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Abstract. The aim of this paper is to provide some results in the study of an abstract optimization problem in reflexive
Banach spaces and to illustrate their use in the analysis and control of static contact problems with elastic materials. We
start with a simple model problem which describes the equilibrium of an elastic body in unilateral contact with a foundation.
We derive a variational formulation of the model which is in the form of minimization problem for the stress field. Then we
introduce the abstract optimization problem for which we prove existence, uniqueness and convergence results. The proofs
are based on arguments of lower semicontinuity, monotonicity, convexity, compactness and Mosco convergence. Finally, we
use these abstract results to deduce both the unique solvability of the contact model and the existence and the convergence
of the optimal pairs for an associated optimal control problem.
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1. Introduction

Optimization methods represent a mathematical tool intensively used in applied mathematics, in both
the analysis and numerical approximation of various nonlinear boundary value problems. They are used
in solid and fluid mechanics and in engineering sciences as well. Comprehensive references in the field
include [4,8,9,29].

Process of contact between deformable bodies arises in industry and everyday life. Their mathematical
modeling leads to strongly elliptic or evolutionary nonlinear boundary value problems. References in the
field include [6,7,10,13,20,22,27,34] and, more recently, [3,18,25]. There, various existence and unique-
ness results have been proved, by using arguments of variational and hemivariational inequalities. In part
of these references, the numerical analysis of the models was also provided, together with error estimates
and convergence results. Moreover, numerical simulations which represents an evidence of the theoretical
results have been presented, together with their mechanical interpretations. Results on optimal control
for various contact problems with elastic materials could be found in [1,3,16,23,28,31,32,36] and the
references therein. Abstract results in the study of variational and hemivariational inequalities, together
with various applications, can be found in the recent papers [11,14,15,18,21,26,33,35,37], for instance.

Our aim in this paper is twofold. The first one is to study a general class of optimization problems in
abstract reflexive Banach spaces for which we provide existence, uniqueness and convergence results. The
second one is to illustrate how these abstract results can be applied in the analysis and optimal control of
contact problems with unilateral constraints. In this way, we construct and develop mathematical tools
useful in contact mechanics and illustrate the cross-fertilization between models and applications, on the
one hand, and the nonlinear functional analysis, on the other hand.

The results we present here represent a continuation of [2,5], where the analysis and control of new
models which describe the equilibrium of an elastic body in contact with a foundation has been carried
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out. The model considered in [2] was frictionless and its variational formulation was in the form of
elliptic variational inequality with unilateral constraints. The model considered in [5] was frictional and,
therefore, the variational formulation of the problem was in the form of elliptic quasivariational inequality.
In both models, the unknown was the displacement field. We provided the unique solvability of the
models, the continuous dependence of the solution with respect to the data and discussed related optimal
control problems. To this end, we used arguments of analysis and control for elliptic variational and
quasivariational inequalities.

In the current paper, we use a different approach, based on abstract optimization results that we state
and prove here for the first time. Due to their generality, these results have an interest on their own
and, therefore, they could be useful in the study of various elliptic problems. Nevertheless, our aim is
to illustrate their use in the analysis and control of elastic contact problems. To this end, we consider
an elastic frictionless contact problem with unilateral constraints for which the abstract results work. In
contrast to the models in [2,5], the model we consider in this paper leads to a variational formulation in
which the unknown is the stress field, which consists one of the traits of novelty of the current work.

The paper is structured as follows. In Sect. 2, we introduce the contact model, list the assumptions
on the data and derive its variational formulation, in terms of the stress. In Sect. 3, we state an abstract
optimization problem in reflexive Banach spaces, for which we prove existence, uniqueness and conver-
gence results, gathered in Theorems 3.2 and 3.3. These abstract results are useful in both the analysis
and the control of the contact model as we illustrate in the last two sections of the manuscript. Indeed, in
Sect. 4 we use Theorem 3.3 to prove the unique weak solvability of the contact model as well as the con-
tinuous dependence of the solution with respect to the data. In Sect. 5, we use Theorem 3.2 to prove the
existence of optimal pairs for an associated optimal control problem and, under additional assumptions,
a convergence result. We end this paper with Sect. 6 in which we present some concluding remarks.

2. The contact model

We consider an elastic body which occupies the domain Ω ⊂ R
d (d = 1, 2, 3), with smooth boundary Γ.

The boundary Γ is divided into three measurable disjoint parts Γ1, Γ2 and Γ3 such that meas (Γ1) > 0.
The body is fixed on Γ1, is acted upon by given surface tractions on Γ2, and could arrive in frictionless
contact with an obstacle on Γ3. Denote by S

d the space of second-order symmetric tensors on R
d or,

equivalently, the space of symmetric matrices of order d. Then, the mathematical model we consider to
describe the equilibrium of the body in this physical setting is the following.

Problem. P. Find a displacement field u : Ω → R
d and a stress field σ : Ω → S

d such that

ε(u) = Aσ + β (σ − PBσ) in Ω, (2.1)
Div σ + f0 = 0 in Ω, (2.2)

u = 0 on Γ1, (2.3)
σν = f2 on Γ2, (2.4)

uν ≤ g, σν + p ≤ 0, (uν − g)(σν + p) = 0 on Γ3, (2.5)
στ = 0 on Γ3. (2.6)

We now provide a description of the equations and boundary conditions in Problem P where, for
simplicity, we do not mention the dependence of various functions with respect to the spatial variable
x ∈ Ω ∪ Γ.

First, Eq. (2.1) represents the elastic constitutive law of the material in which A is the elasticity
tensor, β is a given coefficient, B is a nonempty closed convex subset of Sd, PB : Sd → B denotes the
projection operator and ε(u) represents the linear strain tensor. Such kind of constitutive laws represents
a regularization of the well-known Hencky law, in which the stress tensor is constrained to remain in the
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convex set B. Details on this matter can be found in [30]. Equation (2.2) is the equation of equilibrium in
which f0 denotes the density of body forces and Div is the divergence operator for tensor valued functions.
We use it here since the contact process is assumed to be static and, therefore, the inertial term in the
equation of motion is neglected. Conditions (2.3), (2.4) represent the displacement and traction boundary
conditions, respectively, where ν denotes the unit outward normal to Γ and f2 represents the density of
surface tractions.

