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ABSTRACT
We consider a mixed variational problem governed by a non-
linear operator and a set of constraints. Existence, uniqueness
and convergence results for this problem have already been
obtained in the literature. In this current paper we complete
these results by proving the well-posedness of the problem,
in the sense of Tykhonov. To this end we introduce a family
of approximating problems for which we state and prove var-
ious equivalence and convergence results. We illustrate these
abstract results in the studyof a frictionless contactmodelwith
elastic materials. The process is assumed to be static and the
contact is with unilateral constraints. We derive a weak formu-
lation of the model which is in the form of a mixed variational
problemwith unknowns being the displacement field and the
Lagrangemultiplier. Then, we prove various results on the cor-
responding mixed problem, including its well-posedness in
the senseof Tykhonov, under various assumptionson thedata.
Finally, we provide mechanical interpretation of our results.
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1. Introduction

Mixed variational problems represent a class of inequality problems which arise
in the variational analysis of a large number of nonlinear boundary value prob-
lems with unilateral constraints. Their major ingredient consists in introducing a
new variable, the Lagrangemultiplier, associated to the constraints. Existence and
uniqueness results can be found in [1–6]. References on the numerical treatment
of mixed variational problems include [7–12]. As it follows from these papers,
the numerical treatment of mixed variational problems is efficient and accurate,
which explains why they are widely used in Solid and Contact Mechanics as well
as in various Engineering Applications.

Besides the unique solvability, the notion of well-posedness for a given math-
ematical problem represents an important topic which was widely studied in
the literature. The concepts of well-posedness vary from problem to problem
and from author to author. Some examples are the concept of well-posedness
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in the sense of Hadamard for partial differential equations, the concept of well-
posedness in the sense of Tykhonov for a minimization problem, the concept
of well-posedness in the sense of Levitin–Polyak for a constrained optimiza-
tion problem, among others. The literature in the field includes various exten-
sions to mathematical problems like variational and hemivariational inequali-
ties, inclusions, fixed point, equilibrium point and saddle point problems, see
[13–21,32], for instance. For an abstract mathematical problem, the concept
of well-posedness in the sense of Tykhonov is based on two main ingredients:
the existence of a unique solution and the convergence of any approximating
sequence to the solution. Details can be found in [22].

In this current paper we study the well-posedness in the sense of Tykhonov
(well-posedness, for short) for an elliptic mixed variational problem. The func-
tional framework, which we assume in Sections 2 and 3 of this paper, is the
following. First, X and Y represent real Hilbert spaces endowed with the inner
products (·, ·)X and (·, ·)Y and associated norms ‖ · ‖X and ‖ · ‖Y , respectively.
Moreover, X × Y denotes their product space endowed with the canonical inner
product. A typical element of X × Y will be denoted by (u, λ). In addition, we
assume that A : X → X, b : X × Y → R, � ⊂ Y , f , h ∈ X and, finally, X × �

represents the product of the sets X and �. Then, the mixed variational problem
we consider can be formulated as follows.

Problem P : Find (u, λ) ∈ X × � such that

(Au, v)X + b(v, λ) = (f , v)X ∀ v ∈ X, (1)

b(u,μ − λ) ≤ b(h,μ − λ) ∀ μ ∈ �. (2)

Consider now a function θ : [0,+∞) → [0,+∞). Then, for any ε > 0 we
consider the following perturbed version of Problem P .

Problem Pε: Find (u, λ) ∈ X × � such that

(Au, v)X + b(v, λ) ≤ (f , v)X + θ(ε)‖v‖X ∀ v ∈ X, (3)

b(u,μ − λ) ≤ b(h,μ − λ) + θ(ε)‖μ − λ‖Y ∀ μ ∈ �. (4)

We denote in what follows by S and Sε the set of solutions of Problems P and
Pε , respectively, and we recall that a set is said to be a singleton if it has only one
element. We proceed with the following definitions.

Definition 1.1: A sequence {(un, λn)} ⊂ X × Y is called an approximating
sequence for the Problem P if there exists a positive sequence {εn} ⊂ R with
εn → 0 as n → ∞ such that (un, λn) ∈ Sεn for each n ∈ N.

Definition 1.2: The ProblemP is said to be well-posed if it has a unique solution
(i.e.S is a singleton) and every approximating sequence for ProblemP converges
in X × Y to its solution.
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For simplicity, for any sequence {εn} ⊂ R which satisfies the conditions
of Definition 1.1 we shall write 0 < εn → 0. Moreover, assuming that Sε is
nonempty, we denote by diam(Sε) its diameter, which is defined by equality

diam(Sε) = sup
a, b∈Sε

‖a − b‖X×Y . (5)

We now consider the following statements.

(i) S 	= ∅.
(ii) S is a singleton.
(iii) Sε 	= ∅, for each ε > 0.
(iv) diam(Sε)→ 0 as ε → 0.

(v)

{
S = {(u, λ)} and
any approximating sequence {(un, λn)} converges to (u, λ).

Concerning these statements we have the following preliminary comments.
First, since θ is a positive function we have thatS ⊂ Sε for each ε > 0 and, there-
fore, (i) implies (iii), and (ii) implies (iii), too.Next, the statement (iv)makes sense
only when (iii) holds and, in particular, it makes sense if (i) or (ii) holds. More-
over, (v) implies (ii). In addition, since a singleton is a nonempty set, it is clear
that (ii) implies (i). Finally, Definition 1.2 shows that Problem P is well-posed if
and only if the statement (v) holds.

