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Abstract—Traffic state estimation is a challenging task due to
the collection of sparse and noisy measurements from specific
points of the traffic network. The emergence of Connected
and Automated Vehicles (CAVs) provides new capabilities for
traffic state estimation using extended floating car data such as
position, speed and spacing information. In this work we pro-
pose a Bayesian Traffic State Estimation (BTSE) methodology
for estimating the traffic density based on extended floating
car data. BTSE utilizes the Bayesian paradigm to express any
prior information to derive probability distributions of the
traffic density of different road segments of the traffic network.
Two variations of the BTSE methodology are developed to
handle the offline and online estimation problem. The BTSE
methodology is evaluated both using realistic SUMO micro-
simulations for M25 Highway, London, U.K., and a real-life
vehicle-trajectory dataset from German highways, extracted
from videos recorded by drones. The efficiency and accuracy of
the BTSE methodology is compared to an existing methodology
in the literature. We present results for the estimation perfor-
mance of the methods showing that the Bayesian methodology
consistently results in lower mean absolute percentage error
than the compared literature method. The BTSE methodology
yields high-quality estimation results even for a low penetration
rate of CAVs (e.g. 5%).

Keywords - traffic density; traffic monitoring; probe vehi-
cles; connected and automated vehicles; spacing measure-
ments; probabilistic inference.

I. INTRODUCTION
Traffic state estimation (TSE) is a critical process for

traffic planning, management and operations. A traffic state
is often defined through the main traffic variables, namely
density (veh/km), flow (veh/h) and speed (km/h) and is fully
described by at most two of the aforementioned variables.
TSE refers to the process of inferring traffic variables from a
limited amount of noisy observed traffic data on certain road
segments. This process depends on the estimation approach
utilised for the task, the traffic flow models considered to
describe the traffic dynamics, and the available input data.

Various methods have been proposed in the literature
for efficient observation of traffic conditions [1]. Generally,
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estimation approaches can be categorised based on input data
and physical or statistical assumptions.

In terms of physical or statistical assumptions, there
are four main categories of approaches: (i) model-driven,
(ii) data-driven (iii) hybrid, and (iv) streaming-data-driven.
Model-driven approaches typically rely on traffic flow
models, divided in first-order (e.g. the Lighthill-Whitham-
Richards (LWR) model [2], [3]) or higher-order extensions
(e.g. the Payne-Witham (PW) model [4], [5]). Most model-
driven methods make use of the Kalman filter and its
variations (see among others [6], [7], [8], [9], [10]) to solve
the model equations and assume data obtained from fixed-
location sensors. In addition, particle filters (see for example
[11], [12], [13]) and the adaptive smoothing filter (e.g. [14],
[15]), among many other methods [16], have been proven
powerful tools for TSE. Such methods make sure that the
estimation process respects basic traffic principles, however
they might fail to fully capture the phenomena of real-world
traffic when the considered traffic model is not representative
of reality. Data-driven approaches rely on statistical or
machine learning methods and historical data to develop an
internal representation between traffic variables, without ex-
plicitly considering traffic models. Bayesian inference is an
established statistical method to derive accurate TSE results
when data are limited [17], [18] [19], [20], while it has
been used in combination with model-based approaches for
more accurate estimation results [21], [22]. The most widely
used machine learning tools include deep neural networks
[23], [24], support vector machines [25] and decision trees
[26]. The estimation results using data-driven methods are
often more accurate, however they cannot guarantee that
the results will be physically feasible and they need a large
amount of high-quality data to provide accurate results. Also,
supervised machine learning methods require data of the true
value of the estimation parameter of interest, which often
not available. Hybrid methods combine desirable features
from both model-driven and data-driven approaches in order
to ensure accurate results and reduce data requirements
[27], [28]. A new framework in the deep learning literature,
namely physics-informed deep learning, has gain significant
attention the past few years with promising results as these
physics-informed regularisers reduce the space of feasible
solutions and approximate solutions that are consistent with
the chosen models using a limited amount of data (see for
example, [29], [30], [31], [32]). Despite the recent success
of physics-informed learning some studies have shown that
such methods might fail to train [33] or could be compu-
tationally expensive [34]. Besides, the available traffic data



should match the traffic parameters used in the underlying
model. Finally, streaming-data-driven approaches use only
streaming data (i.e. real-time data) for traffic estimation [35].
Such methods are robust against uncertain phenomena and
unpredictable incidents, however they require a large amount
of streaming data in order to provide accurate estimations.

In terms of traffic measurements, data is collected using
either stationary or fixed-location sensors (e.g., inductive
loop detectors and camera-based sensors), termed stationary
data, or mobile sensors (e.g., GPS, speedometer) mounted
on floating vehicles, termed Floating Car Data (FCD) [36].
Furthermore, connected and automated vehicles (CAVs) can
allow the collection of extended data about the neighbour-
hood of a vehicle, such as the space and time headway from
surrounding vehicles, using sophisticated on-board sensors
(e.g., lidars, radars), termed extended FCD (xFCD) [37].

Stationary data methods rely on traffic variables, such
as flow and occupancy, measured at the fixed locations of
sensors. The density and speed can then be estimated by
making weak assumptions, e.g., knowledge of the average
vehicle length. Stationary sensors have been widely used by
road administrators on highways since the early 90’s [38].
TSE based on stationary data has been well studied in the
literature [39]. However, the capabilities of fixed-location
methods are limited due to the sparsity and high installation
cost of sensors [40] and the inability of measuring traffic
states beyond their fixed locations [41]. Also, sensors often
deliver low-quality and unreliable information, as they are
subject to considerable disruptions due to system errors [42].

