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ABSTRACT
In this paper, we study the existence of solutions for
non-coercive variational-hemivariational inequalities involv-
ing nonlocal fractional p-Laplacian. Our approach is based
on the theory of pseudomonotone operators in the sense of
Brézis, recession analysis and the properties of nonlocal frac-
tional p-Laplace operators recently established.The innova-
tion of this paper is that we do not assume the usual coercivity
or smallness assumptions as stated in most existing literature.
The absence of such assumptions will make the existence of
solutions very complicated. We have to proceed from the spe-
cific problem itself and seek specific methods based on the
inherent characteristics of different problems.
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1. Introduction

In this paper,we study the following fractional p-Laplacian elliptic variational-
hemivariational inequality. Find u ∈ C such that ∀v ∈ C

〈LKu − f , v − u〉W0 + J0(u, v − u) ≥ φ(u) − φ(v), (1)

where J0(u, v) stands for the generalized directional derivative of J at the point
u in the direction v for a locally Lipschitz functional J(·) (cf. [1,2]) and φ(·)
denotes a convex functional, C a nonempty,closed and convex subset of a frac-
tional Sobolev spaceW0 (see below for the definition) and f ∈ W∗

0 (the dual space
ofW0).
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Throughout the paper, without further mention, we always assume that
0< s<1 and 1 < p < N/s.LK stands for a nonlocal operator defined as follows:

LKu(x) := lim
ε→0+

2
∫

RN\Bε(x)
|u(x) − u(y)|p−2(u(x) − u(y))K(x − y) dy,

∀x ∈ R
N ,

whereK : R
N \ {0} → (0,+∞) is a function satisfying the following assumption

(K):

(i) γK ∈ L1(RN), where γ (x) = min{|x|p, 1};
(ii) there exists λ > 0 such that K(x) ≥ λ|x|−(N+ps), ∀x ∈ R

N \ {0};
(iii) K(x) = K(−x), ∀x ∈ R

N \ {0}.

A typical example for K is given by K(x) = |x|−(N+ps) for s ∈ (0, 1)(N > ps). In
this case LK is the fractional p-Laplace operator (−�p)

s,which (up to normal-
ization factor) is defined as

(−�p)
su(x) := lim

ε→0+
2
∫

RN\Bε(x)

|u(x) − u(y)|p−2(u(x) − u(y))
|x − y|N+sp dy.

See [3] for more details.
When p = 2, this definition coincides (up to normalization constant depend-

ing onN and s, see [4]) with the linear fractional Laplace operator (−�)s, defined
by,

(−�)s = F− ◦ Ms ◦ F ,

where F is the Fourier transform operator andMs is the multiplication by |ξ |2s.
Partial differential equations involving nonlocal operators have attracted a lot

of attention, because nonlocal operators can accurately describe the complex sys-
tems in our real life, for example, anomalous diffusion phenomenon, dynamical
networks behaviours, and geophysical flows etc., see [4–15].

Many efforts have been devoted to the study of problems involving the frac-
tional p-Laplacian operator, among which we mention existence of solutions
within the framework of Morse theory and the mountain pass theorem [16–18].
For the motivations that lead to the study of such operators, we refer the reader
to the contribution [6] of Caffarelli.

The theory of hemivariational inequalities as generalization of variational
inequalities is based on properties of the Clarke subgradient for locally Lipschitz
functions. Recently, the study of hemivatiaional inequalities involving nonlo-
cal operators has drawn a wide range of interest, for instance, Teng [19] and
Xi-Huang-Zhou [20] applied the nonsmooth critical theory and nonsmooth ver-
sion the three-critical-points theorem to prove the multiplicity of weak solution
to nonlocal elliptic hemivariational inequalities evolved the fractional Laplace
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operator (−�)s. But, it is worth mentioning that in some certain situations, the
formulated problems have not variational structure. This results in that the non-
smooth critical point theory and the nonsmooth variational approaches cannot
be carried out. Motivated by this reason, more recently, Liu-Tan [10] consid-
ered the nonlocal elliptic hemivariational inequality (1) with the linear fractional
Laplace operator and φ ≡ 0 by using the surjectivity result for pseudomonotone
and coercive operators.

The research work in this paper is the continuation of our paper [10]. Specifi-
cally, our aim in this study is to establish the existence of solutions for problem (1)
without any coercivity condition. To the best of our knowledge, themathematical
literature dedicated to the existence of solutions for nonlocal elliptic hemivaria-
tional inequalities (1) without any coercivity assumptions is still untreated topics
and this fact is the motivation of the present work. Even for local problems with-
out any coercivity assumptions, the theory of existence of solution that we have
obtained is new. The absence of such assumptionswillmake the existence of solu-
tions very complicated. We have to proceed from the specific problem itself and
seek specificmethods based on the inherent characteristics of different problems.
Our approach is based on the theory of pseudomonotone operators in the sense
of Brézis, recession analysis and the properties of nonlocal fractional p-Laplace
operators recently established.