Our aim in this paper is threefold. The first one is to establish the link between
the statements (i) –(v) above. To this end we indicate sufficient conditions which
guarantee various implications and equivalences between these statements. The
second aim is to provide sufficient conditions which guarantee the validity of the
statements (i)–(v), which, implicitly, guarantees the well-posedness of Problem
P . Finally, our third aim is to provide an example of ProblemsP andPε for which
our results hold, together with the corresponding interpretations.

The rest of this paper is structured as follows. In Section 2 we list the assump-
tions on the data and present our main results in the study of Problems Pε and
P , Theorems 2.2, 2.4, 2.6, 2.8. Besides their novelty and their mathematical inter-
est, these results are important since they provide tools useful in the variational
and numerical analysis of various contact problems with unilateral constraints.
To provide an example, in Section 3 we present two mathematical models which
describe the contact between an elastic body and a rigid foundation covered by a
layer of soft material. We list the assumptions on the data and derive their vari-
ational formulation which is in the form of Problems P and Pε, respectively.
Finally, in Section 4 we apply our abstract results in the study of these problems
and provide the corresponding mechanical interpretations. In this way we illus-
trate the cross fertilization between models and applications, on one hand, and
the nonlinear functional analysis, on the other hand.
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2. Main results

Below in this section 0X and 0Y will represent the zero elements of the spaces X
and Y. Moreover, the symbols ‘→ ’ and ‘⇀ ’ denote the strong and weak conver-
gence in the spaceX, respectively. In the study of problemsP andPε we consider
the following assumptions.

A : X → X is a strongly monotone Lipschitz continuous operator, i.e.
there existm > 0 and L > 0 such that
(a) (Au − Av, u − v)X ≥ m‖u − v‖2X ∀ u, v ∈ X;
(b) ‖Au − Av‖X ≤ L ‖u − v‖X ∀ u, v ∈ X.

(6)

A : X → X is a demicontinuous operator, i.e.
un → u in X =⇒ Aun ⇀ Au in X. (7)

b : X × Y → R is a bilinear continuous form,
i.e. there exists M >0 such that
|b(v,μ)| ≤ M‖v‖X‖μ‖Y ∀v ∈ X, μ ∈ Y .

(8)

b : X × Y → Ris a bilinear form which satisfies
the inf-sup condition, i.e. there existsα > 0such that

inf
μ∈Y ,μ	=0Y

sup
v∈X,v 	=0X

b(v,μ)

‖v‖X‖μ‖Y ≥ α.
(9)

θ : [0,+∞) → [0,+∞) is a continuous function such that θ(0) = 0. (10)

θ : [0,+∞) → [0,+∞) is an increasing function. (11)

�is a closed convex subset ofY such that 0Y ∈ �. (12)

Moreover, recall that

f ∈ X, h ∈ X. (13)

The following existence and uniqueness result guarantees the unique solvability
of Problem P .

Theorem 2.1: Assume that (6), (8), (9), (12)), (13) hold. Then, Problem P has a
unique solution (u, λ) ∈ X × �.

Theorem 2.1 was obtained in [23] (the case when � is an unbounded subset)
and [24,31] (the case when � is bounded). In both references the proofs are car-
ried out in several steps, based on arguments of saddle points and the Banach
fixed point theorem.

Our main results in this section concern the statements (i)–(v) presented in
the Introduction and are gathered in the Theorems 2.2, 2.4, 2.6, 2.8 that we state
and prove below.

Theorem 2.2: Assume that (6), (9), (10), (13) hold. Then, the statements (ii) and
(v) are equivalent.
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Proof: Let (u, λ) be the solution to Problem P , guaranteed by (ii), and let
{(un, λn)} be an approximating sequence. Then, there exists a sequence 0 <

εn → 0 such that, for each n ∈ N the following inequalities hold:

(Aun, v)X + b(v, λn) ≤ (f , v)X + θ(εn)‖v‖X ∀ v ∈ X, (14)

b(un,μ − λn) ≤ b(h,μ − λn) + θ(εn)‖μ − λn‖Y ∀ μ ∈ �. (15)

We subtract (1) from (14) to see that

(Aun − Au, v)X + b(v, λn − λ) ≤ θ(εn)‖v‖X ∀ v ∈ X, (16)

which implies that

b(v, λn − λ) ≤ θ(εn)‖v‖X + (Au − Aun, v)X ∀ v ∈ X.

Moreover, using assumption (6)(b) yields

b(v, λn − λ) ≤ θ(εn)‖v‖X + L‖un − u‖X‖v‖X ∀ v ∈ X.

This inequality combined with assumption (9) implies that

‖λn − λ‖Y ≤ θ(εn)

α
+ L

α
‖un − u‖X . (17)

On the other hand, we take μ = λ in (15), μ = λn in (2) and add the resulting
inequalities to obtain that

b(un − u, λ − λn) ≤ θ(εn)‖λn − λ‖Y . (18)

Next, we take v = un − u in (16) and use (18) to deduce that

(Aun − Au, un − u)X ≤ b(un − u, λ − λn) + θ(εn)‖un − u‖X
≤ θ(εn)‖λn − λ‖Y + θ(εn)‖un − u‖X .

