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a b s t r a c t

We consider a mathematical model which describes the contact between a vis-
coelastic body and a rigid-deformable foundation with memory effects. We derive
a variational formulation of the model which is in the form of a history-dependent
variational inequality for the displacement field. Then we prove the existence of a
unique weak solution to the problem. We also study the continuous dependence
of the solution with respect to the data and prove two convergence results,
under different assumptions on the data. The proofs are based on arguments of
lower semicontinuity, pseudomonotonicity, and compactness. Finally, we use our
convergence results in the study of several optimization problems associated to
the viscoelastic contact model.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Processes of contact between deformable bodies are very frequent in industry and daily life. A few
simple examples are brake pads in contact with wheels, pistons with skirts, shoes with floor. Because
of their importance in mechanical systems, industrial process and various real word application, a large
effort has been put into the modeling, analysis and numerical simulations of contact processes. The
literature on this field is extensive, both the engineering and the mathematical one. The publications in
mathematical literature deal with the variational analysis of various models of contact, which are expressed
in terms of strongly elliptic, time dependent or evolutionary nonlinear boundary value problems. References
in the field include [1–5]. There, various existence and uniqueness results have been proved, by using the
tools of variational and hemivariational inequalities which have been studied extensively in recent years
(see, for example, [6–11]). Once existence, uniqueness or nonuniqueness, and stability of solutions have
been established, related important questions arise, such as the optimal control of contact problems, the
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numerical analysis of the solutions and how to construct reliable and efficient algorithms for their numerical
approximations with guaranteed convergence. Results on optimal control for various contact problems with
elastic materials could be found in [6,12–21]. References on numerical analysis of contact problems within
the framework of linearized strain theory include [22–26].

The optimal shape design of contact processes represents a topic of considerable theoretical and applied
interest. Indeed, in most applications this is the main interest of the design engineer. Related issues are the
observability properties of the contact models and parameter identification. The need to study the continuous
dependence of the solution to contact problems with respect to the data and parameters is currently widely
recognized, since it plays a crucial role in solving control and optimal design problems related to various
mechanical structures. Unfortunately, there are quite few results in the literature related to this topic.
The reason arises from the intrinsic structure of the contact models, which usually involve both nonlinear
operators, unilateral constraints and nondifferentiable functionals which depend on those parameters.

Our aim in this paper is to study some optimization problems related to a quasistatic frictional contact
model with viscoelastic materials. The model describes the contact with a rigid-deformable foundation and
takes into account its memory effects, which represents the first trait of novelty of this paper. Besides
the densities of body forces and tractions, denoted by f0 and f2, the model is governed by two positive
parameters, g and µ, which represent the thickness of the deformable layer of the foundation and the
coefficient of friction, respectively. We state the contact problem and provide its variational formulation,
which is in a form of a history-dependent variational inequality for the displacement field. Then we prove
its unique weak solvability. Next, we state and prove a convergence result of the solution with respect to
the data f0, f2 and parameters g and µ, which represents the second trait of novelty of this paper. Finally,
we use this convergence result in order to prove the solvability of some optimization problems related to
our contact model, which represents the third novelty of our paper. The theoretical results we present here
illustrate the cross fertilization between models and applications, on one hand, and the nonlinear functional
analysis, on the other hand. Moreover, they could be used in the optimal design for contact processes in real
word, as well as in the study of their optimal control.

The rest of the paper is structured as follows. In Section 2 we introduce the contact model. Then, in
Section 3 we list the assumptions on the data, derive its variational formulation and prove its unique weak
solvability. The proof is based on arguments of history-dependent variational inequalities presented in [27].
In Section 4 we study the continuous dependence of the solution with respect to the data and prove a
convergence result. The proof is based on arguments of monotonicity, pseudomonotonicity and compactness.
Finally, in Section 5 we introduce two classes of optimization problems related to the contact model and
provide their solvability. The proofs are based on the convergence result in Section 4, combined with a
Weierstrass-type argument.

2. The contact model

We consider a viscoelastic body which occupies the domain Ω ⊂ Rd (d = 2, 3), with smooth boundary
Γ . The boundary Γ is divided into three measurable disjoint parts Γ1, Γ2 and Γ3 such that meas (Γ1) > 0.
The body is fixed on Γ1, is acted upon by time-dependent surface traction on Γ2 and is in frictional contact
on Γ3 with a rigid-deformable obstacle, the so-called foundation. The contact process is quasistatic and the
time interval of interest is R+ = [0, +∞). We denote by Sd the space of second order symmetric tensors on
Rd or, equivalently, the space of symmetric matrices of order d. The inner product, norm and zero element
of the spaces Rd and Sd will be denoted by “·”, ∥ · ∥ and 0, respectively. Moreover, we use the index ν and
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τ for the normal and tangential components of vectors and tensors, respectively. Then, the mathematical
model we use to describe the equilibrium of the body in this physical setting is the following.

Problem P. Find a displacement field u = (ui) : Ω ×R+ → Rd, a stress field σ = (σij) : Ω ×R+ → Sd and
two interface functions ην : Γ3 × R+ → R, ξν : Γ3 × R+ → R such that, for all t ∈ R+,

σ(t) = Aε(u(t))+
∫ t

0
B(t − s)ε(u(s)) ds in Ω , (2.1)

Div σ(t) + f0(t) = 0 in Ω , (2.2)
u(t) = 0 on Γ1, (2.3)

σ(t)ν = f2(t) on Γ2, (2.4)

uν(t) ≤ g,

σν(t) + ην(t) + ξν(t) ≤ 0,

(uν(t) − g)(σν(t) + ην(t) + ξν(t)) = 0,

0 ≤ ην(t) ≤ F
(∫ t

0
u+

ν (s) ds
)

,

ην(t) =

⎧⎪⎨⎪⎩0 if uν(t) < 0,

F
(∫ t

0
u+

ν (s) ds
)

if uν(t) > 0,

ξν(t) = p(uν(t))

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

on Γ3, (2.5)

∥στ (t)∥ ≤ µ p(uν(t)),
−στ (t) = µ p(uν(t)) uτ (t)

∥uτ (t)∥ if uτ (t) ̸= 0

}
on Γ3. (2.6)

We now provide a description of the equations and boundary conditions in Problem P where, for
simplicity, we do not mention the dependence of various functions with respect to the spatial variable
x ∈ Ω ∪ Γ .

