I → X and u2 := uη2 : I → X such that

−u1(t) ∈ NK(t)

(
Au1(t) + η1(t)

)
and − u2(t) ∈ NK(t)

(
Au2(t) + η2(t)

)
(3.20)

for all t ∈ I . Let J be a nonempty compact subset of I and t ∈ J . Using (3.19) and assump-
tion (H) yield

‖�η1(t) − �η2(t)‖X = ‖Su1(t) − Su2(t)‖X

≤ lSJ ‖u1(t) − u2(t)‖X + LS
J

∫ t

0
‖u1(s) − u2(s)‖Xds (3.21)

On the other hand, from (3.20) we see that

Au1(t) + η1(t) ∈ K(t),
(
u1(t),Au1(t) + η1(t) − v

)
X

≤ 0 ∀v ∈ K(t) (3.22)

and

Au2(t) + η2(t) ∈ K(t),
(
u2(t),Au2(t) + η2(t) − w

)
X

≤ 0 ∀w ∈ K(t). (3.23)

Taking v := Au2(t) + η2(t) in (3.22) and w := Au1(t) + η1(t) in (3.23) and adding the
corresponding inequalities, we arrive to(

u1(t) − u2(t),Au1(t) − Au2(t)
)
X

≤ (
u1(t) − u2(t), η2(t) − η1(t)

)
X
.

Therefore, the strong monotonicity of the operator A guarantees that

‖u1(t) − u2(t)‖X ≤ 1

mA

‖η1(t) − η2(t)‖X.

Substituting this inequality in (3.21) yields

‖�η1(t) − �η2(t)‖X = ‖Su1(t) − Su2(t)‖X

≤ lSJ

mA

‖η1(t) − η2(t)‖X + LS
J

mA

∫ t

0
‖η1(s) − η2(s)‖X ds.

We now invoke the smallness assumption (3.2) to obtain that the operator � is an almost
history-dependent operator. It remains to apply Theorem 2.2 to complete the proof. �

We are now in a position to provide the proof of Theorem 3.1.
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Proof Let η∗ ∈ C(I ;X) be the fixed point of the operator � and let u� := uη� ∈ C(I ;X) be
the function given by Lemma 3.5 with η := η�. So, we have

−u�(t) ∈ NK(t)

(
Au(t) + η(t)

)
for all t ∈ I.

This inclusion combined with equalities η� = �η� = Su� give

−u�(t) ∈ NK(t)

(
Au�(t) + Su�(t)

)
for all t ∈ I,

that is, u� is a solution to Problem 1. This proves the existence part of Theorem 3.1. The
uniqueness part is a consequence of the uniqueness of the fixed point of the operator �,
guaranteed by Lemma 3.3.

Note that the uniqueness part in Theorem 3.1 can also be obtained through a Gronwall-
type argument. Indeed, let η1, η2 ∈ C(I ;X) be two solutions to Problem 1. Let J be a
nonempty compact subset of I and t ∈ J . Then, we have

−u1(t) ∈ NK(t)

(
Au1(t) + Su1(t)

)
, −u2(t) ∈ NK(t)

(
Au2(t) + Su2(t)

)
or, equivalently,

Au1(t) + Su1(t) ∈ K(t),
(
u1(t),Au1(t) + Su1(t) − v

)
X

≤ 0 ∀v ∈ K(t), (3.24)

Au2(t) + Su2(t) ∈ K(t),
(
u2(t),Au2(t) + Su2(t) − v

)
X

≤ 0 ∀v ∈ K(t). (3.25)

Taking v = Au2(t) + Su2(t) in (3.24), v = Au1(t) + Su1(t) in (3.25) and adding the corre-
sponding inequalities, we deduce that

(
u1(t) − u2(t),Au1(t) − Au2(t)

)
X

≤ (
u1(t) − u2(t),Su2(t) − Su1(t)

)
X
.

Therefore, using the strong monotonicity of the mapping A, we get

‖u1(t) − u2(t)‖X ≤ 1

mA

‖Su1(t) − Su2(t)‖X.

Thanks to assumption (H) we obtain

‖u1(t) − u2(t)‖X ≤ lSJ

mA

‖u1(t) − u2(t)‖X + LS
J

mA

∫ t

0
‖u1(s) − u2(s)‖X ds.

We now use the smallness assumption (3.2) to see that there exists a constant C > 0 which
depends on A, S and J such that

‖u1(t) − u2(t)‖X ≤ C

∫ t

0
‖u1(s) − u2(s)‖X ds.

It follows now from the Gronwall lemma that u1(t) = u2(t) and, since t ∈ J has been
arbitrarily chosen, we find that u1 = u2. �

Since any history-dependent operator satisfies the smallness condition (3.2) (keep in
mind that lSJ = 0 for any nonempty compact J ⊂ I ), we derive from Theorem 3.1 the
following result.
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Corollary 3.7 Assume that (K) and (A) hold. Assume also that S : C(I ;X) → C(I ;X) is
a history-dependent operator. Then, Problem 1 has a unique solution u ∈ C(I ;X).