Therefore, using assumption (6)(a) we find that

m‖un − u‖2X ≤ θ(εn)‖λn − λ‖Y + θ(εn)‖un − u‖X . (19)

We now substitute inequality (17) in (19) to obtain that

‖un − u‖2X ≤ θ2(εn)

αm
+ θ(εn)

m

(
L
α

+ 1
)

‖un − u‖X . (20)

Then, using the elementary inequality

x2 ≤ ax + b =⇒ x ≤ a +
√
b ∀ x, a, b ≥ 0

we find that

‖un − u‖X ≤ θ(εn)

m

(
L
α

+ 1
)

+ θ(εn)√
αm

.
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We now combine this inequality with the bound (17) to deduce that there exists
a constant C>0, which depends only onm, L, and α rather than n, such that

‖un − u‖X + ‖λn − λ‖Y ≤ Cθ(εn). (21)

Next, we use assumption (10) and inequality (21) to see that (un, λn) → (u, λ) in
X × Y which shows that (v) holds. On the other hand, recall that (v) implies (ii)
and this concludes the proof. �

We complete Theorem 2.2 with the following result.

Corollary 2.3: Assume that (6), (9), (10)), (13) hold. Then, Problem P has a
unique solution if and only if it is well-posed.

Proof: It follows from Definition 1.2 that Problem P is well-posed if and only if
the statement (v) holds. On the other hand, Problem P has a unique solution if
and only if the statement (ii) holds. Corollary 2.3 is now a direct consequence of
Theorem 2.2. �

Wenowproceed our analysis with a second equivalence result, obtained under
different assumptions on the data.

Theorem 2.4: Assume that (7), (8), (10), (11), (12), (13) hold. Then, the state-
ments (v), (i) and (iv), (iii) and (iv) are equivalent, i.e.

(v) ⇐⇒ (i) and (iv) ⇐⇒ (iii) and (iv).

Proof: The statement of Theorem 2.4 follows from the implications

(v) =⇒ (i) and (iv) =⇒ (iii) and (iv) =⇒ (v)

that we prove in what follows.
Assume that (v) holds. Then it is clear that (i) holds. Arguing by contradic-

tion, assume in what follows that (iv) does not hold, i.e. diam (Sε) 	→ 0 as ε → 0.
Then, there exist δ0 ≥ 0, a sequence 0 < εn → 0 and two sequences {(un, λn)},
{(vn,μn)} ⊂ X × Y with (un, λn), (vn,μn) ∈ Sεn such that

‖(un, λn) − (vn,μn)‖X×Y ≥ δ0

2
∀ n ∈ N. (22)

Now, Definition 1.1 implies that both {(un, λn)} and {(vn,μn)} are approximat-
ing sequences for Problem P . Therefore, (v) implies that (un, λn) → (u, λ) and
(vn,μn) → (u, λ) in X × Y where (u, λ) denotes the unique element of S . This
is in contradiction with inequality 22. We conclude from here that diam(Sε) →
0 as ε → 0 and, therefore, (iv) holds.
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Assume now that (i) and (iv) hold. Recall that (i) implies (iii), since S ⊂ Sε.
Therefore, we deduce that (iii) and (iv) hold.

Finally, assume that (iii) and (iv) hold. Consider a sequence 0 < εn → 0 and
let {(un, λn)} be a sequence of X × Y such that (un, λn) ∈ Sεn for all n ∈ N. Since
diam(Sε) → 0, for any δ > 0 there exists a positive integer Nδ such that

diam(Sεn) ≤ δ ∀ n ≥ Nδ . (23)

Let n, m ∈ N be such n, m ≥ Nδ and assume that εm ≤ εn. Then, using (3), (4)
and (11) we have (un, λn), (um, λm) ∈ Sεn and, therefore, (23) implies that

‖(un, λn) − (um, λm)‖X×Y ≤ δ.

This inequality holds if εm > εn, too, since in this case (un, λn), (um, λm) ∈ Sεm .
We conclude from here that {(un, λn)} is a Cauchy sequence in X × Y , hence
there exists (u, λ) ∈ X × Y such that

(un, λn) → (u, λ) in X × Y . (24)

Next,we recall that for each n ∈ N, λn ∈ � and, therefore, assumption (12)
implies that λ ∈ �. On the other hand, by the definition of Sεn it follows that
inequalities (14) and (15) hold. Therefore, passing to the limit in these inequal-
ities and using the convergence (24) combined with assumptions (7), (8), (10)
we deduce that (u, λ) satisfies (1) and (2). This shows that (u, λ) is a solution to
Problem P , i.e. (u, λ) ∈ S . We conclude from here that S 	= ∅.

Next, we claim that S is a singleton. Indeed, let (u, λ), (u′, λ′) ∈ S . Then, we
deduce that (u, λ), (u′, λ′) ∈ Sε, for any ε > 0. Thus,

‖(u, λ) − (u′, λ′)‖X×Y ≤ diam(Sε) → 0 as ε → 0,

which implies that (u, λ) = (u′, λ′) and proves the claim.
Let now {(un, λn)} ⊂ X × Y be an approximating sequence for the Problem

P . Then there exists a sequence 0 < εn → 0 such that (un, λn) ∈ Sεn for each
n ∈ N. We use the statement (iv) to see that

‖(un, λn) − (u, λ)‖X×Y ≤ diam(Sεn) → 0.

