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dient, respectively. An existence theorem of weak solutions to the problem is established 

by applying a surjectivity theorem for the sum of operators combined with results from 
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1. Introduction 

In many complicated physical processes and engineering applications, mathematical models of problems are formulated

as inequalities instead of the more commonly seen equations. Many problems are focused on the study of variational in-

equalities and hemivariational inequalities. Generally speaking, variational inequalities are referred to those inequality prob-

lems with a convex framework, while hemivariational inequalities are involved in those systems with nonconvex and non-

smooth structure. In the recent years, the study of variational and hemivariational inequalities has been considered ex-

tensively in variety of mathematical theory analysis and engineering applications, see [9,10,12–15,18–21,23,26,27,29,30] . On
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the other hand, the problems involving fractional and nonlocal operators constitute a source of extensive interest in re-

cent years, since they provide precise description of some physical phenomena for viscoelastic materials such as fractional

Kelvin-Voigt constitutive laws and fractional Maxwell model, electrodynamics biotechnology, aerodynamics and control of 

dynamical systems, see [2,8,16,17,22,28,31,32] . 

Let � be a bounded domain in R 

N with Lipschitz boundary, s ∈ (0, 1) be such that N > 2 s , �� := R 

N \ �, and 0 < T < ∞ . The

purpose of the paper is to explore the existence of solutions for the following space-fractional variational-hemivariational

inequality of parabolic type: { 

u 

′ + L K u + ∂ J(u ) + ∂ C ϕ(u ) � f in � × (0 , T ) 

u (x, t) = 0 in �� × (0 , T ) 
u (x, 0) = u 0 in �, 

(1) 

where u ′ = 

∂ 
∂t 

and the operator L K stands for the generalized nonlocal space-fractional Laplace operator defined as follows 

L K u (x ) := −
∫ 
R N 

(u (x + y ) + u (x − y ) − 2 u (x )) K(y ) dy for a . e . x ∈ R 

N , 

for all u ∈ X 0 , the space X 0 is given in Section 2 . Moreover, for problem (1) , the kernel function K is assumed to satisfy the

following condition: 

H(K) : K : R 

N \{ 0 } → (0 , + ∞ ) is such that 

(i) the function x �→ min {| x | 2 , 1} K ( x ) belongs to L 1 (R 

N ) . 

(ii) for all x ∈ R 

N \{ 0 } , there exists a constant m K > 0 such that 

K(x ) ≥ m K | x | −(N+2 s ) . 

(iii) for each x ∈ R 

N \{ 0 } , we have K(x ) = K(−x ) . 

The terms ∂ J and ∂ C ϕ denote the generalized subdifferential operator in the sense of Clarke, see [5] , for a locally Lipschitz

functional J , and convex subdifferential operator for a proper, convex functional ϕ, respectively. 

To highlight the level of generalization of problem (1) , we present below its several particular cases. 

(i) If the kernel function K is specialized to 

K(x ) := | x | −(N+2 s ) for all x ∈ R 

N \{ 0 } , 
and for some s ∈ (0, 1) such that 2 s < N , i.e., the generalized fractional nonlocal Laplace operator L K becomes the

classical fractional Laplace operator (−�) s , 

(−�) s u (x ) := −
∫ 
R N 

u (x + y ) + u (x − y ) − 2 u (x ) 

| y | N+2 s 
dy for a . e . x ∈ R 

N , 

then problem (1) reduces to the following parabolic variational-hemivariational inequality involving fractional Laplace 

operator { 

u 

′ + (−�) s u + ∂ J(u ) + ∂ C ϕ(u ) � f in � × (0 , T ) 

u (x, t) = 0 in �� × (0 , T ) 
u (x, 0) = u 0 in �. 

(ii) If the convex functional ϕ ≡ 0, then the fractional variational-hemivariational inequality of parabolic type (1) reduces

to the following “purely” fractional parabolic hemivariational inequality { 

u 

′ + L K u + ∂ J(u ) � f in � × (0 , T ) 

u (x, t) = 0 in �� × (0 , T ) 
u (x, 0) = u 0 in �. 

(iii) If the locally Lipschitz functional J ≡ 0, then the fractional variational-hemivariational inequality of parabolic type

(1) converts to the following fractional parabolic variational inequality { 

u 

′ + L K u + ∂ C ϕ(u ) � f in � × (0 , T ) 

u (x, t) = 0 in �� × (0 , T ) 
u (x, 0) = u 0 in �. 

In fact, as far as we know, until now, there is no reference which deals with all of the special cases listed above. Based

on this motivation, the aim of the paper is to examine the existence of weak solution to problem (1) . 

The rest of the paper is organized as follows. In Section 2 , we will recall some preliminary material needed in the

investigation of the inequality problem. Section 3 is devoted to study existence of weak solutions to problem (1) by using a

surjectivity result for the sum of operators combined with the theory of convex and nonsmooth analysis. 

2. Preliminaries and hypotheses 

In this section we recall the main preliminary material and notation needed in the study of problem (1) . 

First, we review the following concepts from nonlinear analysis. 
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Definition 1 [21 , Section 3.4]. Let E be a reflexive Banach space with its dual E ∗ and A : D (A ) ⊂ E → 2 E 
∗

be a multivalued

function, where D (A ) = { u ∈ E | Au � = ∅} stands for the domain of A . We say that 

(i) A is monotone, if 

〈 u 

∗ − v ∗, u − v 〉 E ∗×E ≥ 0 for all u 

∗ ∈ Au, v ∗ ∈ A v and u, v ∈ D (A ) . 

(ii) A is maximal monotone, if it is monotone and it has a maximal graph in the sense of inclusion among all monotone

operators, namely, the inequality 

〈 u 

∗ − w 

∗, u − v 〉 E ∗×E ≥ 0 for all u 

∗ ∈ Au and u ∈ D (A ) , 

implies v ∈ D (A ) and w 

∗ ∈ A v . 
(iii) A is pseudomonotone with respect to D ( L ) (or L -pseudomonotone), for a linear, maximal monotone operator L :

D ( L ) ⊂ E → E ∗, if 

(a) for each u ∈ E , the set Au is nonempty, closed, and convex in E ∗; 

(b) A is upper semicontinuous from each finite dimensional subspace of E into E ∗ endowed with its weak topology; 

(c) for each sequences { u n } ⊂ D ( L ) and { u ∗n } ⊂ E ∗ with ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

u n → u weakly in E, 

Lu n → Lu weakly in E ∗, 

u 

∗
n ∈ Au n for all n ∈ N , 

u 

∗
n → u 

∗ weakly in E ∗, 

lim sup 

n →∞ 

〈 u 

∗
n , u n − u 〉 E ∗×E ≤ 0 , 

we have u ∗ ∈ Au and lim n →∞ 

〈 u ∗n , u n 〉 E ∗×E = 〈 u ∗, u 〉 E ∗×E . 