We end this section with some additional comments on the smallness condition (3.2).
First, we note that it represents a sufficient condition which guarantees the unique solvability
of the time-dependent inclusion (3.1). It does not represent a necessary condition as it results
from the following counterexample.

Example 1 Let X =R, K(t) = (−∞,0] for all t ∈ I , Au = u for all u ∈R, Su = 2u for all
u ∈ C(I ;X). Then, we note that assumptions (K), (A), (H) hold with mA = 1 and lSJ = 2.
It follows from here that the smallness assumption (3.2) does not hold. Nevertheless, it is
easy to see that, with the notation above, the inclusion (3.1) has the unique solution u ≡ 0.

We conclude from above that assumption (3.2) is a technical one and it represents only
a limitation of the mathematical tools we use in the proof of Theorem 3.1. More precisely,
this assumption is used in Lemma 3.6 at is imposed by Theorem 2.2 and Definition 2.1 b).
Removing this assumption in the statement of Theorems 3.1 and 4.1 below is left open and
represents a question which deserves to be studied in the future.

4 A Sweeping Process

In this section, we use Theorem 3.1 to derive an existence and uniqueness results for a first
order sweeping processes. Besides the data K , A and S and their associated assumptions
(K), (A) and (H) introduced in the Sect. 3, we consider an operator B : X → X and an
element u0 such that:

(B) B is a Lipschitz continuous operator with Lipschitz constant LB > 0.
(U) u0 ∈ X.

We are now in a position to introduce the following sweeping process.

Problem 2 Find a function u : I → X such that{
−u̇(t) ∈ NK(t)(Au̇(t) + Bu(t) + Su̇(t)) for all t ∈ I,

u(0) = u0.

Our first result in this section is the following.

Theorem 4.1 Assume that (K), (A), (H), (B), (U) and (3.2) hold. Then, Problem 2 has a
unique solution with regularity u ∈ C1(I ;X).

Proof We first introduce the operator S̃ : C(I ;X) → C(I ;X) defined by

S̃v(t) := B
(∫ t

0
v(s) ds + u0

) + Sv(t) for all t ∈ I, all v ∈ C(I ;X). (4.1)

Next, we consider the auxiliary problem of finding a function v : I → X such that

−v(t) ∈ NK(t)

(
Av(t) + S̃v(t)

)
for all t ∈ I. (4.2)
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We use assumptions (H) and (B) to see that for any nonempty compact set J ⊂ I , any
functions v1, v2 ∈ C(I ;X) and any t ∈ I , the inequality below holds:

‖S̃v1(t) − S̃v2(t)‖X ≤ lSJ ‖v1(t) − v2(t)‖X + (LB + LS
J )

∫ t

0
‖v1(s) − v2(s)‖X ds.

Therefore, we are in a position to apply Theorem 3.1 in order to obtain the existence of a
unique function v ∈ C(I ;X) which satisfies the time-dependent inclusion (4.2). Denote by
u : I → X the function defined by

u(t) := u0 +
∫ t

0
v(s)ds for all t ∈ I. (4.3)

Then, (4.1)–(4.3) imply that u is a solution of Problem 2 with regularity u ∈ C1(I ;X).
This proves the existence part of the theorem. The uniqueness part follows from the unique
solvability of the auxiliary problem (4.2), guaranteed by Theorem 3.1. �

A direct consequence of Theorem 4.1 is the following.

Corollary 4.2 Assume that the assumptions (K), (A), (B) and (U) hold. Assume also that
S : C(I ;X) → C(I ;X) is a history-dependent operator. Then, Problem 2 has a unique
solution with regularity u ∈ C1(I ;X).

The proof of Corollary 4.2 follows from arguments similar to those used in the proof of
Corollary 3.7 and, therefore, we skip it. Finally, we note that, as in the case of Problem 1, the
smallness condition (3.2) represents only a sufficient condition which guarantees the unique
solvability of Problem 2.

5 Relevant Examples of Convex Moving Sets

In this section we state and prove additional results which provide examples of families of
convex sets which satisfy assumption (K). A first example is the following.

Proposition 5.1 Let M be a closed linear subspace of X, A : X → M the projector onto M

and k : I → IR+ a continuous function. Let K : I → 2X be the set-valued mapping defined
by

K(t) := {u ∈ X : ‖Au‖ ≤ k(t)} for all t ∈ I.

Then, the set-valued mapping K(·) satisfies assumption (K).

Proof It is routine to check that K(t) is nonempty closed and convex for every t ∈ I . The
rest of the proof is carried out in three steps that we present in what follows. Everywhere
below we denote by M⊥ the orthogonal of M , use the decomposition X = M ⊕ M⊥ (keep
in mind that M is closed) and the fact that A is a linear, continuous and idempotent operator,
i.e., A2 = A.