On the other hand, FCD-based TSE methods provide great
opportunities for reducing the dependency on conventional
stationary sensors and offer the ability to collect data from
a wider spatiotemporal domain. FCD include the position,
speed and direction of travel of moving vehicles equipped
with appropriate sensors. FCD-based TSE methods allow
the continuous observation and analysis of traffic condi-
tions, either offline using data from conventional floating
vehicles or online using data from connected vehicles, to
provide wide-range spatiotemporal TSE information [43].
Typically these methods make use of traffic flow models that
explicitly manage vehicle trajectory data. A novel model-
based approach to integrate GPS data into highway traffic
models was proposed in [44] and an extended Kalman
filtering approach was developed in [45] to incorporate
mobile data using the LWR model. A generalised least
squared estimation approach to estimate macroscopic traffic
states using multiple data sources was proposed in [46] .

Several research works have also developed TSE methods
that use both FCD and stationary data. In [17], [47], data-
driven methods were proposed that extract traffic informa-
tion, e.g. the fundamental diagram, using historical station-
ary data and use mobile data to estimate the current traffic
states. In [48], a Kalman filtering model-based TSE algo-
rithm was developed utilizing only average speed measure-
ments from connected vehicles and flow measurements from
fixed-location sensors. The performance of the approach was
investigated in a detailed microscopic simulation study under
various penetration rates of connected vehicles and traffic

conditions [49]. The approach was further extended in [50]
and [51] to take into account multi-lane highways.

Recently, TSE methods that utilize xFCD have been
proposed. Such data is collected from CAVs that have the
capability to measure their net space headway or gap from
the leading vehicle, in addition to their position and speed.
In [35] a streaming-data-driven approach was proposed to
estimate the traffic density in highways, based on Edie’s
definitions, using only xFCD with moderate estimation per-
formance; this methodology was also utilised for TSE in an
urban area of Barcelona [52]. Furthermore, a TSE method
was proposed in [53] that estimates traffic states by differen-
tiating the continuous cumulative counts of vehicles inside a
region, obtained through spacing measurements from CAVs
and using a conservation law. To reduce microscopic vehicle
behaviour fluctuations, an extended approach was developed
that estimates the traffic states and fundamental diagram
parameters using xFCD, and further updates the traffic
states using a model-based data assimilation method [54].
However, the use of deterministic traffic flow models re-
quires offline calibration and may not fully represent reality,
introducing extra uncertainty. A recent work proposed two
methods based on Bayesian inference and deep learning
for the estimation of the traffic flow rate only in free-flow
conditions using headway data acquired by CAVs [55]. The
proposed methods assume error-free measurements and a
large amount of historical data (from multiple days to years)
were used to form an initial probability density function of
the traffic flow, updated as new measurements were obtained.

In this work we consider the problem of estimating
the traffic density in mixed-traffic multi-lane highways
with only xFCD without considering any underlying traffic
flow model, similar to [35] and [55]. In this context, we
propose a data-driven Bayesian methodology and develop
algorithms for both offline and online estimation; to the
authors knowledge, this is the first work that develops a
Bayesian methodology for TSE using only xFCD and does
not make use of a traffic model, historical data or data from
any other source. The proposed methodology expresses prior
beliefs about the traffic states, as a probability distribution, to
provide additional information, especially due to the sparsity
of xFCD. These prior beliefs combined with a fundamental
traffic relationship that links measurements to state variables,
yields the posterior probability density that is used to infer
the traffic states, i.e. the traffic density in this case. We
provide all details of the prior distributions obtained through
a proper elicitation technique; other Bayesian methodologies
provide general information regarding prior distributions
which hinders their practical implementation by interested
researchers, e.g. [29]. The way prior distributions are derived
in this work eliminates the utilisation of a large amount
of historical data needed by other Bayesian methodologies.
Furthermore, to overcome the stationarity nature of proba-
bility density functions (PDFs), we propose the estimation
of the traffic density for discrete time windows in order to
avoid the utilisation of filtering approaches, such as particle
filters [56], that are computationally expensive.

The developed Bayesian methodology offers the following



main advantages compared to the state-of-the-art: (i) the
estimation performance is superior, especially for low CAV
penetration rates, due to the additional source of information
used along with the measurements, (ii) the inference of
the traffic state is obtained in a probability density form,
providing more detailed information compared to a point-
estimate [57, Chapter 4] and, (iii) the estimation accuracy
of the traffic variables does not rely on historical data or
traffic models.

The contributions of this work are the following:
• We design a fully Bayesian methodology1 that uses

sparse xFCD collected from CAVs to derive the pos-
terior predictive distribution of the traffic density in
different spatiotemporal regions of a specific highway
under study.

• We elaborate on the proposed methodology to develop
both an offline (data-driven) and an online (streaming-
data-driven) Bayesian TSE (BTSE) algorithm. The of-
fline BTSE algorithm uses measurements collected over
the entire time-horizon to estimate the traffic density
in different time-windows, whereas the online BTSE
algorithm uses measurements from the previous and
current time-windows to estimate the traffic density of
the current time-window.

• The Bayesian methodology is compared with an ex-
isting methodology in the literature proposed by [35].
The superiority of the proposed approach is illustrated
using both micro-simulations for a specific section of
the M25 Highway in London, U.K., and a real-life
dataset collected from German highways [59].

