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Abstract 
The mechanics of laminated plates is primarily studied using the Finite Element Method 

(FEM), which is often combined with plate models. Those plate models can be High-Order 

Shear Deformation Theories (HSDTs) since they accurately predict the nonlinear 

distributions of the shear stresses through-thickness.  In this work, five HSDTs proposed in 

the literature are used to study the bending behavior of antisymmetric laminates with angle-

ply layers. However, instead of using the traditional FEM, this study proposes the use of a 

meshless method: the Radial Point Interpolation Method (RPIM). Meshless methods can offer 

some advantages over the FEM, such as in problems involving transitory geometries where 

the FEM may require re-meshing processes. In meshless methods, the shape functions have 

virtually a high order allowing higher continuity and reproducibility. Furthermore, they only 

require an unstructured nodal distribution discretizing the problem domain, meaning that 

there is no previous relationship between nodes, which simplifies the refinement procedure.  

In this first part of two articles, the RPIM and different HSDTs are combined to future analyze 

several antisymmetric angle-ply laminates in the second part. The RPIM’s formulation is 

presented and the HSDT’s are implemented within a meshless code.   
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1.  Introduction 

Composite laminates are advanced materials composed of fibres mixed in a matrix in a layer-by-layer arrangement. 

Their main advantages over the most common metallic materials are their high specific mechanical properties which 

make them ideal to be used in advanced structures like aircraft, automobiles, vessels, wind blades, etc. Composite 

laminates offer high strength and low weight. Thus, the behaviour of such materials needs to be studied accurately in 

order to prevent failure mechanisms and to guarantee the integrity of the structure where they are being used.  

One of the most common ways in which these materials appear in the engineering field is in a plate form. Plates are 

three-dimensional solids that can often be treated as a 2D simplification since their thickness is much smaller than their 

other dimensions. In those cases, the mechanical behaviour of the plate is studied through a plate theory. Plate theories 

interpolate the in-plane displacements of a plate through its thickness using different mathematical expressions. The first 

known plate theory is the one proposed by Gustav Kirchhoff. It was suggested in the middle of the 19th century and then 

it was developed by Augustus-Love in 1888 and, because of that, is now known as the Kirchhoff-Love plate theory or 

the Classical Plate Theory (CLPT). The assumptions of the Kirchhoff-Love are: (1) when a plate is subjected to a bending 

load, straight lines perpendicular to the mid-surface before deformation remain straight after deformation; (2) straight 

lines normal to the mid-surface remain normal to the mid-surface after deformation and (3) the plate does not experience 

elongation along with the thickness. Due to those considerations, the CLPT neglects shear effects that are predominantly 

found in thick and moderately thick laminated plates.  

https://publicacoes.isep.ipp.pt/jcaimb
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About 100 years later, Mindlin [1]–[4] developed the First-Order Shear Deformation Theory (FSDT), which considers 

shear effects. The assumptions of Mindlin are similar to the ones proposed by Kirchhoff but with a significant difference: 

straight lines perpendicular to the mid-surface before deformation remain straight but not necessarily normal to the mid-

surface after deformation. Reissner, a few years after, developed a plate theory also including shear effects and they are 

both known nowadays as the Reissner-Mindlin plate theory. In the Reissner-Mindlin plate theory, the displacement field 

is obtained considering that the in-plane displacements are linearly distributed through the plate thickness. Thus, despite 

considering the shear effects, the FSDT predicts constant shear stresses across the thickness of the plate.  

The interpolation of the in-plane displacements can be performed using higher-order functions (transverse shear 

functions) which also capture the non-linear behaviour observed in the distribution of the shear stresses across the 

laminate thickness. Such theories are called high-order shear deformation theories (HSDTs) and they can be used to 

predict with accuracy the mechanical behaviour of composite laminates. Additionally, HSDTs fulfil the traction boundary 

condition (zero shear stresses at the top and bottom faces of the plate) and do not need shear correction factors, unlike 

the FSDT. Each HSDT possesses a different transverse shear function which can have several mathematical forms such 

as polynomials [5]–[7], trigonometric [8], and hyperbolic [9], [10] functions, or the combination of trigonometric and 

exponential functions [11], etc.  

The plate theories mentioned before are also called Equivalent Single Layer (ESL) Theories since they treat the 

laminate (composed of several layers) as a plate with just one layer. There are also layerwise (LW) theories (considering 

independent degrees of freedom for each layer) [12] and the zigzag (ZZ) theories [13] (where the kinematic behaviour is 

described on the whole laminate, and local refinement approach acts on the scale of the layer thickness [13]). These two 

approaches, even though being more accurate, are also computationally expensive. These plate models will not be 

analysed in this study. 

The mechanical, vibrational, and dynamic analysis of composite laminates using HSDTs is not often performed 

through analytical procedures. Numerical tools like the Finite Element Method (FEM) or the Generalized Differential 

Quadrature (GDQ) method (which is a strong formulation of the governing equations applied in [14]–[17] to doubly-

curved laminated composite shells and panels) offer easier ways to obtain solutions for complex problems. The FEM 

discretizes the problem domain in small sub-domains called elements. It is the association of these elements that forms 

a mesh where the nodal connectivity can be found. Since it is “mesh-reliant”, the FEM can find some limitations like the 

re-meshing process that is required in problems involving mesh distortion (large deformations, crack propagation, etc). 

Unlike the FEM, meshless methods only require an unstructured nodal distribution in order to discretize the problem 

domain. Thus, the concept of mesh or element does not exist [18]. The nodal connectivity is imposed by an overlapping 

rule of ‘influence-domains’ - areas or volumes in which the field variables are approximated. Meshless methods can offer 

some advantages when compared with the FEM. Meshless methods do not require re-meshing procedures, they have 

shape functions with a virtually higher order, allowing a higher continuity and reproducibility, and the refinement 

procedure is simpler – nodes can be added or removed from the nodal mesh [19]. 

This work makes use of a simple meshless method, the Radial Point Interpolation Method (RPIM) [20], to analyse 

the bending behaviour of antisymmetric angle-ply laminates using HDSTs. The RPIM uses radial interpolation functions, 

possessing the compact support and the delta Kronecker properties, to interpolate the field variables within ‘influence-

domains’. To integrate the discrete system of equations obtained from the Galerkin weak form, a nodal independent 

background integration mesh is used, based on the Gauss-Legendre integration scheme. This makes the RPIM a ‘not 

truly meshless method’ since the mesh-free characteristic of the method is not verified [18]. In the following sections, 

the RPIM’s formulation is explained, the HSDTs are presented, and the framework of the developed in-house code is 

detailed.  

 

2. Meshless Methods 
It is useful to analyze meshless methods, as almost all kinds of numerical methods, through three fundamental parts: 

the field approximation (or interpolation) function, the used formulation and the integration [18]. Regarding the field 

approximation, meshless methods can be divided into approximant and interpolant meshless methods, depending on the 

type of shape functions used. Some of the most relevant approximant meshless methods use the Taylor approximation, 

the Moving Least-Square (MLS) approximation, the Reducing Kernel approximation, or the hp-cloud approximation. 

The Meshless Local Petrov-Galerkin Method (MLPG) [21], the Reproducing Kernel Particle Method (RKPM) [22] or 

the Finite Point Method (FPM) [23] are approximant meshless methods that appeared first but, despite their successful 

application to computational mechanics [19], they do not possess a very attractive and useful numerical property: the 

delta Kronecker property. Thus, interpolant meshless methods proposed more recently possess the delta Kronecker 
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property, simplifying the numerical imposition of the essential and natural boundary conditions. The Point Interpolation 

Method (PIM) [24] is a well know interpolant meshless method that has several versions, as can be found in the literature. 

The Radial Point Interpolation Method (RPIM) [20] is a version of PIM since it makes use of its polynomial basis and it 

combines them with radial basis functions (RBF) to interpolate the field variables. The radial interpolation functions 

used in the RPIM possess the compact support and the delta Kronecker properties.  

Meshless methods appeared first in 1977 when the Smooth Particle Hydrodynamics Method (SPH) [25] was 

proposed. Nevertheless, the considered first global weak form-based meshless method was only presented in 1994 with 

the development of the Element Free Galerkin Method (EFGM) [26], [27]. However, schemes based on the MSL initially 

gave birth to the actual first weak-form domain-type meshless method in 1992, named the Diffuse Element Method 

(DEM) [28] – which was then extended creating the EFGM.   

Thus, in terms of formulation, the meshless methods can be classified, as the FEM, in two categories: strong and weak 

formulations. The RPIM uses the Galerkin weak form to obtain the discrete system of equations. In the literature, there 

are also meshless methods based on strong form formulations, but they are not analysed in this study.  

Concerning the integration scheme, it can be performed using nodal dependent or nodal independent integration 

meshes. As already mentioned in the introductory section, the RPIM uses a nodal independent integration mesh that 

covers the problem domain, and it is composed of integration points (with correspondent integration weights). Other 

meshless methods, such as the one developed by Belinha et al. [29] – the Natural Neighbour Radial Point Interpolation 

Method (NNRPIM) - uses the Voronoï Diagram concept to determine ‘influence-cells’ and the integration scheme is 

based on that geometrical construction, creating an integration mesh dependent on the nodal mesh. 

Other relevant meshless methods are the Point Assembly Method (PAM) [30],  the Natural Element Method (NEM) 

[31], the Method of Finite Spheres (MFS) [32], or the Meshless Finite Element Method (MFEM) [33].  
 

2.1. The RPIM formulation 

In the Radial Point Interpolation Method (RPIM), the nodes are arbitrarily distributed and they do not have any spatial 

relationship. Thus, in order to ensure the nodal connectivity, ‘influence-domains’ are constructed and overlapped.  

The numerical procedure of the RPIM is initialized with the discretization of the problem domain in a set of nodes 

forming a regular or irregular nodal mesh (the irregular nodal mesh has, in general, lower accuracy). The next step is to 

create the integration mesh which, in the case of the RPIM, is based on the Gauss-Legendre integration scheme. The 

integration mesh can be fitted to the problem domain, or it can have a regular shape (in this case, it is necessary to remove 

the integration points placed outside the problem domain). The nodal independent background integration meshes 

constructed in the scope of this work are composed of quadrilateral cells (with isoparametric shape) containing 

integration points with a correspondent integration weight. Then, for each integration point of the integration mesh, the 

mentioned ‘influence-domains’ are defined. ‘Influence-domains’ are areas (for two-dimensional problems) or volumes 

(for three-dimensional problems), concentric with the integration points and containing a certain number of nodes of the 

nodal mesh. In this work, since the plate models are two-dimensional problems, ‘influence-domains’ are areas. These 

areas can contain a fixed number of nodes or a variable number of nodes, as suggested by Fig.1. 

The literature recommends [18] the use of ‘influence-domains’ with a fixed number of nodes, between 9 and 16 nodes, 

which allows the construction of shape functions with the same degree of complexity. The different ‘influence-domains’ 

constructed for each integration point overlap each other, ensuring the nodal connectivity of the numerical method.  

Using the ‘influence-domain’ concept, the field variables are interpolated. Thus, the displacement field at the interest 

point 
I

x , 
I
)u( x , is obtained interpolating the displacement fields observed in each node within the ‘influence-domain’ 

of 
I

x , Eq. (1): 

 

I I

j 1

( ) ( )
n

j ju


 x x u  (1) 

 

where n  is the number of nodes within the ‘influence-domain’ of 
I

x , j
u  represents the displacements of each node j  

and I
( )

j
 x  is the shape function of the node j  obtained using the n  nodes within the ‘influence-domain’ [29]. The 
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interpolation functions used in the RPIM are the result of the combination of multiquadric (MQ) radial basis functions 

(RBFs) and polynomial basis functions, and are presented in detail in the literature [29].  

After the interpolation functions are calculated, the discrete system of equations is established from the Galerkin weak 

form (the meshless discrete system of equations is obtained in Appendix A), the boundary conditions are applied using, 

for instance, the Gauss elimination method [29], and solutions are found.  

 

  

(a) (b) 

Fig.1 - (a) ‘Influence-domain’ with a fixed area (
I J

r r ); (b) ‘Influence-domain’ with a variable area (
I J

r r ) but a fixed number of nodes. 

 

3. High-Order Shear Deformation Theories 
Higher-Order Shear Deformation Theories (HSDTs) are Equivalent Single Layer Theories which allow higher 

accuracy than the First-Order Shear Deformation Theory (FSDT) when dealing with shear stresses. In the literature, it 

can be found several HSDTs that, as mentioned in the introductory section, have different transverse shear functions. 

The first proposed HSDT was the one developed by Ambartsumian [28], firstly applied to the analysis of anisotropic 

plates and shallow shells and later adapted for the analysis of composite materials. The Third-Order Shear Deformation 

Theory (TSDT) by J. N. Reddy [34]  is probably the most well-known HSDT, although some works by Kant et al. [35]–

[37], Levinson [38] and Murthy [39] about similar third-order theories are dated before Reddy’s. Shi [40], [41], [6] also 

developed a simple TSDT mathematically similar to Reddy’s theory. Nguyen-Xuan [42] also proposed a plate model 

using a fifth-degree polynomial as the transverse shear function (it is a Five-Order Shear Deformation Theory). Other 

authors proposed transverse shear functions that are not polynomials: Mantari [43], Karama [30] and Aydogdu [31] used 

exponential shape functions, Touratier [8] and Grover [46] consider trigonometric shape functions, Mantari [11] also 

developed shape functions which are combinations of exponential and trigonometric functions, Soldatos [47] and Meiche 

[10] made use of hyperbolic functions, etc.  