Claim 1. For every t ∈ I and every u ∈ X, one has

PK(t)(u) =
{

u − Au + k(t)

‖Au‖X
Au if u /∈ K(t),

u otherwise.
(5.1)
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To prove the claim we fix t ∈ I and u ∈ X and, for simplicity, we set K := K(t). We may
assume that u /∈ K , i.e., ‖Au‖X > k(t). Set v := u − Au + k(t)

‖Au‖X
Au. It is readily seen that

Av = k(t)

‖Au‖X

Au,

and, therefore, ‖Av‖ = k(t). Hence, we deduce that v ∈ K . Fix any w ∈ K . Through ele-
mentary computations we see that

(v − u,w − v)X =
( k(t)

‖Au‖ − 1
)
(Au,w − v)X (5.2)

and

(Au,w − v)X = (Au,w − Aw)X + (Au,Aw)X − (Au,u − Au)X − (Au,
k(t)

‖Au‖X

Au)X.

On the other hand, the equalities u = u − Au + Au and w = w − Aw + Aw yield

u − Au ∈ M⊥ and w − Aw ∈ M⊥.

Therefore,

(Au,w − v)X = (Au,Aw)X − (Au,
k(t)

‖Au‖X

Au)X

≤ ‖Au‖X‖Aw‖X − k(t)‖Au‖X

which shows that

(Au,w − v)X ≤ ‖Au‖X(‖Aw‖X − k(t)). (5.3)

Combining now (5.2), (5.3) and using inequality ‖Aw‖X −k(t) ≤ 0, guaranteed by inclusion
w ∈ K , we find that

( k(t)

‖Au‖ − 1
)−1

(v − u,w − v)X = (Au,w − v)X ≤ 0.

Now, since ‖Au‖X > k(t), we deduce that (v − u,w − v)X ≥ 0. Finally, we use (2.1) to
complete the proof of the claim.

Claim 2. For any s, t ∈ I and every u ∈ X, one has

‖PK(s)u − PK(t)u‖ ≤ |k(t) − k(s)| . (5.4)

Let s, t ∈ I and u ∈ X. If k(s) = k(t) we have K(s) = K(t) and, therefore, (5.4) holds.
Assume now that k(s) �= k(t) and, without loosing the generality, assume that k(s) < k(t).
We distinguish the following three cases.

Case a): ‖Au‖ ≤ k(s) < k(t). We use (5.1) to see that in this case PK(s)u = PK(t)u = u

which implies (5.4).
Case b): k(s) < ‖Au‖ ≤ k(t). In this case (5.1) yields

PK(s)u = u − Au + k(s)

‖Au‖ Au and PK(t)u = u



A Class of Nonlinear Inclusions and Sweeping Processes in Solid. . . Page 15 of 26 16

which implies that

∥∥PK(s)u − PK(t)u
∥∥

X
=

(
1 − k(s)

‖Au‖X

)
‖Au‖X = ‖Au‖X − k(s) ≤ |k(t) − k(s)| .

We conclude from here that inequality (5.4) is satisfied.
Case c): k(s) < k(t) < ‖Au‖. Then, using (5.1) we have

PK(s)u = u − Au + k(s)

‖Au‖ Au and PK(t)u = u − Au + k(t)

‖Au‖ Au

and, therefore, ∥∥PK(s)u − PK(t)u
∥∥

X
= |k(t) − k(s)| ,

which completes the proof of this claim.
We now use inequality (5.4) and the continuity of the function k to conclude the proof of

Proposition 5.1. �

We proceed with a specific example provided by Proposition 5.1 and, to this end, we
need the following notation. Let d ∈ {1,2,3} and denote by S

d the space of second order
symmetric tensors on R

d or, equivalently, the space of symmetric matrices of order d . Recall
that the inner product and the Euclidean norm on S

d are defined by

σ · τ = σij τij , ‖τ‖ = (τ · τ )
1
2 ∀σ = (σij ), τ = (τij ) ∈ S

d ,

where the indices i, j run between 1 and d and the summation convention over repeated
indices is used. Let M be the subspace of Sd defined by

M = { σ = (σij ) ∈ S
d : σii = 0 }

and, for each ε ∈ S
d , denote by εD its orthogonal projection of ε, called also the deviator of

ε. With these notation we have the following direct consequence of Proposition 5.1.

Corollary 5.2 Let k : I → IR+ be a continuous function and let K : I → 2S
d

be the set-
valued mapping defined by

K(t) = { ε ∈ S
d : ‖εD‖ ≤ k(t) } for all t ∈ I. (5.5)

Then, the set-valued mapping K(·) satisfies assumption (K) on the space X = S
d .

The convex set defined by (5.5) is called the von Mises convex. It is intensively used in
Solid Mechanics (see, e.g., [32] and the references therein).

We now move to another class of examples provided by the following result.

