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a b s t r a c t

This paper presents a quasistatic problem of an elastic body in frictional contact with a
moving foundation. The model takes into account wear of the contact surface of the body
caused by the friction.We recall existence and uniqueness results obtained in Sofonea et al.
(2017). The main aim of this paper is to present a fully discrete scheme for numerical
approximation together with an error estimation of a solution to this problem. Finally,
computational simulations are performed to illustrate the mathematical model.
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1. Introduction

Frictional contact between a deformable body and a foundation is a phenomenon that occurs in various forms in different
physical settings. In any particular case different factors can influence the behavior of the body. Such factors include for
example constitutive law of the body, friction law that describes the contact with the foundation, the influence of the
temperature or piezoelectricity effects. This is why different models have been developed in the field of contact mechanics.

Frommathematical point of viewweare interested in obtaining existence anduniqueness of a solution to a givenproblem.
The classical approach to obtain these results requires the use of the theory of variational or hemivariational inequalities.
It was developed and presented in [1]. The adaptation of this theory to solve quasistatic or dynamic contact problems with
friction and wear can be found for example in [2–5]. Good examples of monographs summarizing progress in this field
are [6,7].

In many cases in the field of contact mechanics the proof of existence and uniqueness of the solution is not constructive.
The next step in dealingwith these cases is usually presenting the discrete numerical scheme and estimation of finite element
method error. There are some examples of scientific works that provide the error estimation for particular cases, see for
example [8–11] and the reference therein.

In this article we focus on mechanical contact problem with wear modeled by Archard’s law of surface wear. One of the
cases in which this factor can play important role is contact between brake pads and rotors used in automotive industry. In
this model the friction between body and the foundation can cause the contact surface of the body to wear over time. The
proof of existence and uniqueness of a solution to such a problemhas been already conducted and presented in [12], whereas
our paper introduces numerical treatment of this model. We provide numerical error estimation and present computational
simulations for an example of stated problem.
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The remainder of this paper is organized as follows. In Section 2 we introduce the physical setting and mechanical
contact problem. In Section 3we present the variational formulation of this problem and recall the existence and uniqueness
result. A fully discrete numerical scheme and its error estimation are derived in Section 4. Finally, in Section 5, we present
computational simulations showing the evolution of displacement of the body andwear of a layer of softmaterial that covers
the body for a set of sample data.

2. Mechanical contact problem

An elastic body occupies a domain Ω ⊂ Rd, where d = 2, 3 in application. We assume that its boundary Γ is divided into
three disjointmeasurable partsΓD, ΓC , ΓN , where the partΓD has a positivemeasure. AdditionallyΓ is Lipschitz continuous,
and therefore the outward normal vector ν to Γ exists a.e. on the boundary. The body is clamped on ΓD with a displacement
equal to 0. The surface transactions of density fN act on the boundary ΓN and the volume forces of density f0 act in Ω . These
forces are time dependent.

The contact phenomenon on ΓC is modeled using normal compliance condition with unilateral constraint and Coulomb’s
law of dry friction. The body is in contact with a moving obstacle, the so-called foundation. We assume that the foundation
is made of a hard perfectly rigid material and the contact surface of the body ΓC is covered by a layer of soft material. This
layer is deformable and the foundationmay penetrate it. Frictional contact with the foundationmay cause this layer to wear
over time.

We assume that the acceleration of the body is close to zero, so our problem is quasistatic. In our model framework of
the small strain theory is employed. We are interested in the body displacement and foundation wear in the time interval
[0, T ], with T > 0.