2. Preliminaries andmathematical framework

In this section, we first recall some basic results, which will be used in the
next section. Let s ∈ (0, 1), 1 < p < ∞ and the fractional critical exponent p∗

s
be defined as

p∗
s =

{ Np
N−sp if sp < N,

∞ if sp ≥ N.

Let � ⊂ R
N be an open bounded set with Lipschitz boundary. Denote Q =

R
2N \ O, where O = (RN \ �) × (RN \ �) ⊂ R

2N . In the sequel, we always
assume thatK : R

N \ {0} → (0,+∞) satisfies hypothesis (K).W is a linear space
of Lebesgue measurable functions from R

N to R such that the restriction to� of
any function u inW belongs to Lp(�) and∫

Q
|u(x) − u(y)|pK(x − y) dx dy < ∞.

The spaceW is equipped with the norm

‖u‖W = ‖u‖Lp(�) +
(∫

Q
|u(x) − u(y)|pK(x − y) dx dy

)1/p
. (2)

We shall work in the closed linear subspace

W0 = {u ∈ W : u = 0 a.e. in R
N \ �}.
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InW0, we may also use the norm

‖u‖W0 =
(∫

Q
|u(x) − u(y)|pK(x − y) dx dy

)1/p
. (3)

We collect the useful facts on the space W0 (see [18,21], for more details) as
follows.

Proposition 2.1: C∞
0 (�) is dense in W0 and W0 is a uniformly convex Banach

space. Furthermore, for q ∈ [1, p∗
s ],there exists a positive constant c(q) such that

‖u‖Lq(RN) ≤ c(q)‖u‖W0 , ∀u ∈ W0. (4)

Furthermore, the embedding is compact if q ∈ [1, p∗
s ).

Now we are in the position to define the nonlocal operator LK : W0 → W∗
0

(the dual space ofW0) as follows

〈LKu, v〉W0 =:
∫
Q

|u(x) − u(y)|p−2(u(x) − u(y))(v(x) − v(y))K(x − y) dx dy

∀u, v ∈ W0.

We recall some preliminary material of operators of type (S+) and pseudomono-
tone operators. Let V be a reflexive Banach space and V∗ be its dual space with
the dual paring 〈·, ·〉V .
Definition 2.2: We say that the multivalued operator A : V → 2V

∗
is pseu-

domonotone in the sense of Brézis iff the following conditions hold:

(a) for each u ∈ V , the set Au is nonempty, bounded, closed and convex in V∗.
(b) A is upper semicontinuous from each finite-dimensional subspace of V to

V∗ endowed with the weak topology.
(c) if {uk} ⊂ V with uk → u weakly in V, and u∗

k ∈ Auk is such that

lim sup
n→∞

〈u∗
k , uk − u〉V ≤ 0,

then for every v ∈ V , there exists u∗(v) ∈ Au such that

lim inf
k→∞

〈u∗
k , uk − v〉V ≥ 〈u∗(v), u − v〉V .

We say that the multivalued operator A : V → 2V∗ is of type (S+) if the
above assumptions (a) and (b) are satisfied as well as

(d) if {uk} ⊂ V with uk → u weakly in V, and u∗
k ∈ Auk is such that

lim sup
n→∞

〈u∗
k , uk − u〉V ≤ 0,

then uk → u inV and there exists a subsequence {u∗
kj} of {u∗

k} such that {u∗
kj}

converges weakly to u∗ ∈ A(u).
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Obviously, an operator A : V → 2V
∗
of type (S+) is also a pseudomonotone

operator in the sense of Brézis.
Let us recall h0(u, v) the Clarke generalized directional derivative of a locally

Lipschitz functional h : V → R at u ∈ V in the direction v ∈ V

h0(u, v) = lim sup
λ→0+,w→u

h(w + λv) − h(w)

λ

and the generalized Clarke subdifferential of h at u ∈ V

∂ch(u) := {u∗ ∈ V∗ | h0(u, v) ≥ 〈u∗, v〉V for all v ∈ V}.
The next proposition provides basic properties of the generalized directional
derivative and the generalized gradient.

Proposition 2.3 ([1,2]): Let V be a Banach space. If h : U → R is a locally
Lipschitz functional on a subset U of V, then

(i) For every u ∈ U the gradient ∂ch(u) is a nonempty, convex, andweakly∗ com-
pact subset of V∗ which is bounded by the Lipschitz constant Ku > 0 of h near
u.

(ii) The graph of the generalized gradient ∂ch is closed in V × (w∗ − V∗) topol-
ogy, i.e. if {uk} ⊂ U and {ζk} ⊂ V∗ are sequences such that ζk ∈ ∂ch(uk) and
uk → u inV, ζk → ζ weakly∗ in V∗, then ζ ∈ ∂ch(u)where, recall, w∗ − V∗
denotes the space V∗ equipped with weak∗ topology.