Proposition 5.3 Let K0 be a closed convex nonempty subset of X and let a : I → (0,+∞)

be a continuous function. Let also f ∈ C(I ;X) and K : I → 2X be the set-valued mapping
defined by

K(t) := a(t)K0 + f (t) for all t ∈ I. (5.6)

Then, the set-valued mapping K(·) satisfies assumption (K).
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Proof Using (5.6), it is not difficult to check that K(t) is nonempty closed and convex, for
any t ∈ I . The rest of the proof is based on the following equality:

PK(t)u = a(t)PK0

(u − f (t)

a(t)

)
+ f (t) for all t ∈ I and u ∈ X. (5.7)

To prove (5.7) we fix t ∈ I and u ∈ X and denote by z(t) the projection of u on the set
K(t). Then, using (5.6) there exists a unique element z0 ∈ K0 such that

z(t) = PK(t)u = a(t)z0 + f (t). (5.8)

Moreover, we have

‖z(t) − u‖X ≤ ‖v(t) − u‖X for all v ∈ K(t),

or equivalently,

‖a(t)z0 + f (t) − u‖X ≤ ‖a(t)v0 + f (t) − u‖X for all v0 ∈ K0.

This implies that

∥∥∥z0 −
(u − f (t)

a(t)

)∥∥∥
X

≤
∥∥∥v0 −

(u − f (t)

a(t)

)∥∥∥
X

for all v0 ∈ K0,

and, therefore,

z0 = PK0

(u − f (t)

a(t)

)
. (5.9)

Equality (5.7) is now a direct consequence of (5.8) and (5.9).
Assume now that t ∈ I and tn → t . Then, using (5.7) for tn and t and the continuity of the

function a and f it is easy to see that PK(tn)u → PK(u) in X which concludes the proof. �

A direct consequence of Proposition 5.3 follows.

Corollary 5.4 Let K0 be a nonempty closed convex subset of X, f ∈ C(I ;X) and let K :
I → 2X be the set-valued mapping defined by

K(t) = K0 + f (t) for all t ∈ I.

Then, the set-valued mapping K(·) satisfies assumption (K).

Besides the various examples above, we point out that the assumption (K) is strongly
related to several concepts of convergence of sets. In order to recall them, we need the
Pompeiu-Hausdorff distance defined by equality

haus (C1,C2) := max
{

sup
u∈C2

dC1(u), sup
u∈C1

dC2(u)
}
,

for any two nonempty subsets C1,C2 of the Hilbert space X.

Definition 5.5 Let {Cn} be a sequence of nonempty subsets of X and let C a nonempty
subset of X. One says that the sequence {Cn} converges to C:
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(i) in the sense of Mosco, if the following conditions hold.
(a) For each u ∈ C, there exists a sequence {un} such that un ∈ Cn for each n ∈ N and

un → u in X.
(b) For each sequence {un} such that un ∈ Cn for each n ∈ N and un → u weakly in X,

we have u ∈ C.
(ii) in the sense of Wijsman, if

lim
n→∞dCn(u) = dC(u) for any u ∈ X.

(iii) in the sense of Pompeiu-Hausdorff, if

lim
n→∞ haus (Cn,C) = 0.

The following results are related to assumption (K) and could be useful in applications.

Proposition 5.6 Let {Cn} be a sequence of nonempty closed and convex subsets of X and let
K be a nonempty closed convex subset of X. Then, the following statement are equivalent:

(a) {Cn} converges to C in the sense of Mosco.
(b) {Cn} converges to C in the sense of Wijsman.
(c) PCnu → PCu for any u ∈ X.

Proposition 5.7 Assume that K : I → 2X has nonempty closed and convex values and, for
each t ∈ I and each sequence {tn} ⊂ I converging to t , the sequence {K(tn)} converges to
K(t) in the sense of Pompeiu-Hausdorff. Then the family {K(t)} satisfies assumption (K).

A proof of the equivalences (a), (b), (c) in Proposition 5.6 can be found in [35] and,
therefore, we skip it. The proof of Proposition 5.7 follows from the classical equality

haus(K(tn),K) = sup
u∈X

∣∣dK(tn)(u) − dK(t)(u)
∣∣ ,

valid for every integer n ∈ N, Definition 5.5 (ii) and the implication (b) =⇒ (c) above.
In the context of Definition 5.5, it follows from Proposition 5.7 and Proposition 5.6 that

the convergence is the sense of Pompeiu-Hausdorff implies the convergence in the sense
of Mosco. The converse of this statement does not hold. Indeed, we refer the reader to [9,
Example 4.7.11] for an example of sequence of nonempty bounded closed convex sets in
the Hilbert space l2(N) which converge in the sense of Mosco but fails to converge in the
sense of Pompeiu-Hausdorff.