Next, condition (2.5) represents a version of the Signorini condition. Here g denotes the gap between
the body’s surface and the obstacle, measured on the outward normal, and p is a given function, say
a pressure. Moreover, the index ν and τ denote the normal and tangential components of vectors and
tensors, respectively. This condition describes the contact with a rigid body covered by a fluid of pressure
p and was considered in [17] and the references therein. Finally, condition (2.6) represents the frictionless
condition in which στ denotes the tangential stress.

To provide the analysis of Problem P, we need to introduce further notation. Thus, we recall that
inner product and norm on R

d and S
d are defined by

u · v = uivi , ‖v‖ = (v · v)
1
2 ∀ u,v ∈ R

d,

σ · τ = σijτij , ‖τ‖ = (τ · τ )
1
2 ∀ σ, τ ∈ S

d,

where the indices i, j run between 1 and d and, unless stated otherwise, the summation convention over
repeated indices is used. The zero element of the spaces R

d and S
d will be denoted by 0. We use the

standard notation for Sobolev and Lebesgue spaces associated with Ω and Γ. In particular, we use the
spaces L2(Ω)d, L2(Γ2)d, L2(Γ3) and H1(Ω)d, endowed with their canonical inner products and associated
norms. Moreover, we recall that for an element v ∈ H1(Ω)d we still write v for the trace γv ∈ L2(Γ)d of
v to Γ. In addition, we consider the following spaces:

V = {v ∈ H1(Ω)d : v = 0 on Γ1 },

Q = {σ = (σij) : σij = σji ∈ L2(Ω) }.

The spaces V and Q are real Hilbert spaces endowed with the canonical inner products given by

(u,v)V =
∫

Ω

ε(u) · ε(v) dx, (σ, τ )Q =
∫

Ω

σ · τ dx. (2.7)

Recall that here are below ε and Div will represent the deformation and the divergence operators,
respectively, i.e.,

ε(u) = (εij(u)), εij(u) =
1
2

(ui,j + uj,i), Div σ = (σij,j),

where an index that follows a comma represents the partial derivative with respect to the corresponding
component of the spatial variable x = (xi), e.g., ui,j = ∂ui/∂xj . The associated norms on these spaces
are denoted by ‖ · ‖V and ‖ · ‖Q. Also, recall that the completeness of the space V follows from the
assumption meas (Γ1) > 0 which allows the use of Korn’s inequality.

We denote by 0V the zero element of V and we recall that, for an element v ∈ V , the normal and
tangential components on Γ are given by vν = v ·ν and vτ = v −vνν, respectively. For a regular function
σ : Ω → S

d, we have σν = (σν) · ν and στ = σν − σνν and, moreover, the following Green’s formula
holds: ∫

Ω

σ · ε(v) dx +
∫

Ω

Div σ · v dx =
∫

Γ

σν · v da for all v ∈ H1(Ω)d. (2.8)
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In the study of contact problem (2.1)–(2.6), we assume that the elasticity tensor A is symmetric,
bounded and positively defined, i.e.,⎧⎪⎪⎨

⎪⎪⎩

(a) A = (Aijkl) : Ω × S
d → S

d.
(b) Aijkl = Aklij = Ajikl ∈ L∞(Ω), 1 ≤ i, j, k, l ≤ d.
(c) There exists mA > 0 such that

Aτ · τ ≥ mA‖τ‖2 ∀ τ ∈ S
d, a.e. in Ω.

(2.9)

We also assume that the set B and the rest of the data satisfy the following conditions.

B is a closed convex subset of Sd such that 0 ∈ B. (2.10)
β ∈ L∞(Ω), β(x) ≥ 0 a.e. x ∈ Ω. (2.11)

f0 ∈ L2(Ω)d. (2.12)

f2 ∈ L2(Γ2)d. (2.13)
p ∈ L2(Γ3). (2.14)
g ≥ 0. (2.15)

Note that, if p is interpreted as a pressure, from physical point of view we have to assume that p(x) ≥ 0
a.e. x ∈ Γ3. Nevertheless, this additional assumption is not needed from mathematical point of view and,
therefore, we skip it here and in Sect. 4. We shall consider it only in Sect. 5 where we deal with an optimal
control problem associated with P, in which p represents the control.

Finally, we assume that there exists an element θ ∈ V such that

θ = ν on Γ3, (2.16)

and we refer the reader to [12,24] for examples and details on this condition.
We now introduce the form a : Q × Q → IR and the function j : Q → IR defined by

a(σ, τ ) =
∫

Ω

Aσ · τ dx ∀ σ, τ ∈ Q, (2.17)

j(σ) =
1
2

∫

Ω

β ‖σ − PBσ‖2 dx ∀ σ ∈ Q. (2.18)

Next, we consider the product Hilbert space

Y = L2(Ω)d × L2(Γ2)d × L2(Γ3) × IR

endowed with the canonical inner product denoted by (·, ·)Y . and the associated norm ‖ · ‖Y . Moreover,
assumptions (2.12)–(2.15) lead us to consider the subset of Y defined by

Λ = {η = (f0,f2, p, g) ∈ Y : g ≥ 0 }. (2.19)

Then, for η = (f0,f2, p, g) ∈ Λ we introduce the element f(η) ∈ V , the sets U(η) ⊂ V , Σ(η) ⊂ Q and
the function J(·,η) : Q → IR defined by

(f(η),v)V =
∫

Ω

f0 · v dx +
∫

Γ2

f2 · v da −
∫

Γ3

pvν da ∀ v ∈ V, (2.20)

U(η) = {v ∈ V : vν ≤ g a.e. on Γ3 }, (2.21)
Σ(η) = { τ ∈ Q : (τ , ε(v) − ε(gθ)Q ≥ (f(η),v − gθ)V ∀ v ∈ U(η) }, (2.22)

J(σ,η) =
1
2

a(σ,σ) + j(σ) − (ε(gθ),σ)Q ∀ σ ∈ Q. (2.23)
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We now derive the variational formulation of Problem Q and, to this end, we assume that (u,σ) are
sufficiently regular functions which satisfy (2.1)–(2.6), η ∈ Λ is fixed and v ∈ U(η). Then, using (2.8),
equation (2.2) and the boundary conditions (2.3), (2.4) we find that∫

Ω

σ · (ε(v) − ε(u)) dx (2.24)

=
∫

Ω

f0 · (v − u) dx +
∫

Γ2

f2 · (v − u) da +
∫

Γ3

σν · (v − u) da.