First, Eq. (2.1) represents the viscoelastic constitutive law of the material in which A is the elasticity
operator and B is the relaxation tensor. Eq. (2.2) is the equation of equilibrium in which f0 denotes the
density of body forces, assumed to be time-dependent. We use it here since we neglect the inertial term in
the equation of motion. Conditions (2.3), (2.4) represent the displacement and traction boundary conditions,
respectively, where ν denotes the unit outward normal to Γ and f2 represents the density of surface tractions
which, again, are assumed to be time-dependent.

Next, condition (2.5) represents the contact condition in which g > 0, p and F are given positive functions
which will be described below and r+ represents the positive part of r, i.e., r+ = max {r, 0}. This condition
was introduced in [9, p. 247] and used in the study of a time-dependent frictionless contact problem with
elastic materials. There, various mechanical interpretations can be found and, for this reason, we do not
provide here the physical assumptions which lead to this boundary condition. We restrict ourselves to
mention that it models the contact with a foundation made of a rigid body covered by a rigid-deformable
layer of thickness g which involves memory effects. The function p represents the normal compliance function
(which depends on the current penetration) and F represents the yield limit (assumed to depend on the
accumulated penetration).

Finally, condition (2.6) represents a version of the Coulomb’s law of dry friction, in which µ ≥ 0 denotes
the coefficient of friction. Details and mechanical interpretation concerning this law can be found in [5,28]
and the references therein. Here we restrict ourselves to mention that this law describes a transition between
the classical version of Coulomb’s law (which governs the contact with the rigid-deformable layer) and the
Tresca friction law (which governs the contact with the rigid body).
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In the analysis of Problem P, besides the standard Lebesgue and Sobolev spaces associated to Ω and Γ ,
we use the spaces

V = { v = (vi) ∈ H1(Ω)d : v = 0 on Γ1 },

Q = { σ = (σij) : σij = σji ∈ L2(Ω) }.

These are real Hilbert spaces endowed with the canonical inner products given by

(u, v)V =
∫
Ω

ε(u) · ε(v) dx, (σ, τ )Q =
∫
Ω

σ · τ dx, (2.7)

and the associated norms ∥·∥V and ∥·∥Q, respectively. Here, ε : V → Q represents the linearized deformation
operator, that is

ε(v) = 1
2

(
∇v + ∇T v

)
∀ v ∈ V.

For an element v ∈ V we still write v for the trace of v to Γ . Moreover, the normal and tangential components
of v on Γ are given by vν = v · ν and vτ = v − vνν, respectively. In addition, we denote by ∥γ∥ the norm
of the trace operator γ : V → L2(Γ3)d and recall that the following inequality holds:

∥γv∥L2(Γ3)d ≤ ∥γ∥∥v∥V ∀ v ∈ V. (2.8)

For a regular function σ : Ω → Sd we have σν = (σν) ·ν and στ = σν −σνν and, moreover, the following
Green’s formula holds:∫

Ω

σ · ε(v) dx +
∫
Ω

Div σ · v dx =
∫
Γ

σν · v da for all v ∈ H1(Ω)d. (2.9)

Finally, we need the space of fourth order symmetric tensors Q∞ given by

Q∞ = { E = (eijkl) | eijkl = ejikl = eklij ∈ L∞(Ω), 1 ≤ i, j, k, l ≤ d } . (2.10)

It is easy to see that Q∞ is a real Banach space with the norm

∥E∥Q∞ = max
0≤i,j,k,l≤d

∥eijkl∥L∞(Ω)

and, moreover,
∥Eτ∥Q ≤ d ∥E∥Q∞∥τ∥Q for all E ∈ Q∞, τ ∈ Q. (2.11)

Inequalities (2.8) and (2.11) will be used in various places in the next sections.

3. Existence and uniqueness

We start this section with an abstract existence and uniqueness result that we need in the study of
Problem P. For each normed space X we use the notation ∥·∥X and 0X for the norm and the zero element of
X, respectively. Also, C(R+; X) will represent the space of continuous functions defined on R+ with values
in X. For a subset K ⊂ X we still use the symbol C(R+; K) for the set of continuous functions defined on
R+ with values in K. It is well known that, if X is a Banach space, then C(R+; X) can be organized in
a canonical way as a Fréchet space, i.e. as a complete metric space in which the corresponding topology is
induced by a countable family of seminorms. We also recall that the convergence of a sequence {xn} to the
element x, in the space C(R+; X), can be described as follows:{

xn → x in C(R+; X) as n → ∞ if and only if
max

r∈[0,m]
∥xn(r) − x(r)∥X → 0 as n → ∞, for all m ∈ N. (3.1)
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Consider now a real Hilbert space X with inner product (·, ·)X and associated norm ∥ · ∥X and let Z be
a normed space. Also, let K be a subset of X, let A : X → X, S : C(R+; X) → C(R+; Z) be two operators,
and let j : Z × X × X → R, f : R+ → X be two functions. With these data we consider the following
problem.

Problem Q. Find a function u : R+ → X such that, for all t ∈ R+, the inequality below holds:

u(t) ∈ K, (Au(t), v − u(t))X + j(Su(t), u(t), v) (3.2)
−j(Su(t), u(t), u(t)) ≥ (f(t), v − u(t))X ∀ v ∈ K.

In the study of Problem P we consider the following assumptions.

K is a nonempty closed convex subset of X, (3.3)⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(a) There exists mA > 0 such that
(Au1 − Au2, u1 − u2)X ≥ mA ∥u1 − u2∥2

X

∀ u1, u2 ∈ X.