6 A Viscoelastic Constitutive Law

In this section we use the space (Sd ,‖ · ‖) introduced in Sect. 5 to apply Corollary 3.7 in the
study of a viscoelastic constitutive law of the form

σ (t) ∈ Aε(t) +
∫ t

0
b(t − s)ε(s) ds + ∂ψK(t)ε(t) for all t ∈ I. (6.1)

In (6.1) and everywhere below in this section, σ : I → S
d represents the stress tensor,

ε : I → S
d the stain tensor, A is the fourth order tensor, b is a relaxation function, ψK(t)
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is the indicator function of a time-dependent set K(t) ⊂ S
d and ∂ψK(t) represents its subdif-

ferential (in the sense of convex analysis). Such kind of constitutive laws model the behavior
of real materials like metals, rocks and polymers and can be derived by rheological argu-
ments, as explained in [10, 30]. Here, we restrict ourselves to mention that they are obtained
by connecting in parallel an elastic element with looking with a viscoelastic element with
long memory.

In the study of (6.1), we assume that the tensor A is symmetric and positively defined,
i.e.,

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(a) A : Sd → S
d .

(b) Aε = (aijklεkl) for all ε = (εij ) ∈ S
d .

(c) aijkl = ajikl = aklij ∈R.

(d) There exists mA > 0 such that
Aε · ε ≥ mA‖ε‖2 for all ε ∈ S

d .

(6.2)

Here the indices i, j, k, run between 1 and d and the summation convention is used. More-
over, for the relaxation function and the set of constraints, we assume that

b : I → R is a continuous function, (6.3){
K(t) = { ε ∈ S

d : ‖εD‖ ≤ k(t) } for all t ∈ I

where k : I → R+ is a continuous function.
(6.4)

We proceed with the following comments on these assumptions. First, assumption (6.2)
guarantees that the tensor A is invertible. Moreover, its inverse (denoted in what follows by
A−1) is also symmetric and positively defined. Next, we stress that we chose assumption
(6.3) for simplicity and point out that more general cases in which b is a fourth-order tensor
valued can be considered. In addition, notation εD in (6.4) represents the deviator of the
tensor ε, introduced in Sect. 5. Therefore, (6.4) shows that the family {K(t)}t∈I represents a
family of time-dependent von Mises convexes. Here, the dependence of the function k on t

arises if we assume that k(t) = k̃(θ(t)) where k̃ : R → R is a given function and θ : I → R

is a parameter, say the temperature.
Now, a direct analysis of (6.1) shows that at each moment t the stress field satisfies the

equality

σ (t) = σ 1(t) + σ 2(t) (6.5)

where σ 1(t) and σ 2(t) represent the “regular” and “irregular” part of the stress, given by

σ 1(t) = Aε(t) +
∫ t

0
b(t − s)ε(s) ds, (6.6)

σ 2(t) ∈ ∂ψK(t)ε(t). (6.7)

Denote ω := −σ 2. Our aim in what follows is to determinate a relation between the functions
ω and σ . First, we use assumption (6.3) to see that the operator S̃ : C(I ;Sd) → C(I ;Sd)

defined by equality

S̃ε(t) =
∫ t

0
b(t − s)ε(s) ds for all ε ∈ C(I ;Sd), t ∈ I
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is a history-dependent operator. Then, using Theorem 2.3 and equality (6.6) we deduce that
there exists a history-dependent operator R : C(I ;Sd) → C(I ;Sd) such that

ε(t) = A−1σ 1(t) +Rσ 1(t). (6.8)

We now combine equalities (6.5) and (6.8) and use notation ω = −σ 2 to find that

ε(t) = A−1ω(t) +A−1σ (t) +R
(
σ (t) + ω(t)

)
and, therefore (6.7) shows that

−ω(t) ∈ ∂ψK(t)

(
A−1ω(t) +A−1σ (t) +R(σ (t) + ω(t))

)
.

This inclusion combined with notation NK(t) = ∂ψK(t) leads to the following problem.

Problem 3 Find a function ω : I → S
d such that

−ω(t) ∈ NK(t)

(
A−1ω(t) +A−1σ (t) +R(σ (t) + ω(t))

)
for all t ∈ I.

Our main result in this section is the following.

Theorem 6.1 Assume that (6.2)–(6.4) hold. Assume also that σ ∈ C(I ;Sd). Then, Prob-
lem 3 has a unique solution ω ∈ C(I ;Sd).

Proof We use Corollary 3.7 with X = S
d , K(t) given by (6.4), A = A−1 and S : C(I ;Sd) →

C(I ;Sd) given by

Sτ (t) := A−1σ (t) +R(σ (t) + τ (t)) for all τ ∈ C(I ;Sd), t ∈ I.

First, we note that assumptions (6.4) and Corollary 5.2 show that condition (K) is sat-
isfied. Next, we note that assumption (6.2) implies condition (A). Finally, condition (H) is
satisfied since R is a history-dependent operator and σ ∈ C(I ;Sd). Theorem 6.1 is now a
direct consequence of Corollary 3.7. �

In addition to the mathematical interest in the existence and uniqueness result in Theorem
6.1, it is important from mechanical point of view. Indeed, consider a given stress function
σ ∈ C(I ;Sd); then, using Theorem 6.1 we can determinate in a unique way its “irregular”
part σ 2; next, using equalities (6.5) and (6.8) we can determinate the “regular” part of σ ,
denoted σ 1, as well as the strain function ε associated to σ within the constitutive law (6.1).