On the other hand, ∫

Γ3

σν · (v − u) da =
∫

Γ3

σν(vν − uν) da +
∫

Γ3

στ · (vτ − uτ ) da

and, therefore, conditions (2.5) and (2.6) yield∫

Γ3

σν · (v − u) da ≥
∫

Γ3

p(uν − vν) da. (2.25)

We now combine (2.24), (2.25) and then use notation (2.20) to deduce that

(σ, ε(v) − ε(u))Q ≥ (f(η),v − u)V ∀ v ∈ U(η). (2.26)

Moreover, assumption (2.16) allows us to write inequality (2.26) with v = gθ, v = 2u−gθ, both in U(η),
to see that

(σ, ε(u) − ε(gθ))Q = (f(η),u − gθ)V . (2.27)
Next, adding (2.26) and (2.27) we find that

(σ, ε(v) − ε(gθ)Q ≥ (f(η),v − gθ)V ∀ v ∈ U(η)

which implies that
σ ∈ Σ(η). (2.28)

Let τ ∈ Σ(η). We use (2.23) to see that

J(τ ,η) − J(σ,η)

=
1
2

a(τ − σ, τ − σ) + a(σ, τ − σ) + j(τ ) − j(σ) − (ε(gθ), τ − σ)Q

and, therefore, (2.9)(c) implies that

J(τ ,η) − J(σ,η)
≥ a(σ, τ − σ) + j(τ ) − j(σ) − (ε(gθ), τ − σ)Q. (2.29)

On the other hand, it is well known that the function j : Q → R is convex and Gâteaux differentiable
and, moreover, ∇j(σ) = β(σ − PBσ) for all σ ∈ Q. Therefore, the subgradient inequality yields

j(τ ) − j(σ) ≥ (β(σ − PBσ), τ − σ)Q. (2.30)

We now combine inequalities (2.29) and (2.30) then use the constitutive law (2.1) to see that

J(τ ,η) − J(σ,η) ≥ (ε(u) − ε(gθ), τ − σ)Q. (2.31)

Note that u ∈ U(η). Then, inequality (2.31), equality (2.27) and definition (2.22) show that J(τ ,η) ≥
J(σ,η). Therefore, we deduce the following variational formulation of Problem P.

Problem. PV . Given η ∈ Λ, find a stress field σ such that

σ ∈ Σ(η), J(σ,η) ≤ J(τ ,η) ∀ τ ∈ Σ(η). (2.32)
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The analysis of Problem PV , including existence, uniqueness and various convergence results, will be
provided in the next section. Here we restrict ourselves to mention that a couple of functions (u,σ) which
satisfies (2.32) and (2.1) is called a weak solution of the elastic contact problem (2.1)–(2.6).

3. An abstract optimization problem

In this section, we consider an abstract optimization problem which includes as particular case Problem
PV . We prove existence and convergence results which have interest in their own and are useful in the
analysis and control of the contact problem P. The functional framework is as follows. Assume that
(X, ‖ · ‖X) is a reflexive Banach space, (Y, ‖ · ‖Y ) a normed space, Λ ⊂ Y , J : X × Λ → R and, for each
η ∈ Λ, K(η) is a given subset of X. Then, the optimization problem under consideration is as follows.

Problem. O. Given η ∈ Λ, find u such that

u ∈ K(η), J(u, η) = min
v∈K(η)

J(v, η). (3.1)

Next, for each n ∈ N, we consider a perturbation ηn ∈ Λ of η, together with the following optimization
problem.

Problem. On. Given ηn ∈ Λ, find un such that

un ∈ K(ηn), J(un, ηn) = min
v∈K(ηn)

J(v, ηn). (3.2)

Below in this paper, we denote by → and ⇀ the strong and weak convergence in various normed
spaces, which will be specified. Moreover, in the study of problems O and On we consider the following
assumptions.
(Λ) Λ is a nonempty weakly closed subset of Y .
(K) For each η ∈ Λ, K(η) is a nonempty weakly closed subset of X.
(K∗) For each η ∈ Λ, K(η) = K with K ⊂ X given.

(J1)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

For all sequences {uk} ⊂ X and {ηk} ⊂ Λ such that
uk ⇀ u in X, ηk ⇀ η in Y and for all v ∈ X,
the inequality below holds:
lim sup

k→∞
[J(v, ηk) − J(uk, ηk)] ≤ J(v, η) − J(u, η).

(J2)
{

For all sequences {uk} ⊂ X and {ηk} ⊂ Λ such that
‖uk‖X → ∞ and ηk ⇀ η in Y, one has J(uk, ηk) → ∞.

(J3)
{

For all sequence {ηk} ⊂ Λ such that ηk ⇀ η in Y
and all v ∈ X, one has J(v, ηk) → J(v, η).

(J4)

⎧⎨
⎩

For all sequences {vk} ⊂ X and {ηk} ⊂ Λ such that
vk → v in X, ηk ⇀ η in Y one has
J(vk, ηk) − J(v, ηk) → 0.

ηn ⇀ η in Y. (3.3)

K(ηn) M−→ K(η) in X, (3.4)

where notation “ M−→” denotes the convergence in the sense of Mosco that we recall below, for the conve-
nience of the reader.

Definition 3.1. Let X be a normed space, {Kn} a sequence of nonempty subsets of X and K a nonempty
subset of X. We say that the sequence {Kn} converges to K in the Mosco sense if the following conditions
hold.
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(M1)
{

For each v ∈ K, there exists a sequence {vn} such that
vn ∈ Kn for each n ∈ N and vn → v in X.

(M2)
{

For each sequence {vn} such that
vn ∈ Kn for each n ∈ N and vn ⇀ v in X, we have v ∈ K.

Note that the convergence in the sense of Mosco depends on the topology of the normed space X

and, for this reason, in (3.4) we write explicitely K(ηn) M−→ K(η) in X. More details on this topic can
be found in [19].

Our first result in this section is as follows.