Let us denote by ‘‘·’’ and ∥ · ∥ the scalar product and the Euclidean norm in Rd or Sd, respectively, where Sd
= Rd×d

sym .
Indices i and j run from1 to d and the index after a comma represents the partial derivativewith respect to the corresponding
component of the independent variable. Summation over repeated indices is implied. We denote the divergence operator
by Div σ = (σij,j). We also use the standard notions of Lebesgue and Sobolev spaces (L2(Ω)d = L2(Ω;Rd) and H1(Ω)d =

H1(Ω;Rd)). Let us define the linearized (small) strain tensor with dependence on displacement for all u ∈ H1(Ω)d

ε(u) = (εij(u)), εij(u) =
1
2
(ui,j + uj,i).

Let uν = u · ν and σν = σν · ν be the normal components of u and σ, respectively, and let uτ = u − uνν and στ = σν − σνν

be their tangential components, respectively. In what follows, for simplicity, we do not indicate explicitly the dependence
of various functions on the spatial variable x.

Now let us introduce the classical formulation of described mechanical contact problem with wear.

Problem P . Find a displacement field u : Ω × [0, T ] → Rd, a stress field σ : Ω × [0, T ] → Sd and a wear function
w : ΓC × [0, T ] → R+ such that for all t ∈ [0, T ]

σ(t) = F(ε(u(t))) in Ω (1)
Div σ(t) + f0(t) = 0 in Ω (2)

u(t) = 0 on ΓD (3)
σ(t)ν = fN (t) on ΓN (4)

uν(t) ≤ g, σν(t) + p(uν(t) − w(t)) ≤ 0,
(uν(t) − g)

(
σν(t) + p(uν(t) − w(t))

)
= 0

}
on ΓC (5)

− στ(t) = µ p(uν(t) − w(t))n∗(t) on ΓC (6)
w′(t) = α(t) p(uν(t) − w(t)) on ΓC (7)

w(0) = 0 on ΓC (8)

where n∗(t) = −
v∗(t)

∥v∗(t)∥ , α(t) = κ∥v∗(t)∥ and v∗ denotes velocity of the foundation.

Here, Eq. (1) represents an elastic constitutive law and F is an elasticity operator. Equilibrium equation (2) corresponds
to the assumption that acceleration of the body is negligibly small. Eq. (3) describes the fact that body is clamped on ΓD
and (4) represents outside forces acting on ΓN . Eq. (5) describes the damping response of the foundation with g > 0 being
the thickness of a soft layer covering ΓC . The friction is modeled by Eq. (6). Here, v∗ is assumed to be significantly larger than
tangential body velocity u′

τ , κ represents the wear coefficient and µ is the friction coefficient. Eqs. (7) and (8) govern the
evolution of the wear function. Detailed derivation of this model is presented in paper [12].
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3. Variational formulation

In order to obtain variational formulation for the stated problem we introduce additional notation. We recall that
C([0, T ]; X) is the space of continuous functions from [0, T ] to X . We consider the following Hilbert spaces:

H = L2(Ω; Sd), V = {v ∈ H1(Ω)d | v = 0 on ΓD},

endowed with the inner scalar products

(σ, τ)H =

∫
Ω

σijτij dx, (u, v)V = (ε(u), ε(v))H,

respectively, and corresponding norms ∥ · ∥X with X beingH and V . The completeness of the norm ∥ · ∥V follows from Korn’s
inequality, and its application is allowed because of the assumption meas(ΓD) > 0. Moreover, we denote by ⟨·, ·⟩V∗×V the
duality pairing between a dual space V ∗ and V .

When the trace of v ∈ V on the boundary Γ is considered, we still write v for simplicity. By the Sobolev trace theorem,
there exists a constant c0 > 0 depending only on Ω , ΓD and ΓC such that

∥v∥L2(ΓC )d ≤ c0∥v∥V for all v ∈ V . (9)

We introduce the set of admissible displacements, namely

U = {v ∈ V | vν ≤ g on ΓC }.