7 A Frictional Contact Problem

In this section, we apply Corollary 4.2 in the study of a mathematical model which describes
the equilibrium of a viscoelastic body in frictional contact of with a foundation. Throughout
this section d ∈ {2,3}, Sd stands for the space of second order symmetric tensors on R

d and
“·”, ‖ · ‖ will represent the inner product and the Euclidean norm on the spaces Rd and S

d ,
respectively.

The physical setting is as follows. A viscoelastic body occupies, in the reference config-
uration, a bounded domain � ⊂ R

d with a Lipschitz continuous boundary �. The bound-
ary � is divided intro three mutually disjoint measurable sets �1, �2 and �3, such that the



16 Page 20 of 26 F. Nacry, M. Sofonea

Lebesgue measure of �1 is positive. The body is held fixed on �1, is acted upon by surface
tractions of density f 2 on �2 and is in frictional contact on �3 with a foundation. The con-
tact is bilateral, i.e., there is no between separation the body and the foundation. We denote
by f 0 the density of body forces, by ν the outward unit to � and, as usual, we use I for
the time interval of interest. Moreover, the indices ν and τ will represent the normal and
tangential components of vectors and tensors. Then, the contact model described above can
be formulated as follows.

Problem 4 Find a displacement field u : � × I → R
d and a stress field σ : � × I → S

d

such that

σ (t) = Aε(u̇(t)) + Bε(u(t)) +
∫ t

0
C(t − s)ε(u̇(s)) ds in �, (7.1)

Divσ (t) + f 0(t) = 0 in �, (7.2)

u(t) = 0 on �1, (7.3)

σ (t)ν = f 2(t) on �2, (7.4)

uν(t) = 0 on �3, (7.5)

‖σ τ (t)‖ ≤ g, −σ τ (t) = g
u̇τ (t)

‖u̇τ (t)‖ if u̇τ (t) �= 0 on �3 (7.6)

for all t ∈ I and, moreover,

u(0) = u0 in �. (7.7)

Note that Problem 4 describes contact processes which arise in various industrial settings
like metal forming and metal extrusion, in which there is no separation between the contact
surfaces. Details can be found in [28, 29, 31, 32], for instance. A brief description of the
equations and boundary conditions in this problem is the following. First, (7.1) is the con-
stitutive law in which A represents the viscosity operator, B is the elasticity operator and
C denotes the relaxation tensor. Equation (7.2) is the equation of equilibrium in which Div
denotes the divergence operator and conditions (7.3), (7.4) are the displacement and traction
condition, respectively. Condition (7.5) represents the bilateral contact condition and (7.6)
represents the quasistatic version of Tresca’s friction law in which g denotes a positive func-
tion, the friction bound. Finally, condition (7.7) is the initial condition in which u0 denotes
a given initial displacement field.

In the study of Problem 4 we use the standard notation for Sobolev and Lebesgue spaces,
endowed with their canonical inner products and associated norms. Moreover, for an element
v ∈ H 1(�)d we write v for the trace γ v ∈ L2(�)d of v to � and use by vν , vτ for its normal
and tangential components given by vν = v · ν and vτ = v − vνν, respectively. In addition,
we consider the following spaces:

V = {v ∈ H 1(�)d : v = 0 on �1, vν = 0 on �3 },
Q = {σ = (σij ) : σij = σji ∈ L2(�) }.

The spaces V and Q are real Hilbert spaces endowed with their canonical inner products
given by

(u,v)V =
∫

�

ε(u) · ε(v) dx, (σ ,τ )Q =
∫

�

σ · τ dx. (7.8)



A Class of Nonlinear Inclusions and Sweeping Processes in Solid. . . Page 21 of 26 16

Here and below ε represents the deformation operator, that is,

ε(u) = (εij (u)), εij (u) = 1

2
(ui,j + uj,i),

the index that follows a comma denoting the partial derivative with respect to the corre-
sponding component of the spatial variable x, i.e., ui,j = ∂ui/∂xj . The associated norms on
these spaces are denoted by ‖ · ‖V and ‖ · ‖Q, respectively.

Next, we recall that for a regular stress function σ : � → S
d the normal and tangential

components at � are given by σν = σν · ν and σ τ = σν − σνν and, moreover, the following
Green’s formula holds:∫

�

σ · ε(v) dx +
∫

�

Divσ · v dx =
∫

�

σν · v da for all v ∈ H 1(�)d . (7.9)

Finally, we introduce the space of fourth order tensors defined by

Q∞ = {C = (cijkl) | cijkl = cjikl = cklij ∈ L∞(�) }.