This work uses five of these HSDTs in the bending analysis of antisymmetric angle-ply composite laminated plates. 

In this section, some of those HSDTs found in the literature are studied. Their displacement and strain fields are obtained 

and, in the end, the matrixes composing the discrete system of equations obtained in Appendix A are established. 

 

3.1. Displacement Field. Strain-Stress Relations 

Consider the plate represented in Fig.2, with dimensions a, b and h. Consider also that the plate is subjected to a 

generic load that produces displacements along with the directions of the coordinate axis Oxyz – displacement ( , , )u x y z  

in direction Ox , ( , , )v x y z  in direction Oy  and ( , , )w x y z  in direction Oz . 

 

Jx

Jr

Ix

Ir

I J I Jn 4 ; n 6 ; r r  

Ix

Ir

Jx

Jr

I J I Jn 4 ; n 4 ; r r  
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Fig. 2 – Generic geometry of a plate and coordinate system. 

  
In Equivalent Single Layer (ESL) theories, those displacements can be written in terms of five independent degrees 

of freedom, three displacements along with the three coordinate axes, ,Ox Oy  and Oz , and two rotations:  

0 0 0( , ), ( , ), ( , ), ( , )xu x y v x y w x y x y  and ( , )y x y , 

 

0 0
0

0 0
0

0

( , ) ( , )
( , , ) ( , ) ( ) ( , )

( , ) ( , )
( , , ) ( , ) ( ) ( , )

( , , ) ( , )

x

y

w x y w x y
u x y z u x y f z x y z

x x

w x y w x y
v x y z v x y f z x y z

y y

w x y z w x y

  
         

  
       

  


 
(2) 

 

where ( )f z  is a transverse shear function depending on the variable z . Thus, if ( )f z z , Eq. (2) becomes the 

displacement field proposed by the FSDT: 

 

0

0

0

( , , ) ( , ) ( , )

( , , ) ( , ) ( , )

( , , ) ( , )

x

y

u x y z u x y z x y

v x y z v x y z x y

w x y z w x y

  

  



 (3) 

 

Unlike the HSDTs, the FSDT does not verify the traction boundary conditions at the top and bottom faces of the plate 

since the shear stresses at those locations are not zero ( '( / 2) '( / 2) 0f h f h   ). The strain field is obtained by spatial 

derivation of the displacement field. Notice that for ESL theories, 0zz   - i.e. the component of the strain along with 

the Oz  direction is considered null. The strain tensor can be written in the Voigt notation as:  
T

yzxx yy xy xz
      , 

whose components are determined in Eq. (4): 
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Thus, from Eq. (4) a differential operator, L , can be established such that  Lu , being 0 0 0

T

x yu v w   u = , 
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where ( )zL = L , since the differential operator depends on the transverse shear function, ( )f z , and also on its derivative, 

'( )f z . The stress field is obtained from the strain field, using the Hooke’s law: ( ) ( )k k Q , with 

 
T

( )k

xx yy xy yz xz       being the stress tensor, written in Voigt notation, for the layer k, and ( )kQ  is the 

transformed reduced constitutive matrix for the same layer. ( )kQ  depends on the angle formed between the local system 

of coordinates, O123, (in which direction 1 is the direction of the fibres) and the global system of coordinates, Oxyz , 

represented in Fig. 2 such that: ( ) ( )k T kQ = T Q T  (where T  is the transformation matrix). The reduced elastic 

coefficients, 
( )k

ijQ , are given by, 
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where 
1E  is the Young’s modulus of the composite laminate in the direction of the fibres, 

2E  is the Young’s modulus of 

the in-plane transverse direction, 
i j  represents the Poisson’s ratio which measures the transverse deformation –  

direction j  –  related to an applied force in direction i  and 
i jG  is the shear modulus characterizing the variation angle 

between directions i  and j . 

3.2. Transverse Shear Functions and Determination of the Deformation Matrixes 

The transverse shear functions considered in this work are presented in Table 1 and Fig. 3. 
 

Table 1 – Five high-order shear deformation theories whose formulation is used in this work. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3 – Distribution of the transverse shear functions, f(z)  for different HSDTs along with the normalized thickness z/h. 
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In order to obtain the displacement field suggested by each HSDTs, it is only necessary to replace the functions ( )f z  

in the expressions of Eq. (2). As can be seen in Table 1, the HSDTs considered in the scope of this work have different 

mathematical expressions defining the variation of the in-plane displacements across the plate thickness. The first three 

are Third-Order Shear Deformation Theories (TSDTs) already presented in the introduction of the present section. 

Reddy, Shi, and Ambartsumian are formally similar, and, because of that, they can be written in a standard form, which 

allows an easier computational implementation. Thus, the transverse shear functions can be written as: 3( )f z a z bz 

, being a  and b  coefficients depending on the TSDT considered:  
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(7) 

 

Analysing the coefficients a  and b , it can be concluded that Reddy and Shi’s theories are mathematically similar. 

Regarding Amabrtsumian’s theory, and since the representation of its transverse shear function - see Fig. 3 - is almost 

equal to zero for the full range of  z/h, it seems to have some similarities to the Classical Plate Theory (CLPT) which has 

no transverse shear function ( ( ) 0f z  ). 

The Touratier [8] model is also present in Table 1. It predicts the variation of the in-plane displacements along with 

the thickness of the plate as a trigonometric function, which can still be approximated in a unified polynomial form, as 

stated by Nguyen et al. [48]. The polynomial expansion of Touratier theory [44], [49] is given by: 

 
3 5 7 9

2 4 6 8
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 (8) 

 

When compared with Reddy’s theory, it can be seen that the Touratier model has the same linear term coefficient and 

a similar coefficient for the cubic term of the polynomial. But, additionally to Reddy’s theory, Touratier’s plate model 

possesses terms with higher order than the third, which will lead to higher values for the shear stresses, as will be seen 

in a coming section.  

The last theory presented in Table 1 is Mantari’ HSDT [11], which has an exponential and  a trigonometric part . The 

transverse shear function written in Table 1 can be generalized, being dependent on a parameter m  - Eq. (9). 
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 (9) 

 

Mantari optimized the parameter m  and found that for 1
2

m  , the difference between his results and the solutions 

obtained from the 3D Elasticity approach were lowered.  Thus, the transverse shear function presented in Table 1 uses 

1
2

m  . 

Substituting the transverse shear functions in Eq.(5), a different differential operator is obtained for each considered 

HSDT. As can be seen in detail in Appendix A, to obtain the stiffness matrix it is necessary to establish a deformation 

matrix, which is the product of the differential operator ( )zL  by the matrix of interpolation functions, ( )
I

H x : 

( ) ( ) ( )I IzB =x L H x . The matrix of the interpolation functions at the interest point 
I

x  is given by: 

 



Journal of Computation and Artificial Intelligence in Mechanics and Biomechanics  D.E.S. Rodrigues  et al. 

 

 

63 

 

( ) 0 0 0 0

0 ( ) 0 0 0

0 0 ( ) 0 0( ) = 1,2,...

0 0 0 ( ) 0

0 0 0 0 ( )

j I

j I

j Ij I

j I

j I j

Η

Η

Η j n

Η

Η

 
 
 
  
 
 
 
 

x

x

xΗ x

x

x

 
 (10) 

 

which is a [5 5n ] matrix since there are five independent field variables, with n  being the number of nodes within the 

‘influence-domain’ of the interest point Ix . Thus, established the differential operator, the deformation matrixes are 

easily obtained for the different HSDT considered: ( )
I TSDT

B x  (for Reddy, Shi and Amabrtsumian’s theories), 

( )
I Touratier

B x  (for Touratier’s HSDT) and ( )
I Mantari

B x  (for Mantari’s HSDT).  
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3.3. Determination of the Stiffness Matrix 

Using the integration scheme presented in subsection 2.2, the stiffness matrix can be obtained for a generic laminate, 
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  K = B c B B x Q B x  (14) 

 

being nG  the number of integration points used to integrate the stiffness matrix, 
I  the integration weight of point Ix , 

kn  the total number of layers of the laminate, ( )k
Q  the transformed reduced constitutive matrix of the layer k  obtained 

for the coordinate system Oxyz  of Fig. 2, and finally,  1kz   and kz   the coordinates z  of the bottom and top faces of 

the layer k . 

 

Nevertheless, the integral (14) can be rewritten for an easier computational implementation. Thus, the deformation 

matrixes of Eq. (11)-(13) were divided into sub-matrixes, distinct from each other, and affected by distinct functions. For 

the TSDTs considered in this work, this process is exemplified below, 
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where sub-.matrixes 0B , 1B , 2B , 3B  and 4B  are given by, 
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Thus, the deformation sub-matrixes do not depend on the variable z , so they are put outside of the integral in Eq. 

(14). Therefore, the stiffness matrix can be written as follows,  

 
4 4

0 0
i j

i j 
 K = K  (21) 

 

which represents a sum of 25 matrixes i jK , with  , 0,1,2,3,4i j  . The matrixes i jK  are given as in equation (22). 

This homogenization procedure consists in separately summing the integrals of the constitutive matrixes affected by the 

terms of Eq. (15) that depend on the variable z , through the thickness of each layer.  Thus, the matrixes 1c  to 15c  are 

homogenized constitutive matrixes and obtained as in equation (23). This process allows reducing the computational cost 

of the algorithm. For the remaining HSDTs, a similar method was also adopted, although it is not detailed in this work.  

 

4. Final Remarks 
In the first part of the research work here presented, an extensive literature review on meshless methods and plates 

theory was performed. It was found that HSDTs are accurate approaches to predict the displacements in composite 

laminates since the traction boundary condition is satisfied and they do not need shear correction factors, unlike the 

FSDT. Five distinct HSDTs were selected to simulate, in the second part of this work, the mechanical performance of 

antisymmetric angle-ply laminated plates.  

In order to do so, the Radial Point Interpolation Method (RPIM) will be used as main numerical technique – the 

RPIM’s formulation was here shown with detail. Since it uses a background nodal independent integration mesh, where 

the Gauss-Legendre quadrature is implemented, RPIM is not a truly meshless method. However, this classification is not 

a disadvantage. In fact, since the RPIM shares the same integration scheme with FEM and both methods are interpolator 

discrete numerical methods, RPIM and FEM can be straightforwardly combined in the same analysis. Such combination 

would allow to use FEM the majority of the analyzed volume and use the RPIM only in the location in which it is 

necessary to update the nodal distribution (such as crack opening locations or locations with stress concentrations). Since 

the nodal connectivity is enforced by an overlapping rule of ‘influence-domains’, the RPIM does not depend on re-

meshing processes in problems involving large deformation or fracture mechanics, unlike the FEM.  

In the next part of this work, the formulation and computer implementation explained in the last sections will be used 

to compute displacements and stresses in several antisymmetric angle-ply laminates subjected to bending loads. 
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Appendix A - Meshless discrete system of equations 

 
The RPIM uses the Galerkin weak form formulation to obtain the discrete system of equations ruling the problem. 

The Galerkin weak is determined minimizing the Lagrangian functional written for a generic solid with domain   and 

boundary  , that contain all physical information about the problem and the forces acting on it: 

 
2

t

1

T T T T1
2

1
2

d d d d d 0

t

t

t
   

       
      u u u b u t   (24) 

 

being u  the velocity,   the solid mass density,   the strain tensor,   the stress tensor, u  the displacements vector, b  

the body forces,  the traction boundary where the external forces t  are applied and 1t  and 2t  any initial and final 

time, respectively. The work here described only concerns static analysis, thus, the first term of the integrand in Eq. (24) 

is discarded: 
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Moving the variation operator   inside the integrals,  

 

 
2

t

1

T T T1
2

d d d d 0

t

t

t
  

        
     u b u t   (26) 

 

Considering that, for the Eq. (26) be satisfied for all possible u  and for any initial and final time, 1t  and 2t , the 

integrand must be null, the ‘Galerkin weak form’ is established, 

 

t

T T Td d d
  
       u b u t   (27) 

 

being   the virtual strain tensor and u  the virtual displacement. The discrete system of equations is established 

from Eq. (27) by introducing the stress-strain relation, c    (being c  is the constitutive matrix), the linear relation 

between strains and displacements:  Lu  (being L  the differential operator established in Erro! A origem da 

referência não foi encontrada. and  0 0 0

T

x yu v w  u = ) and also the equations of interpolation: 

I I1
( ) ( )

n

j jj
u


 x x u  and 

I I1
( ) ( )

n

j jj
u


   x x u . From those considerations, the concept of deformation matrix 

is found: 
n

I I1
( ) ( )jj

 x L x , such as I I i( ) ( )x B x u , being iu  the vector contain the nodal values. Thus, the 

discrete system of equations is obtained, 

 
T

d d d
  

     c H b H tu   (28) 

 

where matrix H  is the same that was introduced in subsection 3.2. Eq. (28) can be written in a standard form: 

 