This implies that (un, λn) → (u, λ) in X × Y . We deduce from above that (v)
holds which concludes the proof. �

A direct consequence of Theorem 2.4 is the following.

Corollary 2.5: Under assumptions (7), (8), (10), (11), (12), (13), the following
statements are equivalent:

(a) Problem P is well-posed.
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(b) S 	= ∅ and diam(Sε) → 0 as ε → 0.
(c) Sε 	= ∅ for each ε > 0 and diam(Sε) → 0 as ε → 0.

Note that the equivalence of statements (a) and (c) above is important since it
characterize the well-posedness of ProblemP in terms ofmetric properties of the
solution of a different problem, Problem Pε. Moreover, note that Corollaries 2.3,
2.5 and Theorem 2.4 provide only equivalence results and do not guarantee the
well-posedness of the mixed variational problem P . The next theorem provides
sufficient conditions which guarantee the well-posedness of this problem.

Theorem 2.6: Assume that (6), (8), (9), (10), (11), (12), (13) hold. Then, the
statement (i)–(v) hold.

Proof: We use Theorem 2.1 to see that Problem P has a unique solution, i.e.
the statement (ii) holds. Therefore, by Theorem 2.2 it follows that the statement
(v) holds, too. Note also that assumption (6) implies assumption (7). Therefore,
we are in a position to apply Theorem 2.4 in order to see that all the statements
(i)–(v) hold, which concludes the proof. �

A direct consequence of Theorem 2.6 is the following.

Corollary 2.7: Under assumption (6), (8)), (9), (10), (11), (12), (13), the following
statements hold.

(a) Problem P has a unique solution.
(b) Problem Pε has at least one solution, for each ε > 0.
(c) Every approximating sequence for Problem P converges to its solution.
(d) Problem P is well-posed.

We complete these results with the following one.

Theorem 2.8: Assume that (6), (8), (9), (12), (13) hold. Then, the operator
(f , h) �→ (u, λ) which associates to each couple (f , h) ∈ X × X the unique solution
(u, λ) ∈ X × � of Problem P is Lipschitz continuous.

Proof: Let (ui, λi) be the solution of Problem P for the data (fi, hi) ∈ X × X,
i = 1, 2. We have

(Au1, v)X + b(v, λ1) = (f1, v)X ∀ v ∈ X, (25)

b(u1,μ − λ1) ≤ b(h1,μ − λ1) ∀ μ ∈ � (26)

and, on the other hand,

(Au2, v)X + b(v, λ2) = (f2, v)X ∀ v ∈ X, (27)

b(u2,μ − λ2) ≤ b(h2,μ − λ2) ∀ μ ∈ �. (28)
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We now use (27) to write

(Au2, v)X + b(v, λ2) = (f1, v)X + (f2 − f1, v)X
≤ (f1, v)X + ‖f2 − f1‖X‖v‖X ∀ v ∈ X, (29)

then use (28) and assumption (8) to see that

b(u2,μ − λ2) ≤ b(h2,μ − λ2) = b(h1,μ − λ2) + b(h2 − h1,μ − λ2)

≤ b(h1,μ − λ2) + M‖h1 − h2‖X‖μ − λ2‖Y ∀ μ ∈ �. (30)

Denote

θ = ‖f2 − f1‖X + M‖h1 − h2‖X . (31)

Then, inequalities (29) and (30) imply that

(Au2, v)X + b(v, λ2) ≤ (f1, v)X + θ‖v‖X ∀ v ∈ X, (32)

b(u2,μ − λ2) ≤ b(h1,μ − λ2) + θ‖μ − λ2‖Y ∀ μ ∈ �. (33)

Finally, using (25), (26) on one hand, and (32), (33) on the other hand, arguments
similar to those used to obtain inequality (21) imply that

‖u1 − u2‖X + ‖λ1 − λ2‖Y ≤ Cθ , (34)

where C is a positive constant which depends only on A and b. We now com-
bine (31) and (34) to conclude the proof. �

3. Two contact models

In this section we present two contact models which lead to mixed variational
formulations of the form of Problems P and Pε, respectively. To this end, every-
where in the rest of the paper we assume that 	 is a bounded domain in R

d

(d = 2, 3), with a smooth boundary 
, divided into three measurable disjoint
parts 
1, 
2 and 
3 such that meas (
1) > 0. We denote by ν the outward unit
normal to 
 and by S

d the space of second-order symmetric tensors on R
d. In

addition, we denote by ‘·′ and ‘‖ · ‖’ the canonical inner products and norms on
the spaces R

d and S
d, respectively.
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The first contact model we consider is stated as follows.

Problem Q: Find a displacement field u : 	 → R
d and a stress field σ : 	 → S

d

such that

σ = Fε(u) in 	, (35)

Div σ + f 0 = 0 in 	, (36)

u = 0 on 
1, (37)

σν = f 2 on 
2, (38)

uν ≤ g,
σν + p(uν) ≤ 0,
(uν − g)(σν + p(uν)) = 0

⎫⎬⎭ on 
3, (39)

σ τ = 0 on 
3. (40)

A brief description of the equations and boundary conditions in Problem Q
where, for simplicity, we do not indicate explicitly the dependence of various
functions on the spatial variable x ∈ 	 ∪ 
, is the following.