Theorem 3.2. Assume the hypotheses (Λ), (K), (J1) and (J2). Then, we have the following statements.
(i) Problem O has at least one solution and Problem On has at least one solution, for each n ∈ N.
(ii) Under assumptions (3.3), (3.4), (J3), (J4) or, alternatively, under assumptions (3.3), (K∗), (J3),

if un is a solution of Problem On, for each n ∈ N, then there exists a subsequence of the sequence
{un}, again denoted {un}, and an element u ∈ X, such that

un ⇀ u in X. (3.5)

Moreover, u is a solution to Problem O.

Proof. (i) Let λ ∈ Λ be given. We take ηk = η in (J1) to see that, for all sequences {uk} ⊂ X such that
uk ⇀ u and for all v ∈ X,

lim sup
k→∞

[J(v, η) − J(uk, η)] ≤ J(v, η) − J(u, η),

which implies that

lim inf
k→∞

J(uk, η) ≥ J(u, η).

It follows that the function J(·, η) : X → R is lower semicontinuous. Moreover, taking ηk = η in
(J2) we deduce that J(·, η) is coercive. Recall also the assumption (K) on K(η). The existence of at
least one solution to Problem O is now a direct consequence of the well-known Weierstrass theorem.
The existence of at least one solution to Problem On follows by the same argument, applied to the
function J(·, ηn) : X → R with ηn ∈ Λ given.

(ii) Assume now that, in addition, (3.3), (3.4), (J3) and (J4) hold. We claim that the sequence {un}
is bounded in X. Indeed, if {un} is not bounded, then we can find a subsequence of the sequence
{un}, again denoted {un}, such that ‖un‖X → ∞. Therefore, using assumptions (3.3) and (J2) we
deduce that

J(un, ηn) → ∞. (3.6)
Let v be a given element in K(η) and recall that assumption (3.4) implies that condition (M1) holds.

Thus, there exists a sequence {vn} such that vn ∈ K(ηn) for each n ∈ N and

vn → v in X. (3.7)

Moreover, since un is a solution of Problem On we obtain that J(un, ηn) ≤ J(vn, ηn) and, therefore,

J(un, ηn) ≤ J(vn, ηn) − J(v, ηn) + J(v, ηn) − J(v, η) + J(v, η) ∀n ∈ N. (3.8)

On the other hand, convergences (3.7) and (3.3) allow us to use assumption (J4) to find that J(vn, ηn)−
J(v, ηn) → 0 and, in addition, assumption (J3) shows that J(v, ηn) − J(v, η) → 0. Thus, inequality (3.8)
implies that the sequence {J(un, ηn)} is bounded, which contradicts (3.6). We conclude from above that
the sequence {un} is bounded in X and, therefore, there exists a subsequence of the sequence {un}, again
denoted {un}, and an element u ∈ X, such that (3.5) holds.

We now prove that u is a solution of Problem O. To this end, we use (3.5) and condition (M2),
guaranteed by assumption (3.4), to deduce that u ∈ K(η). Next, we consider an arbitrary element
v ∈ K(η) and, using condition (M1), we know that there exists a sequence {vn} such that vn ∈ K(ηn) for
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each n ∈ N and (3.7) holds. Since un is a solution to Problem On we have J(un, ηn) ≤ J(vn, ηn), which
implies that

0 ≤ [J(v, ηn) − J(un, ηn)] + [J(vn, ηn) − J(v, ηn)] ∀n ∈ N. (3.9)
We now use convergences (3.7), (3.3) and assumptions (J1), (J4) to see that

lim sup
n→∞

[J(v, ηn) − J(un, ηn)] ≤ J(v, η) − J(u, η), (3.10)

J(vn, ηn) − J(v, ηn) → 0 (3.11)
We now combine (3.9)–(3.11) to deduce that u is a solution of Problem O.

Alternatively, assume now that (3.3), (K∗), (J3) hold. Then, K(ηn) = K(η) = K and, since un is a
solution of Problem On, we have

J(un, ηn) ≤ J(v, ηn) ∀ v ∈ K, n ∈ N. (3.12)

Using now assumption (J3) we deduce that the sequence {J(un, ηn)} is bounded, which contradicts (3.6).
We conclude from above that the sequence {un} is bounded in X and, therefore, there exists a subsequence
of the sequence {un}, again denoted {un}, and an element u ∈ X, such that (3.5) holds.

We now prove that u is a solution of Problem O. To this end, we use (3.5) and assumptions (K∗), (K)
to see that u ∈ K(η) = K. Next, we consider an arbitrary element v ∈ K(η). Since un is the solution to
Problem On we have J(un, ηn) ≤ J(v, ηn) which implies that

0 ≤ J(v, ηn) − J(un, ηn) ∀n ∈ N. (3.13)

We now use convergence (3.3) and assumption (J1) to see that

lim sup
n→∞

[J(v, ηn) − J(un, ηn)] ≤ J(v, η) − J(u, η). (3.14)

We now combine (3.13) and (3.14) to deduce that u is a solution of Problem O, which concludes the
proof. �

We now reinforce the conditions on the data by considering the following assumptions.
(K̃) For each η ∈ Λ, K(η) ⊂ X is a nonempty closed convex subset.
(J̃) For each η ∈ Λ, J(·, η) : X → R is a strictly convex function.

(J∗)

⎧⎨
⎩

There exists m > 0 such that
(1 − t)J(u, η) + tJ(v, η) − J((1 − t)u + tv, η) ≥ mt(1 − t)‖u − v‖2

X

for all u, v ∈ X, η ∈ Λ, t ∈ [0, 1].
Note that assumption (K̃) implies assumption (K) and, moreover, assumption (J∗) implies assumption

(J̃).

Theorem 3.3. Assume the hypotheses (Λ), (K̃), (J1), (J2) and (J̃). Then we have the following statements.
(i) Problem O has a unique solution u and Problem On has a unique solution un, for each n ∈ N.
(ii) Under assumptions (3.3), (3.4), (J3), (J4) or, alternatively, under assumptions (3.3), (K∗), (J3),

the sequence {un} converges weakly to u, i.e., un ⇀ u in X.
(iii) Under assumptions (3.3), (3.4), (J3), (J4), (J∗) or, alternatively, under assumptions (3.3), (K∗),

(J3), (J∗), the sequence {un} converges strongly to u, i.e., un → u in X.