 K u F  (29) 
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with 
T

d


  cK    and d d
 

  H b H tF = . For the problem in analysis in this work, the force vector 

in (29) is given by the sum of the vector of the body forces,  ( ) 0 0
T

x y z
A

b f f f dA f x  , with ,x yf f and zf

being the body forces along ,x y  and z  directions, respectively, and A being the area of the plate, and the vector of the 

external surface forces,  ( ) 0 0 0 0
T

z
A

e p dA  xf  , where zp is an external solicitation on the plate along with 

the axis Oz , producing a bending behaviour.  The stiffness matrix K is established in subsection 3.3. The meshless 

discrete system of equations here briefly established is detailed shown in the literature [18], [19], [50]. 
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proved, making the RPIM a strong alternative to the FEM. The meshless solutions presented 
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of literature solutions. 
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1. Introduction 

Several meshless methods have been used to study the behavior of composite laminates. Nevertheless, most of the 

studies found in the literature combine meshless methods with simpler plate models such as the Classical Plate Theory 

(CLPT) and the First-Order Shear Deformation Theory (FSDT). For instance, the Element Free Galerkin Method 

(EFGM) was used for the bending analysis of thin plates using the CLPT [1] and also for the linear and nonlinear analysis 

of isotropic plates and laminates using the FSDT [2], [3]. The Reproducing Kernel Particle Method (RKPM) was the 

numerical tool used in the static analysis of deformable beams and plates by B. M. Donning and W. K. Liu [4], using the 

FSDT. Recently, Belinha et al. analyzed the bending behavior of composite laminate plates using the FSDT [5], [6] and 

several meshless methods (the EFGM, the RPIM, the Natural Neighbor Radial Point Interpolation Method – NNRPIM, 

and the Natural Radial Element Method – NREM). Making use of a global meshless approach using radial basis functions 

(RBFs), Ferreira et al. considered the FSDT [7] for the bending analysis of composite laminates. The FSDT was also 

considered in the work by Rodrigues et al. [8]. Meshless methods have also been combined with plate models with higher 

order. The Third-Order Shear Deformation Theory (TSDT) of Reddy [9], for instance, was combined with the EFGM 

[10], the global meshless approach using RBFs by Ferreira et al. [11] [12] [13] and the NNRPIM [14]; the previously 

cited NNRPIM (a ‘truly’ meshless version of the RPIM employed in this work) was also used to analyze the bending 

behavior of symmetric and antisymmetric laminates using distinct High-Order Shear Deformation Theories (HSDTs) 

[15]–[17]; Xiang et al. [18], using a meshless local radial point collocation method based on multiquadric radial basis 

function (MQ-RBF), analyzed the static response of isotropic, sandwich and laminated plates considering several HSDTs 

(by Levinson [19], Aydogdu [20], Karama [21] and Touratier [22]); a higher order shear and normal deformable plate 

theory (HOSNDPT) [23] [24] [25] was combined with Meshless Local Petrov-Galerkin Method (MLPG) for the analysis 

of thick laminated composite and functionally graded plates, etc; Tornabene et al. [26] studied doubly-curved laminated 

https://publicacoes.isep.ipp.pt/jcaimb
https://zenodo.org/
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composite shells and panels using RBFs and HSDTs based on the Carrera Unified Formulation (CUF) [27].  Shukla et 

al. used eight layered symmetric and antisymmetric laminated plates to perform free vibration analysis [28] considering 

an HSDT following a new transverse shear stress function by Kumar et al. [29] and employing an RBF based meshless 

approach. The same authors also performed buckling [30] and bending [31] analyses.  

The RPIM has been used in the static [5], [32] and dynamic [33]–[35] analysis of composite plates and shells, the 

inelastic analysis of 2D solids [36], 3D contact problems [37], crack growth modelling in elastic solids [38], non-local 

constitutive damage models [39], etc. However, it has not yet been used for the analysis of bending antisymmetric angle-

ply laminates using HSDTs – this work proposes the extension of the RPIM to that field of application. Thus, this study 

presents, in novelty, RPIM’s solutions for the bending of composite laminates with angle-ply layers, providing new 

numerical solutions for a solid mechanic’s field where the literature lacks, enhancing the state-of-the-art concerning 

angle-ply laminated plates, HSDTs, and the RPIM itself.  

In the following sections, the authors present the obtained numerical solutions.  

 

2. Meshless Solutions 
Several antisymmetric angle-ply laminates are investigated in this section. The considered material properties are as 

follows: 

 

Material 1: 1 40 GPaE  , 2 GPa1E  , 12 0.25  , 12 13 GPa0.6G G   and 23 GPa0.5G  . 

Material 2: 1 25 GPaE  , 2 GPa1E  , 12 0.25  , 12 13 5 GPa0.G G   and 23 2 GPa0.G   

 

Uniformly distributed loads (UDL) and sinusoidal distributed transverse loads (SSL) are considered in this study, 

being the load functions, ( , )q x y , presented in Eq.  (1) - 0q  is the nominal load. 

 

0

0
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q x y q

x y
q x y q

a b



    
    
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 (1) 

 

where a  and b  are the in-plane dimensions of the plate. All the solutions found are normalized according to the 

following expressions and are obtained at the coordinates  , , zx y  suggested below, 
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the z -coordinates are presented in Table 1: 

 
 w  σ

xx
 σ

yy
 τ

xy
 τ

yz
 τ

xz
 

n(θ  / - θ)   0 h/2 

(k =2 n) 

h/2 

(k = 2n) 

- h/2 

(k = 1) 

0 

(k = 2) 

0 

(k = 1) 

 
Table 1 – Values for the z-coordinate in the places where the central transverse displacement and maximum stresses are calculated, as well as the 

respective index of the layer. 

 

Regarding the formulation of the RPIM, a null polynomial basis is considered in the determination of the interpolation 

functions and the ‘influence-domains’ have a fixed number of nodes: 16. 
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2.1. Convergence Study 

Before obtaining the main solutions, a suitable nodal mesh needs to be found. Thus, central transverse displacements 

and maximum stresses were obtained using regular nodal meshes with a progressively higher number of nodes. The 

nodal meshes followed a quadratic nodal distribution: (2+1)×(2+1), (4+1)×(4+1), (8+1)×(8+1), (16+1)×(16+1), 

(32+1)×(32+1). Due to the computer processor’s limitation, the densest analysed nodal mesh has (50+1)×(50+1), 

corresponding to 2601 nodes. 

In Erro! A origem da referência não foi encontrada.Fig. 1 is shown the graphs of the convergence studies 

performed on antisymmetric angle-ply laminates with stacking sequences (30 / 30)  and 3(45 / 45) ,  using two different 

thicknesses and the material properties of Material 1. Thus, through these convergence studies, different aspect ratios, 

HSDTs and stacking sequences are investigated to prove the robustness of the RPIM. 
 

           (a)            (b) 

  

  

  

 
Fig. 1 – Convergence studies of the nodimensionalized central transverse displacements, maximum normalized normal stress, 

xx
 , and 

maximum normalized shear stress, xz , computed for: (a) an antisymmetric angle-ply square laminated plate (30 / 30)  with a/h=4, subjected to 

a sinusoidal load (SSL); (b) an antisymmetric angle-ply square laminated plate 
3

(45 / 45)  with a/h=100, subjected to a sinusoidal load (SSL). 
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By analysing Erro! A origem da referência não foi encontrada.Fig. 1, it can be concluded that the convergence 

rate of the central displacement depends on the HSDT, the thickness of the plate, and the number of layers. Nevertheless, 

for both laminates, faster convergences are observed. Additionally, the converged values of the central displacements 

are similar for all the analysed HSDTs. Regarding the maximum normal and shear stresses, the differences between the 

convergence curves for the different HSDTs are almost negligible. When the convergence studies of both laminates are 

compared, it can be seen that the convergence rate of the stresses is not as dependent on the stacking sequence and the 

laminate thickness as it is in the case of the convergence of the central displacements. Thus, based on these convergence 

studies, a regular nodal mesh with (32+1)×(32+1) nodes achieves similar results when compared with the nodal mesh 

composed of (50+1)×(50+1) nodes (having the last one a higher computational cost). Therefore, the first-mentioned mesh 

was used for further analysis in the next subsections. 

2.2. Normalized Maximum Displacements and Stresses. Stress Distribution Across Thickness. 
 

After the definition of the nodal mesh, the bending behaviour of antisymmetric angle-ply laminates subjected to 

sinusoidal and uniformly distributed loads was studied. In the first study, maximum transverse displacements were 

obtained using the RPIM and each HSDTs - and also the FSDT – for the laminates (5 / 5) , 3(5 / 5) , (30 / 30) , 3(30 / 30)

, (45 / 45)  and 3(45 / 45)  using Material 1. These results are shown in Table 2 for different ratios of the length of the 

plate over its thickness, a/h. In the same table are also presented the exact analytical solutions for the FSDT and also for 

Reddy’s TSDT, for comparison purposes, since there are no literature solutions for the remaining HSDTs.  

The results show a solid agreement with the solutions proposed by Reddy [9], particularly for laminates with a higher 

number of layers (i.e. lower layer thickness) and a higher ply angle. The less satisfactory results are found for thinner 

laminates with stacking sequence (5 / 5)  (this may be related to the nodal density - i.e. a higher number of nodes should 

decrease the error and approximate the present results to fully converged solutions). The results presented in the 

mentioned table for Reddy’s TSDT were transformed in percentage errors regarding the respective exact solution. The 

absolute errors are obtained with (%) 100 /
exact present exact

       , (being   a general variable, which can be assumed 

as the displacement or the stress at a given interest point) and are graphically represented in Fig. 2. 

From Fig. 2, it becomes clear that the RPIM is an accurate numerical tool particularly when the laminates with six 

layers are analyzed where the absolute errors are always inferior to 0.7%. 

Proved the accuracy of the RPIM in the determination of the central displacements, the maximum stresses were also 

obtained, using the laminates ( 45 / 45)  and 4( 45 / 45)  with different thicknesses and under two load types. Table 3 

shows the obtained RPIM results which, due to a lack of analytical solutions in the literature for this type of laminates 

analysed with HSDTs, could only be compared with the Navier solution [9] of the FSDT, provided by Reddy using 

Material 2. 

The solutions presented in Table 3 show a good agreement between each other and present also a great agreement 

with the Navier solution (which used the FSDT, so it cannot be used as a reliable term of comparison with the present 

solutions using HSDTs). Mantari’s theory predicts the highest values for the shear stresses, which may verify the 

statement made by Mantari: the errors between 3D Elasticity and 2D solutions are lowered in the majority of his 

calculations when compared with other existing HSDTs. Ambartsumian’s theory predicts the lowest shear stresses, this 

is explained by the fact that this HSDT has the lowest coefficient of the third-order term in the transverse shear function 

– see part I of this paper. Shi and Reddy’s TSDT produce similar solutions since their mathematical representations are 

formally similar. To prove that the traction boundary conditions are verified for these HSDTs and to verify the smooth 

stress distributions which are generally obtained with the RPIM, the nodimensionalized normal stress, xx , and shear 

stress, xz , were computed as a function of the normalized thickness, z/h - Fig. 3. The graphs of Fig. 3 are plotted for 

laminates with the stacking sequences (30 / 30)  and 
3

(30 / 30) , being the aspect ratio a/h=10 for both cases using the 

elastic properties of Material 1. 

From their observation, it can be concluded that the top and bottom boundary conditions are verified (condition of 

zero shear stresses). Additionally, as expected, the distribution of the normal stresses is discontinuous at layer interfaces 

(since these results are obtained from constitutive relations) and are non-symmetric. The differences between the curves 

are almost insignificant in the case of the normal stresses, but when the graphs concerning the transverse shear stresses 

are observed, it can be seen main differences between the stress distributions computed from each HSDT (with Mantari’s 
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theory predicting the highest maximum shear stress). Regarding the two analysed laminate configurations, it could be 

verified that, maintaining the ply angles, it is possible to decrease the maximum normal stress by increasing the number 

of layers.  
 