Next, we recall some basic tools from convex analysis and nonsmooth analysis. 

Definition 2 [21 , Definition 3.31]. Let E be a Banach space with its dual E ∗, and ϕ : E → R := R ∪ { + ∞} be a proper, convex

and lower semicontinuous functional. The mapping ∂ C ϕ : E → 2 E 
∗

defined by 

∂ C ϕ(u ) = { u 

∗ ∈ E ∗ | 〈 u 

∗, v − u 〉 E ∗×E ≤ ϕ(v ) − ϕ(u ) for all v ∈ E } 
is called the subdifferential of ϕ. Any element u ∗ ∈ ∂ C ϕ( u ) is called a subgradient of ϕ at u . 

Definition 3 [21 , Definitions 3.21 and 3.22]. Let J : E → R be a locally Lipschitz continuous functional and u, v ∈ E. We denote

by J 0 (u ; v ) the generalized (Clarke) directional derivative of J at the point u in the direction v defined by 

J 0 (u ; v ) = lim sup 

w → u, t↓ 0 
J(w + tv ) − J(w ) 

t 
. 

The generalized Clarke gradient ∂ J : E → 2 E 
∗

of J : E → R at u ∈ E is defined by 

∂ J(u ) = { ξ ∈ E ∗ | J 0 (u ; v ) ≥ 〈 ξ , v 〉 E ∗×E for all v ∈ E } . 
Theorem 4 [6 , Theorem 6.3.19, p. 48]. Let E be a real Banach space and ϕ : E → R be a proper, convex and lower semicontinuous

functional. Then ∂ C ϕ : E → 2 E 
∗

is a maximal monotone operator. 

Proposition 5 [21 , Proposition 3.23]. Let J : E → R be locally Lipschitz of rank L u > 0 near u ∈ E. Then, we have 

(a) the function v �→ J 0 (u ; v ) is positively homogeneous, subadditive, and satisfies 

| J 0 (u ; v ) | ≤ L u ‖ v ‖ E for all v ∈ E;
(b) (u, v ) �→ J 0 (u ; v ) is upper semicontinuous; 

(c) ∂ J ( u ) is a nonempty, convex, and weakly ∗ compact subset of E ∗ with ‖ ξ‖ E ∗ ≤ L u for all ξ ∈ ∂ J ( u ) ; 

(d) for all v ∈ E, we have J 0 (u ; v ) = max {〈 ξ , v 〉 E ∗×E | ξ ∈ ∂ J(u ) } . 
Additionally, we consider the important concept of strongly-quasi boundedness for multivalued operators. 

Definition 6 [7 , Definition 2.14]. Let E be a reflexive Banach space with its dual E ∗ and A : D (A ) ⊂ E → 2 E 
∗

be a multivalued

mapping. A is called to be strongly-quasi bounded, if for each M > 0, there exists K M 

> 0 satisfying if u ∈ D ( A ) and u ∗ ∈ Au are

such that 

〈 u 

∗, u 〉 E ∗×E ≤ M and ‖ u ‖ E ≤ M, 

then ‖ u ∗‖ E ∗ ≤ K M 

. 

In fact, it is not easy to verify that a multivalued operator is strongly-quasi bounded by using the definition. However,

Browder-Hess in [3, Proposition 14] provided the following criterion to validate the strongly-quasi boundedness. 
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Proposition 7 [3 , Proposition 14]. Let E be a reflexive Banach space with its dual E ∗. If A : D (A ) ⊂ E → 2 E 
∗

is a monotone oper-

ator such that 0 ∈ int D ( A ), then A is strongly-quasi bounded. 

Finally, we recall the following surjectivity result for the sum of operators in Banach spaces, which will play a significant

role in the proof of our main result. 

Theorem 8 [7 , Theorem 3.1]. Let E be a reflexive, strictly convex Banach space, L : D ( L ) ⊂ E → E ∗ be a linear, densely defined and

maximal monotone operator, A : E → 2 E 
∗

be a bounded and L-pseudomonotone operator such that 

〈 Au, u 〉 E ∗×E ≥ r(‖ u ‖ E ) ‖ u ‖ E for all u ∈ E, 

where r : R + → R is a function satisfying r(s ) → + ∞ as s → + ∞ . If the multivalued mapping B : D (B ) ⊂ E → 2 E 
∗

is a maximal

monotone operator which is strongly-quasi bounded and 0 ∈ B (0), then L + A + B is surjective, namely, R (L + A + B ) = E ∗. 

Let � be a bounded domain in R 

N with Lipschitz boundary, and s ∈ (0, 1) be such that N > 2 s . In what follows, we adopt

the symbols S := (R 

N \ �) × (R 

N \ �) , P := R 

2 N \S, and 2 ∗s := 

2 N 
N−2 s to denote the fractional critical exponent. Also, we denote

by u | � the function u restricted to the domain �. Consider the function space 

X := { u : R 

N → R | u | � ∈ L 2 (�) and (u (x ) − u (y )) 2 K(x − y ) ∈ L 2 (P) } . 
It is obvious, see [25] , that X is a normed linear space endowed with the norm 

‖ u ‖ X := ‖ u ‖ L 2 (�) + 

(∫ 
P 
| u (x ) − u (y ) | 2 K(x − y ) dy dx 

)
1 
2 

for all u ∈ X . Since the boundary condition for problem (1) is the generalized Dirichlet boundary, so, we also introduce a

subspace of X , given by 

X 0 := { u ∈ X | u = 0 for a . e . x ∈ �� } . 
Lemma 9 [25] . Let s ∈ (0, 1) and � be a bounded, open subset of R 

N with Lipschitz boundary and N > 2 s. Then, we have 

(i) X 0 is a Hilbert space with the inner product 

〈 u, v 〉 X 0 := 

∫ 
R N 

∫ 
R N 

[ u (x ) − u (y )][ v (x ) − v (y )] K(x − y ) dx dy 

for all u , v ∈ X 0 . 