Now we present the hypotheses on the data of Problem P .
H(F): The elasticity operator F : Ω × Sd

→ Sd satisfies

(a) F(·, ε) is measurable on Ω for all ε ∈ Sd, F(·, 0) ∈ H,
(b) ∃ LF > 0 s.t. ∥F(x, ε1) − F(x, ε2)∥ ≤ LF∥ε1 − ε2∥ for all ε1, ε2 ∈ Sd, a.e. x ∈ Ω ,
(c) ∃mF > 0 s.t. (F(x, ε1) − F(x, ε2)) · (ε1 − ε2) ≥ mF∥ε1 − ε2∥

2 for all ε1, ε2 ∈ Sd, a.e. x ∈ Ω .

H(p): The normal compliance function p : ΓC × R → R+ satisfies

(a) p(·, r) is measurable on ΓC for all r ∈ R,
(b) ∃ Lp > 0 s.t. |p(x, r1) − p(x, r2)| ≤ Lp|r1 − r2| for all r1, r2 ∈ R, a.e. x ∈ ΓC ,
(c) (p(x, r1) − p(x, r2))(r1 − r2) ≥ 0 for all r1, r2 ∈ R, a.e. x ∈ ΓC ,
(d) p(x, r) = 0 for all r ≤ 0, a.e. x ∈ ΓC .

Densities of body and traction forces satisfy
H(f ): f0 ∈ C([0, T ]; L2(Ω)d), fN ∈ C([0, T ]; L2(ΓN )d).
(H0): The friction and wear coefficients, and the foundation velocity satisfy

(a) µ ∈ L∞(ΓC ), µ(x) ≥ 0, a.e. x ∈ ΓC ,
(b) κ ∈ L∞(ΓC ), κ(x) ≥ 0, a.e. x ∈ ΓC ,
(c) v∗

∈ C([0, T ];Rd), ∥v∗(t)∥ ≥ ν > 0 for all t ∈ [0, T ].

We notice that hypotheses (H0) indicate the following regularities:

n∗
∈ C([0, T ];Rd), α ∈ C([0, T ]; L∞(ΓC )). (10)

Finally, we present the following smallness assumption:
(Hs): c20Lp∥µ∥L∞(ΓC ) < mF , where a constant c0 is introduced in (9).

Now we define some operators and functions in order to present variational formulation of Problem P . Let F : V → V ∗,
f : [0, T ] → V ∗ and ϕ : [0, T ] × L2(ΓC ) × V × V → R be defined for all u, v ∈ V , w ∈ L2(ΓC ), t ∈ [0, T ] as follows:

⟨Fu, v⟩V∗×V = (F(ε(u)), ε(v))H,

⟨f (t), v⟩V∗×V =

∫
Ω

f0(t) · v dx +

∫
ΓN

fN (t) · v da,

ϕ(t, w, u, v) =

∫
ΓC

p(uν − w) vν da +

∫
ΓC

µ p(uν − w) n∗(t) · vτ da.

Using the standard procedure and Green’s formula we obtain the variational formulation of Problem P in the following
form.
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Problem PV . Find u : [0, T ] → U and w : [0, T ] → L2(ΓC ) such that for all t ∈ [0, T ]

⟨Fu(t), v − u(t)⟩V∗×V + ϕ(t, w(t), u(t), v) − ϕ(t, w(t), u(t), u(t))
≥ ⟨f (t), v − u(t)⟩V∗×V for all v ∈ U, (11)

w(t) =

∫ t

0
α(s) p(uν(s) − w(s)) ds. (12)

Let us now recall the following existence and uniqueness result for Problem PV (for details see Theorem 4.1 in [12]).

Theorem 1. Assume H(F), H(p), H(f ), (H0) and (Hs). Then Problem PV has the unique solution with the regularity

σ ∈ C([0, T ];H), u ∈ C([0, T ]; V ), w ∈ C1([0, T ]; L2(ΓC )),

and, in addition,

w(t) ≥ 0 for all t ∈ [0, T ], a.e. on ΓC .