It is known that Q∞ endowed with

‖C‖Q∞ := max
0≤i,j,k,l≤d

‖cijkl‖L∞(�)

is a Banach space. Moreover, it is not difficult to see that

‖Cτ‖Q ≤ d ‖C‖Q∞‖τ‖Q for all C ∈ Q∞, τ ∈ Q. (7.10)

In the study of the mechanical problem (7.1)–(7.7) we assume that the viscosity operator
A and the elasticity operator B satisfy the following conditions.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a) A : � × S
d → S

d .

(b) There exists LA > 0 such that
‖A(x,ε1) −A(x,ε2)‖ ≤ LA‖ε1 − ε2‖

for all ε1,ε2 ∈ S
d , a.e. x ∈ �.

(c) There exists mA > 0 such that
(A(x,ε1) −A(x,ε2)) · (ε1 − ε2) ≥ mA ‖ε1 − ε2‖2

for all ε1,ε2 ∈ S
d , a.e. x ∈ �.

(d) The mapping x �→ A(x,ε) is measurable on �,

for all ε ∈ S
d .

(e) A(x,0) = 0 a.e. x ∈ �.

(7.11)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a) B : � × S
d → S

d .

(b) There exists LB > 0 such that
‖B(x,ε1) − B(x,ε2)‖ ≤ LB‖ε1 − ε2‖

for all ε1,ε2 ∈ S
d , a.e. x ∈ �.

(c) The mapping x �→ B(x,ε) is measurable on �,

for all ε ∈ S
d .

(d) B(x,0) = 0 a.e. x ∈ �.

(7.12)
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We also assume that the relaxation tensor C and the densities of body forces and tractions
are such that

C ∈ C(I ;Q∞). (7.13)

f 0 ∈ C(I ;L2(�)d). (7.14)

f 2 ∈ C(I ;L2(�2)
d). (7.15)

Finally, for the friction bound and the initial displacement we assume that

g ∈ L∞(�3) and g(x) ≥ 0 a.e. x ∈ �3.

u0 ∈ V. (7.16)

These assumptions allow us to consider the operators A : Q → Q, B : Q → Q, S :
C(I,Q) → C(I,Q), the functions j : V → R, f : I → V , the family of sets {�(t)}t∈I

and the element ω0 defined by

(Aω,τ )Q =
∫

�

Aω · τ dx for all ω, τ ∈ Q, (7.17)

(Bω,τ ) = (Bω,τ )Q for all ω,τ ∈ Q, (7.18)

(Sω(t),τ )Q = (

∫ t

0
C(t − s)ω(s)) ds,τ )Q (7.19)

for all ω ∈ C(I ;Q), τ ∈ Q.

j (v) =
∫

�3

g ‖vτ‖da for all v ∈ V, (7.20)

(f (t),v)V =
∫

�

f 0(t) · v dx +
∫

�2

f 2(t) · v da (7.21)

for all v ∈ V, t ∈ I,

�(t) = {τ ∈ Q : (τ ,ε(v))Q + j (v) ≥ (f (t),v)V ∀v ∈ V } (7.22)

for all t ∈ I.

ω0 = ε(u0). (7.23)

Assume in what follows that (u,σ ) represents a regular solution of Problem 4 and let
v ∈ V , t ∈ I be arbitrary fixed. Then, using standard arguments based on the Green formula
(7.9) we find that∫

�

σ (t) · (ε(v) − ε(u̇(t))) dx +
∫

�3

g‖vτ (s)‖da −
∫

�3

g‖u̇τ (s)‖da

≥
∫

�

f 0(t) · (v − u̇(t)) dx +
∫

�2

f 2(t) · (v − u̇(t)) da.

We now use the notation (7.20) and (7.21) to see that

(σ ,ε(v) − ε(u̇(t)))Q + j (v) − j (u̇(t)) ≥ (f (t),v − u̇(t))V (7.24)
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and, taking successively v = 2u̇(t) and v = 0V in this inequality we obtain that

(σ ,ε(u̇(t)))Q + j (u̇(t)) = (f (t), u̇(t))V . (7.25)

Then, using (7.24), (7.25) and (7.22) yields

σ (t) ∈ �(t), (τ − σ (t),ε(u̇(t)))Q ≥ 0. (7.26)

Therefore, substituting the constitutive law (7.5) in (7.26) and using notation (7.17)–(7.19)
we find that

−ε(u̇(t)) ∈ N�(t)(Aε(u̇(t)) + Bε(u(t)) + Sε(u̇(t))). (7.27)

We now introduce the notation ε(u) = ω and use inclusion (7.27) together with equalities
(7.7), (7.23) to obtain the following variational formulation of Problem 4.

Problem 5 Find a strain field ω : I → V such that

−ω̇(t) ∈ N�(t)

(
Aω̇(t) + Bω(t) + Sω̇(t)

)
for all t ∈ I, (7.28)

ω(0) = ω0. (7.29)

Note that Problem 5 represents a sweeping process in which the unknown is the strain
field. At the best of our knowledge, this problem is new and nonstandard since, usually, the
variational formulation of Problem 4 is provided by a history-dependent variational inequal-
ity for the displacement field, as shown in [31] and the references therein. Nevertheless, we
stress that the arguments in [31] work for inequalities in which the set of constraints does
not depend on the time. Therefore, the arguments there can not be applied in the study of
problem (7.28)–(7.29) since, here, the set of constraints is �(t) which, obviously, is time-
dependent.