The remainder of the paper is organised as follows.
Section II describes the TSE problem when considering
mixed-traffic with xFCD. Section III presents an existing
solution approach introduced by [35], which will be used
to compare results obtained from the proposed method.
In Section IV we focus in the solution approach where
we develop an offline/online Bayesian approach to obtain
the posterior predictive distribution of the traffic density.
A simulation study using SUMO (Simulation of Urban
MObility) and a real-life dataset are used to validate the
proposed methodology in Section V. Section VII concludes
the paper and suggests future research directions.

A. Notation

In the remainder of this paper we use the following
notation. All bold letters indicate vectors (lower case) or
matrices (upper case), while calligraphic letters denote sets.
If A is a set, we denote as |A| the cardinality of the
specific set. Set R+ = [0,∞) denotes the set of all positive
real numbers. The superscripts (·)T and (·)−1, denote the
transpose and the matrix inverse respectively. In×n is the
n×n identity matrix and 0n×n denotes a n×n matrix that
all its elements are zero. The median of a vector x is defined

1A fully Bayesian framework requires prior distributions for all unknown
entities in the model, with the posterior distribution effectively capturing
all aspects of uncertainties involved. Optimal inference and prediction is
achieved through the selection of the most appropriate values for nuisance
parameters and hyperparameters using the available data [58].

as the value separating the higher half from the lower half
of the vector and is denoted as median(x). Furthermore,
x ∼ Normal(µ, σ2), x ∼ IG(α, β) and x ∼ Unif(c, d)
indicate that x is a random variable drawn from the normal
distribution with mean µ, and variance, σ2, the inverse-
gamma distribution with shape and scale parameters α > 0
and β > 0, and the uniform distribution in the range [c, d],
respectively.

II. PROBLEM STATEMENT

We consider a traffic network modeled as a directed graph
G = (V, E) where the set of vertices V represents road
junctions and the set of edges E represents road links. An
arbitrary road link is considered to be comprised of NS road
segments and NL lanes. We define the (i, l) space region,
i ∈ NS = {1, . . . , NS}, l ∈ NL = {1, . . . , NL}, for the
l-th lane of the i-th road segment as

Ri,l = {x|xi−1,l ≤ x ≤ xi,l}, i ∈ NS , l ∈ NL,

where, xi−1,l and xi,l denote the upstream and downstream
boundary in the l-th lane of the i-th road segment.

We consider the estimation of traffic densities of distinct
lanes of different road segments over a time-horizon T . The
estimation time-window duration considered is TW , such
that NW = T/TW different density values are derived over
the entire time-horizon. The j-th estimation time-window
is defined as Tj = {τ |τj−1 ≤ τ ≤ τj}, j ∈ NW =
{1, ..., NW }, such that τNW −τ0 = T and τj−τj−1 = TW ,
∀j ∈ NW .

Each space region Ri,l, i ∈ NS , l ∈ NL, and time-
window Tj , j ∈ NW define a time-space region, denoted
by Ailj [km× h], as

Ailj ={(x, τ)| xi−1,l ≤ x ≤ xi,l, τj−1 ≤ τ ≤ τj}, (1)

shown in Figure 1. The coordinates of the lower-left and
upper-right corner of region Ailj are (xi−1,l, τj−1) and
(xi,l, τj), respectively. Because the analysis is uniform
across all time-space regions, we hereafter drop indices i, l,
j, from all measurements, variables and sets and consider
that region A is the same as Ailj , unless otherwise stated.

We consider mixed traffic conditions with two types
of vehicles: (i) conventional vehicles (CVs) that do not
have measuring capabilities and (ii) CAVs or connected
vehicles with the ability of measuring the distance to their
leading vehicle; hereafter we use the term ‘CAVs’ for the
second type of vehicles. Let N V and NC denote the set
of all vehicles and the set of CAVs in time-space region
A, respectively, where NC ⊆ N V , and NV = |N V |,
NC = |NC |. Each CAV c ∈ NC in A is equipped with
various sensors for measuring:

• The position, given as zc = [zc,1, . . . , zc,Mc
]T [km].

• The net space headway or gap2, given as yc =
[yc,1, . . . , yc,Mc

]T [km].
• The speed, given as uc = [uc,1, . . . , uc,Mc ]

T [km/h].
• The time-stamp, given as τ̂c = [τ̂c,1, . . . , τ̂c,Mc ]

T [h].

2The net space headway or gap is defined as the distance between the
front-bumper of the ego vehicle and the rear-bumper of its leading vehicle.
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Fig. 1: Time-space region Ailj . Red bullets and yellow
arrows indicate the position and spacing measurements
recorded from the CAV accordingly. Red solid lines and blue
dashed lines indicate the derived trajectories of CAVs and
CVs, respectively. The pink shaded area is the time-space
region between CAV c and its leading vehicle, Sc, and the
hatched area is the time-space region between CAV c and
its leading vehicle in Ailj , ac.

Above, Mc is the number of measurements collected by
CAV c in the specific time-space region.

CVs do not have the capability to collect any data. The
sampling period is set equal to TS such that each CAV
collects a new measurement every TS time units. Based on
these measurements, the following data are calculated from
each CAV and communicated to an operation center:

• The speed uc.
• The time spent of CAV c ∈ NC in the specific region
A, given as tc = τ̂c,Mc − τ̂c,1 [h], where τ̂c,Mc and τ̂c,1
are the time-stamps of the last and first measurements,
respectively.