 θ = 5°  θ = 30  θ = 45° 

a/h Solution ESL n=1 n=3  n=1 n=3  n=1 n=3 

4 

Analytical [9] Reddy 1.2625 1.2282  1.0838 0.8851  1.0203 0.8375 

 FSDT 1.3165 1.2647  1.2155 0.8994  1.1576 0.8531 

RPIM Reddy 1.2719 1.2256  1.0825 0.8812  1.0142 0.8336 

 Shi 1.2789 1.2323  1.0870 0.8849  1.0181 0.8371 

 Ambartsumian 1.2369 1.1920  1.0592 0.8617  0.9930 0.8149 

 Touratier 1.2580 1.2150  1.0629 0.8617  0.9945 0.8265 

 Mantari 1.1971 1.1647  0.9850 0.8352  0.9159 0.7864 

 FSDT 1.3435 1.2671  1.2245 0.8997  1.1581 0.8533 

10 

Analytical [9] Reddy 0.4848 0.4485  0.5916 0.3007  0.5581 0.2745 

 FSDT 0.4883 0.4491  0.6099 0.2989  0.5773 0.2728 

RPIM Reddy 0.5013 0.4496  0.6021 0.2997  0.5552 0.2729 

 Shi 0.5178 0.4520  0.6046 0.3010  0.5574 0.2746 

 Ambartsumian 0.4403 0.4387  0.5899 0.2938  0.5446 0.2683 

 Touratier 0.4979 0.4488  0.5991 0.2994  0.5523 0.2733 

 Mantari 0.5157 0.4499  0.5927 0.2995  0.5451 0.2730 

 FSDT 0.5254 0.4521  0.6248 0.2992  0.5777 0.2729 

20 

Analytical [9] Reddy 0.3579 0.3209  0.5180 0.2127  0.4897 0.1905 

 FSDT 0.3586 0.3208  0.5224 0.2121  0.4944 0.1899 

RPIM Reddy 0.3828 0.3224  0.5307 0.2121  0.4872 0.1898 

 Shi 0.3956 0.3242  0.5328 0.2130  0.4891 0.1906 

 Ambartsumian 0.3368 0.3149  0.5199 0.2080  0.4779 0.1863 

 Touratier 0.3819 0.3222  0.5296 0.2120  0.4862 0.1897 

 Mantari 0.3993 0.3264  0.5320 0.2141  0.4878 0.1914 

 FSDT 0.3979 0.3240  0.5385 0.2124  0.4947 0.1900 

50 

Analytical [9] Reddy 0.3215 0.2842  0.4972 0.1878  0.4704 0.1668 

 FSDT 0.3216 0.2841  0.4979 0.1877  0.4712 0.1667 

RPIM Reddy 0.3438 0.2858  0.5104 0.1873  0.4679 0.1662 

 Shi 0.3548 0.2874  0.5124 0.1881  0.4697 0.1668 

 Ambartsumian 0.3161 0.2791  0.4999 0.1837  0.4590 0.1631 

 Touratier 0.3478 0.2856  0.5099 0.1872  0.4675 0.1661 

 Mantari 0.3649 0.2904  0.5144 0.1896  0.4713 0.1681 

 FSDT 0.3563 0.2873  0.5141 0.1880  0.4713 0.1667 

100 

Analytical [9] Reddy 0.3162 0.2789  0.4942 0.1842  0.4676 0.1634 

 FSDT 0.3162 0.2789  0.4944 0.1842  0.4678 0.1633 

RPIM Reddy 0.3381 0.2805  0.5071 0.1837  0.4648 0.1627 

 Shi 0.3413 0.2820  0.5089 0.1845  0.4664 0.1634 

 Ambartsumian 0.3105 0.2739  0.4968 0.1801  0.4561 0.1597 

 Touratier 0.3374 0.2803  0.5067 0.1836  0.4645 0.1627 

 Mantari 0.3399 0.2850  0.5109 0.1860  0.4681 0.1646 

 FSDT 0.3419 0.2820  0.5101 0.1844  0.4675 0.1633 

 
Table 2 – Maximum normalized transverse displacements for simply supported antisymmetric angle-ply square laminates subjected to a 

sinusoidal load (SSL), with the stacking sequence 
n

( / )  . 
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(a) 

 
(b) 

 

Fig. 2 – Relative errors (%) regarding the respective exact solution for the maximum normalized transverse displacements of a simply supported 

laminated plate with antisymmetric angle-ply layer, subjected to a sinusoidal load (SSL). (a) ( / )   and (a) 
3

( / )  . 

 

2.3. Maximum Central Displacement as Function of the Ply Angle 
 

Using Material 2, maximum nondimensionalized transverse displacements were obtained for antisymmetric angle-

ply laminates with different ply angles. Thus, in Fig. 4, graphs were plotted for laminates with a generic stacking sequence 
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n(-θ /θ)  and a specific ratio of the length of the plate over its thickness (a/h=10). In Fig. 4, ply angles,  , are swept 

between 0º  and 90º , and the central displacements are computed for each angle and HSDT using the RPIM. 

 
    Angle-ply laminate (-45 / 45)   Angle-ply laminate 

4(-45 / 45)  

a/h Source ESL Load 2
w 10  

 

σ
xx

 τ
xy

  τ
xz

  w  
σ

xx
 τ

xy
  τ

xz
 

 Analytical 

  

FSDT [9] SSL 0.8284 0.2498 0.2336 0.2143  0.4198 0.1445 0.1384 0.2487 

 UDL 1.2792 0.3476 0.4274 0.4238  0.6366 0.1957 0.2463 0.4960 

  Reddy  [9] SSL 0.8250 0.2594 0.2029 0.2154  - - - - 

10 

RPIM 

(Present) 

Reddy SSL 0.7990 0.2412 0.2496 0.2115  0.4191 0.1490 0.1546 0.2298 

 UDL 1.2361 0.3389 0.4759 0.3796  0.6358 0.2025 0.3017 0.4125 

Shi SSL 0.8021 0.2417 0.2506 0.2119  0.4208 0.1492 0.1549 0.2302 

 UDL 1.2409 0.3394 0.4791 0.3804  0.6384 0.2027 0.3033 0.4133 

 Ambartsumian SSL 0.7837 0.2390 0.2346 0.2093  0.4112 0.1480 0.1456 0.2275 

  UDL 1.2111 0.3358 0.4408 0.3700  0.6231 0.2013 0.2775 0.4084 

 Touratier SSL 0.7949 0.2417 0.2500 0.2155  0.4184 0.1500 0.1556 0.2368 

  UDL 1.2301 0.3394 0.4771 0.3868  0.6350 0.2036 0.3042 0.4248 

 Mantari SSL 0.7851 0.2442 0.2504 0.2276  0.4170 0.1538 0.1557 0.2617 

  UDL 1.2162 0.3427 0.4767 0.4077  0.6333 0.2081 0.3031 0.4679 

 Analytical     FSDT [9] SSL 0.6891 0.2498 0.2336 0.2143  0.2896 0.1445 0.1384 0.2487 

 UDL 1.0907 0.3496 0.4357 0.4305  0.4483 0.1988 0.2550 0.4884 

20 

RPIM 

(Present) 

 

Reddy SSL 0.6888 0.2309 0.2391 0.2123  0.2890 0.1366 0.1418 0.2312 

 UDL 1.0767 0.3297 0.4461 0.3793  0.4473 0.1918 0.2673 0.4100 

Shi SSL 0.6915 0.2314 0.2397 0.2128  0.2902 0.1369 0.1418 0.2316 

  UDL 1.0809 0.3303 0.4476 0.3801  0.4491 0.1921 0.2677 0.4107 

 Ambartsumian SSL 0.6757 0.2287 0.2287 0.2101  0.2837 0.1356 0.1372 0.2291 

  UDL 1.0554 0.3265 0.4240 0.3753  0.4388 0.1904 0.2566 0.4062 

 Touratier SSL 0.6875 0.2310 0.2393 0.2166  0.2888 0.1369 0.1421 0.2385 

  UDL 1.0747 0.3298 0.4466 0.3870  0.4470 0.1921 0.2681 0.4230 

 Mantari SSL 0.6901 0.2327 0.2397 0.2296  0.2911 0.1385 0.1417 0.2655 

  UDL 1.0788 0.3321 0.4470 0.4102  0.4506 0.1941 0.2675 0.4702 

 Analytical  FSDT [9] SSL 0.6564 0.2498 0.2336 0.2143  0.2479 0.1445 0.1384 0.2487 

 UDL 1.0305 0.3504 0.4417 0.4188  0.3883 0.2005 0.2630 0.4881 

  CLPT [9] SSL 0.6547 0.2498 0.2336 0.2143  0.2462 0.1445 0.1384 0.2487 

  UDL 1.0280 0.3504 0.4421 0.4188  0.3858 0.2006 0.2637 0.4338 

100 

RPIM 

(Present) 

Reddy SSL 0.6527 0.2275 0.2362 0.2089  0.2469 0.1326 0.1381 0.2305 

 UDL 1.0244 0.3267 0.4369 0.3721  0.3867 0.1890 0.2581 0.4057 

Shi SSL 0.6550 0.2279 0.2365 0.2078  0.2479 0.1328 0.1381 0.2302 

 UDL 1.0280 0.3273 0.4375 0.3700  0.3882 0.1893 0.2580 0.4050 

 Ambartsumian SSL 0.6404 0.2253 0.2289 0.2083  0.2424 0.1315 0.1356 0.2284 

  UDL 1.0046 0.3236 0.4218 0.3715  0.3795 0.1875 0.2528 0.4025 

 Touratier SSL 0.6522 0.2274 0.2362 0.2134  0.2468 0.1326 0.1381 0.2380 

  UDL 1.0237 0.3267 0.4369 0.3801  0.3865 0.1890 0.2582 0.4190 

 Mantari SSL 0.6577 0.2287 0.2352 0.2211  0.2498 0.1334 0.1372 0.2626 

  UDL 1.0318 0.3283 0.4345 0.3944  0.3910 0.1901 0.2562 0.4620 

Table 3 – Maximum normalized transverse displacements and stresses in two simply supported antisymmetric angle-ply 
n

( 45 / 45)  square 

laminates subjected to sinusoidal (SSL) and uniformly distributed loads (UDL). Solutions found with the RPIM. 
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  (a) (b) 

  

(c) (d) 

Fig. 3 – Nodimensionalized normal, σxx , and shear, xzτ , stresses through the thickness of two simply supported antisymmetric square 

laminates with angle-ply layers subjected to sinusoidal loads (SSL), with aspect ratio a/h=10.  (a) and (b): (30 / -30) ; (c) and (d): 
3

(30 / -30) . 

From Fig. 4(a) , it can be concluded that for the laminates with two layers the maximum deflection occurs for ply 

angles of 17º  and 73º , while the minimum deflection occurs for ply angles of 0º  or 90º  (these angles make the laminate 

a simple orthotropic plate). For this last configuration (equivalent to an orthotropic plate) a laminate with eight layers 

(Fig. 4(b)) has its maximum value of deflection, while the minimum deflection is shown for 45º . These observations 

are valid for Material 2. It can also be stated that the minimum value of the deflection for laminates with two layers is 

very close to the maximum value for laminates with eight layers. Concerning the HSDTs considered, the presented results 

do not show significant differences since it is not the purpose of the HSDT to predict with more accuracy the central 

transverse displacements. 
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(a) (b) 

Fig. 4 – Maximum normalized transverse displacements for two simply supported laminated plates with antisymmetric angle-ply layers, (a) 

( / )   and (b) 
4

( / )  , subjected to a sinusoidal load (SSL). Displacements as a function of the ply angle computed with the RPIM, a/h=10. 

 

 

3. Conclusions 
In the problems studied, the HSDTs analysed proved to yield similar solutions in terms of central displacements and maximum 

normal stresses. Regarding the shear stresses – where the purpose of using HSDTs is found – Mantari’s theory predicts higher values 

for these components of the stress tensor, which might better approximate the 3D Elasticity solutions than the remaining HSDTs. 

Reddy and Shi plate models allowed to obtain similar solutions, while Ambartsumian’s theory shown a distinct behaviour, predicting 

the lower values for the shear stresses than the other two Third-Oder Shear Deformation Theories (TSDTs). The present approach 

ensures the condition of zero shear stresses at the top and bottom boundaries of the plate.  

For Reddy’s TSDT (the only HSDT which has documented solutions in the literature), very low errors were achieved with the 

performed bending analysis, in particular for laminates with plies with 45º orientations of their fibres and with six layers.  

In the authors’ opinion, this work successfully extends the field of application of the RPIM – showing its robustness and accuracy 

– and enhances the state-of-the-art concerning angle-ply laminates for which the literature lacks in providing solutions regarding the 

bending behaviour of these structures. 
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Abstract
The finite element method (FEM) is a highly popular discretization numerical technique
in computational mechanics. However, nowadays, numerical applications are becoming
increasingly complex. Thus, traditional solving techniques generally demand a larger com-
putational capacity and show higher computational costs. Machine learning techniques can
be combined with the FEM to reduce the computational cost associated with the numerical
analysis, being applied as surrogate solvers or as a predictive tool. This work presents a
brief introduction to feed forward neural networks, a machine learning techinque, using
MATLAB® with a first benchmark example of a classification problem, the "two moons"
problem, with the objective of introducing the most important concepts. This first example
allowed to understand the basic machine artificial learning with neural networks (NN)
MATLAB® tools. Then, a second problem was analysed with the objective of showing the
potential of combining FEM with artificial NN for a biomechanical application. It was
observed that the artificial NN allow to predict displacements and stresses with a high
level of accuracy and, simultaneously, save a significant computational time. Surprisingly,
feature analysis through connection weights approach on the input variables showed
that the neural network was capable of detecting the physical importance of the variables
for each problem. The most significant disadvantage of artificial NN is the necessity of
acquiring large amounts of data and prepare such data for training and testing, which is
time consuming.
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1 Introduction

The finite element method (FEM) is a powerful numerical technique, which has allowed the acceleration of mechanical
design and research since its creation. However, with the growing complexity of the mechanical systems under analy-
sis, systems with often millions of unknowns must be solved which requires a great deal of computational power and
computing time.
Artificial intelligence (AI), a branch of computer science that develops machines and software with human-like intelligence,
is proving to be an efficient alternative approach to classical modelling techniques [1, 2]. The AI, using artificial neural
networks (NN), the core technique of deep learning (DL), has already been tested and applied in relevant computational
mechanics fields [1, 3]. Artificial NN can be classified by their architectural structure as “feed forward neural networks”
or “mutually connected neural networks” [1]. ML uses training data to learn and develop models, which later can deliver
trends and predictions [3]. More, since artificial NN are capable of nonlinear mapping, NN are suitable to provide a solution
for multi-variable problems in a fraction of time, when compared with conventional computational methodologies [1].
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Figure 1: Artificial Neural Network architecture

Recently, there has been growing interest in the application of artificial neural networks in the field of computational
mechanics [1], for example in computational homogenization of random heterogeneous materials [4], in the constitutive
modelling of composites [5], in the prediction of the stress fields of solid mechanics benchmarks [6], in non-linear structural
analysis [7], and in the field of biomechanics for example to predict body posture, [8, 9, 10], modelling the properties of
scaffolds [11] and predicting the mechanical response and load in long bones [12, 13].
This work uses the in-house MATLAB® function feedforwardnet. The feedforwardnet and other functions mentioned in this
manuscript are included in the Deep Learning Toolbox of MATLAB®. The first example shown in this work introduces the
most important concepts and functions. The second analysed problem shows an application of artificial neural networks
in the field of computational biomechanics.