(iii) The multifunction U � u → ∂ch(u) ⊆ V∗ is upper semicontinuous from U
into w∗ − V∗.

(iv) for each v ∈ V, there exists zv ∈ ∂ch(u) such that

h0(u, v) = max{〈z, v〉V , | z ∈ ∂ch(u)} = 〈zv, v〉V .
(v) The function v → h0(u, v) is finite, positively homogeneous, and subadditive

on V, and satisfies |h0(u, v)| ≤ Ku‖v‖V.
(vi) h0(u, v) is upper semicontinuous as a function of (u, v) and a function of v

alone, is Lipschitz of rank Ku on U.
(vii) h0(u,−v) = (−h)0(u, v).

We deal with the functional J : Lp(�) → R of type

J(u) =
∫

�

j(x, u(x)) dx, u ∈ Lp(�). (5)

For the integrand j : � × R → R, we make the following hypothesis (H):

(1) j(·, t) is measurable on � for all t ∈ R and there exists e ∈ Lp(�) such that
j(·, e(·)) ∈ L1(�).



490 Y. LIU ET AL.

(2) j(x, ·) is locally Lipschitz on R for a.e. x ∈ �.
(3) |ξ | ≤ ā + b̄|t|p−1, ∀ξ ∈ ∂cj(x, t), ∀t ∈ R, a.e. x ∈ � with ā, b̄ ≥ 0.

Proposition 2.4 ([2]): Assume that assumption (H) holds. Then the functional J
defined by (5) has the following properties:

(a) J is well defined and finite on Lp(�).
(b) J is Lipschitz continuous on bounded subsets of Lp(�) and, therefore, it is also

locally Lipschitz on Lp(�).
(c) For all u, v ∈ Lp(�), we have∫

�

j0(x, u(x); v(x)) dx ≥ J0(u, v), ∀u, v ∈ Lp(�). (6)

(d) For all v ∈ W0, we have ‖∂J(v)‖W∗
0

≤ a + b‖v‖p−1
W0

with a = āc(p)
√
2|�|

and b = b̄(c(p))p
√
2, where c(p) denotes the embedding constant in (4).

Furthermore, if there exists Cj ≥ 0 such that for all t1, t2 ∈ R, a.e.x ∈ �

j0(x, t1; t2 − t1) + j0(x, t2; t1 − t2) ≤ Cj|t2 − t1|p.

Then, ∀u, v ∈ W0, one has

J0(v1; v2 − v1) + J0(v2; v1 − v2) ≤ CJ‖v1 − v2‖pW0
, (7)

with CJ = Cj(c(p))p.

Remark 2.5: It is obvious that (7) is equivalent to the following inequaliy

〈w1 − w2, v1 − v2〉W0 ≥ −CJ‖v1 − v2‖pW0
, (8)

for all vi ∈ W0, wi ∈ ∂cJ(vi), i = 1, 2. The latter is the so-called relaxed mono-
tonicity condition (see [2,22]).

The following proposition will be useful (see for instance, [23]) in the sequel.

Proposition 2.6: Let T : V → 2V
∗ be a pseudomonotone operator in the sense of

Brézis, C ⊆ V be nonempty, bounded,closed and convex and ϕ : V → R ∪ {+∞}
be proper, convex and l.s.c.. Then, for a given f ∈ V∗, there exist u ∈ C and u∗ ∈
T(u) such that

〈u∗ − f , v − u〉 ≥ ϕ(u) − ϕ(v); ∀v ∈ C.

Now we also introduce some concepts we will need in what follows, along
with their main properties. Let C be a nonempty convex subset of the topological
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vector space X. The recession cone of C is defined by

C∞ = {u ∈ X|∀v ∈ C, ∀t > 0 : v + tu ∈ C}. (9)

When C is a closed convex set we have that

C∞ =
⋂
t>0

[C − u0
t

]
, (10)

where u0 is arbitrary chosen in C. Equivalently,this amounts to say that u belongs
to C∞ if and only if there exist sequences {tn}n∈N and {un}n∈N ⊆ C such that
limn→∞ tn = ∞ and u = limn→∞ t−1

n un. In this case it is obvious that C∞ is a
closed convex cone.

Let φ : X → R
⋃{+∞} be a proper, convex and l.s.c. the behaviour at infinity

of φ can be described by the recession function φ∞ of φ which is defined by the
formula

φ∞(x) := lim
t→∞

φ(x0 + tx)
t

,

where x0 is any element of Domφ = {x ∈ X : φ(x) < +∞}. Equivalently, in
terms of epigraph, it amounts to say that

epiφ∞ = (epiφ)∞.