First, (35) represents the constitutive law in which F is the elasticity operator
and ε(u) represents the linearized strain tensor. Equation (36) is the equation of
equilibrium inwhich f 0 represents the density of body forces. Condition (37) rep-
resents the displacement boundary conditions that we use here since we assume
that the body is held fixed on its boundary
1. Next, condition (38) is the traction
boundary condition in which f 2 represents the density of surface tractions which
act on 
2. Conditions (39) are the contact conditions which model the contact
on 
3 with rigid foundation covered by a soft material of thickness g ≥ 0. Here
p is a given normal compliance function and uν , σν are the normal displacement
and the normal stress, respectively. Finally, condition (40) represents the fric-
tionless contact condition in which σ τ denotes the tangential stress vector on the
potential contact surface.

We mention that versions of ProblemQ have been considered in [25,26] and,
more recently, in [27,28]. There, more details and explanations on the construc-
tion of the model can be find. Here we restrict ourselves to mention that in the
case when p vanishes then Problem Q represents the Signorini frictionless con-
tact with gap and, in the particular case when g → ∞, Problem Q becomes a
frictionless problem with normal compliance. The references mentioned above
in this paragraph were oriented to existence, uniqueness, optimal control and
optimization results. Also, recall that ProblemQ was already considered in [29].
There, awell-posedness result was obtained for a variational formulation in terms
of displacements, different from the mixed variational formulation we present in
this paper. The study of the well-posedness in the sense of Tykhonov we provide
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in the next section, together with the corresponding mechanical interpretations,
completes our results in the references above.

The second model of contact is obtained by considering that part of the equa-
tions and boundary conditions in Problem Q are satisfied only approximately
and, therefore, some of the equalities are replaced with inequalities. Its statement
is the following.

ProblemQε: Find a displacement field u : 	 → R
d and a stress field σ : 	 → S

d

such that

‖σ − Fε(u)‖ ≤ ω(ε) in 	, (41)

‖Div σ + f 0‖ ≤ ω0(ε) in 	, (42)

u = 0 on 
1, (43)

‖σν − f 2‖ ≤ ω2(ε) on 
2, (44)

uν ≤ g̃,
σν + p(uν) + σ̃ν ≤ 0,
(uν − g̃)(σν + p(uν) + σ̃ν) = 0,
|̃g − g| ≤ ω3(ε), |̃σν | ≤ ων(ε)

⎫⎪⎪⎬⎪⎪⎭ on 
3, (45)

‖σ τ‖ ≤ ωτ (ε) on 
3. (46)

Here ε is a positive parameter,ω,ω0,ω2,ω3,ων ,ωτ are real-valued positive func-
tions defined on [0,+∞)which vanish for ε = 0 and g̃, σ̃ν are real-valued regular
functions defined on
3 which satisfy the inequality prescribed in (45). The state-
ment of ProblemQε is based on the fact that the data in ProblemQ are obtained
by experiments and, therefore, could involve errormeasurements. As a result, the
equations and conditions (35)–(40) are valid only approximately, and have to be
replaced by inequalities. For instance, assume that the constitutive equation (35)
represents only an idealization and, in fact, the stress field satisfies an equality of
the form

σ = Fε(u) + σ̃ in 	

where σ̃ represents a small perturbation. Then, in each point x ∈ 	, the quantity
‖σ − Fε(u)‖ represents the error between the real stress fieldσ and the idealized
stress Fε(u) and, therefore, inequality (41) provides a bound of this error. Next,
if the real density of the body forces which act on the body is f̃ 0 then the equation
of equilibrium has to be

Div σ + f̃ 0 = 0 in 	

and, therefore, Div σ + f 0 = f 0 − f̃ 0 in 	. Thus, in each point x ∈ 	, the quan-
tity ‖Div σ + f 0‖ represents the error made when using the density f 0 instead of
the real density f̃ 0. We conclude from here that inequality (42) provides a bound
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of this error. The rest of conditions (43)–(46) can be interpreted in similar way,
g̃ and σ̃ν being a perturbation of the thickness g and the normal stress on the
contact surface, respectively.

In the variational analysis of the contact problemsQ andQε we use standard
notation for Sobolev and Lebesgue spaces associated to 	 ⊂ R

d and 
 and, for
an element v ∈ H1(	)d, we usually write v for the trace γ v ∈ L2(
)d of v to 
.
In addition, we denote by vν and vτ its normal and tangential components on 


given by vν = v · ν and vτ = v − vνν, respectively.
Next, we consider the spaces

V = { v ∈ H1(	)d : v = 0 on 
1 },
Q = { σ = (σij) : σij = σji ∈ L2(	), i, j = 1, 2, . . . , d },

which are real Hilbert spaces endowed with the canonical inner products given
by

(u, v)V =
∫

	

ε(u) · ε(v) dx, (σ , τ )Q =
∫

	

σ · τ dx, (47)

where ε represents the deformation operator, i.e.

ε(u) = (εij(u)), εij(u) = 1
2

(
∂ui
∂xj

+ ∂uj
∂xi

)
.