• The area of the time-space region between CAV
c ∈ NC and its leading vehicle in region A, denoted
as ac = A ∩ Sc [km×h]. By using measurements yc

and zc, we derive Sc which is the time-space region,
between CAV c and its leading vehicle. Finally, we
calculate ac, which is the value of the area between
the intersection of A and Sc, as shown in Figure 1.

The true traffic density, ρtrue, in time-space region A is
defined according to [60] as

ρtrue =

∑
n∈NV tn∑
n∈NV an

. (2)

Equation (2) shows that if all vehicles in the specific road
segment under study are CAVs then the traffic density is
known. Nonetheless, if only a proportion of traffic are CAVs,
then the traffic density cannot be estimated exactly.

Given the data provided by CAVs, uc, tc and ac, ∀c ∈
NC , the objective of this work is to estimate the traffic
density of time-space region A, according to Equation (2).

We consider the estimation of the traffic density both in
an offline and online framework. When offline estimation is

performed, xFCD is collected by CAVs for the NW time-
windows, Tj , ∀j ∈ NW , and the estimation method uses the
total amount of information. For online estimation xFCD is
collected for time-windows Tj−1 and Tj and the estimation
is performed for time-window Tj , ∀j ∈ NW . The online
procedure is repeated for the total NW time-windows.

For simplicity the following assumptions are made. First,
we assume that CAVs are randomly selected and have
the same driving behaviour as the rest of the vehicles.
Furthermore, we consider that measurement errors from
different sensors have a cumulative effect resulting in an
additive zero mean Gaussian error on density.

III. EXISTING SOLUTION APPROACH

An online estimation approach for obtaining traffic vari-
ables using only xFCD was proposed in [35] making the
assumption that CAVs3 collect ac and tc, ∀c ∈ NC . The
assumption of random sampling of CAVs defined in the
previous section holds for this approach with the additional
assumption that the measurements are collected without
error. Edie’s generalised definitions [60] are utilised to
estimate traffic density, flow and speed for individual time-
space regions. For example, to estimate traffic density, the
set of all vehicles, N V , in (2) is replaced by NC , yielding

ρ̂PTSE =

∑
c∈NC tc∑
c∈NC ac

. (3)

Estimator (3) is biased and an inverse correlation exists
between the bias and the penetration rate of CAVs, as shown
in [35]. The authors concluded that their algorithm provides
good estimates for 5-minute and hourly volumes; however,
the error was large for low traffic demand, as well as for low
CAV penetration rates. The developed Bayesian estimation
algorithms are compared to this approach, which we refer
to as point TSE (PTSE).

IV. SOLUTION APPROACH

We develop a fully Bayesian approach to derive the
probability distribution of the traffic density in a specific
time-space region, assuming we have available the mea-
surements acquired by CAVs, as defined in Section II.
Bayesian inference is a natural way to update prior beliefs
for unknown parameters through the posterior distribution
and obtain marginal distributions of interest. The main
idea of Bayesian inference is to continually update prior
beliefs about events as new evidence, i.e. measurements, is
acquired. The proposed methodology is comprised of four
phases.

• Phase A: Utilise a fundamental definition to link mea-
surements to parameters.

• Phase B: Formulate prior information about parame-
ters.

• Phase C: Combine the two sources of information from
Phase A and Phase B using Bayes’ theorem [61] to
obtain the posterior distribution.

3The term used by the authors of [35] is probe vehicles, instead of CAVs.



• Phase D: Infer parameters using the resulting posterior
distribution.

In the next section we design a Bayesian inference
methodology for traffic density estimation both in an offline
(Section IV-B) and online (Section IV-C) framework. Note
however that the methodology can be used to estimate other
traffic variables such as traffic flow and speed.

A. Bayesian Traffic State Estimation Methodology

Phase A. The main objective of Phase A is to utilize a
fundamental definition that relates the measured parameters,
namely, time spent and area between different CAVs and
their leading vehicles of a specific time-space region, with
the unknown parameter, the traffic density.

Towards this direction we consider Edie’s equation of
traffic density, i.e. Equation (2). Initially, we select the
statistical formulation

ρ = g(α, t) + ε, (4)

where t = [t1, . . . , tc, . . . , tNC ]T is the NC-vector of time-
spent of all CAVs and α = [a1, . . . , ac, . . . , aNC ]T the NC-
vector of each CAV’s time-space region area with its leading
vehicle. Furthermore, g(·, ·) is the model given by (2),

g(α, t) =

∑
c∈NC tc∑
c∈NC ac

,

and ε is the noise which is a Gaussian random variable, ε ∼
Normal(0, σ2

ε). In contrast with [35] and [55] that make an
error-free assumption for the measurements obtained from
the CAVs, we assume that the measurements are subject
to noise, ε, as shown in (4). Note that if all vehicles in
the specific region where CAVs, i.e. NC = N V , then (2)
would be exact and known. Here, for a specific region A we
choose to observe ac for CAV c ∈ NC , and assume a prior
distribution for the parameters tc and the model noise σ2

ε .
We utilise the basic concepts of Bayesian inference to derive
a probability distribution of the traffic density in region A
by integrating out the unknown parameters.

The likelihood function for Equation (2), πL(ρ|t,α, σ2
ε),

is

πL(ρ|t,α, σ2
ε) =(2πσ2

ε)
− 1

2 exp

{
−1

2
[ρ− g(α, t)]

2

}
.