The functional φ∞ turns out to be proper, convex, l.s.c and positively homoge-
neous of degree 1, say

φ∞(λx) = λφ∞(x), ∀x ∈ X, λ ≥ 0.

It is known that

φ(x + y) ≤ φ(x) + φ∞(y), ∀x ∈ Domφ, y ∈ X, (11)

[φ ≤ λ]∞ = {u ∈ X|φ∞(u) ≤ 0}, ∀λ ∈ R with [φ ≤ λ] �= ∅, (12)

and

φ∞(x) ≤ lim inf
n→∞

φ(tnxn)
tn

, (13)

where {xn} is any sequence in X converging weakly to x and tn → +∞ for more
details, one can see [24].
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3. Main results

Since C∞
0 (�) is dense inW0, soW0 is dense in Lq(�), q ∈ (1, p∗]. Applying the

corollary in [1, p .47], we have

∂c(J|W0(u)) = ∂c(J|Lq(�)(u)), ∀u ∈ W0, (14)

in the sense that every element w ∈ ∂c(J|W0(u)) admits a unique extension to an
element w̄ ∈ ∂c(J|Lq(�)(u)) such that

〈w, v〉W0 = 〈w̄, v〉Lq(�), ∀v ∈ W0. (15)

First, we show the following Lemma:

Lemma 3.1: Under the assumption (H), the multivalued operator LK + ∂cJ|W0 :
W0 → 2W

∗
0 is bounded and of type (S+).

Proof: Note that, by the Hölder inequality, ∀u, v ∈ W0, we get that

|〈LKu, v〉W0 |

=
∣∣∣∣
∫
Q

|u(x) − u(y)|p−2(u(x) − u(y)(v(x) − v(y))K(x − y) dx dy
∣∣∣∣

≤ ‖u‖p−1
W0

‖v‖W0 .

Therefore, we easily obtain that LK is continuous and bounded.
∀u ∈ W0, ∀w ∈ ∂cJ|W0(u), we denote the extension of w in Lp(�) by w̄. One

has from Proposition 2.3(iv) and 2.4(d)

〈w, v〉W0 ≤ J0(u, v)

= sup{〈w, v〉W0 ,w ∈ ∂cJ(u))}
≤ (a + b‖u‖p−1

W0
)‖v‖W0 ,

which implies the boundedness of the multivalued operator ∂cJ|W0 .
Since W0 is a reflexive Banach space, by Proposition 2.3(i) we obtain that

for any u ∈ W0, ∂cJ|W0(u) is a nonempty, convex, weak-compact subset of W∗
0 .

Therefore, the sum operator LKu + ∂cJ|W0(u) is a nonempty, convex, bounded,
closed subset ofW∗

0 . i. e. condition (a) in Definition 2.2 is true.
In virtue of the continuity of LK and Proposition 2.3(iii), the sum operator

LK + ∂cJ|W0 is upper semicontinuous fromW0 intoW∗
0 endowed with the weak

topology. So condition (b) holds.
To complete the assertion that the sum operator LK + ∂cJ|W0 is of type (S+),

let {un} be a sequence inW0 converging weakly to u, and wn ∈ ∂cJ|W0(un) such



OPTIMIZATION 493

that

lim sup
n→∞

〈LKun + wn, un − u〉W0 ≤ 0,

which implies

lim sup
n→∞

〈LKun, un − u〉W0 + lim inf
n→∞ 〈wn, un − u〉W0 ≤ 0. (16)

Let w̄n ∈ ∂c(J|Lq(�)(un)) be the extension of wn ∈ ∂c(J|W0(un)).
By (15), one has

〈wn, un − u〉W0 = 〈w̄n, un − u〉Lp(�).

The weak convergence of {un} in W0 and the compactness of the embedding
W0 ⊆ Lp(�) imply the convergence of {un} in Lp(�) i.e.

un → u strongly in Lp(�).

Hence, wemay assume that {un} are in a neighbourhood of u.While J|Lp is locally
Lipschitz, by Proposition 2.3(i), one deduces that {w̄n} is a bounded sequence in
Lp′

(�). Therefore, we have

lim
n→∞〈wn, un − u〉W0 = lim

n→∞〈w̄n, un − u〉Lp(�) = 0. (17)

By (16) and (17), one has

lim sup
n→∞

〈LKun, un − u〉W0 ≤ 0.

Since un → u weakly inW0, we get from the above inequality

lim sup
n→∞

〈LKun − LKu, un − u〉W0 ≤ 0. (18)

By use of the well-known Simon inequality (cf. [18]): for all ξ , η ∈ R, there exists
Ap > 0 such that

(|ξ |p−2ξ − |η|p−2η)(ξ − η) ≥

⎧⎪⎨
⎪⎩
Ap|ξ − η|p, if p ≥ 2,

Ap|ξ − η|2
(|ξ |p + |η|p)(2−p)/p , if 1 < p < 2.