1.1 Artificial neural networks

Figure 1 shows a scheme of a simple neural network. Any hidden or output node consists of a non-linear transformation
f of the values of the nodes in the previous layer. This transformation is the weighted sum of the inputs passed through a
non linear activation function, and is shown in equation (1)

z = f
(
b+xT ·w

)
= f

(
b+

m

∑
i=1

xi ·wi

)
(1)

where b is the bias, xi is the value from the node i in the previous layer and wi is the weight corresponding to that node. It
is the training process of the network that allows to obtain the values for the weights and bias.
Some examples of activation functions include the sigmoid function:

f (Σ) =
1

1+ e−Σ
(2)

and the hyperbolic tangent:

f (Σ) =
e+Σ − e−Σ

e+Σ + e−Σ
(3)

where Σ is, according to equation 1, the weighted sum of the nodes from the previous layer [14]. The final network is
therefore able to perform some non-linear transformation and create decision boundaries capable of accurately classifying
complex sets of data. In order to determine the accuracy of the neural network predictions, the mean squared error (MSE)
calculates the difference between the target vector and the output vector according to equation 4,

MSE =
1
m

m

∑
i=1

(ti − yi)
2 (4)

where ti is the element of the target vector and yi is the prediction made by the neural network for the same inputs that
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positive ones [12]. Different accuracy metrics can be used such as the mean absolute error (MAE) and mean absolute
percentage error (MAPE).
In a neural network training there are two different propagation moments, forward propagation where data goes from the
input layer to the output layer thus giving a prediction or classification, and backward propagation which is allows to train
the network and where data does the reverse transformation in order to determine the error and adjust the weights and
bias by minimizing the cost function which can be the mean square error (MSE) or any other function [12]. Each passing
of data forwards and backwards through the network is called an epoch, thus, an epoch consists of using the training data
only once. An epoch can consist on one or more iterations depending on whether the batch size is the same as the size of the
training data.
There are several algorithms to adjust the weights, which must be chosen according to the type of problem being analysed,
whether the artificial neural network aims at solving a regression problem or a classification problem. The main difference
between the two tasks is that a classification problem predicts a label and a regression problem predicts a quantity.

2 Methodology

2.1 Two-moons

The first example is a simple "two moons" classification example. In this example it is not possible to use a linear regression
model to accurately classify the points, as the boundary between the two moons as can be seen in Figure. Figure 2 shows
the training data for the "two moons" example. In the "two moons" the input are the coordinates of the point x1 and x2 and
the color of each moon, is the output, which is going to be represented by -1 or 1.
The full code is shown next and it is going to be explained line by line afterwards.

1 clc
2 clear all
3 load(’2Moons_sets.mat’)
4 inputs = x’;
5 targets = y’;
6 untrained_net = feedforwardnet([4,3]);
7 view(untrained_net)
8 [trained_net,tr] = train(untrained_net,inputs,targets);

1003

(b)

Figure 2: Schematic representation of the classification problem with the decision boundary (a) and dataset used for the
training of the neural network (b)

originate the target ti. The differences are squared in order to make sure that negative differences are not subtracted form
positive ones [14]. Different accuracy metrics can be used, such as the mean absolute error (MAE) and mean absolute
percentage error (MAPE). In a neural network training there are two different propagation moments, forward propaga-
tion where data goes from the input layer to the output layer (thus giving a prediction or classification), and backward
propagation, which allows to train the network. In backward propagation data does the reverse transformation in order
to determine the error and adjust the weights and bias by minimizing the cost function, which can be the MSE or any
other function [14]. Each passing of data forwards and backwards through the network is called an epoch, thus, an epoch
consists of using the training data only once. An epoch can consist on one or more iterations depending on whether the
batch size is the same as the size of the training data. There are several algorithms to adjust the weights, which must be
chosen according to the type of problem being analysed, whether the artificial neural network aims at solving a regression
problem or a classification problem. The main difference between the two tasks is that a classification problem predicts a
label and a regression problem predicts a quantity.

2 Methodology

2.1 Two-moons

The first example is a simple "two moons" classification example. In this example it is not possible to use a linear regression
model to accurately classify the points, as the boundary between the two moon is not linear, as it can be observed in Figure
2(a). Figure 2(b) shows the training data for the "two moons" example. The input data consists on the coordinates of
the point: x1 and x2, and the colour of each moon is the output label of the classification problem, which is going to be
represented as −1 for blue and 1 for red.
The full code is shown next and it is going to be explained line by line afterwards.

1 clc
2 clear all
3 load(’2Moons_sets.mat’)
4 inputs = x’;
5 targets = y’;
6 untrained_net = feedforwardnet([4,3]);
7 view(untrained_net)
8 [trained_net,tr] = train(untrained_net,inputs,targets);

The previous code builds in line 6 a neural network with an input layer, two hidden layers, each with 4 and 3 nodes,
respectively, and the output layer. The number of nodes in the input and output layer is inferred from the dimension of the

86



Journal of Computation and Artificial Intelligence in Mechanics and Biomechanics A.I.Pais et al.

(a)

(b)

Figure 3: Result of the view function (a) untrained (b) trained.

arrays used and inputs and targets in line 8 when the network is trained. Because the "two-moons" dataset is not linearly
separable, two hidden layers are used. If more hidden layers were used, overfitting problems are likely to occur. In Figure
3(a) it is possible to observe the output from the view net function, where it can be seen that at that stage it is still not possible
to know how many nodes are at the input and output, as it indicates zero nodes. Moreover, it is possible to visualise that,
by default, the transfer function in the hidden layers is a symmetric sigmoid transfer function, or tanh function and in the
output layer we have a ’purelin’ function. This means that after the last hidden layer a linear transformation is performed,
and that the input to that layer equals the output. Table 1 shows a list of available activation functions. In line 8, the train
function will display the network with the correct number of nodes as can be seen in Figure 3(b).

Table 1: List of possible activation functions

Name of the function Description

’compet’ Competitive transfer function
’elliotsig’ Elliot sigmoid transfer function
’hardlim’ Positive hard limit transfer function
’hardlims’ Symmetric hard limit transfer function
’logsig’ Logarithmic sigmoid transfer function
’netinv’ Inverse transfer function
’poslin’ Positive linear transfer function
’purelin’ Linear transfer function
’radbas’ Radial basis transfer function
’radbasn’ Radial basis normalized transfer function
’satlin’ Positive saturating linear transfer function
’satlins’ Symmetric saturating linear transfer function
’softmax’ Soft max transfer function
’tansig’ Symmetric sigmoid transfer function (by default)
’tribas’ Triangular basis transfer function

The network function is another MATLAB® function, which creates custom neural networks. The following code generates,
using the network function, a neural network net2 with the same architecture as net1.
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1 net1 = feedforwardnet([4,3]);
2 view(net1)
3 net2 = network(1,3,[1;1;1],[1;0;0],[0 0 0;1 0 0;0 1 0],[0 0 1]);
4 net2.layers{1}.size = 4;
5 net2.layers{2}.size = 3;
6 net2.layers{1:2}.transferFcn = ’tansig’;
7 view(net2);

The output of both the feedforwardnet or network function is an object of type net. Nevertheless, if the objective is to create a
fully connected feed forward network, using the feedforwardnet allows to use less lines of code.
A second input in the feedforwardnet function, which was omitted in the example, is the training function. If omitted, this
parameter assumes the ’trainlm’ function, which is the Levenberg-Marquardt training function. Another common training
function is the "gradient descent". If one wishes for the network to be trained this way, it must be indicated in the second
input of the function as ’traingd’. A list of available training functions is shown in Table 2. The most appropriate training
function will depend on the characteristics of the problem at study.

Table 2: List of available training functions in the feedforwardnet function

Input in the function Training function name

’trainlm’ Levenberg-Marquardt (used by default)
’trainbr’ Bayesian Regularization
’trainbfg’ BFGS Quasi-Newton
’trainrp’ Resilient Backpropagation
’trainscg’ Scaled Conjugate Gradient
’traincgb’ Conjugate Gradient with Powell/Beale Restarts
’traincgf’ Fletcher-Powell Conjugate Gradient
’traincgp’ Polak-Ribiére Conjugate Gradient
’trainoss’ One Step Secant
’traingdx’ Variable Learning Rate Gradient Descent
’traingdm’ Gradient Descent with Momentum
’traingd’ Gradient Descent

The final step consists of the training of the network, which is achieved by means of the function train, also available in the
Deep Learning Toolbox.
Additionally, it is important to perform data normalisation before the training process, in order to obtain a mean close
to zero (which will lead to faster learning and convergence). Data normalisation will allow the data to be dimensionless
or to present similar distributions within different data sets. Next, two examples of data normalisation are shown. The
first, where the mapminmax function is used in order to scale the inputs and targets to fall within the [−1,1] range, and the
second, where the mapstd function is used, normalising the data by transforming the mean and standard deviation to 0 and
1, respectively. In lines 4 to 6 of the examples, it shown how to transform the test data according to the parameters in the
training data.

1 [n_inputs,ps_inputs] = mapminmax(inputs);
2 [n_targets,ps_targets] = mapminmax(targets);
3 [trnet_n,tr_n] = train(net,n_inputs,n_targets);
4 test_data_n = mapminmax(’apply’,test_data,ps_inputs);
5 test_target_n = net(test_data_n);
6 test_target = mapminmax(’reverse’,test_target_n,ps_targets);

1 [n_inputs,ps_inputs] = mapstd(inputs);
2 [n_targets,ps_targets] = mapstd(targets);
3 [trnet_n,tr_n] = train(net,n_inputs,n_targets);
4 test_data_n = mapstd(’apply’,test_data,ps_inputs);
5 test_target_n = net(test_data_n);
6 test_target = mapstd(’reverse’,test_target_n,ps_targets);

Due to the nature of the "two moons" classification problem, the first approach is chosen. Lastly, the test data is shown next,
in Figure 4. Test data 1 changes the two moons configuration, while test data 2 consists of points within the two moons
used in the training set, only sightly changing the points coordinates. The difference between all data sets are more easily
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Figure 4: Test data without normalization

understood in Figure 5, which shows that test set 1 is largely different from the training set, while test set 2 is very similar,
as both sets are almost completely overlapping in the scatter plot.
However, the feedforwardnet function has by default some data pre-processing procedures, such as cleaning constant rows
and data normalisation using the mapminmax. Thus, the data normalisation step will do nothing, as the input is already
normalised. Nevertheless, doing this previous data normalisation step provides the normalisation parameters ps_inouts
and ps_targets so that when testing with different datasets the data can be fed to the net with the correct format.
Because the size of the input layer is 2, it is possible to visualise the decision boundary obtained by the training of the neural
network. In order to have a visual representation of the decision boundary, the following code aids in the visualisation of
the trained boundary, where the coordinates of points defined in a mesh grid are passed through the trained network and
thus, the output will be a colour map showing the output of the network for all points in space.