(5)

Phase B. The objective of Phase B is to formulate any
prior beliefs about the parameters of interest, namely, the
time spent and the model noise, as a known distribution.
Note that ac is not treated as a random variable because
ac = A ∩ Sc depends on tc through Sc. First, we assume
that the time spent of each CAV in the specific region
follows a prior distribution with a known mean, µc(u), and
variance, σ2

c (u), which are functions of the average speed of
vehicles, u. Without loss of generality, in order to describe
the a priori information about t, we choose normal prior
distributions, πB(tc), such that tc ∼ Normal(µc(u), σ

2
c (u)),

where µc(u), σ
2
c (u) > 0, ∀c ∈ NC , are hyperparameters that

can be estimated from the collected data. As t1, . . . , tNC , are

mutually independent random variables all having a normal
distribution, the NC × 1 random vector t defined as t =
[t1, . . . , tNC ]T has a multivariate normal distribution with
mean the NC-column vector µ(u) = [µ1(u), . . . , µNC (u)]T

and covariance matrix the NC ×NC diagonal matrix with
Σ(u)cc′ = σ2

c (u) when c = c′ and zero otherwise45. Hence,
without loss of generality, we have that

t ∼ Normal(µ(u),Σ(u)). (6)

The estimation of the mean and covariance matrix is chal-
lenging when the average speed takes continuous values,
i.e., u ∈ R+. We address this issue separately for the offline
and online estimation in Section IV-B and Section IV-C,
respectively.

We select an inverse-gamma prior distribution, πB(σ2
ε),

for the error variance, σ2
ε

σ2
ε ∼ IG(β, δ),

where again β, δ > 0 are known hyperparameters. The
inverse-gamma prior distribution is a common assumption
in Bayesian statistics as it results in an analytical tractable
marginal distribution. For 0 < β, δ < 1, which will be
used in this work, the inverse-gamma prior distribution is
an uninformative prior or diffuse prior meaning that it
expresses vague or general information, i.e. information that
is not subjectively elicited, about the error variance [57].

The joint prior density of t and σ2
ε is given by

πB(t, σ2
ε) = πB (t)πB(σ2

ε)

=
exp

{
− 1

2σ2
ε
(t− µ(u))TΣ(u)−1(t− µ(u))− δ

σ2
ε

}
σ2β+NC+2
ε

√
|Σ(u)|

.

(7)

Phase C. In this phase we combine the two sources
of information as provided in Phases A and B, i.e. the
prior distribution and the chosen definition, to obtain the
posterior density, πA(t, σ2

ε |ρ,α). This is achieved by using
Bayes’ Theorem to update our prior beliefs for parameters
t and σ2

ε by using the likelihood function (5). Note that the
values used for the traffic density ρ, are obtained by using
Equation (2) and the spacing data collected by CAVs. The
unnormalised posterior density satisfies

πA(t, σ2
ε |ρ,α)

∝ πB (t)πB(σ2
ε)π

L(ρ|t,α, σ2
ε)

∝
exp

{
− 1

2σ2
ε
(t− µ(u))TΣ(u)−1(t− µ(u))

}
√
|Σ(u)|

exp
{
− δ

σ2
ε

}
σ2β+NC+2
ε

× exp

{
−1

2
[ρ− g(α, t)]

2

}
. (8)

4This assumption is made for simplicity and without loss of generality.
Even under this assumption, the results presented in Section V show the
superiority of the proposed methodology. Considering the use of a non-
diagonal covariance matrix may yield even better results.

5This is a special case of a multivariate normal distribution with a
diagonal covariance matrix and can be proved by showing that the product
of the probability density functions of t1, . . . , tNC is equal to the joint
probability density function of t.



The unknown error variance σ2
ε is a nuisance parameter,

i.e. is not of immediate interest, but it still must be taken into
account when studying parameters which are of interest, i.e.
tc, c ∈ NC . Using known results from statistical theory [61],
we can integrate out σ2

ε and obtain the marginal posterior
distribution for t:

πM (t|ρ,α) =

∫ ∞

0

πA(t, σ2
ε |ρ,α)dσ2

ε

∝
exp

{
− 1

2 (t− µ(u))TΣ(u)−1(t− µ(u))
}√

|Σ(u)|

×

[
1 +

[ρ− g(α, t)]
2

2b

]−(β+NC

2 )

, (9)

which is basically the prior distribution multiplied by a
multivariate t-distribution, with 2β degrees of freedom, mean
g(α, t) and variance δ

β INC×NC .
Phase D. The objective of Phase D is to use the pos-
terior distribution for prediction, an important objective of
Bayesian inference addressed through the predictive distri-
bution. More specifically, assume that we have ρ, derived
through (4) and the collected measurements by a fixed
proportion of CAVs, and want to predict ρ̃, hence we want
to find the predictive distribution that represents uncertainty
in a new observation given previously obtained observations.
We denote as ρ̃ the derived traffic density over all vehicles in
the specific time-space region, and the posterior predictive
density π(ρ̃|ρ) is obtained by integrating out t with respect
to its posterior distribution:

π(ρ̃|ρ) =
∫
Ω

π(ρ̃|ρ, t,α)πM (t|ρ,α)dt (10)

where Ω = [0,∞)N
C

is the set of all possible values of
time spent for the CAVs deployed in time-window Tj and
π(ρ̃|ρ, t,α) is the conditional distribution of ρ̃ given t, α
and ρ. The joint prior distribution of ρ and ρ̃, conditional
on all unknown parameters t, α and σ2