(19)

It follows from the above inequalities that the operator LK is strictly monotone.
By (3.5) one has

lim
n→∞〈LKun − LKu, un − u〉W0 = 0. (20)

For p ≥ 2, we have from (19) and (20)

lim
n→∞ ‖un − u‖pW0

≤ A−1
p lim

n→∞〈LKun − LKu, un − u〉W0 = 0.
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For 1<p<2, we get from (19) and (20)

lim
n→∞ ‖un − u‖pW0

≤ A−p/2
p lim

n→∞[〈LKun − LKu, un − u〉W0]
p/2(‖un‖pW0

+ ‖u‖pW0
)(2−p)/2

= 0.

Therefore,un → u inW0. By use of Proposition 2.3(ii), there exists a subsequence
of {wn}, still denoted by {wn} such that

wn → w ∈ ∂cJ|W0(u), weakly inW∗
0 . (21)

Hence, (21) and the continuity of LK imply that LKun + wn converges weakly
to LKu + w ∈ W0, which proves that the condition (d) is satisfied. So the sum
operator LK + ∂cJ|W0 is of type (S+). �

A direct application of Lemma 3.1 and Proposition 2.6 leads to the following
basic existence result:

Theorem 3.2: Let C be a nonempty, bounded, closed, convex subset of W0, f ∈
W∗

0 ,φ : W0 → R
⋃{+∞} a proper, convex, l.s.c. functional. Then under the

assumption (H), problem (1) has at least one solution.

Proof: By Lemma 3.1, the sum operatorLK + ∂cJ|W0 is of type (S+). So the sum
operatorLK + ∂cJ|W0 is a pseudomonotone operator in the sense of Brézis. Since
C ⊆ W0 is nonempty, bounded, closed and convex. Therefore, from Proposition
2.6, for any f ∈ W∗

0 , there exist u ∈ C and w ∈ ∂cJ(u) such that

〈LKu − f , v − u〉W0 + 〈w, v − u〉W0 ≥ φ(u) − φ(v), ∀v ∈ C,

which implies that from Proposition 2.3(iv)

〈LKu − f , v − u〉W0 + J0(u, v − u) ≥ φ(u) − φ(v), ∀v ∈ C.

Hence, problem (1) has at least one solution. This ends the proof of the theorem.
�

Similar to [25,26], we introduce the recession function, denoted by rLK ,J ,
associated with the nonlocal operator LK : W0 → W∗

0 and the locally Lipschitz
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functional J : W0 → R, that is,

rLK ,J(u) := lim inf{〈LK(tv), v〉W0 − J0(tv,−v)|t → ∞, v → u}
= inf{lim inf

n→∞ [〈LK(tnvn), vn〉W0 − J0(tnvn,−vn)]|tn → ∞, vn → u}.

Set Cn := {v ∈ C|‖v‖W0 ≤ n} in the sequel. We introduce the set R(LK , f , J,φ, C)

of asymptotic directions:

R(LK , f , J,φ, C) :

= {w ∈ C∞|∃un ∈ C, ‖un‖W0 → ∞,wn := un/‖un‖W0 → w weakly and

∀v ∈ Cn, 〈LKun − f , v − un〉W0 + J0(un, v − un) ≥ φ(un) − φ(v)}.

Theorem 3.3: Let C be a nonempty, closed, convex subset of W0, f ∈ W∗
0 ,φ :

W0 → R ∪ {+∞} a proper convex, l.s.c. functional. Suppose in addition that
assumption (H) holds and the set R(LK , f , J,φ, C) is empty. Then problem (1) has
at least one solution.

Proof: The idea of the proof comes from the one in [26, Theorem 2]. In virtue
of Theorem 3.2, there exists un ∈ Cn such that

〈LKun − f , v − un〉W0 + J0(un, v − un) ≥ φ(un) − φ(v), ∀v ∈ Cn. (22)

Claim 1. There exists n0 ∈ N such that ‖un0‖ < n0.
Indeed, suppose the contrary: ‖un‖ = n for each solution un of (22). On rela-

belling if necessary, we may assume that wn := un/‖un‖W0 → w ∈ C∞ weakly
in W0. Therefore w ∈ R(LK , f , J,φ, C), which contradicts the assumptions of
Theorem 3.3.

Claim 2. un0 solves problem (1).
Since ‖un0‖W0 < n0, we have, for each v ∈ C, the existence of an ε > 0 such

that vε = un0 + ε(v − un0) ∈ Cn0 . It suffices to take

ε < (n0 − ‖un0‖)/‖v − un0‖ if v �= un0 ,

ε = 1 if v = un0 .