(b) There exists LA > 0 such that
∥Au1 − Au2∥X ≤ LA ∥u1 − u2∥X ∀ u1, u2 ∈ X.

(3.4)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a) For all z ∈ Z, u ∈ X, j(z, u, ·) : X → Ris convex
and lower semicontinuous.

(b) There exist αj ≥ 0 and βj ≥ 0 such that
j(z1, u1, v2) − j(z1, u1, v1) + j(z2, u2, v1) − j(z2, u2, v2)

≤ αj ∥z1 − z2∥Z∥v1 − v2∥X + βj ∥u1 − u2∥X∥v1 − v2∥X

∀ z1, z2 ∈ Z, ∀ u1, u2, v1, v2 ∈ X.

(3.5)

⎧⎪⎪⎨⎪⎪⎩
For every m ∈ N there exists dm > 0 such that

∥Su1(t) − Su2(t)∥Z ≤ dm

∫ t

0
∥u1(s) − u2(s)∥X ds

∀ u1, u2 ∈ C(R+; X), ∀ t ∈ [0, m].

(3.6)

mA > βj . (3.7)

f ∈ C(R+; X). (3.8)

On these assumptions we have the following comments. First, condition (3.4) shows that the operator A

is a strongly monotone and Lipschitz continuous operator (see, [29–31]). Next, following the terminology
introduced in [32,33], condition (3.6) shows that the operator S is a history-dependent operator and,
therefore, we refer to (3.2) as a history-dependent variational inequality. Finally, we note that (3.7) represents
a smallness assumption where, recall, mA and βj are the constants in (3.4) and (3.5), respectively.

We now recall the following existence and uniqueness result in the study of the history-dependent
variational inequality (3.2).

Theorem 3.1. Assume that (3.3)–(3.8) hold. Then, Problem Q has a unique solution u ∈ C(R+; K).

A proof of Theorem 3.1 can be found in [27], based on arguments of time-dependent variational
inequalities, monotonicity and fixed-point.
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We now turn to the analysis of Problem P and, to this end, we introduce the assumptions on the data.
We assume that the elasticity operator and the relaxation tensor satisfy the following conditions.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A : Ω × Sd → Sd is such that
(a) there exists mF > 0 such that

(A(x, ε1) − A(x, ε2)) · (ε1 − ε2) ≥ mA ∥ε1 − ε2∥2

for all ε1, ε2 ∈ Sd, a.e. x ∈ Ω ,

(b) there exists LA > 0 such that
∥A(x, ε1) − A(x, ε2)∥ ≤ LA∥ε1 − ε2∥

for all ε1, ε2 ∈ Sd, a.e. x ∈ Ω ,

(c) A(·, ε) is measurable on Ω for all ε ∈ Sd,

(d) A(x, 0) = 0 for a.e. x ∈ Ω .

(3.9)

B ∈ C(R+, Q∞). (3.10)

We also assume the densities of body forces and surface tractions have the regularity

f0 ∈ C(R+; L2(Ω)d), f2 ∈ C(R+; L2(Γ2)d). (3.11)

The yield function and the normal compliance function are such that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F : Γ3 × R → R+ is such that
(a) there exists LF > 0 such that

|F (x, r1) − F (x, r2)| ≤ LF |r1 − r2|
for all r1, r2 ∈ R, a.e. x ∈ Γ3,

(b) F (·, r) is measurable on Γ3 for all r ∈ R,

(c) F (x, 0) = 0, a.e. x ∈ Γ3.

(3.12)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p : Γ3 × R → R+ is such that
(a) there exists Lp > 0 such that

|p(x, r1) − p(x, r2)| ≤ Lp|r1 − r2|
for all r1, r2 ∈ R, a.e. x ∈ Γ3,

(b) (p(x, r1) − p(x, r2)) (r1 − r2) ≥ 0
for all r1, r2 ∈ R, a.e. x ∈ Γ3,

(d) p(·, r) is measurable on Γ3 for all r ∈ R,

(c) p(x, r) = 0 for all r ≤ 0, a.e. x ∈ Γ3.

(3.13)

We also recall that
g > 0, µ > 0 (3.14)

and, finally, we assume that the following condition holds:

µLp∥γ∥2 < mA. (3.15)

We now introduce the set of admissible displacement fields U defined by

U = { v ∈ V | vν ≤ g a.e. on Γ3 }. (3.16)

Then, following a standard approach based on the Green formula (2.9), we can derive the following
variational formulation of Problem P, in terms of displacements.
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Problem PV . Find a displacement field u : R+ → U such that, for all t ∈ R+, the inequality below holds:∫
Ω

Aε(u(t)) · (ε(v) − ε(u(t))) dx +
∫
Γ3

p(uν(t))(vν − uν(t)) da (3.17)

+
∫
Ω

(∫ t

0
B(t − s) ε(u(s)) ds

)
· (ε(v) − ε(u(t))) dx

+
∫
Γ3

F
(∫ t

0
u+

ν (s) ds
)

(v+
ν − u+

ν (t)) da +
∫
Γ3

µp(uν(t))(∥vτ ∥ − ∥uτ (t)∥) da

≥
∫
Ω

f0(t) · (v − u(t)) dx +
∫
Γ2

f2(t) · (v − u(t)) da ∀ v ∈ U.

In the study of this problem, we have the following existence and uniqueness result.

Theorem 3.2. Assume (3.9)–(3.15). Then, Problem PV has a unique solution with regularity u ∈ C(R+; U).