(ii) If p ∈ [1 , 2 ∗s ] , then there exists a positive constant c ( p ) such that 

‖ u ‖ L p (R N ) ≤ c(p) ‖ u ‖ X 0 for all u ∈ X 0 . 

(iii) The embedding from X 0 to L p (R 

N ) is compact if p ∈ [1 , 2 ∗s ) . 

Let X ∗0 be the dual space of X 0 . Note that X 0 ⊂ L 2 (�) ⊂ X ∗0 and 2 < 2 ∗s , so from Lemma 9 , we can see that the embedding

from X 0 to L 2 ( �) is compact. Besides, we introduce the function spaces 

X 0 = L 2 (0 , T ; X 0 ) , X 

∗
0 = L 2 (0 , T ; X 

∗
0 ) and W = 

{
u ∈ X 0 | ∂u 

∂t 
∈ X 

∗
0 

}
, 

where the time derivative ∂u 
∂t 

is understood in the sense of vector-valued distributions. Moreover, [21 , Proposition 2.54] 

reveals that the function space W endowed the norm 

‖ u ‖ W 

:= ‖ u ‖ X 0 + 

∥∥∥∂u 

∂t 

∥∥∥
X ∗

0 

for all u ∈ W, 

is a Banach space, and the embeddings W ⊂ L 2 (0 , T ; L 2 (�)) and W ⊂ C(0 , T ; L 2 (�)) are compact and continuous, respec-

tively. 

3. Existence of solutions 

In this section, we shall focus our attention to examine existence of weak solutions to problem (1) . 

For 0 < T < ∞ , we denote � := �× (0, T ). We impose the following assumptions for the data of problem (1) . 

H(j) : j : � × (0 , T ) × R → R is such that j ( · , 0) ∈ L 1 ( �) and 

(i) for each r ∈ R , the function ( x , t ) �→ j ( x , t , r ) is measurable on �; 

(ii) for a.e. ( x , t ) ∈ �, the functional r �→ j ( x , t , r ) is locally Lipschitz; 

(iii) there exist c j > 0, p ≥ 1, and a ∈ L 
p 

p−1 (�) with a ( x , t ) ≥ 0 satisfying 

p−1 
| ξ | ≤ a (x, t) + c j | r| for all ξ ∈ ∂ j(x, t, r) and for a . e . (x, t) ∈ �. 
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H(0) : f ∈ X 

∗
0 and u 0 ∈ int D ( ϕ). 

H( ϕ) : ϕ : X 0 → R is a proper, convex and lower semicontinuous functional such that 

0 ∈ ∂ C ϕ(u 0 ) . 

Define the functional J : X 0 → R by 

J(u ) := 

∫ 
�

j(x, t, u (x, t)) dx dt for all u ∈ X 0 . (2)

Under the hypothesis H ( j ), from [21 , Theorem 3.47], we readily obtain the following result. 

Proposition 10. Assume that hypothesis H ( j ) is fulfilled. Then the functional J defined in (2) is locally Lipschitz and there exists a

constant c J > 0 such that for all u , v ∈ L p (�) { 

J 0 (u ; v ) ≤ c J 
(
1 + ‖ u ‖ 

p−1 

L p (�) 

)‖ v ‖ L p (�) , 

‖ ξ‖ L p ′ (�) ≤ c J 
(
1 + ‖ u ‖ 

p−1 

L p (�) 

)
for all ξ ∈ ∂ 

(
J| L p (�) 

)
(u ) , 

(3)

where p ′ is the conjugate exponent of p , i.e., 1 
p + 

1 
p ′ = 1 . 

The definition of weak solution for problem (1) reads as follows. 

Definition 11. We say that u ∈ W is a weak solution to problem (1) , if u (x, 0) = u 0 (x ) in �, and the following inequality

holds ∫ T 

0 

∫ 
R N 

∂u (x, t) 

∂t 

(
v (x, t) − u (x, t) 

)
dx dt + J 0 (u ; v − u ) + 

∫ T 

0 

ϕ(v (t)) dt 

−
∫ T 

0 

ϕ(u (t)) dt + 

∫ T 

0 

∫ 
R N 

(
v (x, t) − u (x, t) 

)
L K u (x, t) d x d t 

≥
∫ T 

0 

∫ 
R N 

f (x, t) 
(
v (x, t) − u (x, t) 

)
d x d t 

for all v ∈ X 0 . 

The main result of the paper is delivered below. 

Theorem 12. Assume that H ( K ), H ( j ), H (0), and H ( ϕ) hold. If 1 ≤ p < 2 or p = 2 with c J c (2) 2 < 1, where c (2) > 0 is given in

Lemma 9 (ii), then problem (1) admits a weak solution in the sense of Definition 11 . 

Proof. First, we define the operator A : X 0 → X 

∗
0 

by 

(A u )(v ) : = 

∫ T 

0 

∫ 
R N 

v (x, t) L K 

(
u (x, t) + u 0 (x )) d x d t 

= −
∫ T 

0 

∫ 
R 2 N 

v (x, t)[ u (x + y, t) + u (x − y, t) − 2 u (x, t)] K(y ) d y d x d t 

−
∫ T 

0 

∫ 
R 2 N 

v (x, t)[ u 0 (x + y ) + u 0 (x − y ) − 2 u 0 (x )] K(y ) dy dx dt (4)

for all u , v ∈ X 0 . We verify that A is a linear and continuous operator. Let u , v ∈ X 0 and z , w ∈ X 0 . Note that ∫ 
R 2 N 

w (x ) 
[
z(x + y ) + z(x − y ) − 2 z(x ) 

]
K(y ) dy dx 

= 

∫ 
R 2 N 

w (x ) 
[
z(x + y ) − z(x ) 

]
K(y ) dy dx + 

∫ 
R 2 N 

w (x ) 
[
z(x − y ) − z(x ) 

]
K(y ) dy dx 

= 

∫ 
R 2 N 

w (x ) 
[
z(y ) − z(x ) 