We now state and prove the following existence and uniqueness result.

Theorem 7.1 Assume that (7.11)–(7.16) hold. Then Problem 5 has a unique solution ω ∈
C1(I ;Q).

Proof We use Corollary 4.2 with X = Q and K(t) = �(t) for all t ∈ I and, to this end, we
check in what follows the validity of the assumptions (K), (A), (H), (B) and (U).

First, we note that assumptions (7.14) and (7.15) imply that the element f given by
(7.21) has the regularity f ∈ C(I ;V ) and, therefore, ε(f ) ∈ C(I ;Q). On the other hand, it
is obviously to see that the set

�0 = {τ ∈ Q : (τ ,ε(v))Q + j (v) ≥ 0 ∀v ∈ V }
is a nonempty closed convex subset of Q and, since (f (t),v)V = (ε(f (t)),ε(v))Q, we
deduce that

�(t) = �0 + ε(f (t)) for all t ∈ I.

These ingredients and Corollary 5.4 show that condition (K) is satisfied.
Next, note that assumptions (7.11) and (7.12) imply that the operators (7.17) and (7.18)

satisfy conditions (A) and (B), respectively. Moreover, we use assumption (7.13) and in-
equality (7.10) to see that for any nonempty compact J , any functions u1, u2 and any t ∈ J
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we have

‖Su1(t) − Su2(t)‖V ≤ d max
r∈[0,b(J )]

‖C(s)‖Q∞

∫ t

0
‖u1(s) − u2(s)‖V ds (7.30)

where b(J ) = max {s : s ∈ J }. Inequality (7.30) proves that the operator S is a history-
dependent operator. Finally, assumptions and (7.16) guarantee that ω0 = ε(u0) ∈ Q and,
therefore, condition (U) is satisfied.

It follows from above that we are in a position to apply Corollary 4.2 to conclude the
proof. �

We complete the statement of Theorem 7.1 with the following result.

Proposition 7.2 Assume that (7.11)–(7.16) hold and denote by ω ∈ C1(I ;Q) the solution
of Problem 5 obtained in Theorem 7.1. Then, there exists a unique displacement fields u ∈
C1(I ;V ) such that ω = ε(u).

Proof Denote by θ ∈ C(I ;Q) the function defined by θ = Aω̇ + Bω + Sω̇ and let t ∈ I .
Then, using (7.28) we find that

θ(t) ∈ �(t), (ω̇(t),τ − θ(t))Q ≥ 0 for all τ ∈ �(t). (7.31)

Let z ∈ ε(V )⊥ where, here and below, ε(V ) represents the range of the deformation operator
ε : V → Q and M⊥ denotes the orthogonal of the subset M ⊂ Q. We have (z,ε(v))Q = 0
for all v ∈ V which entails that θ(t) ± z ∈ �(t). Therefore, testing with τ = θ(t) ± z in
(7.31) we deduce that (ω̇(t),z)Q = 0 which shows that ω̇(t) ∈ (ε(V )⊥)⊥. We now recall
that ε(V ) is a closed subspace of Q and we refer the reader to [32, p.212] for a proof of this
result. Thus, (ε(V )⊥)⊥ = ε(V ) and, therefore, the inclusion ω̇(t) ∈ (ε(V )⊥)⊥ implies that
ω̇(t) ∈ ε(V ). This ensures that there exists a element v(t) ∈ V such that

ω̇(t) = ε(v(t)). (7.32)

Moreover, since (7.8) implies that ‖v(t)‖V = ‖ε(v(t))‖Q, we deduce that the element v(t) ∈
V which satisfies (7.32) is unique and, in addition, the function t �→ v(t) has the regularity
v ∈ C(I ;V ). Consider now the function u : I → V defined by

u(t) =
∫ t

0
v(s) ds + u0 ∀ t ∈ I (7.33)

and note that u ∈ C1(I ;V ). Then, we use equalities (7.29), (7.32), (7.23) and (7.33) to see
that

ω(t) =
∫ t

0
ω̇(s)ds + ω(0) =

∫ t

0
ε(v(s))ds + ε(u0) = ε

(∫ t

0
v(s)ds + u0

)
= ε(u(t))

for each t ∈ I , which concludes the existence part of the proposition. The uniqueness part
follows from equality ‖u(t)‖V = ‖ε(u(t))‖Q, valid for all t ∈ I . �

Let ω be a the solution of the sweeping process (7.28), (7.29). Then, a couple of functions
(u,σ ) which satisfies the equalities (7.1) and ω = ε(u) is called a weak solution to the
contact problem (7.1)–(7.7). We conclude from above that Theorem 7.1 and Proposition 5.7
provide the unique weak solvability of this contact problem.
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