1 increment = 0.01; %resolution of the meshgrid
2 xx = min(n_inputs(1,:)):increment:max(n_inputs(1,:));
3 yy = min(n_inputs(2,:)):increment:max(n_inputs(2,:));
4 [X,Y] = meshgrid(xx,yy);
5 grid_coordinates = [X(:), Y(:)]’;
6 final = trnet_n(grid_coordinates);
7 hold on
8 colormap(’jet’);
9 scatter(grid_coordinates(1,:)’,grid_coordinates(2,:)’,25,final,’filled’);

10 scatter(n_inputs(1,n_targets==-1)’,n_inputs(2,n_targets==-1)’,25,’white’,’filled’);
11 scatter(n_inputs(1,n_targets==1)’,n_inputs(2,n_targets==1)’,25,’black’,’filled’);
12 colorbar;

2.2 Displacements and normal stresses in the proximal femur (2D analysis)

The second studied problem is a 2D analysis of the proximal femur. In section 2.1, the concepts relevant to the coding of this
problem were already presented in previous sections, so this section will only show the variables and network architecture.
The input and output variables are shown in Figure 6(a), and 6(b) shows the meaning of such variables. Therefore, P1 is any
random point located in the greater trochanter and P2 is any random point approximately in the centre of the femur head.
In this problem, the objective is to predict the normal stresses σxx and σyy at the proximal diaphysis, and displacements ux
and uy in the femoral head. The variables h and P1P2(l) quantify size differences in the model, height and width respectively,
and θ accounts for the model distortions. The test and training data were obtained using FEM analysis on models of 13
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Figure 5: Comparison of the training set and the test sets

different geometries by applying different scales to the x and y axes, and 19 different combinations of angles at which the
loads are applied. The magnitude of F2 was defined as being F2 = 0.3×F1, and F1 is enough that the material reaches
its elastic limit. The model which was used to gather the training and test data is discretized with 3300 nodes and 3150
quadrilateral elements. The elastic modulus considered for the model is E = 33 GPa and the Poisson’s coefficient is ν = 0.3.
The use of data standardisation is highlighted in this example because human bones present geometrical and dimensional
differences from individual to individual. Thus, the data is mapped using the mapstd function because human properties
will usually follow a normal probability distribution. This will transform each input and output variable so that the mean
µ is 0 and the standard deviation σ2 is 1.
A total of n_instances = 152 analyses were run in order to obtain the necessary data. First, the simulation files were read
and summarised into a table containing all the inputs and outputs named all_data with the following structure:

h P1P2(l) θ α β ux uy σxx σyy
· · · · · · · · · · · · · · · · · · · · · · · · · · ·

so the inputs correspond to the first 5 columns of the table and the targets correspond to the last four columns of the table.
Additionally, the data is standardised so that each variable has mean µ = 0 and standard deviation σ2 = 1.

1 %normalizing the data for the training of the network
2 inputs = data(:,1:5);
3 ux = data(:,6); %horizontal displacement
4 uy = data(:,7); %horizontal displacement
5 sxx = data(:,8); %normal stress xx
6 syy = data(:,9); %normal stress xx
7 [inputs_n,ps_inputs] = mapstd(inputs’);
8 [ux_n,ps_ux] = mapstd(ux(:,1)’); %standardizing the horizontal displacement
9 [uy_n,ps_uy] = mapstd(uy(:,1)’); %standardizing the vertical displacement

10 [sxx_n,ps_sxx] = mapstd(sxx(:,1)’); %standardizing the normal stress xx
11 [syy_n,ps_syy] = mapstd(syy(:,1)’); %standardizing the normal stress yy

For this problem the network architecture used in both cases consists of a two layered network, the hidden layer with 20
nodes and the output layer with one node for the output. Figure 7 shows the network used in both cases. The activation
function used in the hidden layer was the symmetric sigmoid (’tansig’) and the output layer also consisted of a linear
transformation, where the input equals the output. Similarly to the first problem, the training function defined by default
is used, which is the trainlm function. During the training process, 106 of the samples are used in the training, 23 samples
are used in validation and 23 samples are used in the testing. The samples used in the training were chosen randomly
from the training data. Additionally, 12 samples which had never been used were used to test the accuracy of the network.
These 12 samples all present the same distortion but vary between themselves the α and β parameters.
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will only show the variables and network architecture. The input and output
variables are shown in Figures 6a and ?? and Figure 6b shows the meaning
of such variables. Therefore, P1 is any random point located in the greater
trochanter, P2 is any random point approximately in the center of the femur
head and P3 is any random point in the lesser trochanter. In summation, in
this problem the objective is to predict the maximum Von-Mises stress of the
model and maximum vertical displacement in the femur head. The variables
h, P1P2, P2P3 and P1P3 account for the geometrical differences that occur
among the population. The test and training data were obtained using finite
element method (FEM) analysis on models of 13 different geometries by applying
different scales to the x and y axes, and 5 different combinations of angles
at which the loads are applied. The magnitude of F2 was defined as being
approximately 0.3*F1, and F1 is enough that the material reaches its elastic
limit. The model which was used to gather the training and test data is shown
in Figure ?? for an example where α and β are both zero degrees. In total
the model is discretized into 3300 nodes and 3150 quadrilateral elements. The
elastic modulus considered for the model is 33GPa.
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Figure 6: Problem summary (a) and (b) input and output variables for the
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neural network with two inputs; (c) boundary conditions; (d) FE model used to
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The importance of data normalization is highlighted in this example be-
cause human bones will present geometrical and dimensional differences from
individual to individual. In this case, it is better to normalize the data using
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Figure 6: Problem summary (a) input and output variables (b) variable scheme

Figure 7: Network architecture used to obtain the displacements dx and dy and the normal stresses σxx and σyy
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Figure 8: Distribution of the standardized variables (a) input and (b) target

The training procedure requires weight initialisation, which shows a heavy influence in the final training result of the
neural network. In order to achieve the best possible weight initialisation, the network was initialised and trained N times.
The final network corresponds to the initialisation which provided the lower mean absolute percentage error (MAPE) with
the 12 additional samples, which had not been seen by the network. The MAPE is given by

MAPE =
1
n

n

∑
t=1

∣∣∣∣At −Pt

At

∣∣∣∣ (5)

where At is the actual value, calculated through the FEM and Pt is the predicted value from the artificial neural network.
The N value was determined iteratively until the network with the best performance showed a maximum relative error
lower than 10% within the 12 samples not previously seen by the network, starting N at N = 1000 with increments of 1000.
The network initialisation (only for the horizontal displacement, it is the same for the remaining networks) and training is
showed next

1 targets_n = ux_n;
2 net_ux = feedforwardnet(20);
3 [tr_net_ux,param_ux] = train(net_ux,inputs_n,targets_n);

Because the network takes the normalised inputs, the same normalisation parameters are used for the 12 example samples.
Having obtained the results from the network, it is necessary to revert the normalisation of the output array.

1 ins_test = [h;P1P2_l;theta;alpha;beta];%inputs for the test case
2 ins_n = mapstd(’apply’,ins_test,ps_inputs); %normalized inputs
3 ux_n_test = tr_net_ux(ins_n); %normalized horizontal displacement output
4 uy_n_test = tr_net_uy(ins_n); %normalized vertical displacement output
5 sxx_n_test = tr_net_sxx(ins_n); %normalized normal stress xx output
6 syy_n_test = tr_net_syy(ins_n); %normalized normal stress yy output
7 ux = mapstd(’reverse’,ux_n_test,ps_ux); %unscaled horizontal displacement
8 uy = mapstd(’reverse’,uy_n_test,ps_uy); %unscaled horizontal displacement
9 sxx = mapstd(’reverse’,sxx_n_test,ps_sxx); %unscaled normal stress xx

10 syy = mapstd(’reverse’,syy_n_test,ps_syy); %unscaled normal stress yy

The distribution of the standardised input and target variables used in the training of this example is shown in Figure 8.

3 Results and discussion

3.1 Two-moons

Figure 10(a) shows an example of a run of the trained network on two different test sets. It should be noted that the data
division done in the training takes a default data division and weight initialisation and, therefore, the results should change
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Figure 9: (a) Example of the trained network on two different test sets and (b) Decision boundary for normalised inputs on
the training dataset

Table 3: Performance comparison between the artificial neural networks and the reference results, obtained through the
FEM

best net (s) total training (s) prediction time (s) FEM time (s) MAPE necessary runs

ux 1.199 1110.135 1.374 30 1.63% 1000
uy 1.807 1635.129 1.374 30 1.62% 1000
σxx 1.627 9269.034 1.374 30 5.20% 5000
σyy 2.578 2452.89 1.374 30 3.90% 1000

every time the code is run.
Since test set 2 is quite similar to the training set, where the point coordinates differ within the same range of the training
data set, the network had 100% precision. On the other hand, test set 1 changes the two moons configuration quite a lot
and, therefore, 20.5% of the points are misclassified. The decision boundary obtained is shown in Figure 10(b) for the
normalised inputs. The points classified with 1 are marked in black and the points classified with -1 are marked in white.

3.2 Displacement and stress in the proximal femur

The results of the trained networks for each of the displacements and stresses are shown in Figure 10. First, it is shown the
MSE plotted along the epochs, as well as the absolute percentage error (APE) given by

APE =

∣∣∣∣Pt −At

At

∣∣∣∣ (6)

along for each of the 12 samples that the network did not see during the training.
Analysing the regression plots (which correlate the predicted outputs with the correct target value), it can be seen that all
the displacements were correctly predicted as well as the normal stress σyy.
It is possible to visualise that with enough tries, the weight initialisation provided errors that are acceptable bellow 10%.
More, from Table 3, which shows how the artificial neural network compares to the FEM performance, it is possible to vi-
sualise how a well trained neural network outperforms the FEM in terms of computational time with satisfactory accuracy.
Due to the fact that the training data has a relatively small size, the training of one network took, in some cases, a lower
time than the prediction. The small amount of data, conjugated with the randomness of the weight initialisation algorithm,
led to a high number of tries. Such number was required in order to get a neural network with good enough performance.
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Figure 10: Performance results of the networks with the best performance (a) displacement at the femoral head (b) normal
stresses at the diaphysis
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Table 4: Importance of each variable using the connection weight approach by Olden et al. [15]

ux uy σxx σyy

importance rank importance rank importance rank importance rank

h 0.062400554 5 -1.415369025 3 -0.489007928 3 0.553022086 5
l 0.837122148 4 0.08092881 4 0.893937726 2 -0.657534966 4
θ 2.847490417 1 -0.072197728 5 2.162784543 1 -0.732870909 3
α -1.433177231 2 -6.012677872 1 0.273148366 4 -8.961103865 1
β -1.195840853 3 -3.15426349 2 -0.08160777 5 -3.403068005 2

Consequently, the total training time increased drastically. For example, in the work of Mouloodi et al. [12] (who worked
on displacement), experimental data was used to predict load and strain. This work showed the amount of data that is
required in order to train the artificial neural network so it presents a low error [12].
Nevertheless, it was possible to train the network to an acceptable level of error. Even though the stresses and displace-
ments are only required at two points of the model, the complex shape of the femur requires FEM analysis in order to
output those variables. The trained artificial neural network thus provides good enough data so that the FEM step can be
abandoned when calculating such a small number of parameters.
Finally, it is possible to assess the importance of each variable for the calculation of the output, for each variable, using the
approach by Olden et al. [15]. This is done by multiplying the matrix of connections weights between the input and hidden
layer WI with the matrix of connection weights between the hidden and the output layer WO. WI is [Nin ×M], where M is the
number of neurons in the hidden layer and Nin is the number of neurons in the input layer and WO is [M×No] where No is
the number of outputs. The result is

I =WI ·WO (7)

which is [Nin ×No] and consists in the importance that each input variable has for the output result. A negative sign signifies
a negative correlation of the input variable with the output. Table 4 ranks the variables. Olden’s approach shows some
advantages in comparison to other feature selection approaches, as it also provides information regarding the excitation or
inhibition effect of a variable.
Due to the specificity of each problem, each neural network relies differently on different features. Because the magnitude
of the force applied to the femoral head is higher than the magnitude of the force applied to the grater trochanter, it is
expected, considering the physical explanation of the problem, that α would consistently rank higher than β in variable
importance, which was verified. It would be interesting to re-run the training procedure and to each network omit the
variables with the least or very low importance. Other differences may be due to the dataset used in the analysis.

4 Conclusion

In conclusion, this work shows that a large amount of computational time can be saved through the use of artificial neural
networks, especially for models with a large number of nodes where the computational time increases drastically. However,
large amounts of data must be acquired in order to have a quality approximation from the neural network. Moreover, the
significance analysis of the input features allowed to conclude that even though artificial intelligence is often a "black box"
approach, the neural network was capable to capture the physical meaning of the problem, as the most important variables
for each case are in agreement with the expectations developed from the mechanics of the problem. Finally, it was shown
that the network was capable of solving both classification and regression problems.
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Abstract
Neurotmesis is the most severe injury a peripheral nerve can endure. One of the strategies
to treat this type of nerve injury is the tubulization technique, consisting of bridging the two
nerve tips enclosed by a tube made of a compatible biomaterial. Chitosan scaffolds is one of
the most popular (and successful) solutions used for the tubulization technique. After im-
planting the chitosan tube, it will experience mechanical stimuli due to natural movements,
inducing strain-stress states in the biomaterial. It is relevant to characterize the mechanical
behaviour of chitosan scaffolds in order to improve the structural design of chitosan tubes.
First, in this work, it is proposed an elastoplastic constitutive model to predict the nonlin-
ear behaviour of chitosan scaffolds in both compression and tensile conditions. Then, using
the data available from experimental tests documented in the literature, the most relevant
mechanical properties for the proposed elastoplastic constitutive model were retrieved, al-
lowing the construction of phenomenological laws for each required mechanical property.
The proposed phenomenological law is capable to provide the Young’s modulus, the tan-
gent modulus and the yield stress (in both compression and tensile states) as a function of
the degree of deacetylation.
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1 Introduction

Every year, there are more than 500.000 new cases of peripheral nerve injuries worldwide due to traumatic events. It is a
major cause of morbidity and life-long disabilities and it represents approximately 3% of all trauma patients [1, 2, 3]. There
are different causes for injuries in the peripheral nervous system, being the most common direct mechanical trauma and
surgical resection secondary to tumour excision [4]. The peripheral nervous system is composed of motor, sensory and
mixed nerves. The cell bodies of peripheral nerves are located in the spinal cord and the long cytoplasmic extensions that
transmit electrical signals to target organs are called axons [5]. As it is shown in Figure 1, different layers of connective
tissue encase peripheral nerves both internally and externally. The epineurium protects and nourishes the nerve fascicles,
which are surrounded individually by a layer of connective tissue called perineurium. This layer provides tensile strength
to the nerves. Inside each fascicle there is a loose connective tissue matrix called endoneurium that protects and nourishes
each axon [6, 7]. Schwann cells surround axons with a membrane of myelin with interposed spaces called nodes of Ranvier,
where the saltatory propagation of action potentials occur [8].
Contrarily to what happens in the central nervous system, the peripheral nervous system is able to regenerate after a nerve
lesion in the presence of a suitable environment, and to recover some of the lost functions [1, 4, 9, 10]. However, the
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Figure 1: Representation of the cross-sectional area of a peripheral nerve

regenerating capacity and the recovery outcome are dependent on some factors such as the age of the patient, the length
and type of injury, the quality of the repair technique, and the proximity of the injury to the nerve cell body [4, 9, 10, 11].