Proof. (i) For the existence part, we use arguments similar to those used in the proof of Theorem 3.2
(i), (ii). Since the modifications are straightforward, we skip the details. The uniqueness part follows
from the strictly convexity of the functions J(·, η) and J(·, ηn), guaranteed by assumption (J̃).

(ii) Assume now that, in addition, (3.3), (3.4), (J3), (J4) or, alternatively, (3.3), (K∗), (J3) hold. Then,
a careful analysis of the proof of Theorem 3.2 ii) reveals that in both cases the sequence {un} is
bounded and any weakly convergent subsequence of {un} converges to a solution of Problem P.
On the other hand, Problem P has a unique solution, denoted u, as proved in the first part of the
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theorem. The weak convergence of the whole sequence {un} to u is now a consequence of a standard
argument.

(iii) Assume now that (3.3), (3.4), (J3), (J4), (J∗) hold and let {ũn} be a sequence such that ũn ∈ K(ηn)
for each n ∈ N and

ũn → u in X. (3.15)

Recall that the existence of such sequence follows from assumption (M1), guaranteed by condition
(3.4). Then, using (J∗) with t = 1

2 we find that

m‖ũn − un‖2
X ≤ 2

[
J(ũn, ηn) − J

( ũn + un

2
, ηn

)]
+ 2

[
J(un, ηn) − J

( ũn + un

2
, ηn

)]

and, since un is a minimizer for the function J(·, ηn) on K(ηn), it follows that

m‖ũn − un‖2
X ≤ 2

[
J(ũn, ηn) − J

( ũn + un

2
, ηn

)]
, (3.16)

which implies that

m‖ũn − un‖2
X ≤ 2

[
J(u, ηn) − J

( ũn + un

2
, ηn

)]
+ 2

[
J(ũn, ηn) − J(u, ηn)

]
(3.17)

for all n ∈ N.
Next, we use convergences (3.3), (3.5), (3.15) and assumptions (J1), (J4) to deduce that

lim sup
n→∞

[
J(u, ηn) − J

( ũn + un

2
, ηn

)]
≤ 0, (3.18)

J(ũn, ηn) − J(u, ηn) → 0. (3.19)
We now combine inequalities (3.17)–(3.19) to find that ũn − un → 0 in X, which implies that un → u in
X due to (3.15).

Alternatively, assume now that assumptions (3.3), (K∗) and (J3) hold. Then, K(ηn) = K(η) = K
and, therefore, we are allowed to take ũn = u in (3.16) to obtain that

m‖u − un‖2
X ≤ 2

[
J(u, ηn) − J

(u + un

2
, ηn

)]
∀ n ∈ N. (3.20)

On the other hand, the part ii) shows that the sequence {un} converges weakly to u, i.e., un ⇀ u in X,
which implies that

un + u

2
⇀ u in X. (3.21)

We use convergences (3.3), (3.21) and assumption (J1) with v = u to deduce that

lim sup
n→∞

[
J(u, ηn) − J

(un + u

2
, ηn

)]
≤ 0. (3.22)

Thus, it follows from inequalities (3.20) and (3.22) that un → u in X which concludes the proof. �

4. Existence, uniqueness and convergence results

In this section, we use Theorem 3.3 to study Problem PV . To this end, for each n ∈ N we consider a
perturbation f0n, f2n, pn, gn of the data f0, f2, p, g, respectively, such that

f0n ∈ L2(Ω)d, (4.1)

f2n ∈ L2(Γ2)d, (4.2)
pn ∈ L2(Γ3), (4.3)
gn ≥ 0. (4.4)
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Moreover, we assume that the following convergences hold.

f0n ⇀ f0 in L2(Ω)d, (4.5)

f2n ⇀ f2 in L2(Γ2)d, (4.6)
pn ⇀ p in L2(Γ3), (4.7)
gn → g. (4.8)

Denote ηn = (f0n,f2n, pn, gn), which clearly belongs to Λ. With these data, we consider the following
perturbation of Problem PV .

Problem. PV
n . Given ηn ∈ Λ, find a stress field σn such that

σn ∈ Σ(ηn), J(σn,ηn) ≤ J(τ ,ηn) ∀ τ ∈ Σ(ηn). (4.9)

We have the following existence, uniqueness and convergence result.

Theorem 4.1. Assume (2.9)–(2.16), (4.1)–(4.4). Then, the following statement hold.

(i) Problem PV has a unique solution σ and, for each n ∈ N, Problem PV
n has a unique solution σn.

(ii) If (4.5)–(4.8) hold, then the sequence {σn} converges strongly to σ, i.e., σn → σ in X.

To provide the proof of Theorem 4.1, we need some preliminary results that we present in what follows.
First, we note that assumption (2.9) on the elasticity tensor implies that the bilinear form a is symmetric,
continuous and coercive with constant mA. Therefore,

σk → σ in Q, τ k → τ in Q =⇒ a(σk, τ k) → a(σ, τ ). (4.10)
a(τ , τ ) ≥ mA‖τ‖2

Q ∀ τ ∈ Q. (4.11)

This implies that the function τ → a(τ , τ ) is weakly lower semicontinuous on X, i.e.,

τ k ⇀ τ in Q =⇒ lim inf
k→∞

a(τ k, τ k) ≥ a(τ , τ ). (4.12)

On the other hand, it is easy to see that the function j is convex and continuous and, therefore, it is
weakly lower semicontinuous. Hence,

τ k ⇀ τ in Q =⇒ lim inf
k→∞

j(τ k) ≥ j(τ ), (4.13)

τ k → τ in Q =⇒ lim
k→∞

j(τ k) = j(τ ). (4.14)

We are now in position to provide the proof of Theorem 4.1.

Proof. We shall use Theorem 3.3 with X = Q and K(·) = Σ(·), Λ and J being defined by (2.19) and
(2.23), respectively. To this end, in what follows we check the validity of assumptions of this theorem.