The associated norms on these spaces are denoted by ‖ · ‖V and ‖ · ‖Q, respec-
tively. Using standard arguments it follows that there exist two constants c0 >

0,m0 > 0 such that the following inequalities hold:

∫
	

‖ε(v)‖ dx ≤ c0‖v‖V ,
∫

	

‖v‖ dx ≤ c0‖v‖V ,
∫




‖v‖ dx ≤ c0‖v‖V , (48)

‖γ v‖L2(
3)d
≤ m0‖v‖V , (49)

for all v ∈ V .
We now follow [23] and recall that the space γ (V) is a closed subspace of

the Hilbert space γ (H1(	)d) and, therefore, it is a Hilbert space. Let Y be its
dual (which, in turn, can be organized as a real Hilbert space) and denote by
〈·, ·〉 the duality pairing between Y and γ (V). Below we shall use the short hand
notation 〈μ, v〉 instead of 〈μ, γ v〉, for anyμ ∈ Y and v ∈ V . Recall also that γ (V)

is continuously embedded in L2(
)d.
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Next, we list the assumptions on the data of the contact problemQ. Thus, we
assume that the elasticity operator F satisfies the following conditions.

(a) F : 	 × S
d → S

d.
(b) The mapping x �→ F(x, ε) is measurable on 	,

for any ε ∈ S
d.

(c) The mapping ε �→ F(x, ε) : S
d → S

d is continuous,
a.e. x ∈ 	.

(d) There exist d0 > 0 and d1 > 0 such that
‖F(x, ε)‖ ≤ d0 + d1‖ε‖ for any ε ∈ S

d, a.e. x ∈ 	.

(50)

We also assume that the densities of body forces and tractions and the bound of
the normal displacement are such that

f 0 ∈ L2(	)d, f 2 ∈ L2(
2)
d. (51)

g ≥ 0. (52)

Moreover, the normal compliance function p satisfies the following conditions.

(a) p : 
3 × R → R+.
(b) The mapping x �→ p(x, r) is measurable on 
3,

for any r ∈ R.
(c) The mapping r �→ p(x, r) : R → R is continuous,
a.e. x ∈ 
3.

(d) There exist e0 > 0 and e1 > 0 such that
|p(x, r)| ≤ e0 + e1|r| for any r ∈ R, a.e. x ∈ 
3.

(e) p(x, r) = 0 for any r ≤ 0, a.e. x ∈ 
3.

(53)

Finally, we assume that

there exists φ ∈ V such that φν = 1 a.e. on 
3 (54)

and, in addition,

ω, ω0, ω2, ω3, ων , ωτ : [0,+∞) → [0,+∞)

are continuous increasing functions such that
ω(0) = ω0(0) = ω2(0) = ω3(0) = ων(0) = ωτ (0) = 0.

(55)

Note that under these assumptions all the integrals we use below in this section
make sense. Moreover, using assumption (55) it is easy to see that ProblemQ can
be obtained from ProblemQε in the particular case when ε = 0.

Next, we introduce the operator A : V → V , the form b : V × Y → R, the
setsU ⊂ V ,� ⊂ Y , the element f ∈ V and the function θ : [0,+∞) → [0,+∞)
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defined as follows:

(Au, v)V =
∫

	

Fε(u) · ε(v) dx +
∫


3

p(uν)vν da ∀ u, v ∈ V , (56)

b(v,μ) = 〈μ, v〉, ∀ v ∈ V , μ ∈ Y , (57)

U = { v ∈ V : vν ≤ 0 a.e. on 
3 }. (58)

� = { μ ∈ Y : 〈μ, v〉 ≤ 0 ∀ v ∈ U }, (59)

(f , v)V =
∫

	

f 0 · v dx +
∫


2

f 2 · v da ∀ v ∈ V , (60)

θ(ε)=c0
(
ω(ε) + ω0(ε) + ω2(ε) + ων(ε) + ωτ (ε)

) + m0ω3(ε)‖φ‖V ∀ ε ≥ 0.
(61)

Due to the inequalities involved in its statement, the variational formulations of
ProblemQε is obtained by using nonstandard arguments that we present in what
follows. Let ε ≥ 0, let u and σ be regular functions which verify (41)–(46) and
let v ∈ V , μ ∈ �. Then, using an integration by parts it follows that

∫
	

σ · ε(v) dx +
∫

	

Div σ · v dx =
∫




σν · v da

and, therefore,

∫
	

(σ − Fε(u)) · ε(v) dx +
∫

	

Fε(u) · ε(v) dx +
∫

	

(Div σ + f 0) · v dx

=
∫

	

f 0 · v dx +
∫


1

σν · v da +
∫


2

(σν − f 2) · v da +
∫


2

f 2 · v da

+
∫


3

σνvν da +
∫


3

σ τ · vτ da. (62)

We now introduce the Lagrange multiplier λ ∈ Y defined by

〈λ,w〉 = −
∫


3

(σν + p(uν) + σ̃ν)wν da ∀ w ∈ V (63)

and note that (63) and (57) imply that

∫

3

σνvν da = −b(v,λ) −
∫


3

p(uν)vν da −
∫


3

σ̃νvν da. (64)
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We now combine the equality (62) with (64), and then we use the defini-
tions (56), (60) and equality v = 0 a.e. on 
1 to deduce that

(Au, v)V + b(v,λ) = (f , v)V +
∫

	

(Fε(u) − σ ) · ε(v) dx

−
∫

	

(Div σ + f 0) · v dx +
∫


2

(σν − f 2) · v da

−
∫


3

σ̃νvν da +
∫


3

σ τ · vτ da. (65)

Next, we use (41), (42), (44)–(46) to see that∫
	

(Fε(u) − σ ) · ε(v) dx −
∫

	