The proof of Theorem 3.2 will be done in several steps, based on the abstract existence and uniqueness
provided by Theorem 3.1. To present it, we assume in what follows that (3.9)–(3.15) hold. We introduce the
space Z = Q × L2(Γ3) together with the norm

∥z∥Z = ∥σ∥Q + ∥ξ∥L2(Γ3) ∀ z = (σ, ξ) ∈ Z. (3.18)

Moreover, we consider the operators A : V → V , S : C(R+; V ) → C(R+; Z) and the functions j : Z×V ×V →
R, f : R+ → V defined by

(Au, v)V =
∫
Ω

Aε(u) · ε(v) dx +
∫
Γ3

p(uν)vν da ∀ u, v ∈ V, (3.19)

Su(t) =
(∫ t

0
B(t − s) ε(u(s)) ds, F

(∫ t

0
u+

ν (s) ds
))

∀ u ∈ C(R+; V ), (3.20)

j(z, u, v) =
∫
Ω

σ · ε(v) dx +
∫
Γ3

ξ · v+
ν da +

∫
Γ3

µp(uν)∥vτ ∥ da (3.21)

∀ z = (σ, ξ) ∈ Z, u, v ∈ V,

(f (t), v)V =
∫
Ω

f0(t) · v dx +
∫
Γ2

f2(t) · v da ∀ v ∈ V, t ∈ R+. (3.22)

With these notation, it is easy to obtain the following preliminary result.

Lemma 3.3. A displacement field u ∈ C(R+; U) is a solution of Problem PV if any only if, for all t ∈ R+,
the inequality below holds:

u(t) ∈ U, (Au(t), v − u(t))V + j(Su(t), u(t), v) (3.23)
−j(Su(t), u(t), u(t)) ≥ (f (t), v − u(t))V ∀ v ∈ U.

The next step is provided by the following intermediate result.

Lemma 3.4. There exists a unique displacement field u ∈ C(R+; U) which satisfies inequality (3.23), for
all t ∈ R+.

Proof. We use Theorem 3.1 with X = V , Z = Q × L2(Γ3), K = U , the operators A, S, the functional j

and the function f defined by (3.19)–(3.22). To this end, we check in what follows the validity of conditions
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(3.3)–(3.8). First, definition (3.16) shows that condition (3.3) is obviously satisfied. Next, we use assumptions
(3.9) and (3.13) and inequality (2.8) to see that

(Au1 − Au2, u1 − u2)V ≥ mA ∥u1 − u2∥2
V , (3.24)

∥Au1 − Au2∥V ≤ (LA + Lp ∥γ∥2)∥u1 − u2∥V

for all u1, u2 ∈ V . It follows from here that the operator A satisfies condition (3.4) with mA = mA and
LA = LA + Lp ∥γ∥2. It is easy to see that condition (3.5)(a) is satisfied, too, and an elementary calculus
based on assumption (3.13) and inequality (2.8) shows that

j(z1, u1, v2) − j(z1, u1, v1) + j(z2, u2, v1) − j(z2, u2, v2) (3.25)
≤ (1 + ∥γ∥)∥z1 − z2∥Z∥v1 − v2∥V + µLp∥γ∥2 ∥u1 − u2∥V ∥v1 − v2∥V

for all z1, z2 ∈ Z, u1, u2, v1, v2 ∈ V . This shows that condition (3.5)(b) holds with αj = 1 + ∥γ∥ and
βj = µLp∥γ∥2.

We now use assumptions (3.10) and (3.12) and inequality (2.11) to see that for each m ∈ N the following
inequality holds:

∥Su1(t) − Su2(t)∥Z ≤ (d max
r∈[0,m]

∥B(r)∥Q∞ + LF ∥γ∥)
∫ t

0
∥u1(s) − u2(s)∥X ds (3.26)

for all u1, u2 ∈ C(R+; V ), t ∈ [0, m]. This inequality shows that condition (3.6) is satisfied. Finally, inequality
(3.15) shows that condition (3.7) holds and assumption (3.11) on the external forces guarantees that the
function f defined by (3.22) has the regularity (3.8).

It follows from above that assumptions (3.3)–(3.8) hold and, therefore, we are in a position to use
Theorem 3.1 in order to conclude the proof. □

We end this section with the remark that Theorem 3.2 is now a direct consequence of Lemmas 3.3 and
3.4. Moreover, the solution of Problem PV , provided by this theorem, represents a weak solution of the
viscoelastic contact Problem P.

4. Convergence results

In this section we study the dependence of the solution to Problem P with respect the body forces f0,
the tractions f2, the thickness g and the coefficient of friction µ. To this end, we assume in what follows that
(3.9)–(3.15) hold and we denote by u the solution of Problem PV obtained in Theorem 3.1. Next, for each
n ∈ N we consider a perturbation f0n, f2n, gn, µn of the data f0, f2, g, µ, respectively, such that

f0n ∈ C(R+; L2(Ω)d), f2n ∈ C(R+; L2(Γ2)d), (4.1)

gn > 0, µn > 0, (4.2)

µnLp∥γ∥2 < mA. (4.3)

Now, with the set of admissible displacement fields Un defined by

Un = { v ∈ V | vν ≤ gn a.e. on Γ3 }, (4.4)

we introduce the perturbation of Problem PV as follows:

Problem PV
n . Find a displacement field un : R+ → Un such that, for all t ∈ R+, the inequality below holds:∫

Ω

Aε(un(t)) · (ε(v) − ε(un(t))) dx +
∫
Γ3

p(unν(t))(vν − unν(t)) da (4.5)
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+
∫
Ω

(∫ t

0
B(t − s) ε(un(s)) ds

)
· (ε(v) − ε(un(t))) dx

+
∫
Γ3

F
(∫ t

0
u+

nν(s) ds
)

(v+
ν − u+

nν(t)) da +
∫
Γ3

µnp(unν(t))(∥vτ ∥ − ∥unτ (t)∥) da

≥
∫
Ω

f0n(t) · (v − un(t)) dx +
∫
Γ2

f2n(t) · (v − un(t)) da ∀ v ∈ Un.

It follows from Theorem 3.2 Problem PV
n has a unique solution un ∈ C(R+; Un). Moreover, for all t ∈ R+,

the solution satisfies the inequality

un(t) ∈ Un, (Aun(t), v − un(t))V + jn(Sun(t), un(t), v) (4.6)
− jn(Sun(t), un(t), un(t)) ≥ (fn(t), v − un(t))V ∀ v ∈ Un.