We obtain

〈LKun0 − f , vε − un0〉W0 + J0(un0 , vε − un0) ≥ φ(un0) − φ(vε),

which implies that

〈LKun0 − f , ε(v − un0)〉W0 + J0(un0 , ε(v − un0))

≥ φ(un0) − φ(un0 + ε(v − un0)).
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Since J0(u, v) is positively homogeneous in v by Proposition 2.3(v) and φ is
convex, we derive

ε〈LKun0 − f , v − un0〉W0 + εJ0(un0 , v − un0) ≥ ε(φ(un0)) − φ(v)). (23)

Dividing (23) by ε > 0, we finally obtain

〈LKun0 − f , v − un0〉W0 + J0(un0 , v − un0) ≥ φ(un0) − φ(v), ∀v ∈ C.

This completes the proof. �

In the sequel, in order to simplify some computations, we shall assume that
0 ∈ C and φ(0) = 0. Let us introduce the set R0(LK , f , J,φ, C) of asymptotic
directions:

R0(LK , f , J,φ, C) :

= {w ∈ C∞|∃un ∈ C, ‖un‖W0 → ∞,wn := un/‖un‖W0 → w weakly and

〈LKun − f , un〉W0 − J0(un,−un) + φ(un) ≤ 0}.
Obviously, R(LK , f , J,φ, C) ⊆ R0(LK , f , J,φ, C). Therefore, we have

Corollary 3.4: Let C be a nonempty, closed, convex subset of W0, f ∈ W∗
0 ,φ :

W0 → R ∪ {+∞} a proper convex, l.s.c. functional. Suppose in addition that
assumption (H) holds and the set R0(LK , f , J,φ, C) is empty. Then problem (1) has
at least one solution.

We say that R0(LK , f , J,φ, C) is asymptotically compact if the sequence
{wn}n∈N which appears in the definition of this set converges strongly to w, that
is, if un ∈ C, ‖un‖W0 → ∞,wn := un/‖un‖W0 → w weakly, and

〈LKun − f , un〉W0 − J0(un,−un) + φ(un) ≤ 0

imply that wn → w.

Corollary 3.5: Let C be a nonempty, closed, convex subset of W0, the assump-
tion (H) holds, f ∈ W∗

0 ,φ : W0 → R ∪ {+∞} a proper convex, l.s.c. functional.
Assume that:

(i) R(LK , f , J,φ, C) is asymptotically compact,
(ii) there is subset X of W0 − {0} such that R(LK , f , J,φ, C) ⊆ X and

rK,J(w) + φ∞(w) > 〈f ,w〉W0 , w ∈ X.

Then problem (1) has at least one solution.
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Proof: Following Corollary 3.4, it is enough to show that R0(LK , f , J,φ, C) is
empty. Suppose by contradiction that R0(LK , f , J,φ, C) �= ∅. Then we may find
a sequence {un}n∈N ⊂ C such that ‖un‖ → ∞,wn := un/‖un‖ → wweakly and

〈LKun, un〉W0 − J0(un,−un) + φ(un) ≤ 〈f , un〉W0 . (24)

By assumption (i), one has that wn → w. Dividing ( 24) by ‖un‖, we obtain

〈LK(‖un‖wn,wn〉W0 − J0(‖un‖wn,−wn) + φ(‖un‖wn)

‖un‖ ≤ 〈f ,wn〉X . (25)

Passing to the liminf in (25), we derive from (13)

rLK ,J(w) + φ∞(w) ≤ 〈f ,w〉W0 ,

which contradicts assumption (ii) and the proof follows. �

Moreover, if we denote B := {w ∈ W0 | ‖w‖W0 ≤ 1} and

RLK ,J := lim inf
‖u‖W0→∞

〈LK(u), u〉W0 − J0(u,−u)
‖u‖W0

,

then we easily have

Corollary 3.6: Let C be a nonempty, closed, convex subset of W0, the assump-
tion (H) holds, f ∈ W∗

0 ,φ : W0 → R ∪ {+∞} a proper convex, l.s.c. functional.
Assume that the following inequality holds

RLK ,J + φ∞(w) > 〈f ,w〉W0 , ∀w ∈ B. (26)

Then problem (1) has at least one solution.

Proof: Similar to the proof of Corollary 3.5, we suppose by contradiction that
R0(LK , f , J,φ,K, C) �= ∅. Then we may find a sequence {un}n∈N ⊂ K such that
‖un‖ → ∞,wn := un/‖un‖ → w ∈ B weakly (note that sinceW0 is an infinite-
dimensional normed space,then B is the weak closure of S = {w ∈ X| ‖w‖W0 =
1}) and

〈LKun, un〉W0 − J0(jun,−jun) + φ(un) ≤ 〈f , un〉W0 ,

which implies

〈LKun, un〉W0 − J0(jun,−jun)
‖un‖ + φ(un)

‖un‖ ≤ 〈f ,wn〉W0 . (27)

Passing to the liminf in (27), we derive

RLK ,J + φ∞(w) ≤ 〈f ,w〉W0 ,

which contradicts assumption (26) and the proof follows. �
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We call an operator A : W0 → 2W
∗
0 , u0-coercive, if there exists c : R+ → R

with limr→∞ c(r) = ∞ such that

〈w, u − u0〉W0 ≥ c(‖u‖)‖u‖ (28)

for all u ∈ D(A) and all w ∈ A(u) with ‖u‖ large enough.