4. Numerical scheme

Here and below we denote W = L2(ΓC ). Let V h
⊂ V and W h

⊂ W be two families of finite dimensional subspaces with
a discretization parameter h > 0. Let then Uh

= U ∩ V h. We introduce the time step k = T/N for N ∈ N,N > 0 and
tn = nk, n = 0, 1, . . . ,N . We also use notation gj = g(tj) for any g ∈ C([0, T ]; X), where X is any introduced function space.

We make the following additional assumptions on the solution u to Problem P and the velocity of the foundation v∗.
(H1): u ∈ H1(0, T ; V ), v∗

∈ W 1,∞(0, T ;Rd).
Assumptions (H1) and (H0)(b) indicate that

α ∈ W 1,∞(0, T ; L∞(ΓC )). (13)

We now present the following fully discrete scheme.

Problem Phk . Find uhk
= {uhk

j }
N
j=0 ⊂ Uh and whk

= {whk
j }

N
j=0 ⊂ W h such that

⟨Fuhk
j , vh

− uhk
j ⟩V∗×V + ϕj(whk

j , uhk
j , vh) − ϕj(whk

j , uhk
j , uhk

j )

≥ ⟨fj, vh
− uhk

j ⟩V∗×V for all vh
∈ Uh, j ∈ {0, . . . ,N}, (14)

whk
j = k

j−1∑
m=0

αm p((uhk
m )ν − whk

m ) for j ∈ {1, . . . ,N}, (15)

whk
0 = 0.

We remark that existence of the unique solution to Problem Phk follows from application of discrete version of Theorem 1.
Now we introduce some preliminary material, namely we recall a special case of the Jensen inequality.

Lemma 2. Let I ⊂ R be a set of positive measure and let f : I → R be an integrable function. Then( 1
|I|

∫
I
f (x) dx

)2
≤

1
|I|

∫
I
(f (x))2 dx.

In a particular case, we have(∫ tm+1

tm
f (x) dx

)2
≤ k

∫ tm+1

tm
(f (x))2 dx. (16)

The next lemma presents the Gronwall inequality in the following form (see [9], Lemma 7.26).

Lemma 3. Let T be given. For N > 0we define k = T/N. Let {gn}Nn=1, {en}
N
n=1 be two nonnegative sequences satisfying for c > 0

and for all n ∈ {1, . . . ,N}

en ≤ cgn + c
n∑

j=1

kej.

Then

max
1≤n≤N

en ≤ ĉ max
1≤n≤N

gn with ĉ > 0.
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Now we present the following theorem concerning error estimation of introduced numerical scheme.

Theorem 4. Under the assumptions of Theorem 1 and additional hypothesis (H1), for the unique solution (u, w) ∈ C([0, T ]; V )×
C1([0, T ];W ) of Problem PV and the unique solution (uhk, whk) ⊂ Uh

× W h of Problem Phk there exists a constant c̃ > 0 such
that

k
N∑
j=1

(∥uj − uhk
j ∥

2
V + ∥wj − whk

j ∥
2
W )

≤ c̃ inf
vh∈Uh

{
k2 + k ∥u0 − uhk

0 ∥
2
V + k

N∑
j=1

∥uj − vh
j ∥

2
V + k

N∑
j=1

|Rj(wj, uj, vh
j )|

}
,

(17)

where

Rj(wj, uj, vh
j ) = ⟨Fuj, vh

j − uj⟩V∗×V + ϕj(wj, uj, vh
j ) − ϕj(wj, uj, uj) − ⟨fj, vh

j − uj⟩V∗×V . (18)

Proof. Throughout this proof we denote as c > 0 a generic constant (value of c may differ in different equations) and
numerical solution errors for any j ∈ {1, . . . ,N} by

ej = uj − uhk
j , εj = wj − whk

j .