]
K(x − y ) dy dx + 

∫ 
R 2 N 

w (x ) 
[
z(y ) − z(x ) 

]
K(y − x ) dy dx 

= 

∫ 
R 2 N 

w (x ) 
[
z(y ) − z(x ) 

]
K(x − y ) dy dx + 

∫ 
R 2 N 

w (y ) 
[
z(x ) − z(y ) 

]
K(x − y ) dy dx 

= −
∫ 
R 2 N 

[
w (x ) − w (y ) 

][
z(x ) − z(y ) 

]
K(x − y ) dy dx 
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so, we have 

(A u )(v ) = 

∫ T 

0 

∫ 
R 2 N 

[ u (x, t) − u (y, t)][ v (x, t) − v (y, t)] K(x − y ) dy dx dt 

+ 

∫ T 

0 

∫ 
R 2 N 

[ u 0 (x ) − u 0 (y )][ v (x, t) − v (y, t)] K(x − y ) d y d x d t 

= 〈 u + ̃

 u 0 , v 〉 X 0 , 
where ˜ u 0 (t, x ) = u 0 (x ) for all ( t , x ) ∈ �. Hence, we infer that A is a linear and continuous operator and 

‖A u ‖ X ∗
0 

≤ ‖ u ‖ X 0 + ‖ ̃

 u 0 ‖ X 0 for all u ∈ X 0 . (5)

Additionally, we have 

〈A (u ) − A (v ) , u − v 〉 X 0 = 〈 u + ̃

 u 0 , u − v 〉 X 0 − 〈 v + ̃

 u 0 , u − v 〉 X 0 = ‖ u − v ‖ 

2 
X 0 

for all u , v ∈ X 0 , which indicates that A is strongly monotone as well. �

Next, we introduce the operator L : D (L ) ⊂ X 0 → X 

∗
0 

defined by 

Lu = 

∂u 

∂t 
, 

which is closed, linear, densely defined, and maximal monotone, see [6, Section 8.5] . Here, the domain D ( L ) of L is given

by 

D (L ) := { u ∈ W | u (0) = 0 } . 
Moreover, we consider the functional � : X 0 → R given by 

�(u ) := 

∫ T 

0 

ϕ(u (t) + u 0 ) dt for all u ∈ X 0 . (6)

We shall prove the following claims. 

Claim 1. The multivalued operator A (·) + ∂ J(· + ̃

 u 0 ) : X 0 → 2 X 
∗
0 is bounded and pseudomonotone with respect to D ( L ) (i.e., L-

pseudomonotone). 

In fact, from Propositions 5 and 10 , we deduce that the set A u + ∂ J(u + ̃

 u 0 ) is nonempty, closed, and convex in X 

∗
0 

for

all u ∈ X 0 . Next, from (5) , for all u ∈ X 0 and ξ ∈ ∂ J(u + ̃

 u 0 ) , we obtain the following estimate 

‖A u + ξ‖ X ∗
0 

≤ ‖A u ‖ X ∗
0 

+ ‖ ξ‖ X ∗
0 

≤ ‖ u ‖ X 0 + ‖ ̃

 u 0 ‖ X 0 + c J 
(
1 + c(p) p−1 (‖ u ‖ X 0 + ‖ ̃

 u 0 ‖ X 0 ) 
p−1 

)
, 

which clearly implies that the mapping A (·) + ∂ J(· + ̃

 u 0 ) : X 0 → 2 X 
∗
0 is bounded. Moreover, since A is linear and continuous

(hence demicontinuous as well) and ∂ J is upper upper semicontinuous from X 0 to w –X 

∗
0 
, see Propositions 5 and 10 , it is

easy to demonstrate that A (·) + ∂ J(· + ̃

 u 0 ) : X 0 → 2 X 
∗
0 is upper semicontinuous from X 0 to w –X 

∗
0 . 

It remains to verify the condition (c) in Definition 1 (iii). Let {u n } ⊂ D(L) and { u ∗n } ⊂ X 

∗
0 

be such that u n → u weakly in X 0 ,

Lu n → Lu weakly in X 

∗
0 
, u ∗n ∈ A u n + ∂ J(u n + ̃

 u 0 ) with u ∗n → u ∗ weakly in X 

∗
0 
, and 

lim sup 

n →∞ 

〈 u 

∗
n , u n − u 〉 X 0 ≤ 0 . (7) 

Then, we are able to find a sequence { ξn } ⊂ X 

∗
0 such that ξn ∈ ∂ J(u n + ̃

 u 0 ) and 

u 

∗
n = A (u n ) + ξn for each n ∈ N . 

From (7) and the above equality, it yields 

lim sup 

n →∞ 

〈A u n , u n − u 〉 X 0 + lim inf 
n →∞ 

〈 ξn , u n − u 〉 X 0 ≤ 0 . (8)

Since X 0 ⊂ L 2 (�) ⊂ X ∗0 and the embedding of X 0 to L 2 ( �) is compact, see Lemma 9 , we have 

u n → u strongly in L 2 (�) . 

Furthermore, invoking [4 , Theorem 2.2], one has 

∂(J| X 0 )(u ) ⊂ ∂(J| L 2 (�) )(u ) for all u ∈ X 0 . 

This results in 

〈 ξn , u n − u 〉 X 0 = 〈 ξn , u n − u 〉 L 2 (�) . (9) 
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Further, Proposition 10 and the boundedness of { u n } in X 0 entail that the sequence { ξ n } is bounded both in L 2 ( �) and X 

∗
0 

.

Then, by (9) , we pass to the limit as n → ∞ to get 

lim 

n →∞ 

〈 ξn , u n − u 〉 X 0 = lim 

n →∞ 

〈 ξn , u n − u 〉 L 2 (�) = 0 . 

This convergence combined with (8) and the monotonicity of A implies 

lim sup 

n →∞ 

‖ u n − u ‖ 

2 
X 0 = lim sup 

n →∞ 

〈A u n − A u, u n − u 〉 X 0 + lim 

n →∞ 

〈A u, u n − u 〉 X 0 ≤ 0 . 

Hence u n → u strongly in X 0 . On the other side, the reflexivity of X 

∗
0 

and boundedness of { ξn } ⊂ X 

∗
0 

allow to assume, at least

for a subsequence, that 

ξn → ξ weakly in X 

∗
0 for some ξ ∈ X 

∗
0 . 