1.1 Types of injuries

Seddon [12] and Sunderland’s [13] classifications are typically used to define the different types of injuries based on their
response. Seddon’s classification is based on the architecture of the nerve and its ability to transmit nerve signals [6]. Later
on, this classification was expanded by Sunderland and depending on the severity, it divides peripheral nerve injuries into
five grades [13]. Neurapraxia (grade 1) is the mildest form of nerve injury and it is related to a block in the fiber conduction
due to nerve stretching or compression [8, 14]. It results in temporary motor paralysis, with or without sensory loss.
Although demyelination occurs, the structural integrity is preserved since the epineurium, perineurium and endoneurium
remain intact, allowing for a full nerve recovery [8, 15]. As a more severe injury, axonotmesis (grade 2) brings more
tragic consequences such as complete motor, sensory and autonomic dysfunction. In this case, the structural integrity
of the surrounding support structure of the nerve is also preserved, even though the axon suffers some damage and the
endoneurium remains intact. As for the recovery rate, it is slow and may be incomplete [6, 14, 15]. The most severe injury
is known as neurotmesis (grade 3/4/5), ranging from transection (with intact perineurium) to a completely transected
nerve, where there is the total interruption of the structural integrity of the support structure of the nerve [14, 15]. This
prevents the occurrence of spontaneous recovery and leads to complete motor, sensory, and autonomic dysfunction [15].
These neurotmetic injuries require surgical intervention while neurapraxia and axonotmetic injuries can be treated by
conservative methods [6, 8, 16].

1.2 Nerve repair strategies

Being neurotmesis the most severe injury a peripheral nerve can endure, this work only focused on the strategies currently
implemented to treat this type of nerve injury. These strategies can be divided into two categories: bridging, using grafting
and tubulization techniques, and end-to-end suturing of the nerve stumps [2, 11]. The latter can only be performed in
small nerve gaps (<5 mm), where a tension-free coaptation between the proximal and distal nerve stumps is possible.
Otherwise, the regrowth of the nerve fibers will be impaired [17, 18, 19]. Also, it has become more apparent over the years
that a purely surgical strategy does not address all the molecular and cellular events which occur during the regeneration
of the peripheral nerve [4]. On the other hand, bridging nerve gaps of critical length in humans, which are over 3 cm,
using an autologous nerve graft (autograft) remains the gold standard for repairing non-suturable peripheral nerve injuries
[9, 17, 20, 21]. However, some disadvantages are associated to this technique, such as the need for a second surgery to
harvest the nerve graft, and consequent sacrifice of a healthy nerve, the mismatch in size, and the neurological morbidity at
the donor site, which makes it a non-optimal strategy [2, 9, 10, 22]. Moreover, because of the unavailability of motor nerves,
autografts are primarily obtained from sensory nerves. This is a drawback when it comes to grafting sensory or mixed
nerves and may be another reason to explain the poor functional recovery rates associated to autografts [19]. Over the years,
an effort has been made in order to develop biomaterials that can be used as substitutes of autografts, including natural and
synthetic polymers [22]. These biomaterials, which affect the final outcome, can be easily modified to provide an optimized
environment for peripheral nerve regeneration [9, 17]. Some tissue engineering strategies are focused on increasing the
ability of these nerve guidance channels to guide and sustain axon regeneration, overcoming the nerve gap limitation
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(a) (b)

Figure 2: Chemical structure of chitin (a) and chitosan (b)

[9, 23, 24]. They can assume different forms, being that hollow tubes are the clinically approved alternative to autografts,
and are sutured between the proximal and the distal nerve stumps. These nerve guidance channels create a more favourable
environment and allow to reach better regenerative results when comparing with autografts [2, 9, 19, 22]. Nowadays
there are some FDA-approved nerve guidance channels commercially available, such as NeuraGenT M , NeurotubeT M and
NeurolacT M [9, 25]. Although they avoid donor site morbidity and have an unlimited supply, they also have limitations
when it comes to supporting peripheral nerve regeneration and the consequent functional outcomes [1, 19]. These hollow
tubes can only be used for small diameter nerves, such as digital nerves, and for nerve defects up to 2-3 cm in length, which
leaves the majority of patients with peripheral nerve injuries out of the scope [2, 9, 10, 24, 26]. From these limitations arises
the need to construct a nerve guidance channel made from a biomaterial, which has already demonstrated good results in
peripheral nerve regeneration and that performs better than autografts in larger nerve gaps. The process of choice of this
material must be well considered since the use of different materials and fabrication techniques leads to variable physical
properties. One of these materials is chitosan, which has been used as a scaffold to help in the peripheral nerve regeneration
process. It can assume many shapes and forms and this variability leads to a set of very different physical, biological and
chemical properties that will ultimately influence the results concerning nerve regeneration.

1.3 Chitosan

Although many different biomaterials have been used to construct neural scaffolds, for the past years chitosan has been
considered a preferable candidate for peripheral nerve regeneration. It derives from chitin, which is a structural element
found in the exoskeleton of crustaceans, and it can be obtained by N-deacetylation of chitin [9, 27], Figure 2(a). This polymer
is a linear polysaccharide composed of glucosamine and N-acetylglucosamine units which are linked by β (1-4)-glycosidic
bonds [28, 29, 30], Figure 2(b).
Chitosan has a set of characteristics that make it a viable choice as a biomaterial for the construction of nerve guidance
channels. Some of these characteristics are its facile chemical modification and excellent reproducibility, which enables it to
be applied in medicinal, drug delivery, tissue engineering, and other industrial fields [27, 30, 31, 32]. As a natural polymer,
chitosan is regarded as non-toxic and biologically compatible, being that it promotes cell adhesion and proliferation [1,
22, 30, 32]. It also presents an excellent antibacterial and antifungal activity, biodegradability and a film-forming ability
[11, 31, 33]. Several studies have demonstrated that chitosan is a good option for neural tissue engineering and more
specifically that chitosan tubes promote the repair of the peripheral nervous system [9, 11, 17, 22]. Chitosan nerve guidance
channels can undergo surface modification in order to provide guiding and structural cues for growing axons and they
can also be constructed as interconnected-porous structures by freezing and lyophilizing methods [17, 34]. In its pure state,
chitosan can take many forms that can differ between them on the degree of deacetylation, which is represented by the ratio
between glucosamine and N-acetylglucosamine units [28, 35, 36]. The degree of deacetylation is one of the most important
properties of chitosan and it allows to differentiate it from chitin considering the amount of free amino groups (NH2)
[28, 37, 38]. During the process of deacetylation of chitin, an acetyl group (C2H3O) is removed from its molecular chain,
leaving behind an amino group [38]. Thus, when a polymer molecule consists of more than 50% of N-acetylglucosamine
units it is known as chitin. The one with more than 50% of N-glucosamine units becomes soluble in aqueous acidic solutions
and is known as chitosan [29, 39]. The degree of deacetylation is determined by the conditions selected for the deacetylation
process and generally it ranges from 50% to 90− 95% [11, 37, 40]. Moreover, for biological applications, chitosan can be
further deacetylated, reaching a degree of deacetylation higher than 95% [38]. The degree of deacetylation influences the
physical, chemical and biological properties of this polymer, such as cell response, crystallinity, solubility, and the tensile
strength of chitosan films [37, 41]. Considering for example solubility, when the degree of deacetylation is below 70% it
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becomes difficult to dissolve chitosan in acetic acid solutions, which makes it harder to fabricate chitosan conduits [23].
Another parameter that varies with the degree of deacetylation is the degradation rate. Several studies have confirmed
that highly deacetylated chitosan scaffolds (> 85%) have a lower degradation rate, meaning that they may last in vivo for
several months [28, 30, 34, 40]. Therefore, when considering a peripheral nerve injury, the goal is to develop a chitosan
nerve guidance channel that maintains its physical structure long enough to ensure nerve regeneration since it takes the
proximal regenerating nerve stump several weeks to reach the injured distal nerve stump [29, 42].

1.4 The biomechanical behaviour

In order to facilitate the use of chitosan scaffolds for peripheral nerve repair, one must take into account the biomechanical
behaviour of the peripheral nerves. The stresses to which nerves are exposed under physiological conditions must be
analysed in order to understand how these scaffolds should behave after implantation so they can better play their role
as nerve regeneration enablers. Peripheral nerves are subjected to mechanical stresses, which are defined as the applied
external forces divided by the cross-sectional area over which they act. They can be applied as tensile, compressive, shear
stress or triaxial stress state [43]. Many in vitro and in vivo studies have demonstrated that peripheral nerves behave as non-
homogeneous, viscoelastic tissues and present non-linear stress-strain characteristics when subjected to tensile forces [44].
Tension tests can be performed in order to determine the mechanical properties of nerves, whose mechanical behaviour can
be described by a stress-strain curve. Experimentally, an increasing uniaxially tensile load can be applied to the specimen,
which will deform until a fracture occurs [43, 45]. These loads can be applied perpendicularly or in parallel to the length
of the nerve causing transverse or longitudinal stress, respectively. Thus, in physiological conditions, when the nerve bed
(defined as the tract formed by the structures that surround the nerve) is elongated due to joint motion, the nerve is placed
under increasing tensile stress and it will elongate and glide [43, 46]. In this case, the elongation of the nerve will cause an
increase in nerve strain, which will be greater in the nerve segment closest to the moving joint. In other cases, where a tensile
stress is applied, peripheral nerves initially present a low elastic modulus that gradually increases with increasing strain
until reaching a maximal value [43, 44]. The tolerance to stretching of peripheral nerves can go up to 6−8% of their total
length without undergoing morphological and functional changes. On the other hand, further stretching (> 15%) leads to
a complete block of intraneural flow [47]. Under physiological conditions, chitosan scaffolds have low mechanical strength
and are unable to maintain a predefined shape for transplantation, which limits their use as nerve guidance channels in
clinical applications [9, 22, 32, 33, 48, 49]. Also, because the conduits may compress the regenerating nerve, they may not
be able to maintain their physical structure until the injury is healed. This occurs because chitosan is more brittle and rigid
than nervous tissue [50]. Determining the mechanical properties of chitosan nerve guidance channels is crucial for they
allow to predict their performance in the physiological environment, including their influence on specific cell functions.
For example, a balance between strength and flexibility must be found when planning the ideal mechanical characteristics
of the nerve guidance channels since they have to be able to hold the nerve in place after being implanted [51, 52]. Chitosan
scaffolds can be characterized via compression testing in order to obtain their compressive modulus and/or strength [28].
These values reported in the literature range from 0.0038 MPa to 2.56 MPa for the compressive elastic modulus and from
0.059 MPa to 0.125 MPa for the compressive strength (or ultimate compressive stress) [32]. Scaffolds that do not exhibit any
apparent pores can have an elastic modulus from 5 to 7MPa. These values change whenever a degree of porosity is added
to the scaffolds, which decreases both the elastic modulus and the mechanical strength [29]. Soft biomaterials with a low
Young’s modulus are the preferable candidates when it comes to mimicking the mechanical properties of nerves [50]. There
are several factors that influence the mechanical properties of chitosan scaffolds, such as the pore size and orientation,
the degradation rate, and the degree of crosslinking [34, 39]. Some technologies and strategies have been upgraded in
order to improve the mechanical properties of chitosan scaffolds, which should lead to better outcomes considering nerve
regeneration. Crosslinking these scaffolds by the addition of a reinforcement agent, incorporation of a synthetic polymer
or complexing with another polymer, are some of the methods that improve the mechanical properties of chitosan and also
decrease the degradation rate [32, 48]. This makes chitosan scaffolds less susceptible to the enzymes responsible for their
degradation [53]. However, the concentration of added crosslinker agent must not be too high or the biological properties
of the chitosan scaffolds might be impaired. For this reason, non-crosslinked chitosan is often chosen for biomedical
applications [32].