Let us fix j ∈ {1, . . . ,N}. We start with the estimate of εj. From (12) and (15) after using an elementary inequality(∑l
m=0am

)2
≤ c l

∑l
m=0a

2
m for am ∈ R+ we obtain

∥εj∥
2
W =

∫
ΓC

⏐⏐⏐ j−1∑
m=0

∫ tm+1

tm
α(s) p(uν(s) − w(s)) − αm p((uhk

m )ν − whk
m ) ds

⏐⏐⏐2 da
≤ cN

j−1∑
m=0

∫
ΓC

⏐⏐⏐ ∫ tm+1

tm
α(s) p(uν(s) − w(s)) − αm p((uhk

m )ν − whk
m ) ds

⏐⏐⏐2 da.
(19)

Since p is Lipschitz continuous and p(0) = 0 we have⏐⏐⏐ ∫ tm+1

tm
α(s) p(uν(s) − w(s)) − αm p((uhk

m )ν − whk
m ) ds

⏐⏐⏐
≤

⏐⏐⏐ ∫ tm+1

tm

(
α(s) (p(uν(s) − w(s)) − p(0)) − αm (p(uν(s) − w(s)) − p(0))

+ αm p(uν(s) − w(s)) − αm p((uhk
m )ν − whk

m )
)
ds

⏐⏐⏐
≤c

∫ tm+1

tm
|α(s) − αm| (|uν(s)| + |w(s)|) + αm (|uν(s) − (uhk

m )ν | + |w(s) − whk
m |) ds.

Returning to (19) and using Lemma 2 with I = [tm, tm+1] (cf. (16)), since kN = T , we obtain

∥εj∥
2
W ≤ cT

j−1∑
m=0

∫ tm+1

tm

∫
ΓC

(
|α(s) − αm|

2 (|uν(s)|2 + |w(s)|2)

+α2
m (|uν(s) − (um)ν |2 + |(um)ν − (uhk

m )ν |
2

+|w(s) − wm|
2
+ |wm − whk

m |
2
)
)
da ds.

(20)

Since α ∈ W 1,∞(0, T ; L∞(ΓC )) (cf. (13)), we obtain for allm ∈ {1, . . . ,N}, s ∈ (tm, tm+1] and almost every x ∈ ΓC

|α(s, x) − αm(x)| =

⏐⏐⏐ ∫ s

tm
α ′(τ , x) dτ

⏐⏐⏐ ≤

∫ tm+1

tm
|α ′(τ , x)| dτ

≤k ∥α ′
∥L∞(0,T ;L∞(ΓC )) ≤ k ∥α∥W1,∞(0,T ;L∞(ΓC )).

(21)
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Similarly, using Lemma 2, from assumption (H1) and the fact that w ∈ C1([0, T ];W ) (cf. Theorem 1) we have for all
m ∈ {1, . . . ,N} and s ∈ (tm, tm+1]∫

ΓC

|uν(s) − (um)ν |2 da ≤ k
∫

ΓC

∫ tm+1

tm
|u′

ν(τ )|
2 dτ da ≤ k

∫ tm+1

tm
∥u′

ν(τ )∥
2
W dτ , (22)∫

ΓC

|w(s) − wm|
2 da ≤ k

∫ tm+1

tm
∥w′(τ )∥2

W dτ . (23)

We return to (20), using (21)–(23) and the fact that αm(x) ≤ c for all m ∈ {1, . . . ,N} and almost every x ∈ ΓC (cf. (10)),
we obtain

∥εj∥
2
W ≤ c k2

∫ T

0
∥uν(s)∥2

W + ∥w(s)∥2
W ds

+ c k
j−1∑
m=0

∫ tm+1

tm

∫ tm+1

tm
∥u′

ν(τ )∥
2
W + ∥w′(τ )∥2

W dτ ds

+ c
j−1∑
m=0

∫ tm+1

tm

∫
ΓC

|(um)ν − (uhk
m )ν |

2
+ |wm − whk

m |
2
da ds.