Since ∂ J is upper semicontinuous from X 0 to w –X 

∗
0 

and it has convex and closed values, it is closed from X 0 to w –X 

∗
0 
,

see [11 , Theorem 1.1.4]. Therefore, we obtain ξ ∈ ∂ J(u + ̃

 u 0 ) . 

To conclude, we have u ∗ = ξ + A u ∈ A u + ∂ J(u + ̃

 u 0 ) and 

〈 u 

∗
n , u n 〉 X 0 = 〈 ξn + A (u n ) , u n 〉 X 0 → 〈 ξ + A (u ) , u 〉 X 0 = 〈 u 

∗, u 〉 X 0 , 
i.e., the operator A (·) + ∂ J(· + ̃

 u 0 ) : X 0 → 2 X 
∗
0 is L-pseudomonotone. 

Claim 2. There exists a function r : R + → R with r(s ) → + ∞ as s → + ∞ such that 

〈A u + ∂ J(u + ̃

 u 0 ) , u 〉 X 0 ≥ r(‖ u ‖ X 0 ) ‖ u ‖ X 0 

for all u ∈ X 0 . 

From [4, Theorem 2.2] and Proposition 10 , for all u ∈ X 0 , one has 

〈A u + ∂ J(u + ̃

 u 0 ) , u 〉 X 0 = 〈A u, u 〉 X 0 + 〈 ∂ J(u + ̃

 u 0 ) , u 〉 X 0 
≥ ‖ u ‖ 

2 
X 0 − ‖ ̃

 u 0 ‖ X 0 ‖ u ‖ X 0 + 〈 ∂ J(u + ̃

 u 0 ) , u 〉 L p (�) 

≥ ‖ u ‖ 

2 
X 0 − ‖ ̃

 u 0 ‖ X 0 ‖ u ‖ X 0 − ‖ ∂ J(u + ̃

 u 0 ) ‖ L p (�) ‖ u ‖ L p (�) 

≥ ‖ u ‖ 

2 
X 0 − ‖ ̃

 u 0 ‖ X 0 ‖ u ‖ X 0 − c J (1 + ‖ u + ̃

 u 0 ‖ 

p−1 

L p (�) 
) ‖ u ‖ L p (�) 

≥ ‖ u ‖ 

2 
X 0 − ‖ ̃

 u 0 ‖ X 0 ‖ u ‖ X 0 − c J c(p) ‖ u ‖ X 0 − c J c(p) p ‖ u ‖ 

p 
X 0 − c J c(p) p ‖ ̃

 u 0 ‖ 

p−1 
X 0 ‖ u ‖ X 0 

= ‖ u ‖ X 0 
(‖ u ‖ X 0 − ‖ ̃

 u 0 ‖ X 0 − c J c(p) − c J c(p) p ‖ ̃

 u 0 ‖ 

p−1 
X 0 − c J c(p) p ‖ u ‖ 

p−1 
X 0 

)
. 

Let r(s ) = s − ‖ ̃  u 0 ‖ X 0 − c J c(p) − c J c(p) p ‖ ̃  u 0 ‖ p−1 
X 0 

− c J c(p) p s p−1 for s ∈ R . It follows from the condition 1 ≤ p < 2 or p = 2 with

c J c (2) 2 < 1 that the function r is coercive, namely, r(s ) → + ∞ as s → + ∞ . This shows Claim 2. 

Claim 3. � : X 0 → R is a proper, convex and lower semicontinuous functional. 

It obvious that � �≡ + ∞ , because 0 ∈ D ( �), see hypothesis H ( ϕ). Let u 1 , u 2 ∈ X 0 and λ∈ (0, 1) be arbitrary. The convexity

of ϕ implies 

�(λu 1 + (1 − λ) u 2 ) = 

∫ T 

0 

ϕ(λu 1 (t) + (1 − λ) u 2 (t) + u 0 ) dt 

= 

∫ T 

0 

ϕ(λ(u 1 (t) + u 0 ) + (1 − λ)(u 2 (t) + u 0 )) dt 

≤ λ

∫ T 

0 

ϕ(u 1 (t) + u 0 ) dt + (1 − λ) 

∫ T 

0 

ϕ(u 2 (t) + u 0 ) dt 

= λ�(u 1 ) + (1 − λ)�(u 2 ) , 

hence � is convex. Let { u n } ⊂ X 0 be such that u n → u in X 0 . Since ϕ is convex and lower semicontinuous, it follows from [24 ,

Lemma 2.5] that there are two constants m 1 , m 2 ∈ R satisfying 

ϕ(z) ≥ m 1 ‖ z‖ X 0 + m 2 for all z ∈ X 0 . 

Invoking the Hölder inequality, we obtain 

�(u n ) = 

∫ T 

0 

ϕ(u n (t) + u 0 ) dt ≥ m 2 T + m 1 

∫ T 

0 

‖ u n (t) + u 0 ‖ X 0 dt 

≥ m 2 T − | m 1 | T 1 
2 ‖ u n + ̃

 u 0 ‖ X 0 ≥ m 0 , 
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for some m 0 > 0, which is independent of { u n }. From the convergence u n → u in X 0 , we may assume, by passing to a subse-

quence if necessary, that u n (t) → u ( t ) in X 0 for a.e. t ∈ (0, T ). This combined with the Fatou lemma, see e.g. [21 , Theorem 1.64],

gives 

lim inf 
n →∞ 

�(u n ) = lim inf 
n →∞ 

∫ T 

0 

ϕ(u n (t) + u 0 ) dt ≥
∫ T 

0 

lim inf 
n →∞ 

ϕ(u n (t) + u 0 ) dt 

≥
∫ T 

0 

ϕ(u (t) + u 0 ) dt = �(u ) . 

Then, � is a proper convex and lower semicontinuous functional. 

Claim 4. ∂ C � : X 0 → 2 X 
∗
0 is a maximal monotone operator, which is strongly-quasi bounded and 0 ∈ ∂ C �(0) . 