First, it is easy to see that the set Λ is a nonempty closed convex subset of Y which implies that
condition (Λ) holds. On the other hand, for each η ∈ Λ the set Σ(η) is a closed convex subset of Q and,
moreover, since

(ε(f(η)), ε(v))Q = (f(η),v)V ∀v ∈ V,

we deduce that ε(f(η)) ∈ Σ(η). Therefore, condition (K̃) is satisfied. In addition, a simple calculation
based on the definitions (2.17)–(2.18), the properties of the form a and the convexity of the function j
shows that

(1 − t)J(σ,η) + tJ(τ ,η) − J((1 − t)σ + tτ ,η) ≥ 1
2

t(1 − t) a(σ − τ ,σ − τ )

for all σ, τ ∈ X, η ∈ Λ, t ∈ [0, 1]. We combine this inequality with inequality (4.11) to see that condition
(J∗) holds.
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Assume now that {σk} ⊂ Q and {ηk} ⊂ Λ are two sequences such that σk ⇀ σ in Q, ηk =
(f0k,f2k, pk, gk) ⇀ η = (f0,f2, p, g) in Y and let τ ∈ Q. Since

J(τ ,ηk) − J(σk,ηk) =
1
2

a(τ , τ ) − 1
2

a(σk,σk) + j(τ ) − j(σk) − (ε(gkθ), τ − σk)Q,

using (4.12), (4.13) and the convergence gk → g, we deduce that

lim sup
k→∞

[J(τ ,ηk) − J(σk,ηk)]

le
1
2

a(τ , τ ) − 1
2

lim inf
k→∞

a(σk,σk) + j(τ ) − lim inf
k→∞

j(σk) − (ε(gθ), τ − σ)Q

le
1
2

a(τ , τ ) − 1
2

a(σ,σ) + j(τ ) − j(σ) − (ε(gθ), τ − σ)Q = J(τ ,η) − J(σ,η).

It follows from here that condition (J1) is satisfied.
On the other hand, for any sequences {σk} ⊂ Q and {ηk} ⊂ Λ, using inequality (4.11) and the

positivity of j we have

J(σk,ηk) =
1
2

a(σk,σk) + j(σk) − (ε(gkθ),σk)Q

≥ mA
2

‖σk‖2
Q − gk‖ε(θ)‖Q‖σk‖Q. (4.15)

Assume now that and ηk ⇀ η in Y . Then {ηk} is bounded in Y which implies that {gk} is bounded in
IR. Therefore, if ‖σk‖Q → ∞, inequality (4.15) shows that J(σk,ηk) → ∞. We conclude from above that
condition (J2) is satisfied, too.

Let {ηk} ⊂ Λ be a sequence such that ηk ⇀ η in Y and let τ ∈ Q. We have

J(τ ,ηk) − J(τ ,η) = (g − gk)(ε(θ), τ )

and, using the convergence gk → g we obtain that J(τ ,ηk) − J(τ ,η) → 0 which shows that condition
(J3) holds.

Assume now that {τ k} ⊂ Q and {ηk} ⊂ Λ are two sequences such that τ k → τ in Q and ηk ⇀ η in Y .
We have

J(τ k,ηk) − J(τ ,ηk) =
1
2

a(τ k, τ k) − 1
2

a(τ , τ ) + j(τ k) − j(τ ) − gk(ε(θ), τ k − τ )Q

and, using convergences (4.10) and (4.14), we deduce that

J(τ k,ηk) − J(τ ,ηk) → 0,

which shows that condition (J4) holds.
Assume in what follows that (4.5)–(4.8) hold. Then

ηn = (f0n,f2n, pn, gn) ⇀ η = (f0,f2, p, g) in Y, (4.16)

which shows that condition (3.3) holds, too.
We now prove that

Σ(ηn) M−→ Σ(η) in Q. (4.17)
To this end, we introduce the sets

U0 = { v ∈ V : vν ≤ 0, a.e. on Γ3}, (4.18)
Σ0 = { τ ∈ Q : (τ , ε(v))Q ≥ 0 ∀v ∈ U0 }. (4.19)

Then, it is easy to see that v ∈ U(η) if and only if v − gθ ∈ U0 and, therefore, definition (2.22) implies
that τ ∈ Σ(η) if and only if τ − ε(f(η)) ∈ Σ0. We conclude from here that

Σ(η) = ε(f(η)) + Σ0, (4.20)
Σ(ηn) = ε(f(ηn)) + Σ0 ∀ n ∈ N. (4.21)
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Let τ ∈ Σ(η). Then, using (4.20) it follows that there exists an element τ 0 ∈ Σ0 such that τ =
ε(f(η)) + τ 0. Define τn = ε(f(ηn)) + τ 0 and note that (4.21) shows that τn ∈ Σ(ηn). Moreover, an
elementary calculus combined with definition (2.20) show that

‖τn − τ‖2
Q = ‖ε(f(ηn)) − ε(f(η))‖2

Q = ‖f(ηn) − f(η)‖2
V

= (f(ηn),f(ηn) − f(η))V − (f(η),f(ηn) − f(η))V

=
∫

Ω

(f0n − f0) · (f(ηn) − f(η)) dx +
∫

Γ2

(f2n − f2) · (f(ηn) − f(η)) da

−
∫

Γ3

(pn − p)(f(ηn) − f(η))ν da.

Note that (4.16) implies that f(ηn) ⇀ f(η) in V and, using a compactness argument, it follows that
f(ηn) → f(η) in L2(Ω)d, f(ηn) → f(η) in L2(Γ2)d and (f(ηn) − f(η))ν → 0 in L2(Γ3)d. Therefore,
using the previous equality and convergence (4.16) it is easy to see that ‖τn −τ‖2

Q → 0 which shows that
condition (M1) in Definition 3.1 is satisfied.

Assume now that the sequence {τn} ⊂ Σ(ηn) is such that τn ⇀ τ in Q. Then τn = ε(f(ηn)) + τ 0n

with τ 0n ∈ Σ0 and, since f(ηn) ⇀ f(η) in V , we deduce that ε(f(ηn)) ⇀ ε(f(η)) in Q. It follows from
here that the sequence {τ 0n} ⊂ Σ0 converges weakly in Q and, since Σ0 is a weakly closed subset of Q,
we deduce that it converges weakly to an element τ 0 ∈ Σ0. This implies that τ = ε(f(η)) + τ 0 and,
using (4.21) we deduce that τ ∈ Σ(η). This shows that condition (M2) in Definition 3.1 is satisfied and,
therefore, convergence (4.17) holds.