Corollary 3.7: Let C be a nonempty, closed, convex subset of W0, f ∈ W∗
0 ,φ :

W0 → R ∪ {+∞} a convex, l.s.c. functional. Suppose in addition that assump-
tions (H) hold and the operator LK + ∂cJ : W0 → 2W

∗
0 , u0-coercive with u0 ∈

C ∩ Dom(φ). Then problem (1) has at least one solution.

Proof: Suppose by contradiction thatR(LK , f , J,φ, C) is nonempty. Thenwemay
find a sequence {un}n∈N such that ‖un‖W0 → ∞,wn := un/‖un‖ → w weakly
and

〈LKun − f , un − u0〉W0 − J0(un, u0 − un) ≤ φ(u0) − φ(un).

By Propositon 2.3(iv), there exists vn ∈ ∂cJ(un) such that

〈LKun + vn − f , un − u0〉W0 ≤ φ(u0) − φ(un).

By dividing the above inequality by ‖un‖ and u0-coercivity assumption (28), we
obtain

c(‖un‖) ≤ 〈LKun + vn, un − u0〉W0

‖un‖
≤ φ(u0)

‖un‖ − φ(‖un‖wn)

‖un‖ + 〈f ,wn〉W0 − 〈f , u0〉W0

‖un‖
→ 〈f ,w〉W0 − φ∞(w), as ‖un‖ → ∞.

Here we have used inequality (13) in the limit. This is a contradiction by the
unboundedness of the left side of the above as ‖un‖ → ∞. The proof follows. �

Remark 3.8: It is known that if the nonlinear nonlocal operator LK is the linear
fractional Laplace operator (−�)s and φ ≡ 0, then Corollary 3.7 reduces to the
main result in [10, Theorem 3.3], whichmeans that Corollary 3.7 generalizes and
extends [10, Theorem 3.3].

For further studies, we introduce a concept of (J,φ)-pseudomonotonicity,
which has nothing to do with the concept of pseudomonotonicity in the sense
of Brézis (cf. [27]).
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Definition 3.9: The set-valued mapping F : W0 → 2W
∗
0 is said to be (J,φ)-

pseudomonotone with respect to f ∈ W∗
0 iff, for all (u, u∗), (v, v∗) ∈ Gr(F),

〈u∗ − f , v − u〉 + J0(u, v − u) + φ(v) − φ(u) ≥ 0

⇒
〈v∗ − f , u − v〉 + J0(v, u − v) + φ(u) − φ(v) ≤ 0.

Remark 3.10: If p ≥ 2 and (7) (or equivalently (8)) holds withCJ ≤ Ap whereCJ
and Ap are the constants in (7) and (3.6),respectively, then ∀f ∈ W∗

0 the operator
LK is (J,φ)-pseudomonotone with respect to f.

In fact, suppose that

〈LKu − f , v − u〉 + J0(u, v − u) + φ(v) − φ(u) ≥ 0.

From (7), (19), one has

〈LKv − f , u − v〉 + J0(v, u − v) + φ(u) − φ(v)

≤ −[〈LKu − f , v − u〉 + J0(u, v − u) + φ(v) − φ(u)]

− 〈LKv − LKu, v − u〉 + J0(v, u − v) + J0(u, v − u)

≤ −〈LKv − LKu, v − u〉 + J0(v, u − v) + J0(u, v − u)

≤ (CJ − Ap)‖v − u‖pW0

≤ 0, ∀v ∈ C,

which shows that LK is (J,φ)-pseudomonotone with respect to f.

Lemma 3.11: The following statements are true:

(1) u is a solution of the following variational-hemivariational inequality: find u ∈
C such that

〈LKv − f , u − v〉 + J0(v, u − v) + φ(u) − φ(v) ≤ 0, ∀v ∈ C; (29)

(2) u ∈ C is a solution to problem (1).

Then (1)⇒(2). Furthermore, if the operator LK is (J,φ)-pseudomonotone with
respect to f ∈ W∗

0 , then the two statements are equivalent.
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Proof: (1)⇒(2) Let u ∈ C be a solution of problem (29). For ∀v ∈ C, ∀t ∈ (0, 1],
we have vt = u + t(v − u) ∈ C. From (29) and Proposition 2.3(v), J(v, ·) is posi-
tively homogeneous,one has

t〈LKvt − f , u − v〉 + tJ0(vt , u − v) + φ(u) − φ(vt) ≤ 0.