Here and below in this section the functions jn : Z × V × V → R and fn : R+ → V are defined by equalities

jn(z, u, v) =
∫
Ω

σ · ε(v) dx +
∫
Γ3

ξ · v+
ν da +

∫
Γ3

µnp(uν)∥vτ ∥ da (4.7)

∀ z = (σ, ξ) ∈ Z, u, v ∈ V,

(fn(t), v)V =
∫
Ω

f0n(t) · v dx +
∫
Γ2

f2n(t) · v da ∀ v ∈ V, t ∈ R+. (4.8)

Moreover, we denote by “⇀” and “→” the weak and strong convergence in various normed spaces to be
specified and we recall that all the limit, upper limit and lower limit are considered when n → ∞, even if
we do not mention it explicitly.

Our main result in this section is the following.

Theorem 4.1. Assume that (3.9)–(3.15) and (4.1)–(4.3) hold. Moreover, assume that{
f0n(t) ⇀ f0(t) in L2(Ω)d, f2n(t) ⇀ f2(t) in L2(Γ2)d,
as n → ∞, ∀ t ∈ R+,

(4.9){
For each m ∈ N there exists Ñm ∈ N and δm > 0 such that
∥f0n(t)∥L2(Ω)d ≤ δm, ∥f2n(t)∥L2(Γ3)d ≤ δm ∀ t ∈ [0, m], n ≥ Ñm,

(4.10)

gn → g, µn → µ in R. (4.11)

Then,
un(t) → u(t) in V as n → ∞, (4.12)

for all t ∈ R.

The proof of Theorem 4.1 will be carried out in several steps that we present in what follows. Everywhere
in the rest of this section we assume that (3.9)–(3.15), (4.1)–(4.3) and (4.9)–(4.11) hold. Let n ∈ N. We start
by considering the intermediate problem of finding a function un : R+ → V such that, for each t ∈ R+, the
inequality below holds:

un(t) ∈ Un, (Aun(t), v − un(t))V + jn(Su(t), un(t), v) (4.13)
− jn(Su(t), un(t), un(t)) ≥ (fn(t), v − un(t))V ∀ v ∈ Un.

Note that the operator v ↦→ S(u) : C(R+; V ) → C(R+; Z) satisfies condition (3.6). Therefore, it follows
from Theorem 3.1 that this problem has a unique solution with regularity un ∈ C(R+; Un).

We proceed with the following result.
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Lemma 4.2. For each m ∈ N there exists λm > 0 and Nm ∈ N such that

∥un(t)∥V ≤ λm ∀ t ∈ [0, m], n ≥ Nm. (4.14)

Proof. Let m ∈ N be fixed and let t ∈ [0, m]. We test in (4.13) with v = 0V to obtain

(Aun(t), un(t))V ≤ (fn(t), un(t))V − jn(Su(t), un(t), un(t)),

and then we use the strong monotonicity of the operator A and equality A0V = 0V to see that

mA∥un(t)∥2
V ≤ ∥fn(t)∥V ∥un(t)∥V − jn(Su(t), un(t), un(t)). (4.15)

On the other hand, using (4.7) we write

−jn(Su(t), un(t), un(t)) = jn(Su(t), un(t), 0V ) − jn(Su(t), un(t), un(t))
+jn(0V , 0V , un(t)) − jn(0V , 0V , 0V ),

and then we use inequality (3.25) for the function jn to obtain

−jn(Su(t), un(t), un(t)) (4.16)
≤ (1 + ∥γ∥)∥Su(t)∥Z∥un(t))∥V + µnLp∥γ∥2 ∥un(t))∥2

V .

We now combine the inequalities (4.15) and (4.16) to see that

(mA − µnLp∥γ∥2)∥un(t)∥V ≤ ∥fn(t)∥V + (1 + ∥γ∥)∥Su(t)∥Z . (4.17)

Note that assumptions (4.11) and (3.15) imply that there exists Nm ∈ N such that

mA − µnLp∥γ∥2 ≥ 1
2 (mA − µLp∥γ∥2) ∀ n ≥ Nm. (4.18)

Therefore, (4.17) allows us to write

∥un(t)∥V ≤ c0(∥fn(t)∥V + ∥Su(t)∥Z) ∀ n ≥ Nm, (4.19)

where c0 is a positive constant which does not depend on n and t. We now use assumption (4.10) and define
Nm = max {Nm, Ñm}. Then, (4.19) implies that

∥un(t)∥V ≤ c̃0( δm + ∥Su(t)∥Z) ∀ n ≥ Nm, (4.20)

where, again, c̃0 is a positive constant which does not depend on n and t. Thus, the inequality (4.14) holds
with

λm = c̃0(δm + max
t∈[0,m]

∥Su(t)∥Z),

which concludes the proof. □

We proceed with the following weak convergence result.

Lemma 4.3. For all t ∈ R+ the following convergence holds:

un(t) ⇀ u(t) in V. (4.21)
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Proof. We fix t ∈ R+ and let m ∈ N be such that t ∈ [0, m]. It follows from Lemma 4.2 that the sequence
{un(t)} is bounded in V and, therefore, there exists an element u(t) ∈ V such that, passing to a subsequence
still denoted {un(t)},

un(t) ⇀ u(t) in V. (4.22)
Note that this convergence implies that un(t) → u(t) a.e. on Γ3 and, therefore, definitions (4.4), (3.16) and
the convergence (4.11) yield

u(t) ∈ U. (4.23)
Let v ∈ U . Then gn

g v ∈ Un and, using (4.13) we deduce that

(Aun(t), un(t) − gn

g
v)V ≤ (fn(t), un(t) − gn

g
v)V

+jn(Su(t), un(t), gn

g
v) − jn(Su(t), un(t), un(t)).