(24)

Finally, using (9) and the fact that w ∈ C1([0, T ];W ), we get

∥εj∥
2
W ≤ c k2 + c k

j−1∑
m=0

(
∥em∥

2
V + ∥εm∥

2
W

)
. (25)

Let us now fix j ∈ {1, . . . ,N} and estimate ej. We set t = tj and v = uhk
j in (11), and vh

= vh
j in (14), we obtain

⟨Fuj − Fuhk
j , uj − uhk

j ⟩V∗×V ≤ ⟨Fuhk
j − Fuj, vh

j − uj⟩V∗×V

+ ϕj(whk
j , uhk

j , vh
j ) − ϕj(wj, uj, vh

j ) − ϕj(whk
j , uhk

j , uhk
j ) + ϕj(wj, uj, uhk

j )

+ Rj(wj, uj, vh
j ),

(26)

where Rj is given by (18). Since p ismonotone and Lipschitz continuous, using (H0) and (9), we estimate for all u1, u2, v1, v2 ∈

V and w1, w2 ∈ L2(ΓC )

ϕj(w1, u1, v2) − ϕj(w2, u2, v2) − ϕj(w1, u1, v1) + ϕj(w2, u2, v1)

≤

∫
ΓC

[p(u1ν − w1) − p(u2ν − w2)] [(v2ν − w2) − (v1ν − w1)] da

+

∫
ΓC

[p(u1ν − w1) − p(u2ν − w2)] (w2 − w1) da

+

∫
ΓC

µ [p(u1ν − w1) − p(u2ν − w2)] n∗

j · (v2τ − v1τ ) da

≤Lp

∫
ΓC

(|u1ν − u2ν | + |w1 − w2|) |w1 − w2| da

+ Lp ∥µ∥L∞(ΓC )

∫
ΓC

(|u1ν − u2ν | + |w1 − w2|) ∥v1τ − v2τ∥ da

≤ Lp(c0∥u1 − u2∥V + ∥w1 − w2∥W )∥w1 − w2∥W

+ c0 Lp ∥µ∥L∞(ΓC ) (c0∥u1 − u2∥V + ∥w1 − w2∥W ) ∥v1 − v2∥V .

(27)

Hence, using this inequality into (26) and the triangle inequality

∥uhk
j − vh

j ∥V ≤ ∥uj − vh
j ∥V + ∥ej∥V

we obtain

(mF − c20 Lp ∥µ∥L∞(ΓC ))∥ej∥
2
V ≤c∥ej∥V∥uj − vh

j ∥V + |Rj(wj, uj, vh
j )|

+ c ∥ej∥V ∥εj∥W + c ∥εj∥W ∥uj − vh
j ∥V + c∥εj∥2

W .
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Defining A := mF − c20 Lp ∥µ∥L∞(ΓC ) > 0 (by (Hs)), we get

A∥ej∥2
V ≤

√
A
2
∥ej∥V

√
2

√
A
c∥uj − vh

j ∥V + |Rj(wj, uj, vh
j )| +

√
A
2
∥ej∥V

√
2

√
A
c∥εj∥W + c∥uj − vh

j ∥
2
V + c∥εj∥2

W .

Using inequality ab ≤
a2+b2

2 , we obtain

A
2
∥ej∥2

V ≤c∥uj − vh
j ∥

2
V + |Rj(wj, uj, vh

j )| + c∥εj∥2
W .