ε is given by(
ρ̃

ρ

) ∣∣∣∣∣ t,α, σ2
ε ∼ N

((
g(α̃, t̃)

g(α, t)

)
, σ2

εI2×2

)
. (11)

Standard results for normal distributions can be used to
derive the following conditional posterior distribution [62]

ρ̃ | ρ, t,α, σ2
ε ∼ N

(
g(α̃, t̃), σ2

ε

)
, (12)

which is the likelihood function (5) at new values of the
time-spent t̃ and area of time-space region α̃, obtained from
the marginal posterior density πM (t|ρ,α). The predictive
distribution is given as an average over the marginal poste-
rior density πM (t|ρ,α) which contains all the information
we know about t [63]. Hence, to derive the predictive
distribution we know that π(ρ̃|ρ, t,α) follows the likelihood
distribution (5), which is a normal distribution as given in
Equation (12). To calculate the posterior predictive distribu-
tion we need to marginalise π(ρ̃|ρ, t,α) over the posterior
of t given ρ,α, i.e. πM (t|ρ,α).

The marginal posterior density πM (t|ρ,α), however, is
not a standard distribution, hence numerical evaluation is

Algorithm 1: Metropolis-Hastings algorithm

Input: t̃(0), πM (t|ρ,α)
for r = 1, 2, . . . , M̃ do

Propose: t∗ ∼ q(t∗|t̃(r−1))
Acceptance probability: Pα(t

∗|t̃(r−1)) =

min
{
1, q(t̃(r−1)|t∗)πM (t∗|ρ,α)

q(t∗|t̃(r−1))πM (t̃(r−1)|ρ,α)

}
Sample ω ∼ Unif[0, 1]
if ω < Pα then

Accept the proposal: t̃(r) ← t∗

else
Reject the proposal: t̃(r) ← t̃(r−1)

Output: ΞMCMC = [t̃(1)T, . . . , t̃(M̃)T]T

required. We employ sampling techniques based on Markov
Chain Monte Carlo (MCMC) methods (see [64, Chapter
11]). The idea of MCMC is in a sense to by-pass the math-
ematical operations rather than to implement them. MCMC
methods construct a Markov chain6 t̃(0), t̃(1), t̃(2), . . . , with
steady state distribution equal to the posterior density,
πM (t|ρ,α), of interest. The empirical distribution of the
first M̃ values, ΞMCMC = [t̃(1)T, . . . , t̃(r)T, . . . , t̃(M̃)T]T, will
then converge to πM (t|ρ,α) as M̃ →∞ meaning that if we
have a sufficiently large sample from any distribution then
we effectively have the whole distribution such that we can
calculate anything about the distribution (e.g. the mean or
the variance) from the sample.

A widely used MCMC algorithm that is relative simple
is the Metropolis-Hastings algorithm [66], [67], which will
be used for the purposes of this work (see Algorithm 1).
The first step is to initialise the chain with starting values
t̃(0) for the random variables. Let the current state of the
chain be t̃(r). The main loop of the algorithm consists of
three components: (i) generate a sample from a proposal
density q(·), (ii) compute the acceptance probability, Pα, and
(iii) accept or reject the candidate sample with probability
Pα, or 1− Pα, respectively. The Markov property specifies
that the distribution of t̃(r+1) given all previous draws,
t̃(r+1)|t̃(r), t̃(r−1), . . . , depends only on the most recent
value drawn t̃(r).

The Metropolis-Hastings algorithm is a general approach
for sampling from a target density, in our case πM (t|ρ,α).
However, it requires the specification of a proposal density,
which must be chosen carefully. Acceptance rates close to
1
4 where recommended for high dimensional models and
close to 1

2 for models of dimension 1 or 2 [63]. For the
purposes of this work, at each MCMC step we propose
values for t from a Normal distribution, q(·) = Normal(·, ·),
t∗ ∼ Normal(t̃(r), ν2R), where R is the covariance matrix
resulting from the nonlinear least squares fit of (2), scaled

6Markov chain: A sequence of random variables
{θ(0),θ(1),θ(2), . . . }, such that at each time t ≥ 0, the next state
θ(t+1) is sampled from a distribution f(θ(t+1)|θ(t)) which depends
only on the current state of the chain θ(t). This sequence is called Markov
chain, and f(·|·) is the transition kernel of the chain [65, Chapter 1].



Algorithm 2: An iid sample from π(ρ̃|ρ)
Input: ΞMCMC , π(ρ̃|ρ, t,α)
for r = 1, 2, . . . , M̃ do

Sample ρ̃∗(r) from π(ρ̃|ρ, t̃(r),α)

Output: ρ̃∗ = [ρ̃∗(1), . . . , ρ̃∗(M̃)]T

Step 1
Collect 
𝒛, 𝒚, 𝒖, %𝛕

Step 2
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Step 3
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Fig. 2: An illustration of the proposed methodology.

by a value ν2 7. As in many MCMC methods, the draws
are regarded as a sample from the target distribution only
after the chain has passed the burn-in time8 and the effect
of the fixed starting value has become so small that it can
be ignored.