2 Elastoplastic constitutive model

The literature shows that structures made of chitosan present a nonlinear behaviour when submitted to external uniaxial
loads [54, 55]. Linear behaviour is followed by a yield plateau before rupture is reached. It is observed that if the yield stress
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is reached and the applied load is removed, chitosan specimens experiment permanent and non-recoverable deformations.
Thus, in this work, it is proposed to numerically reproduce the behaviour of chitosan material using an elasto-plastic
formulation. First, in order to capture the nonlinear behaviour of an elastoplastic material it is necessary to define the
mathematical law for the plastic component of the deformation. Thus, three aspects must be considered: a yield criterion
(permitting to analyse the beginning of the plastic regime and indicating the stress level in terms of the stress tensor); a
flow rule (defining the relationship between stress and deformation after plastification); and a hardening law (describing if,
and how, the yield criterion depends on the plastic deformation) [56]. The yield criterion permits to define the beginning of
the plastic regime. Usually, a yield criterion can be formulated as: F(σ ,κ) = f (σ)−σY (κ) = 0. The yield criterion allows to
define the beginning of the plastic regime. The yield criterion F(σ ,κ) depends on the stress tensor σ and on the hardening
parameter κ . Notice that the yield criterion expression allows to define the triaxial stress state, σ , as a scalar function,
f (σ). It is the scalar value from f (σ) that will be compared with the material yield stress σY (κ), obtained experimentally.
If the stress state at a material point exhibits f (σ) > σY (κ), it means that the point shows an elastic behaviour, governed
by the linear equations of the theory of elasticity [57]. Instead, if f (σ) ≤ σY (κ), it indicates that the point is yielding. The
modified Hill’s yield criterion is most suited when the material exhibit anisotropy in its plastic behaviour and asymmetry
in its yield-stress behaviour [29]. This means that the yield function is able to describe the behaviour of materials with
different compressive and tensile yield stresses. The mathematical law for the criterion is represented in equation 1, [29].(

F · (σyy −σzz)
2 +G · (σzz −σxx)

2 +H · (σxx −σyy)
2 +2 ·L · τ2

yz +2 ·M · τ2
zx +2 ·N · τ2

xy

)0.5
+ I ·σxx + J ·σyy +K ·σzz = 1 (1)

The parameters F , G, H, L, M, N, I, J and K are determined experimentally, representing the current state of anisotropy of
the material. Considering the material plastically isotropic the value of the material parameters is given by

F = G = H =
1
2

(
σ t

0 +σ c
0

2 ·σ t
0 ·σ c

0

)2

(2)

I = J = K =−
σ t

0 −σ c
0

2 ·σ t
0 ·σ c

0
(3)

L = M = N =
3
2

(
σ t

0 +σ c
0

2 ·σ t
0 ·σ c

0

)2

= 3F (4)

Since the plastic flow is associated with the yield criterion, in this work an associated flow rule is considered - the Prandtl-
Reuss flow rule – which defined the plastic strain rate as,

dε
p
i j = dλ

∂ f
∂σi j

= dλ ·a (5)

Notice that dε is the plastic rate multiplier and a is the flow vector, normal to the adopted yield function, f (σ). Thus, the
flow vector can be presented as,

a =
∂ f
∂σ

=

{
∂ f

∂σxx
,

∂ f
∂σyy

,
∂ f

∂σzz
,

∂ f
∂σxy

,
∂ f

∂σyz
,

∂ f
∂σzx

}T

(6)

Following the linear elastic generalised Hooke law, the following relation between the stress rate dσ and the elastic strain
rate dεe is assumed:

dσ = D ·dεe = D · (dε −dεp) (7)

in which dε is the total strain rate and dεp is the plastic strain rate. Matrix D represents the material elastic constitutive
matrix,
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D =



1
Exx

− νyx
Eyy

− νzx
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0 0 0
− νxy

Exx
1

Eyy
− νzy

Ezz
0 0 0

− νxz
Exx
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Eyy

1
Ezz

0 0 0
0 0 0 1

Gxy
0 0

0 0 0 0 1
Gyz

0
0 0 0 0 0 1

Gzx



−1

(8)

Where Eii is the Young modulus in direction i, νi j is the Poisson ration and Gi j is the shear modulus, with respect to
directions i and j. Assuming the associated flow rule and considering that the yield surface only depends on the magnitude
of the applied principal stresses and of a hardening parameter, equation 7 be rewritten as,

dσ = D · (dε −dλ ·a) (9)

Since the stress must remain on the yield surface in order to occur plastic flow, the following has to be verified,

dF =

(
∂ f
∂σ

)T

dσ − ∂σY

∂κ
dκ = aT ·dσ −A ·dλ = 0 (10)

being A an hardening parameter that depends on the hardening rule [56], defined by,

A =
1

dλ

∂σY

∂κ
dκ (11)

Applying equation 9 into equation 10,

dλ =
aT cdε

A+aT ca
(12)

Introducing the value of dλ into equation 5, the plastic strain rate can be written as,

ε
p = ∂λ ·a =

aT ·D ·dε

A+aT ·D ·a
·a (13)

and then, consequently, using equation 7, it is possible to write the stress rate as,

dσ = D ·
(

dε − aT ·D ·dε

A+aT ·D ·a
·a
)
=

(
D− D ·a ·aT ·D

A+aT ·D ·D ·a

)
·dε = (D−Dep) ·dε (14)

Matrix Dep represents the elasto-plastic constitutive matrix. Since the work hardening hypothesis is employed [56] consid-
ering the associated flow rule, it is possible to define explicitly the hardening parameter A. Thus, because chitosan σ − ε

experimental curves can be adjusted to a linear elastic-linear plastic hardening model, the hardening parameter A can be
defined as in [56], i.e.,

A = H ′ (ε p) =
dσ

dε p
=

dσ

dε −dεe
=

1
dε

dσ
− dεe

dσ

=
1

1
Et

− 1
E

=
Et

1− Et

E

(15)

Notice that E and Et represent the elastic modulus and the tangential modulus in the reference direction and corresponding
stress state (tensile or compression), respectively. In order to build a nonlinear solution procedure, the material behaviour
can be modelled in the form of an incremental relation between the incremental stress vector and the strain increment. The
“backward-Euler” procedure [58] is considered to force the stress to return to the yield surface. The nonlinear solution can
be obtained using the several variations of the Newton-Raphson non-linear solution method, as described in the literature
[59]. One of the simplest variations, the initial stiffness method combined with an incremental solution, is shown in Figure
3.
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Figure 3: Newton-Raphson non-linear solution method, assuming the initial stiffness method combined with an incremen-
tal solution.
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(a) (b)

Figure 4: Relationship between the tensile elongation at break (a) and the tensile strength (b) with the degree of deacetyla-
tion of chitosan in a tensile state.

3 Phenomenological laws

This work proposes a constitutive material model to allow the prediction of the nonlinear elastoplastic behaviour of chi-
tosan. Experimental tests documented in the literature were studied and gathered [43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 55],
and the most relevant mechanical properties for the proposed elastoplastic constitutive model were retrieved. The acquired
data allowed to construct the figures presented in this section, and consequently, build the proposed phenomenological
laws. The mechanical properties found were obtained by analysing the stress-strain curves documented in the mentioned
literature, or by directly assuming the values proposed by their authors.
Both the yield criterion and the corresponding yield surface are considered. The model respects a flow rule defining the
relationship between stress and deformation after the plasticity point, and a hardening law that describes if, and how,
the yield criterion depends on the plastic deformation. For this, it is important to obtain the mechanical properties of
chitosan, such as Young’s modulus (E), the yield stress (σY ) and the strain for both compression and tension tests. In the
compression test, it is also possible to obtain the tangential Young’s modulus (Et ). These isotropic material properties were
related with the degree of deacetylation of chitosan, which importance was explained previously. Therefore, assuming
the nonlinear elastoplastic behaviour of chitosan and resorting to the literature, it was possible to obtain these mechanical
properties and to analyse how they vary with the degree of deacetylation. The literature shows that when in tension,
the curve representative of the relation between breaking elongation and the degree of deacetylation of chitosan depicts a
second-order polynomial behaviour. Thus, when constructing the curves relative to the strain both in the elastic and elasto-
plastic limits, it was considered the same second-order polynomial behaviour. Figures 4 and 5 illustrate the variation of
the mechanical properties of chitosan with its degree of deacetylation in a tensile state. These properties include the tensile
elongation at break (ε t

u) (or the ultimate tensile strain), Figure 4(a), the tensile strength (σ t
u) (or the ultimate tensile stress),

Figure 4(b), the tensile Young’s modulus (Et), Figure 5(a), and the tensile elastic limit strain (ε t
0), Figure 5(b). In Figures 4(a)

and (b) and in Figure 5(b), the trend line followed a second-order polynomial behaviour, while in Figure 5(a) it followed a
linear behaviour.
The following equations describe the behaviour of the curves presented in Figures 4 and 5.

ε
t
u =−0.1127 ·d2

d +18.882 ·dd −735.87, in [%], with R2
εt

u
= 0.5769 (16)

σ
t
u =−0.0122 ·d2

d +2.2457 ·dd −95.516, in [MPa], with R2
σ t

u
= 0.9718 (17)

Et = 0.5558 ·dd −33.747, in [MPa], with R2
Et = 0.9063 (18)

ε
t
0 =−0.0008 ·d2

d +0.1274 ·dd −4.6255, in [%], with R2
εt

0
= 0.5376 (19)

Being dd the degree of deacetylation, in [%], and R2 the correlation coefficient of the corresponding approximation curve.
Notice that with ε t

0 and Et it is possible to estimate the elastic limit stress: σ t
0 = Et/ε t

0.
In Figures 6, 7 and 8 are represented the variations of the mechanical properties of chitosan with its degree of deacetylation
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(a) (b)

Figure 5: Relationship between the tensile Young’s modulus (a) and the tensile elastic limit strain (b) with the degree of
deacetylation of chitosan in a tensile state.

(a) (b)

Figure 6: Relationship between the compression elastic limit strain (a), the compression elasto-plastic limit strain (b) with
the degree of deacetylation of chitosan in a compressive state.

(a) (b)

Figure 7: Relationship between the elastic limit stress (a) and the elasto-plastic limit stress (b) with the degree of deacetyla-
tion of chitosan in a compressive state.
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Figure 8: Relationship between Young’s modulus (E) with the degree of deacetylation of chitosan in a compressive state.

in a compressive state. These properties are the compressive elastic limit strain (εc
0), Figure 6(a), the compressive elastoplas-

tic limit strain (εc
u) (or the ultimate compression strain), Figure 6(b), the compressive elastic limit stress (σ c

0 ), Figure 7(a), the
compressive elastoplastic limit stress (σ c

u ) (or the ultimate compression stress), Figure 7(b), and the compression Young’s
modulus (Ec), Figure 8.
Such as in the case of the tensile state, the following equations and correlation coefficients describe the behaviour of the
curves presented in Figures 6, 7 and 8.

ε
c
0 =−0.0519 ·d2

d +8.617 ·dd −347.4, in [%], with R2
εc

0
= 1.00 (20)

ε
c
u =−0.5643 ·d2

d +93.668 ·dd −3795.9, in [MPa], with R2
εc

u
= 1.00 (21)

σ
c
0 = 0.033 ·dd −2.4899, in [MPa], with R2

σ c
0
= 1.00 (22)

σ
c
u = 0.1109 ·dd −8.3199, in [%], with R2

σc
u
= 1.00 (23)

Ec = 0.6738 ·dd −51.088, in [MPa], with R2
Ec = 1.00 (24)

Again, dd represents the degree of deacetylation, in [%], and R2 is the correlation coefficient of the corresponding approxi-
mation curve. Although it is possible to obtain the Young’s modulus for a compressive state directly from equation 24, it is
also possible to obtain the same variable using the values from equations 20 and 22. Thus, following the schematic figure
9, it is possible to understand that all the parameters required to build the bi-linear elastoplastic constitutive model can be
obtained with equations 16 to 24. The tensile and compression Young’s modulus (Et and Ec, respectively) can be obtained
with: 

Et =
σ t

0
ε t

0

Ec =
σ c

0
εc

0

(25)

The tangent elastic modulus, Et
T and Ec

T for tensile and compression cases, respectively, can be calculated with:
Et

T =
σ t

u −σ t
0

ε t
u − ε t

0

Ec
T =

σ c
u −σ c

0
εc

u − εc
0

(26)
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Figure 9: Schematic stress-strain tensile-compression curve.

4 Conclusion

Being a nonlinear material, chitosan behaves differently when being compressed or tensioned. When subjected to a com-
pressive force, chitosan presents a clear elasto-plastic behaviour, which can be simulated using an elasto-plastic model. On
the other hand, chitosan presents a slight ductile behaviour (almost brittle) when subjected to a tensile force. Neverthe-
less, it can also be represented with an elasto-plastic model. The degree of deacetylation was shown to have a marked
effect on the physicochemical properties of chitosan films. Higher degree of deacetylation chitosan films showed a greater
crystallinity, a higher elastic modulus and tensile strength and a lower swelling index than those with lower degree of
deacetylation [23]. The relationship here established between different mechanical properties of chitosan and its degree of
deacetylation can be adapted to the crystallinity and swelling index of chitosan. With the development of this constitu-
tive model, it is now possible to obtain the different mechanical properties of chitosan for both conditions: compression
and tension, as functions of the degree of deacetylation. Combined with advanced discretisation techniques, such as the
finite element method or meshless methods, the proposed constitutive model will allow to perform computational simula-
tions capable to predict the non-linear response of chitosan scaffolds, or other chitosan-made structures, under mechanical
solicitations. Since computational simulations are less expensive than experimental trials, this numerical approach will
contribute to reduce the total cost associated with the research of new geometries of chitosan tubes for the regeneration of
the peripheral nerve.
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