Using (25) to estimate the last term on the right hand side of this and adding obtained inequality to (25), we get

∥ej∥2
V + ∥εj∥

2
W ≤ c∥uj − vh

j ∥
2
V + |Rj(wj, uj, vh

j )| + ck2 + ck ∥e0∥2
V + ck

j−1∑
m=1

(∥em∥
2
V + ∥εm∥

2
W ).

Summing this inequality from j = 1 to n for n ∈ {1, . . . ,N} and multiplying it by k, we obtain

k
n∑

j=1

(∥ej∥2
V + ∥εj∥

2
W ) ≤ck

n∑
j=1

∥uj − vh
j ∥

2
V + k

n∑
j=1

|Rj(wj, uj, vh
j )|

+ck2 + ck ∥e0∥2
V + c

n∑
j=1

k2
j∑

m=1

(∥em∥
2
V + ∥εm∥

2
W ).

Applying Lemma 3 with en = k
∑n

j=1(∥ej∥
2
V + ∥εj∥

2
W ) proves the theorem.

We finish this section by providing a sample error estimate under additional assumption on the solution regularity. We
consider a polygonal domain Ω and a space of continuous piecewise affine functions V h.

Theorem 5. Under hypotheses of Theorem 4 and assuming the solution regularity u ∈ C([0, T ];H2(Ω)d), we have the following
error estimate:

k
N∑
j=1

(∥uj − uhk
j ∥

2
V + ∥wj − whk

j ∥
2
W ) ≤ c̃ (k2 + kh2

+ h), with c̃ > 0.

Proof. We fix any t = tj, j ∈ {0, 1, . . . ,N} and denote by Πhuj ∈ Uh the finite element interpolant of uj. By the standard
finite element interpolation error bounds (see for example [13]) we have

∥η − Πhη∥V ≤ c h ∥η∥H2(Ω)d for all η ∈ H2(Ω)d.

By similar calculations to (27) we obtain

|Rj(wj, uj, vh
j )| ≤ c ∥uj − vh

j ∥V .

Using inequality (17), we get

k
N∑
j=1

(∥uj − uhk
j ∥

2
V + ∥wj − whk

j ∥
2
W )

≤ c
(
k2 + k ∥u0 − Πhu0∥

2
V + k

N∑
j=1

∥uj − Πhuj∥
2
V + k

N∑
j=1

|Rj(wj, uj, Πhuj)|
)

≤ ck2 + ckh2
+ ckNh2

+ ckNh.

Since kN = T , we obtain the desired conclusion.

5. Simulations

In this section we present results of our simulations. We take d = 2 and we consider a rectangular set Ω = [0, 3]× [0, 1]
with following parts of the boundary:

ΓD = {0} × [0, 1], ΓN = ([0, 3] × {1}) ∪ ({3} × [0, 1]), ΓC = [0, 3] × {0}.

The elasticity operator F is defined by

F(τ) = 2ητ + λtr(τ)I, τ ∈ S2.
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Fig. 1. Body’s shape after 25 iterations.

Fig. 2. Body’s shape after 50 iterations.

Fig. 3. Body’s shape after 75 iterations.

Fig. 4. Body’s shape after 100 iterations.

Here I denotes the identity matrix, tr denotes the trace of the matrix, λ and η are the Lame coefficients, λ, η > 0. In our
simulations we take the following data:

λ = η = 1, T = 1
u0(x) = (0, 0), x ∈ Ω

p(r) =

{
10 r, r ∈ [0, ∞)
0, r ∈ (−∞, 0)

µ(x) = 1, x ∈ Ω

κ(x) = 1.5, x ∈ Ω

v∗(x, t) = (1, 0), x ∈ ΓC , t ∈ [0, T ]
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fN (x, t) = (0, −0.1), x ∈ Ω, t ∈ [0, T ]

f0(x, t) = (0, 0), x ∈ Ω, t ∈ [0, T ]

g = 0.2.

We use space V h of continuous piecewise affine functions as a family of approximating subspaces andwe set time step equal
to 0.1. In Figs. 1–4we present outputs of finite elementmethod algorithmafter 25, 50, 75 and 100 iterations, respectively.We
can observe that the body is squeezed and the foundation penetrates the soft layer covering ΓC . This phenomenon is caused
by the downward force fN . At the final time (Fig. 4) part of the upper layer of the foundation is worn out. The penetration is
not greater than 0.2 because of the prescribed thickness g of a wearable layer.
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