Once the M̃ samples from the marginal posterior dis-
tribution, πM (t|ρ,α), are obtained using Algorithm 1, i.e.
ΞMCMC = [t̃(1)T, . . . , t̃(r)T, . . . , t̃(M̃)T]T, we proceed to the
calculation of the posterior predictive distribution, π(ρ̃|ρ),
by marginalising π(ρ̃|ρ, t,α) over πM (t|ρ,α). As π(ρ̃|ρ)
might not be available in closed form and it is often easier
to sample from this distribution using Monte Carlo methods.
Towards this task, each sample in ΞMCMC, t̃(r) is plugged
in Equation (12) to sample from π(ρ̃|ρ, t̃(r),α) as described
in Algorithm 2. Then ρ̃∗(r), r = 1, . . . , M̃ is an iid sample
from the target posterior predictive distribution π(ρ̃|ρ).

Estimating the posterior predictive distribution is very
important as this distribution gives the necessary information
about unobserved data, in our case the traffic density ρ̃ of
a specific time-space region, where there are no CAVs to
provide measurements.

Figure 2 summarises the basic idea of the proposed
Bayesian TSE methodology, referred to as BTSE in the
remainder of this paper.

B. Offline BTSE Algorithm

As mentioned in Section IV-A, the estimation of the
mean µ(u) and covariance matrix Σ(u) in Equation (6)
is challenging when the average speed u takes continu-
ous values. When the estimation procedure is done offline

7Following [64, Chapter 12], the most efficient proposal distribution has
scale c ≈ 2.4√

p
, where p the number of unknown parameters. Efficiency is

defined in terms of the effective sample size, which gives the number of
independent samples from that posterior distribution that would yield the
same Monte Carlo error as the autocorrelated Markov chain.

8Burn-in is the procedure of throwing away some iterations at the
beginning of an MCMC run.

(Section IV-B) we approximate u by defining NU discrete
speed ranges [dk−1, dk), k = 1, . . . , NU , where d0 = 0
and dNU = ∞, associated with different traffic congestion
levels. For a specific time-space region the collected data t
and α are included in set Uk̃, where

k̃ = argk=1,...,NU {ũ ∈ [dk−1, dk)}, and (13)

ũ = median
(
[median(u1), . . . ,median(uNC )]T

)
. (14)

Parameter k̃ denotes the range index of the median speed
ũ of the median speeds of all CAVs. We use the median,
ũ, instead of the average speed, u, as it is a more robust
measure against having a small proportion of extremely large
or small values. By constructing measurement sets Uk over
all time-windows for a specific space region, we can derive
parameters µoff

k and Σoff
k for speed range, [dk−1, dk),

k = 1, . . . , NU . The proposed algorithm for offline BTSE,
referred to as BTSEf for a specific time-space region is given
as follows.

• Part I: Initialization.
Step 1: Collect measurements z = [zT

1, ..., z
T
c , ..., z

T
NC ]

T,
y = [yT

1 , ...,y
T
c , ...,y

T
NC ]

T, u = [uT
1, ..

..,uT
c , ...,u

T
NC ]

T and τ̂ = [τ̂ T
1 , ..., τ̂

T
c , ..., τ̂

T
NC ]

T.
Step 2: Calculate time spent t = [t1, . . . , tNC ]T and the

area of the time-space region between a CAV and
its leading α = [a1, . . . , aNC ]T.

Step 3: Set up the prior distribution πB(t, σ2
ε) given in

(7). Set µ(u) = µoff

k̃
and Σ(u) = Σoff

k̃
using

Equations (13)-(14), and choose hyperparameters
β, δ such that the inverse-gamma distribution is
an uninformative prior.

• Part II: For each time-window Tj , j ∈ NW repeat:
Step 4: Set up the likelihood function πL(ρ|t,α, σ2

ε) as
shown in Equation (5).

Step 5: Calculate the posterior distribution πA(t, σ2
ε |ρ,α)

using Equation (8).
Step 6: Integrate out the error variance σ2

ε to obtain the
marginal posterior πM (t|ρ,α) given in Equation
(9).

Step 7: Take a sample, ΞMCMC, from the marginal poste-
rior πM (t|ρ,α), if not available in closed form,
using MCMC based on Algorithm 1.

Step 8: Calculate π(ρ̃|ρ, t,α) using (12), which also fol-
lows the likelihood distribution (5).

Step 9: Use sample ΞMCMC to numerically integrate out
parameters t from π(ρ̃|ρ, t,α) to obtain π(ρ̃|ρ),
as shown in Equation (10), using Algorithm 2.

Summarising the above steps, BTSEf executes Part I once
as an initialisation process and iterates over Part II for each
individual time-window to result in the estimated traffic
densities of a specific time-space region over the entire
time-horizon T . This procedure is repeated for all regions
of interest. In order to compare estimation results with the
PTSE approach [35], we calculate the mean of π(ρ̃|ρ), used
as the estimated traffic density ρ̂BTSEf .
C. Online BTSE Algorithm

The proposed algorithm for online BTSE, referred to as
BTSEo, differs from BTSEf by using the ability of CAVs to



report data while they travel through a specific time-space
region A. The procedure is given as follows.

For each time-window Tj , j ∈ NW repeat:
Step 1: Collect measurements z = [zT

1, ..., z
T
c , ..., z

T
NC ]

T,
y = [yT

1 , ...,y
T
c , ...,y

T
NC ]

T, u = [uT
1, ..

..,uT
c , ...,u

T
NC ]

T and τ̂ = [τ̂ T
1 , ..., τ̂

T
c , ..., τ̂

T
NC ]

T.
Step 2: Calculate time spent t = [t1, . . . , tNC ]T and the

area of the time-space region between a CAV and
its leading α = [a1, . . . , aNC ]T.