To conclude, it follows from above that conditions (Λ), (K̃), (J1)–(J4), (J∗), (3.3) and (3.4) hold.
Theorem 4.1 is now a direct consequence of Theorem 3.3. �

Note that Theorem 4.1 provides the unique weak solvability of Problem P. In addition, it shows that
the weak solution of this contact problem depends continuously on the densities of the applied forces, the
given pressure and the gap g, which is important from mechanical point of view.

5. An optimal control problem

Theorem 3.2 can be used in the study of optimal control problems associated with the contact Problem
P. Several examples can be considered. Nevertheless, in this section we restrict ourselves to the study
of a representative example, i.e., a boundary control problem in which the control is the function p,
interpreted as the pressure of the fluid which covers the obstacle.

Below in this section, in contrast to the previous sections of the manuscript, we consider the product
Hilbert space Y = L2(Ω)d × L2(Γ2)d × IR, endowed with the canonical inner product (·, ·)Y and the
associated norm ‖ · ‖Y . A generic element of Y will be denoted by ξ = (f0,f2, g). Moreover, we use the
notation Λ for the set

Λ = { ξ = (f0,f2, g) ∈ Y : g ≥ 0 } (5.1)

and let W be a given set such that

W ⊂ { p ∈ L2(Γ3) : p(x) ≥ 0 a.e. x ∈ Γ3 }.

Let ξ = (f0,f2, g) and p ∈ W be given and denote by σ(f0,f2, p, g) = σ(p, ξ) the solution of Problem
PV , under the assumption of Theorem 4.1. With these notations, we define the set of admissible pairs
for Problem PV by equality

Vad(ξ) = { (σ, p) : p ∈ W and σ = σ(p, ξ) }. (5.2)
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In other words, a pair (σ, p) belongs to Vad(ξ) if and only if p ∈ W and, moreover, σ is the solution
of Problem PV with η = (f0,f2, p, g). Consider also a cost functional L : Q × L2(Γ3) → R. Then, the
optimal control problem we are interested in is the following.

Problem. Q. Given ξ ∈ Λ, find (σ∗, p∗) ∈ Vad(ξ) such that

L(σ∗, p∗) = min
(σ ,p)∈Vad(ξ)

L(σ, p). (5.3)

To solve Problem Q, we consider the following assumptions.

W is a nonempty weakly closed subset of L2(Γ3). (5.4)⎧⎪⎪⎪⎨
⎪⎪⎪⎩

For all sequences {σk} ⊂ Q and {pk} ⊂ L2(Γ3) such that
σk → σ in Q, pk ⇀ p in L2(Γ3) we have
(a) lim inf

k→∞
L(σk, pk) ≥ L(σ, p).

(b) lim
k→∞

[L(σk, pk) − L(σ, pk)
]

= 0.

(5.5)

⎧⎨
⎩

There exists h : L2(Γ3) → IR such that
(a) L(σ, p) ≥ h(p) ∀σ ∈ Q, p ∈ L2(Γ3).
(b) ‖pk‖L2(Γ3) → +∞ =⇒ h(pk) → ∞.

(5.6)

Example 5.1. A typical example of function L which satisfies conditions (5.5)–(5.6) is obtained by taking

L(σ, p) = f(σ) + h(p) ∀σ ∈ Q, p ∈ L2(Γ3)

where f : Q → IR is a continuous positive function and h : L2(Γ3) → IR is a lower semicontinuous coercive
function, i.e., it satisfies condition (5.6)(b). We conclude that our results below are valid for such type of
cost functionals.

Next, for each n ∈ N we consider a perturbation ξn = (f0n,f2n, gn) ∈ Λ of ξ. With these data, we
consider the following perturbation of Problem Q.

Problem. Qn. Given ξn ∈ Λ, Find (σ∗
n, p∗

n) ∈ Vad(ξn) such that

L(σ∗
n, p∗

n) = min
(σ ,p)∈Vad(ξn)

L(σ, p). (5.7)

Note that in the statement of this problem, the set of admissible pairs is defined by

Vad(ξn) = { (σ, p) : p ∈ W and σ = σ(p, ξn) }. (5.8)

We have the following existence, uniqueness and convergence result.

Theorem 5.2. Assume (2.9)–(2.16), (4.1)–(4.4) and (5.4)–(5.6). Then, the following statement hold.
(i) Problem Q has at least one solution (σ∗, p∗) and, for each n ∈ N, Problem Qn has at least one

solution (σ∗
n, p∗

n).
(ii) If (4.5), (4.6), (4.8) hold and (σ∗

n, p∗
n) is a solution of Problem Qn, for each n ∈ N, then there exists

a subsequence of the sequence {(σ∗
n, p∗

n)}, again denoted {(σ∗
n, p∗

n)}, and an element (σ∗, p∗), such
that

σ∗
n → σ∗ in Q. (5.9)

p∗
n ⇀ p∗ in L2(Γ3). (5.10)

Moreover, (σ∗, p∗) is a solution to Problem Q.

To provide the proof of Theorem 5.2, we need some preliminary results that we present in what follows.
First, for each ξ ∈ Λ we consider the function J(·, ξ) : L2(Γ3) → IR defined by

J(p, ξ) = L(σ(p, ξ), p) ∀ p ∈ L2(Γ3), (5.11)

together with the following auxiliary problem.
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Problem. R. Given ξ ∈ Λ, find p∗ ∈ W such that

J(p∗, ξ) = min
p∈W

J(p, ξ). (5.12)

Then, using definitions (5.11) and (5.2) it is easy to see that{
(σ∗, p∗) is a solution of Problem Q if and only if
p∗ is a solution of Problem R and σ∗ = σ(p∗, ξ). (5.13)

Next, for each n ∈ N we consider the following problem.

Problem. Rn. Given ξn ∈ Λ, find p∗
n ∈ W such that

J(p∗
n, ξn) = min

p∈W
J(p, ξn). (5.14)

Then, using again (5.11) and definition (5.8) it is easy to see that{
(σ∗

n, p∗
n) is a solution of Problem Qn if and only if

p∗
n is a solution of Problem Rn and σ∗

n = σ(p∗
n, ξn). (5.15)

We are now in position to provide the proof of Theorem 5.2.

Proof. We shall use Theorem 3.2 with X = L2(Γ3) and K(·) = W , Λ and J being defined by (5.1) and
(5.11), respectively. To this end, in what follows we check the validity of assumptions in Theorem 3.2.