We now write un(t) − gn
g v = un(t) − v + (1 − gn

g )v to find that

(Aun(t), un(t) − v)V + (Aun(t), (1 − gn

g
)v)V (4.24)

≤ (fn(t), un(t) − v)V + (fn(t), (1 − gn

g
)v)V

+jn(Su(t), un(t), gn

g
v) − jn(Su(t), un(t), un(t)).

Next, we use assumptions (4.9)–(4.11), convergence (4.22) and standard compactness arguments to see that
the following convergences hold:

(Aun(t), (1 − gn

g
)v)V → 0,

(fn(t), un(t) − v)V → (f (t), u(t) − v)V ,

(fn(t), (1 − gn

g
)v)V → 0,

jn(Su(t), un(t), gn

g
v) → j(Su(t), u(t), v),

jn(Su(t), un(t), un(t)) → j(Su(t), u(t), u(t)).

Therefore, taking the upper limit in (4.24) and using these convergences we deduce that

lim sup (Aun(t), un(t) − v)V (4.25)
≤ (f (t), u(t) − v)V + j(Su(t), u(t), v) − j(Su(t), u(t), u(t)).

The regularity (4.23) allows us to take v = u(t) in the previous inequality. As a result we deduce that

lim sup (Aun(t), un(t) − u(t))V ≤ 0. (4.26)

We now use (4.22), (4.26) and a standard pseudomonotonicity argument to see that

(Au(t), u(t) − v)V ≤ lim inf (Aun(t), un(t) − v)V ∀ v ∈ V. (4.27)

We now combine inequalities (4.25) and (4.27) to deduce that

(Au(t), u(t) − v)V (4.28)
≤ (f (t), u(t) − v)V + j(Su(t), u(t), v) − j(Su(t), u(t), u(t)) ∀ v ∈ V.

Inequality (4.28) combined with regularity (4.23) and the uniqueness of the solution of the variational
inequality (3.23) shows that u(t) = u(t). A careful analysis of the previous results reveals that the sequence
{un(t)} is bounded in V and every weakly convergent subsequence of this sequence converges to u(t). This
implies the convergence (4.21) and concludes the proof. □
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The next step is given by the following strong convergence result.

Lemma 4.4. For all t ∈ R+ the following convergence holds:

un(t) → u(t) in V. (4.29)

Proof. Let t ∈ R+. We successively test with v = u(t) in (4.25) and (4.27) to deduce that

0 ≤ lim inf (Aun(t), un(t) − u(t))V ≤ lim sup (Aun(t), un(t) − u(t))V ≤ 0,

which implies that lim (Aun(t), un(t) − u(t))V = 0. This result combined with equality u(t) = u(t),
obtained in the proof of Lemma 4.2, yields

(Aun(t), un(t) − u(t))V → 0. (4.30)

Next, we use the strong monotonicity of the operator A to see that

mA∥un(t) − u(t)∥2
V ≤ (Aun(t) − Au(t), un(t) − u(t))V

= (Aun(t), un(t) − u(t))V − (Au(t), un(t) − u(t))V .

This inequality combined with the convergences (4.30) and (4.21) imply that

lim sup ∥un(t) − u(t)∥2
V ≤ 0,

which shows that (4.29) holds. □

We now have all the ingredients to provide the proof of Theorem 4.1.

Proof. Let n ∈ N, t ∈ R+ and let m ∈ N be such that t ∈ [0, m]. We take v = un(t) in (4.6) and v = un(t)
in (4.13), then we add the resulting inequalities to obtain that

(Aun(t) − Aun(t), un(t) − un(t))V

≤ jn(Sun(t), un(t), un(t)) − jn(Sun(t), un(t), un(t))
+jn(Su(t), un(t), un(t)) − jn(Su(t), un(t), un(t)).

Next, we use the strong monotonicity of the operator A, as well as inequality (3.25) for the function jn to
see that

mA∥un(t) − un(t)∥2
V ≤ (1 + ∥γ∥)∥Sun(t) − Su(t)∥V ∥un(t) − un(t)∥V

+µnLp∥γ∥2 ∥un(t) − un(t)∥2
V ,

which implies that

(mA − µnLp∥γ∥2)∥un(t) − un(t)∥V ≤ (1 + ∥γ∥)∥Sun(t) − Su(t)∥V .

Let n ≥ Nm where, recall, Nm ∈ N is defined in (4.18) Then, there exists a constant c0 > 0 such that,
for n ≥ Nm we have

∥un(t) − un(t)∥V ≤ c0∥Sun(t) − Su(t)∥V .

Therefore, using inequality (3.26) we find that

∥un(t) − un(t)∥V ≤ cm

∫ t

0
∥un(s) − u(s)∥V ds, (4.31)
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where cm > 0 depends on m but does not depend on n and t. It follows from here that

∥un(t) − u(t)∥V ≤ ∥un(t) − un(t)∥V + ∥un(t) − u(t)∥V

≤ cm

∫ t

0
∥un(s) − u(s)∥V ds + ∥un(t) − u(t)∥V

and, therefore, using the Gronwall inequality yields

∥un(t) − u(t)∥V ≤ cm

∫ t

0
ecm(t−s)∥un(s) − u(s)∥V ds + ∥un(t) − u(t)∥V . (4.32)

Note that Lemma 4.2 implies that

∥un(s) − u(s)∥V ≤ ∥un(s)∥V + ∥u(s)∥V ≤ λm + max
s∈[0,m]

∥u(s)∥V

and, moreover,
ecm(t−s) ≤ ecmt ≤ mecm ∀ s ∈ [0, t].

These inequalities show that the integrand in (4.32) is bounded. Then, Lemma 4.4 allows us to use the
Lebesgue theorem in order to see that∫ t

0
ecm(t−s)∥un(s) − u(s)∥V ds → 0, ∥un(t) − u(t)∥V → 0.

We now use these convergences in (4.32) to find that (4.12) holds, which concludes the proof. □

Besides its mathematical interest in the convergence result (4.12), it is important from mechanical point of
view since it shows that, at any moment t, the weak solution of the contact problem P depends continuously
on the thickness of rigid-deformable layer, the coefficient of friction, and the densities of body forces and
tractions.