By virtue of the convexity of φ we derive

〈LKvt − f , v − u〉 − J0(vt , u − v) + φ(v) − φ(u) ≥ 0.

From Proposition 2.3(iv), there exists wt ∈ ∂J(vt) such that

〈LKvt − f , v − u〉 + 〈wt, v − u〉 + φ(v) − φ(u) ≥ 0,

which implies that

〈LKvt − f , v − u〉 + J0(vt , v − u) + φ(v) − φ(u) ≥ 0.

The continuity of the operator LK and Proposition 2.3(vi) enables us to pass to
the limit as t → 0. Therefore we get

〈LKu − f , v − u〉 + J0(u, v − u) + φ(v) − φ(u) ≥ 0, ∀v ∈ C.

(2)⇒(1) is obvious if the operator LK is (J,φ)-pseudomonotone with respect to
f. This completes the proof. �

Corollary 3.12: The solution set S1(f ) of the variational -hemivariational
inequality (29) is convex and closed. Furthermore, if the operator LK is (J,φ)-
pseudomonotone with respect to f, the solution set S(f ) of the variational-
hemivariational inequality (1) is convex and closed.

Proof: For any un ∈ S1(f ) with un → u0, one has

〈LKv, un − v〉 + J0(v, un − v) + φ(un) − φ(v) ≤ 0, ∀v ∈ C}.
From the lower semicontinuity of φ and Proposition 2.3(vi), it follows that

〈LKv, u0 − v〉 + J0(v, u0 − v) + φ(u0) − φ(v) ≤ 0, ∀v ∈ C},
which implies that u0 ∈ S1(f ) and so S1(f ) is closed.

By virtue of the convexity and lower semicontinuity of φ and Proposi-
tion 2.3(v), we easily conclude S1(f ) is closed and convex. If the operator LK
is (J,φ)-pseudomonotone with respect to f, Lemma 3.9 ensures the equivalence
between the problems (1) and (29), which completes our proof. �

For convenience, we use barr(C) to denote the barrier cone of C which is
defined by barr(C) := {u∗ ∈ W∗

0 : supu∈C〈u∗, u〉W0 < ∞}.
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Theorem 3.13: Let C be a nonempty, closed, convex subset of W0 with barr(C)
having nonempty interior, f ∈ W∗

0 ,φ : W0 → R ∪ {+∞} a convex, l.s.c. func-
tional and assumptions (H) hold. In addition suppose that the operator LK is
(J,φ)-pseudomonotone with respect to f and

C∞ ∩ {w ∈ W0 : 〈LKv,w〉W0 + J0(v,w) + φ∞(w) ≤ 0,∀v ∈ C} = {0}.
Then problem (1) has at least one solution.

Proof: In terms of Theorem 3.3, we only need to show that R(LK , f , J,φ, C) is
empty. In fact, if there exists w ∈ R(LK , f , J,φ, C), then there is a sequence {un}
such that

un ∈ C, ‖un‖W0 → ∞,wn := un/‖un‖W0 → w ∈ C∞ weakly (30)

and

〈LKun − f , v − un〉W0 + J0(un, v − un) ≥ φ(un) − φ(v), ∀v ∈ Cn.
By use of barr(C) having nonempty interior and [28, Lemma 2.2], we have

0 �= w ∈ C∞. (31)

Since the operator LK is (J,φ)-pseudomonotone with respect to f, we have

〈LKv − f , un − v〉 + J0(v, un − v) + φ(un) − φ(v) ≤ 0, ∀v ∈ Cn.
Since J0(·, ·) is positively homogeneous and subadditive for the second variable,
one has

0 ≥ 〈LKv − f , un − v〉 + J0(v, un − v)
‖un‖ + φ(un)

‖un‖ − φ(v)
‖un‖

≥ 〈LKv − f , un − v〉 + J0(v, un) − J0(v, v)
‖un‖ + φ(un)

‖un‖ − φ(v)
‖un‖

= 〈LKv − f , un − v〉 − J0(v, v)
‖un‖ + J0(v, un)

‖un‖ + φ(un)
‖un‖ − φ(v)

‖un‖ .

This together with (2.13) implies that

0 ≥ 〈LKv − f ,w〉 + lim inf
n→∞ J0

(
v,

un
‖un‖

)
+ lim inf

n→∞
φ(un)
‖un‖

≥ 〈LKv − f ,w〉 + J0(v,w) + φ∞(w) v ∈ C. (32)

Hence, we have from (29) and (30)

0 �= w ∈ C∞ ∩ {w ∈ W0 : 〈LKv − f ,w〉W0 + J0(v,w) + φ∞(w) ≤ 0,∀v ∈ C},
which is a contradiction to the assumption of the theorem. �
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