From Claim 3, we know that � is a proper, convex and lower semicontinuous functional. Invoking Theorem 4 , it implies

that ∂ C � : X 0 → 2 X 
∗
0 is a maximal monotone operator. The hypothesis H ( ϕ) yields directly that 0 ∈ ∂ C �(0). Next, we shall

show that the mapping ∂ C � is strongly-quasi bounded. In fact, from e.g. [1 , Proposition 2.7], we have 

int D (�) ⊂ D (∂ C �) , 

which gives int D ( �) ⊂ int D ( ∂ C �). Now, assumptions H ( ϕ), H (0), and Proposition 7 guarantee that the mapping ∂ C � is

strongly-quasi bounded. 

Having verified Claims 1–4, we are now in a position to apply the surjectivity result, Theorem 8 . We deduce that there

exists a function w ∈ W with w (0) = 0 solving the following inclusion problem {
Lw + A w + ∂ J(w + ̃

 u 0 ) + ∂ C �(w ) � f in X 

∗
0 

w (0) = 0 . 
(10) 

Claim 5. If w ∈ W is a solution to problem (10), then the function u = w + u 0 is a weak solution to problem (1) . 

Let w ∈ W be a solution to problem (10) . Hence, u = w + u 0 solves the following problem { 

∂u 

∂t 
+ A (u − ˜ u 0 ) + ∂ J(u ) + ∂ C �(u − ˜ u 0 ) � f 

u (0) = u 0 . 
(11) 

Recalling the definition of generalized Clarke subdifferential and convex subdifferential, it yields 

〈 ∂ J(u ) , v − u 〉 X 0 ≤ J 0 (u ; v − u ) for all v ∈ X 0 , (12)

and 

〈 ∂ C �(u − ˜ u 0 ) , v − u 〉 X 0 = 〈 ∂ C �(u − ˜ u 0 ) , v − ˜ u 0 − (u − ˜ u 0 ) 〉 X 0 
≤ �(v − ˜ u 0 ) − �(u − ˜ u 0 ) for all v ∈ X 0 . (13) 

Combining (11) –(13) , definitions (4) , and (6) , we have ∫ T 

0 

∫ 
R N 

∂u (x, t) 

∂t 

(
v (x, t) − u (x, t) 

)
dx dt + J 0 (u ; v − u ) + 

∫ T 

0 

ϕ(v (t)) dt 

−
∫ T 

0 

ϕ(u (t)) dt + 

∫ T 

0 

∫ 
R N 

(
v (x, t) − u (x, t) 

)
L K u (x, t) d x d t 

≥
∫ T 

0 

∫ 
R N 

f (x, t) 
(
v (x, t) − u (x, t) 

)
d x d t for all v ∈ X 0 . 

This means that u = w + u 0 is a weak solution to problem (1) , which completes the proof of the theorem. 

Acknowledgments 

The authors would like to express their thanks to the Editors and the Reviewers for their helpful comments and ad-

vices. This project has received funding from the European Union’s Horizon 2020 Research and Innovation Programme un-

der the Marie Skłodowska-Curie grant agreement no. 823731 CONMECH. It is supported by the National Science Center

of Poland under Maestro Project no. UMO-2012/06/A/ST1/00262, and National Science Center of Poland under Preludium

Project no. 2017/25/N/ST1/00611. The first author is also supported by the Natural Science Foundation of Guangxi Grant no.

2018JJA110 0 06, and Beibu Gulf University Project no. 2018KYQD06. 

References 

[1] V. Barbu , Analysis and Control of Nonlinear Infinite Dimensional Systems, Academic Press, Boston, 1993 . 

[2] M. Bhakta , M. Marcus , Semilinear elliptic equations admitting similarity transformations, J. Funct. Anal. 267 (2014) 3894–3930 . 
[3] F.E. Browder , P. Hess , Nonlinear mappings of monotone type in banach spaces, J. Funct. Anal. 11 (1972) 251–294 . 

http://refhub.elsevier.com/S0096-3003(19)30660-5/sbref0001
http://refhub.elsevier.com/S0096-3003(19)30660-5/sbref0001
http://refhub.elsevier.com/S0096-3003(19)30660-5/sbref0002
http://refhub.elsevier.com/S0096-3003(19)30660-5/sbref0002
http://refhub.elsevier.com/S0096-3003(19)30660-5/sbref0002
http://refhub.elsevier.com/S0096-3003(19)30660-5/sbref0003
http://refhub.elsevier.com/S0096-3003(19)30660-5/sbref0003
http://refhub.elsevier.com/S0096-3003(19)30660-5/sbref0003


S. Migórski, V.T. Nguyen and S. Zeng / Applied Mathematics and Computation 364 (2020) 124668 9 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[4] K.C. Chang , Variational methods for non-differentiable functionals and their applications to partial differential equations, J. Math. Anal. Appl. 80 (1981)
102–129 . 

[5] F.H. Clarke , Optimization and Nonsmooth Analysis, Wiley, New York, 1983 . 
[6] Z. Denkowski , S. Migórski , N.S. Papageorgiou , An Introduction to Nonlinear Analysis: Applications, Kluwer Academic/Plenum Publishers, Boston, Dor-

drecht, London, New York, 2003 . 
[7] L. Gasi ́nski , S. Migórski , A. Ochal , Existence results for evolution inclusions and variational-hemivariational inequalities, Appl. Anal. 94 (2015)

1670–1694 . 

[8] C.Y. Gu , G.C. Wu , Positive solutions of fractional differential equations with the Riesz space derivative, Appl. Math. Lett. 95 (2019) 59–64 . 
[9] W. Han , M. Sofonea , M. Barboteu , Numerical analysis of elliptic hemivariational inequalities, SIAM J. Numer. Anal. 55 (2017) 640–663 . 

[10] W. Han , M. Sofonea , D. Danan , Numerical analysis of stationary variational-hemivariational inequalities, Numer. Math. 139 (2018) 563–592 . 
[11] M. Kamenskii , V. Obukhovskii , P. Zecca , Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Space, Walter de Gruyter,

Berlin, 2001 . 
[12] A .A . Khan , D. Motreanu , Existence theorems for elliptic and evolutionary variational and quasi-variational inequalities, J. Opt. Theory Appl. 167 (2015)

1136–1161 . 
[13] A .A . Khan , D. Motreanu , Inverse problems for quasi-variational inequalities, J. Global Opt. 70 (2018) 401–411 . 