Theorem 4.1 provides the pointwise convergence of the solution un to the solution u. It seems that the
assumptions of this theorem are not enough to guarantee this convergence in the space C(R+; V ). For this
reason we reinforce in what follows these assumptions to obtain the following result.

Theorem 4.5. In addition to conditions (3.9)–(3.15), (4.2)–(4.3), (4.11), we assume further that f0n = f0

and f2n = f2 for all n ∈ N. Then

un → u in C(R+; V ) as n → ∞, (4.33)

i.e., un converges uniformly to u on any compact interval I ⊂ R+.

The proof is based on estimates already obtained in the proof of Theorem 4.1. Thus, we present only its
sketch.

Proof. Let n ∈ N, m ∈ N and let t ∈ [0, m]. We test in (3.23) with v = g
gn

un(t) ∈ U , then we multiply the
resulting inequality with gn

g and add it to the inequality obtained from (4.6) with v = gn
g u(t) ∈ Un. In this

way we deduce that

(Aun(t) − Au(t), gn

g
u(t) − un(t))V + jn(Sun(t), un(t), gn

g
u(t))

−jn(Sun(t), un(t), un(t)) + j(Su(t), u(t), un(t)) − j(Su(t), u(t), gn

g
u(t))
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and, therefore,

(Aun(t) − Au(t), un(t) − u(t))V ≤
(gn

g
− 1

)
(Aun(t) − Au(t), u(t))V (4.34)

+
(gn

g
− 1

)
jn(Sun(t), un(t), u(t)) + jn(Sun(t), un(t), u(t))

−jn(Sun(t), un(t), un(t)) + j(Su(t), u(t), un(t))
−j(Su(t), u(t), u(t)) +

(
1 − gn

g

)
j(Su(t), u(t), u(t)).

Note that Lemma 4.2 implies the bound

∥un(t)∥V ≤ c. (4.35)

Here and below in this proof c denotes a positive constant which could depend on m, on the solution u and
the rest of the problem data, but is independent on n and t, and whose value may change from line to line.
We now use the properties of A, S and j as well as inequality (4.35) to see that(gn

g
− 1

)
(Aun(t) − Au(t), u(t))V ≤ c|gn − g|, (4.36)(gn

g
− 1

)
jn(Sun(t), un(t), u(t)) ≤ c|gn − g|, (4.37)(

1 − gn

g

)
j(Su(t), u(t), u(t)) ≤ c|gn − g|, (4.38)

jn(Sun(t), un(t), u(t)) − jn(Sun(t), un(t), un(t)) (4.39)
+ j(Su(t), u(t), un(t)) − j(Su(t), u(t), u(t))

≤ c∥Sun(t) − Su(t)∥Z∥un(t) − u(t)∥V + c̃∥un(t) − u(t)∥2
V + c|µn − µ|,

where c̃ is a positive constant such that c̃ ≤ mA, if n is large enough. We now combine inequalities (4.34),
(4.36)–(4.39), then use the strongly monotonicity of A to deduce that

∥un(t) − u(t)∥2
V ≤ c∥Sun(t) − Su(t)∥Z∥un(t) − u(t)∥V + c(|gn − g| + |µn − µ|).

Next, the elementary inequality x2 ≤ ax + b =⇒ x ≤ a +
√

b implies that

∥un(t) − u(t)∥V ≤ c ∥Sun(t) − Su(t)∥Z + c
√

|gn − g| + |µn − µ|,

and, therefore, inequality (3.26) and the Gronwall argument yield

max
t∈[0,m]

∥un(t) − u(t)∥V ≤ c
√

|gn − g| + |µn − µ|),

for n large enough. Finally, assumption (4.11) and (3.1) show that the convergence (4.33) holds, which
concludes the proof. □

5. Optimization problems

Theorems 4.1 and 4.5 can be used to study a large number of optimization problems associated to Problem
P. To provide a first general example, we assume in what follows that (3.9), (3.10), (3.12) and (3.13) hold
and let K0 ⊂ L2(Ω)d, K2 ⊂ L2(Γ2)d. Moreover, let θ0 and θ2 be such that

θ0 ∈ C(R+,R), θ2 ∈ C(R+,R), (5.1)
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and, in addition, consider two reals intervals K3 and K4 such that

K3 = [a3, b3] with 0 < a3 ≤ b3, K4 = [ξ4, ζ4] with 0 ≤ ξ4 ≤ ζ4 ≤ mA

Lp∥γ∥2 . (5.2)

We denote in what follows by X the Hilbert space X = L2(Ω)d×L2(Γ3)d×R×R endowed with the canonical
inner product and let K = K0 ×K2 ×K3 ×K4 ⊂ X. For every element k = (b0, b2, g, µ) ∈ K we consider the
Problem P with the data f0 = θ0b0, f2 = θ2b2, g and µ. Using (5.1) and (5.2) we see that the assumptions
of Theorem 3.2 are satisfied and, therefore, this problem has a unique solution, denoted uk, with regularity
uk ∈ C(R+, U).

Consider now a cost functional L : V → R and an arbitrary time moment t ∈ R+. We formulate the
following optimization problem.

Problem O1. Find k∗ ∈ K such that

L(uk∗(t)) = min
k∈K

L(uk(t)).

In the study of this problem we assume that

K0 is a bounded weakly closed set of L2(Ω)d. (5.3)
K2 is a bounded weakly closed set of L2(Γ2)d. (5.4)
L : V → R is a lower semicontinuous function. (5.5)

We have the following existence result.

Theorem 5.1. Assume that (3.9), (3.10), (3.12), (3.13), (5.1)–(5.5). Then, Problem Jt : K → R has at least
one solution.

Proof. Consider the function Jt : K → R defined by

Jt(k) = L(uk(t)) for all k ∈ K.