(Div σ + f 0) · v dx

+
∫


2

(σν − f 2) · v da −
∫


3

σ̃νvν da +
∫


3

σ τ · vτ da

≤ ω(ε)

∫
	

‖ε(v)‖ dx + ω0(ε)

∫
	

‖v‖ dx + ω2(ε)

∫

2

‖v‖ da

+ ων(ε)

∫

3

|vν | da + ωτ (ε)

∫

3

‖vτ‖ da

and, using inequalities (48) combined with notation (61), we find that∫
	

(Fε(u) − σ ) · ε(v) dx −
∫

	

(Div σ + f 0) · v dx

+
∫


2

(σν − f 2) · v da −
∫


3

σ̃νvν da +
∫


3

σ τ · vτ da ≤ θ(ε)‖v‖V . (66)

Finally, we use (65) and (66) to obtain that

(Au, v)V + b(v,λ) ≤ (f , v)V + θ(ε)‖v‖V . (67)

On the other hand, using definition (63), condition (45) and notation (58), (59),
we deduce that λ ∈ �. Moreover, using assumption (54) and the definition (57)
of the bilinear form b it is easy to see that

b(u,μ − λ) = b(u − g̃φ,μ − λ) + b((̃g − g)φ,μ − λ) + b(gφ,μ − λ)

= 〈μ − λ, u − g̃φ〉 + 〈μ − λ, (̃g − g)φ〉 + b(gφ,μ − λ).

Therefore, using inequalities |̃g − g| ≤ ω3(ε) and (49) we find that

b(u,μ − λ) ≤ 〈μ, u − g̃φ〉 − 〈λ, u − g̃φ〉
+ m0ω3(ε)‖φ‖V‖μ − λ‖Y + b(gφ,μ − λ). (68)

In addition, (45), (52) and (54) imply that

u − g̃φ ∈ U, 〈λ, u〉 = 〈λ, g̃φ〉.
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Therefore,

〈μ, u − g̃φ〉 ≤ 0 and 〈λ, u − g̃φ〉 = 0. (69)

We combine now (68), (69) and use definition (61) to deduce that

b(u,μ − λ) ≤ b(gφ,μ − λ) + θ(ε)‖μ − λ‖Y . (70)

The inequalities (67) and (70) lead us to the following variational formulation of
ProblemQε.

Problem QV
ε : Find a displacement field u ∈ V and a Lagrange multiplier λ ∈ �

such that

(Au, v)V + b(v,λ) ≤ (f , v)V + θ(ε)‖v‖V ∀ v ∈ V , (71)

b(u,μ − λ) ≤ b(gφ,μ − λ) + θ(ε)‖μ − λ‖Y ∀ μ ∈ �. (72)

We now use (55) to see that ProblemQ can be recovered from ProblemQε, when
ε = 0. Therefore, since θ(0) = 0, we deduce from above the following variational
formulation of ProblemQ.

Problem QV : Find a displacement field u ∈ V and a Lagrange multiplier λ ∈ �

such that

(Au, v)V + b(v,λ) = (f , v)V ∀ v ∈ V , (73)

b(u,μ − λ) ≤ b(gφ,μ − λ) ∀ μ ∈ �. (74)

A couple functions (u,λ) ∈ V × �which satisfies (73), (74) is called aweak solu-
tion to the contact problem Q and couple of functions (u,λ) ∈ V × � which
satisfies (71), (72) is called a weak solution to the contact problemQε.

4. Well-posedness results

In this section we apply our abstract results in Section 2 in the study of Problems
QV and QV

ε and provide the corresponding mechanical interpretations. To this
end we restate Definitions 1.1 and 1.2 in the context of the ProblemsQV andQV

ε .

Definition 4.1: A sequence {(un, λn)} ⊂ V × Y is called an approximating
sequence if there exists a sequence {εn} ⊂ R such that εn > 0, (un, λn) is a
solution of ProblemQV

εn for each n ∈ N and, moreover, εn → 0 as n → ∞.

Definition 4.2: The Problem QV is said to be well-posed if it has a unique
solution and this solution is the limit in V × Y to any approximating sequence.
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Moreover, we consider the following additional assumptions.

There existsmF > 0 such that
(F(x, ε1) − F(x, ε2)) · (ε1 − ε2) ≥ mF ‖ε1 − ε2‖2

for any ε1, ε2 ∈ S
d, a.e. x ∈ 	.

(75)

There exists LF > 0 such that
‖F(x, ε1) − F(x, ε2)‖ ≤ LF ‖ε1 − ε2‖2

for any ε1, ε2 ∈ S
d, a.e. x ∈ 	.

(76)

There exists Lp > 0 such that
|p(x, r1) − p(x, r2)| ≤ Lp|r1 − r2|

for any r1, r2 ∈ R, a.e. x ∈ 
3.
(77)

(p(x, r1) − p(x, r2))(r1 − r2) ≥ 0
for any r1, r2 ∈ R, a.e. x ∈ 
3.

(78)

m2
0Lp < mF . (79)

Our first result in this section is the following.

Theorem4.3: Assume (50)–(55). Then, the following statements are equivalent:

(a) ProblemQV is well-posed.
(b) Problem QV has at least one solution and the diameter of the set of solutions

of ProblemQV
ε converges to zero as ε → 0.