[14] Q.Y. Liu , Z.B. Liu , N.J. Huang , Approximating the common fixed points of two sequences of uniformly quasi-Lipschitzian mappings in convex metric

spaces, Appl. Math. Comput. 216 (2010) 883–889 . 
[15] Z.H. Liu , S. Migórski , S.D. Zeng , Partial differential variational inequalities involving nonlocal boundary conditions in Banach spaces, J. Dif. Eq. 263

(2017) 3989–4006 . 
[16] Z.H. Liu , J.G. Tan , Nonlocal elliptic hemivariational inequalities, Electron. J. Qual. Theory Differ. Eq. (2017) 7 . Paper 66 

[17] Z.H. Liu , S.D. Zeng , Y.R. Bai , Maximum principles for multi-term space-time variable-order fractional diffusion equations and their applications, Fract.
Calc. Appl. Anal. 19 (2016a) 188–211 . 

[18] Z.H. Liu , S.D. Zeng , D. Motreanu , Evolutionary problems driven by variational inequalities, J. Diff. Eq. 260 (2016b) 6787–6799 . 

[19] Z.H. Liu , S.D. Zeng , D. Motreanu , Partial differential hemivariational inequalities, Adv. Nonlinear Anal. 7 (2018) 571–586 . 
[20] H.Q. Ma , M. Wu , N.J. Huang , J.P. Xu , Expected residual minimization method for stochastic variational inequality problems with nonlinear perturbations,

Appl. Math. Comput. 219 (2013) 6256–6267 . 
[21] S. Migórski , A. Ochal , M. Sofonea , Nonlinear Inclusions and Hemivariational Inequalities. Models and Analysis of Contact Problems, Advances in Me-

chanics and Mathematics, 26, Springer, New York, 2013 . 
[22] G.M. Bisci , V.D. R ̆adulescu , Ground state solutions of scalar field fractional Schrödinger equations, Calc. Var. Partial Dif. Eq. 54 (2015) 2985–3008 . 

[23] D. Motreanu , M. Tanaka , Existence of solutions for quasilinear elliptic equations with jumping nonlinearities under the Neumann boundary condition,

Calc. Var. Partial Dif. Eq. 43 (2012) 231–264 . 
[24] H. Nagase , On an application of Rothe method to nonlinear parabolic variational inequalities, Funkcial. Ekvac. 32 (1989) 273–299 . 

[25] P. Pucci , M. Xiang , B. Zhang , Existence and multiplicity of entire solutions for fractional p -kirchhoff equations, Adv. Nonlinear Anal. 5 (2016) 27–55 . 
[26] M. Sofonea , Y.B. Xiao , M. Couderc , Optimization problems for a viscoelastic frictional contact problem with unilateral constraints, Nonlinear Anal. RWA

50 (2019a) 86–103 . 
[27] F. Wang , J. Eichholz , W. Han , A two level algorithm for an obstacle problem, Appl. Math. Comput. 330 (2018) 65–76 . 

[28] G.C. Wu, D. Baleanu, H.P. Xie, Riesz Riemann–Liouville difference on discrete domains, Chaos 26 (2016a) 084308, doi: 10.1063/1.4958920 . 

[29] Z. Wu , Y.Z. Zou , N.J. Huang , A class of global fractional-order projective dynamical systems involving set-valued perturbations, Appl. Math. Comput.
277 (2016b) 23–33 . 

[30] Y.B. Xiao , M. Sofonea , On the optimal control of variational-hemivariational inequalities, J. Math. Anal. Appl. 475 (2019) 364–384 . 
[31] S.D. Zeng , Z.H. Liu , S. Migórski , A class of fractional differential hemivariational inequalities with application to contact problem, Z. Angew. Math. Phys.

69 (2018) 23 . Art. 36 
[32] S.D. Zeng , S. Migórski , A class of time-fractional hemivariational inequalities with application to frictional contact problem, Commun. Nonlinear Sci.

Numer. Simul. 56 (2018) 34–48 . 