Assume that {kn} = {(b0n, b2n, gn, µn)} is a sequence of elements of K which converges weakly in X to the
element k = {(b0, b2, g,µ)} ∈ K. Then, b0n ⇀ b0 in L2(Ω)d, b2n ⇀ b2 in L2(Γ2)d, gn → g, µn → µ and,
therefore, denoting f0n = θ0b0n, f2n = θ2b2n, f0 = θ0b0, f2 = θ2b2, we see that conditions (4.9)–(4.11) are
satisfied. We now use Theorem 4.1 to deduce that ukn(t) → uk(t) in V . Thus, using assumption (5.5) we
obtain that

lim inf L(ukn(t)) ≥ L(uk(t)),
which shows that the function Jt is weakly lower semicontinuous on K. Moreover, assumptions (5.2)–(5.4)
guarantee that K is a bounded weakly closed subset on X. Theorem 5.1 follows now from a version of the
well known Weierstrass theorem (Theorem 7.3.4 in [34], for instance). □

Example 5.2. A first example of Problem O1 can be obtained by taking

L(u) =
∫
Γ3

∥uν − ϕ∥2 da for all u ∈ V, (5.6)

where ϕ ∈ L2(Γ3) is a given function such that ϕ(x) ≥ 0 for a.e. x ∈ Γ3. With this choice, the mechanical
interpretation of Problem O1 is the following: given set K and a contact process of the form (2.1)–(2.6), we
are looking for a body force f0 = θ0b∗

0 , a traction f2 = θ2b∗
2 , a bound g∗ and a friction coefficient µ∗ such

that k∗ = (b∗
0 , b∗

2 , g∗, µ∗) ∈ K and the corresponding penetration of the body in the foundation at the given
moment t is as close as possible to the given penetration ϕ. Note that the function L : V → R defined by
(5.6) is continuous, hence it satisfies condition (5.5). Therefore, Theorem 5.1 guarantees the existence of the
solutions to the corresponding optimization problem.
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Example 5.3. A second example of Problem O1 can be obtained by taking

L(u) =
∫
Ω

∥ε(u)∥2 dx for all u ∈ V. (5.7)

With this choice, the mechanical interpretation of Problem O1 is the following: given set K and a contact
process of the form (2.1)–(2.6), we are looking for a body force f0 = θ0b∗

0 , a traction f2 = θ2b∗
2 , a bound g∗

and a friction coefficient µ∗ such that k∗ = (b∗
0 , b∗

2 , g∗, µ∗) ∈ K and the corresponding deformation in the
body at the given moment t is as small as possible. Note that the function (5.7) satisfies condition (5.5).
Therefore, Theorem 5.1 guarantees the existence of the solutions to the corresponding optimization problem.

We now move to a second kind of optimization problems, based on Theorem 4.5. We assume in what
follows that (3.9)–(3.13) hold and consider two reals intervals K3 and K4 such that (5.2) hold. Let K =
K3 × K4 ⊂ R2. For every element (g, µ) ∈ K we consider the Problem P with the data g and µ. Using (5.2)
we see that the assumptions of Theorem 3.2 are satisfied and, therefore, this problem has a unique solution,
denoted u(g, µ), with regularity u(g, µ) ∈ C(R+, U).

Consider now a cost functional and L : C(R+; V ) → R together with the following optimization problem.

Problem O2. Find (g∗, u∗) ∈ K such that

L
(
u(g∗, µ∗)

)
= min

(g,µ)∈K
L

(
u(g, µ)

)
. (5.8)

Here, for each (g, µ) ∈ K we use the notation u(g, µ) for the solution of inequality (3.17) which is also
the unique solution of the inequality (3.23). In the study of Problem O2 we assume that{

L : C(R+; V ) → R is a lower semicontinuous function, i.e.,
un → u in C(R+; V ) =⇒ lim inf

n→∞
L(un) ≥ L(u). (5.9)

We have the following existence result.

Theorem 5.4. Assume that (3.9)–(3.13), (5.2) and (5.9) hold. Then, Problem O2 has at least one solution.

Proof. Consider the function J : K → R defined by

J(g, µ) = L
(
u(g, µ)

)
for all (g, µ) ∈ K.

Theorem 4.5 guarantees that the map (g, µ) ↦→ u(g, µ) : K → C(R+; V ) is continuous. Therefore, using
assumption (5.9) we deduce that the function J is lower semicontinuous on K. Recall also that the set K is
a compact subset of R2. Theorem 5.4 follows now from the Weierstrass theorem. □

Example 5.5. An example of Problem O2 can be obtained by taking

L(u) =
∫ T

0

(∫
Ω

∥σu(t, x)∥2 dx
)

ds for all u ∈ C(R+; V ), (5.10)

where T > 0 is given and, for each u ∈ C(R+; V ), σu ∈ C(R+; Q) represents the stress function defined
by the viscoelastic constitutive equation (2.1). With this choice, the mechanical interpretation of Problem
O2 is the following: given a contact process of the form (2.1)–(2.6) and a compact set K = K3 × K4 ∈ R2

described in (5.2), we are looking for a bound g∗ and a friction coefficient µ∗ such that (g∗, µ∗) ∈ K and
the corresponding stress in the body during the time interval of interest [0, T ] is as small as possible. It
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is easy to see that the function L defined by (5.10) satisfies condition (5.9). Indeed, consider a sequence
{un} ⊂ C(R+; V ) such that un → u in C(R+; V ). We use (2.1) to see that

σn(t) = Aε(un(t)) +
∫ t

0
B(t − s)ε(un(s)) ds,

σ(t) = Aε(u(t)) +
∫ t

0
B(t − s)ε(u(s)) ds,

for all t ∈ R+ and n ∈ N. Then, assumptions (3.9) and (3.10) imply that σn → σ in C(R+; Q). Therefore,
L(un) → L(u), which shows that condition (5.9) is satisfied. Theorem 5.1 guarantees now the existence of
the solutions to the corresponding optimization problem.
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