First, it is easy to see that the set Λ is a nonempty closed convex subset of Y which implies that
condition (Λ) holds. On the other hand, assumption (5.4) guarantees that condition (K) is satisfied and,
since W does not depend on ξ, we deduce that condition (K∗) holds, too.

Assume now that {pk} ⊂ L2(Γ3) and {ξk} ⊂ Λ are two sequences such that pk ⇀ p in L2(Γ3), ξk =
(f0k,f2k, gk) ⇀ ξ = (f0,f2, g) in Y and let q ∈ L2(Γ3). Then, using (5.11) we have

J(q, ξk) − J(pk, ξk) = L(σ(q, ξk), q) − L(σ(pk, ξk), pk) ∀ k ∈ N. (5.16)

Note also that Theorem 4.1 guarantees the convergences σ(q, ξk) → σ(q, ξ) in Q, σ(pk, ξk) → σ(p, ξ) in
Q. Therefore, assumption (5.5) and definition (5.11) imply that

lim
k→∞

L(σ(q, ξk), q) = L(σ(q, ξ), q) = J(q, ξ), (5.17)

lim sup
k→∞

[−L(σ(pk, ξk), pk)] ≤ −L(σ(p, ξ), p) = −J(p, ξ). (5.18)

We now pass to the upper limit in (5.16) and use relations (5.17), (5.18) to find that

lim sup
k→∞

[
J(q, ξk) − J(pk, ξk)

] ≤ J(q, ξ) − J(p, ξ),

which shows that condition (J1) is satisfied.
On the other hand, for any sequences {pk} ⊂ X and {ξk} ⊂ Λ, using inequality (5.6)(a) we have

J(pk, ξk) = L(σ(pk, ξk), pk) ≥ h(pk).

Therefore, if ‖pk‖L2(Γ3) → ∞, from (5.6)(b) we deduce that J(pk, ξk) → ∞ which shows that condition
(J2) is satisfied, too.

Let {ξk} ⊂ Λ be a sequence such that ξk ⇀ ξ in Y and let q ∈ L2(Γ3). We have

J(q, ξk) − J(q, ξ) = L(σ(q, ξk), q) − L(σ(q, ξ), q)

and, using the convergence σ(q, ξk) → σ(q, ξ), guaranteed by Theorem 4.1, we deduce by assumption
(5.5)(b) that

J(q, ξk) − J(q, ξ) → 0.

This shows that condition (J3) holds.
Note also that, if (4.5), (4.6), (4.8) hold, then ξn = (f0n,f2n, gn) ⇀ ξ = (f0,f2, g) in Y , which shows

that condition (3.3) holds.
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We conclude from above that all the assumptions (Λ), (K), (J1), (J2), (3.3), (K∗), (J3) of Theorem 3.2
are valid for the study of the optimization problems Q and Qn. Theorem 5.2 is now a direct consequence
of Theorem 3.2, combined with the equivalences (5.13) and (5.15) and the convergence result in Theorem
4.1. �

We end this section with two examples of optimal control problems for which the result provided by
Theorem 5.2 hold. In both examples, for a given σ ∈ Q we denote by u(σ) the unique displacement
field u ∈ V associated with σ via the constitutive law (2.1). Note that the existence and uniqueness of
u follows by using arguments similar to those used in Theorem 5.13 in [25], and therefore, we skip its
proof. Nevertheless, we recall that, under assumptions (2.9)–(2.15), the operator σ → u(σ) : Q → V is
Lipschitz continuous.

Example 5.3. Let α and δ be strictly positive constants and let φ ∈ L2(Γ3) be given. Define

W = { p ∈ L2(Γ3) : p(x) ≥ 0 a.e. x ∈ Γ3} (5.19)

L(σ, p) = α

∫

Γ3

(uν(σ) − φ)2 da + δ

∫

Γ3

p2 da (5.20)

for all (σ, p) ∈ Q×L2(Γ3). With this choice, the mechanical interpretation of Problem Q is the following:
we are looking for a surface pressure p ∈ W acting on Γ3 such that the corresponding normal displace-
ment uν is as close as possible to the “desired displacement” φ. Furthermore, this choice has to fulfill a
minimum expenditure condition which is taken into account by the last term in (5.20). Note that in this
case conditions (5.4)–(5.6) are satisfied and, therefore, Theorem 5.2 can be applied to obtain that the
corresponding Problem Q has at least one solution.

Example 5.4. Let W (·) be defined by (5.19), α > 0, δ > 0 and let

L(σ, p) = α

∫

Ω

‖ε(u(σ))‖2 dx + δ

∫

Γ3

p2 da (5.21)

for all (σ, p) ∈ Q×L2(Γ3). With this choice, the mechanical interpretation of Problem Q is the following
: we are looking for a surface pressure p acting on Γ3 such that the corresponding deformation in the
body is as small as possible. And, again, this choice has to fulfill a minimum expenditure condition which
is taken into account by the last term in (5.21). Note that in this case conditions (5.4)–(5.6) are satisfied
and, therefore, Theorem 5.2 guarantees the existence of at least one solution of the corresponding optimal
control problem.

6. Conclusion

We studied an abstract optimization problem for which we provided existence, uniqueness and conver-
gence results. The proofs were based on arguments of monotonicity, lower semicontinuity and Mosco
convergence. To illustrate the usefulness of these abstract results, we applied them in the study of the
analysis and control of a mathematical model which describes the equilibrium of an elastic body in
frictionless contact with an obstacle, the so-called foundation.

The study presented in this paper give rise to several open problems that we describe in what follows.
Any progress in these directions will complete our work and will open the way for new advances and ideas.
First, it would be interesting to derive necessary optimality conditions in the study of Problem Q. Due
to the nonsmooth and nonconvex feature of the functional L, the treatment of this problem requires the
use of its approximation by smooth optimization problems. And, in this matter, the abstract convergence
results for the optimal pairs in this paper could be a crucial tool. Another interesting continuation of the
results presented in this paper would be their extension to frictional models of contact. Such models lead,
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in general, to variational and hemivariational inequalities in which the unknown is the displacement field.
Considering optimal control for quasistatic or dynamic models of contact would be another problem which
deserves future research. Such models lead to evolutionary variational, hemivariational or variational–
hemivariational inequalities, as shown in the recent references [18,26].
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