(c) ProblemQV
ε has at least one solution, for each ε > 0, and the diameter of the

set of its solutions converges to zero as ε → 0.

Proof: First, we prove that, the operator A : V → V defined by 56 is demicon-
tinuous. Let {un} ⊂ V be such that

un → u in V .

Then, the following convergences hold:

ε(un) → ε(u) in Q and unν → uν in L2(
3). (80)

Moreover, assumptions (50) and (53) allow us to apply Krasnoselski’s Theorem
(see [30, p.60]) to see that the operators σ �→ F(σ ) : Q → Q and ξ �→ p(ξ) :
L2(
3) → L2(
3) are continuous. Therefore, the convergences (80) yield

Fε(un) → Fε(u) in Q and p(unν) → p(uν) in L2(
3). (81)

It follows from here that

(Aun, v)V → (Au, v)V ∀ v ∈ V ,

which shows that A is demicontinuous and, therefore, it satisfies condition (7).
Moreover, the form b given by (57) satisfies conditions (8), (9). For the proof
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of this statement we refer the reader to [23], for instance. On the other hand,
assumption (55) guarantees that the function θ defined by (61) verifies condi-
tions (10) and (11). In addition, the set � defined by (59) satisfies condition (12)
and, finally, assumptions (51), (52), (54), imply (13) for the element f given
by (60) and h = gφ. Therefore, Theorem 4.4 is now a direct consequence of
Corollary 2.5, applied with X = V an K = U. �

We now proceed with the following result.

Theorem 4.4: Assume (50)–(55), (75)–(77) and either (78) or (79). Then, the
following statements hold:

(a) ProblemQV has a unique solution.
(b) ProblemQV

ε has at least one solution, for each ε > 0.
(c) Every approximating sequence converges to the solution of ProblemQV.
(d) ProblemQV is well-posed.
(e) The solution of ProblemQV depends Lipschitz continuously on the data f 0, f 2

and g.

Proof: We first prove that the operator A is strongly monotone and Lipschitz
continuous. Let u, v ∈ V . We use (56) to see that

(Au − Av, u − v)V =
∫

	

(Fε(u) − Fε(v)) · (ε(u) − ε(v)) dx

+
∫


3

(p(uν) − p(vν))(uν − vν) da. (82)

Assume (78) holds. Then (82) and (75) yield

(Au − Av, u − v)V ≥ mF‖u − v‖2V (83)

and, therefore, condition (6)(a) holds with m = mF > 0. Assume now (79).
Then, using (82) and (75) we find that

(Au − Av, u − v)V ≥ mF
∫

	

‖ε(u) − ε(v)‖2 dx

−
∫


3

|p(uν) − p(vν)| |(uν − vν)| da

≥ mF
∫

	

‖ε(u) − ε(v)‖2 dx − Lp
∫


3

|uν − vν |2 da

and, therefore, (49) yields

(Au − Av, u − v)V ≥ (mF − m2
0Lp)‖u − v‖2V .

We now use inequality (83) and the smallness assumption (79) to see that the
operator A : V → V defined by (56) still satisfies condition (6)(a) with m =
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mF − m2
0Lp > 0. Next, Let u, v, w ∈ V . We use (56) to see that

(Au − Av,w)V =
∫

	

(Fε(u) − Fε(v)) · ε(w) dx +
∫


3

(p(uν) − p(vν))wν da

(84)
and, therefore, assumptions (76), (77) combined with inequality (49) show that

(Au − Av,w)V ≤ (LF + m2
0Lp)‖u − v‖V‖w‖V .

It follows from here that

‖Au − Av‖V ≤ (LF + m2
0Lp)‖u − v‖V (85)

which shows that condition (6)(b) holds with L = LF + m2
0Lp. Note also that,

obviously, condition (8), (9), (10), (12), (13) are satisfied for b, θ , �, f and h
defined in Section 3. Theorem 4.4 is now a direct consequence of Corollary 2.7
and Theorem 2.8, applied with X = V an K = U. �

Let us remark that Theorem 4.3 provide equivalence results. These state-
ments do not guarantee that ProblemQV is well-posed. In contrast, Theorem 4.4
provides sufficient conditions which guarantee the well-posedness of Problem
QV .

We end this section with some comments and mechanical interpretations.
First, we remark that any weak solution of the elastic frictionless contact problem
Q is weak solution to the elastic frictional contact problemQε. This implies that
the weak solvability of ProblemQ implies the weak solvability of ProblemQε.

Next, we underline the importance of Theorem 4.4 which provides existence,
uniqueness and convergence results between contact problems which have a dif-
ferent feature and are formulated in terms of different mechanical assumptions.
For instance, ProblemQ is frictionless while ProblemQε could be frictional; the
elastic constitutive law in Problem Q is strongly monotone but the elastic con-
stitutive law in Problem Qε could fail to be monotone; the normal compliance
function law in ProblemQ ismonotone (or Lipschitz continuous) but the normal
compliance function law in ProblemQε could fail to be monotone (or Lipschitz
continuous). In fact, these results show that small perturbation on the constitu-
tive law, densities of applied forces and contact boundary condition lead to small
perturbation to the solutions of the corresponding problems. Moreover, in the
case when ω = ω3 = ων = ωτ = 0 these results provide a continuous depen-
dence result of the weak solution of Problem Q with respect to the densities of
body forces and tractions.
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