http://refhub.elsevier.com/S0096-3003(19)30660-5/sbref0004
http://refhub.elsevier.com/S0096-3003(19)30660-5/sbref0004
http://refhub.elsevier.com/S0096-3003(19)30660-5/sbref0005
http://refhub.elsevier.com/S0096-3003(19)30660-5/sbref0005
http://refhub.elsevier.com/S0096-3003(19)30660-5/sbref0006
http://refhub.elsevier.com/S0096-3003(19)30660-5/sbref0006
http://refhub.elsevier.com/S0096-3003(19)30660-5/sbref0006
http://refhub.elsevier.com/S0096-3003(19)30660-5/sbref0006
http://refhub.elsevier.com/S0096-3003(19)30660-5/sbref0007
http://refhub.elsevier.com/S0096-3003(19)30660-5/sbref0007
http://refhub.elsevier.com/S0096-3003(19)30660-5/sbref0007
http://refhub.elsevier.com/S0096-3003(19)30660-5/sbref0007
http://refhub.elsevier.com/S0096-3003(19)30660-5/sbref0008
http://refhub.elsevier.com/S0096-3003(19)30660-5/sbref0008
http://refhub.elsevier.com/S0096-3003(19)30660-5/sbref0008
http://refhub.elsevier.com/S0096-3003(19)30660-5/sbref0009
http://refhub.elsevier.com/S0096-3003(19)30660-5/sbref0009
http://refhub.elsevier.com/S0096-3003(19)30660-5/sbref0009
http://refhub.elsevier.com/S0096-3003(19)30660-5/sbref0009
http://refhub.elsevier.com/S0096-3003(19)30660-5/sbref0010
http://refhub.elsevier.com/S0096-3003(19)30660-5/sbref0010
http://refhub.elsevier.com/S0096-3003(19)30660-5/sbref0010
http://refhub.elsevier.com/S0096-3003(19)30660-5/sbref0010
http://refhub.elsevier.com/S0096-3003(19)30660-5/sbref0011
http://refhub.elsevier.com/S0096-3003(19)30660-5/sbref0011
http://refhub.elsevier.com/S0096-3003(19)30660-5/sbref0011
http://refhub.elsevier.com/S0096-3003(19)30660-5/sbref0011
http://refhub.elsevier.com/S0096-3003(19)30660-5/sbref0012
http://refhub.elsevier.com/S0096-3003(19)30660-5/sbref0012
http://refhub.elsevier.com/S0096-3003(19)30660-5/sbref0012
http://refhub.elsevier.com/S0096-3003(19)30660-5/sbref0013
http://refhub.elsevier.com/S0096-3003(19)30660-5/sbref0013
http://refhub.elsevier.com/S0096-3003(19)30660-5/sbref0013
http://refhub.elsevier.com/S0096-3003(19)30660-5/sbref0014
http://refhub.elsevier.com/S0096-3003(19)30660-5/sbref0014
http://refhub.elsevier.com/S0096-3003(19)30660-5/sbref0014
http://refhub.elsevier.com/S0096-3003(19)30660-5/sbref0014
http://refhub.elsevier.com/S0096-3003(19)30660-5/sbref0015
http://refhub.elsevier.com/S0096-3003(19)30660-5/sbref0015
http://refhub.elsevier.com/S0096-3003(19)30660-5/sbref0015
http://refhub.elsevier.com/S0096-3003(19)30660-5/sbref0015
http://refhub.elsevier.com/S0096-3003(19)30660-5/sbref0016
http://refhub.elsevier.com/S0096-3003(19)30660-5/sbref0016
http://refhub.elsevier.com/S0096-3003(19)30660-5/sbref0016
http://refhub.elsevier.com/S0096-3003(19)30660-5/sbref0016
http://refhub.elsevier.com/S0096-3003(19)30660-5/sbref0017
http://refhub.elsevier.com/S0096-3003(19)30660-5/sbref0017
http://refhub.elsevier.com/S0096-3003(19)30660-5/sbref0017
http://refhub.elsevier.com/S0096-3003(19)30660-5/sbref0017
http://refhub.elsevier.com/S0096-3003(19)30660-5/sbref0018
http://refhub.elsevier.com/S0096-3003(19)30660-5/sbref0018
http://refhub.elsevier.com/S0096-3003(19)30660-5/sbref0018
http://refhub.elsevier.com/S0096-3003(19)30660-5/sbref0018
http://refhub.elsevier.com/S0096-3003(19)30660-5/sbref0019
http://refhub.elsevier.com/S0096-3003(19)30660-5/sbref0019
http://refhub.elsevier.com/S0096-3003(19)30660-5/sbref0019
http://refhub.elsevier.com/S0096-3003(19)30660-5/sbref0019
http://refhub.elsevier.com/S0096-3003(19)30660-5/sbref0020
http://refhub.elsevier.com/S0096-3003(19)30660-5/sbref0020
http://refhub.elsevier.com/S0096-3003(19)30660-5/sbref0020
http://refhub.elsevier.com/S0096-3003(19)30660-5/sbref0020
http://refhub.elsevier.com/S0096-3003(19)30660-5/sbref0020
http://refhub.elsevier.com/S0096-3003(19)30660-5/sbref0021
http://refhub.elsevier.com/S0096-3003(19)30660-5/sbref0021
http://refhub.elsevier.com/S0096-3003(19)30660-5/sbref0021
http://refhub.elsevier.com/S0096-3003(19)30660-5/sbref0021
http://refhub.elsevier.com/S0096-3003(19)30660-5/sbref0022
http://refhub.elsevier.com/S0096-3003(19)30660-5/sbref0022
http://refhub.elsevier.com/S0096-3003(19)30660-5/sbref0022
http://refhub.elsevier.com/S0096-3003(19)30660-5/sbref0023
http://refhub.elsevier.com/S0096-3003(19)30660-5/sbref0023
http://refhub.elsevier.com/S0096-3003(19)30660-5/sbref0023
http://refhub.elsevier.com/S0096-3003(19)30660-5/sbref0024
http://refhub.elsevier.com/S0096-3003(19)30660-5/sbref0024
http://refhub.elsevier.com/S0096-3003(19)30660-5/sbref0025
http://refhub.elsevier.com/S0096-3003(19)30660-5/sbref0025
http://refhub.elsevier.com/S0096-3003(19)30660-5/sbref0025
http://refhub.elsevier.com/S0096-3003(19)30660-5/sbref0025
http://refhub.elsevier.com/S0096-3003(19)30660-5/sbref0026
http://refhub.elsevier.com/S0096-3003(19)30660-5/sbref0026
http://refhub.elsevier.com/S0096-3003(19)30660-5/sbref0026
http://refhub.elsevier.com/S0096-3003(19)30660-5/sbref0026
http://refhub.elsevier.com/S0096-3003(19)30660-5/sbref0028
http://refhub.elsevier.com/S0096-3003(19)30660-5/sbref0028
http://refhub.elsevier.com/S0096-3003(19)30660-5/sbref0028
http://refhub.elsevier.com/S0096-3003(19)30660-5/sbref0028
https://doi.org/10.1063/1.4958920
http://refhub.elsevier.com/S0096-3003(19)30660-5/sbref0030
http://refhub.elsevier.com/S0096-3003(19)30660-5/sbref0030
http://refhub.elsevier.com/S0096-3003(19)30660-5/sbref0030
http://refhub.elsevier.com/S0096-3003(19)30660-5/sbref0030
http://refhub.elsevier.com/S0096-3003(19)30660-5/sbref0031
http://refhub.elsevier.com/S0096-3003(19)30660-5/sbref0031
http://refhub.elsevier.com/S0096-3003(19)30660-5/sbref0031
http://refhub.elsevier.com/S0096-3003(19)30660-5/sbref0032
http://refhub.elsevier.com/S0096-3003(19)30660-5/sbref0032
http://refhub.elsevier.com/S0096-3003(19)30660-5/sbref0032
http://refhub.elsevier.com/S0096-3003(19)30660-5/sbref0032
http://refhub.elsevier.com/S0096-3003(19)30660-5/sbref0032
http://refhub.elsevier.com/S0096-3003(19)30660-5/sbref0033
http://refhub.elsevier.com/S0096-3003(19)30660-5/sbref0033
http://refhub.elsevier.com/S0096-3003(19)30660-5/sbref0033

	Solvability of parabolic variational-hemivariational inequalities involving space-fractional Laplacian
	1 Introduction
	2 Preliminaries and hypotheses
	3 Existence of solutions
	Acknowledgments
	References