Step 3: Set up the prior distribution πB(t, σ2
ε) given in

(7). Set µ(u) = µon
k̃

and Σ(u) = Σon
k̃

, and
choose hyperparameters β, δ such that the inverse-
gamma distribution is an uninformative prior.

Step 4: Set up the likelihood function πL(ρ|t,α, σ2
ε) as

shown in Equation (5).
Step 5: Calculate the posterior distribution πA(t, σ2

ε |ρ,α)
using Equation (8).

Step 6: Integrate out the error variance σ2
ε to obtain the

marginal posterior πM (t|ρ,α) given in Equation
(9).

Step 7: Take a sample, ΞMCMC, from the marginal poste-
rior πM (t|ρ,α), if not available in closed form,
using MCMC based on Algorithm 1.

Step 8: Calculate π(ρ̃|ρ, t,α) using (12), which also fol-
lows the likelihood distribution (5).

Step 9: Use sample ΞMCMC to numerically integrate out
parameters t from π(ρ̃|ρ, t,α) to obtain π(ρ̃|ρ),
as shown in Equation (10), using Algorithm 2.

Steps 1 and 2 of Part I are the same with BTSEf . Step
3 is slightly modified in terms of the definition of the mean
and variance of πB(t). We consider measurements from the
previous and current time-windows, Tj−1 and Tj , respec-
tively. Assuming that the congestion level does not change
within two time-windows implies that µ(u) and Σ(u) do
not depend on u, i.e. µ(u) ≈ µon and Σ(u) ≈ Σon. Hence,
parameters µon and Σon are derived using the collected data
t and α from the previous and current time-windows. The
iterative process indicated as Part II in the previous section is
no longer needed, hence we proceed to Steps 4-10 as shown
in Section IV-B, to calculate the mean of π(ρ̃|ρ), used as
the estimated traffic density ρ̂BTSEo . Hence, BTSEo iterates
over Part I for each time-space region. The main difference
is that BTSEf requires the collection of all data for all time-
windows to set up the prior distributions and then proceed
with the estimation process, whereas BTSEo utilises only
the information provided at the current and previous time-
window. As before, in order to compare estimation results
with the PTSE approach [35], we calculate the mean of
π(ρ̃|ρ), used as the estimated traffic density ρ̂BTSEo .

V. PERFORMANCE EVALUATION

To evaluate the performance of the proposed Bayesian
methodology we examine: (i) a simulation study that rep-
resents a real network that operates under both free-flow
and congested conditions (Section V-A) and (ii) a real-life
dataset, the HighD dataset (Section V-B). We utilise the
framework for both the offline and online BTSE approaches

Segment 1 Segment 2
Segment 3
Segment 5 Segment 6

Segment 7

Segment 4

Fig. 3: M25 Highway simulation: SUMO Representation of
the M25 highway stretch in London, England.

and compare estimation results with the PTSE approach
[35], described in Section III. To obtain the estimation
results we consider different CAV penetration rates as well
as time-window durations. The metric used to compare
the performance of each algorithm is the Mean Absolute
Percentage Error (MAPE) between the sth estimated traffic
density, ρ̂alg

s , alg ∈ {PTSE,BTSEo,BTSEf}, and the sth
true traffic density ρtrues given by

MAPE =
1

S

S∑
s=1

|ρtrues − ρ̂alg
s |

ρtrues

100%, (15)

where S is the total number of estimations. The MAPE is a
common measure for evaluating the estimation performance
because the error values of the quantity of interest are scaled
to percentage units, which makes it easier to interpret.9. The
mean value of the derived probability distribution, π(ρ̃|ρ),
is calculated using the iid samples obtained using Algorithm
2 for both BTSEf and BTSEo, and is used as the estimated
traffic density ρ̂ in (15). The true value of traffic density
is obtained through (2), assuming that all vehicles in the
road segment under study are CAVs, hence we have full
knowledge of vehicle trajectories.

For both experiments we assume that the model noise ε
is a Gaussian random variable with zero mean and unknown
variance σ2

ε , for which we assume σ2
ε ∼ IG(β, δ). We set

the values of the hyperparameters to β = 0.3 and δ = 0.210.
To eliminate any biases regarding the choice of CAVs we
average each result over 10 repetitions and randomly select
a different set of CAVs in each experiment to simulate a
specific penetration rate. All experiments were executed and
algorithms were coded in Matlab.

A. Case Study I: M25 Highway simulation

Simulation Setup. For the simulation study we utilise the
SUMO microscopic simulator [69]. We simulate traffic of
a multi-lane highway road stretch of the M25 motorway
in London, England between junctions J13 and J14, with

9The mean absolute error (MAE) and root mean squared error (RMSE)
were also examined, yielding similar observations to the ones presented in
this paper.

10The particular values were chosen to ensure an uninformative prior, as
well as to eliminate any issues in the posterior inference [68]. A detailed
sensitivity analysis indicated that the estimation results are not significantly
affected by the values of β and δ.
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Fig. 4: M25 Highway simulation: Traffic density per lane (L1 − L6) for segments 3, 4 and 5 under free-flow and congested
conditions, for (a) Scenario 1 and (b) Scenario 2 respectively, when TW = 2 minutes.

the SUMO representation of the network shown in Figure
3. The road stretch is about 8-km long and is separated
into seven road segments, with size varying between 0.7-1.6
km, as shown in Figure 3 (segment 1 = 1.6km, segment
2 = 0.6km, segment 3 = 0.75km, segment 4 = 1.5km,
segment 5 = 1km, segment 6 = 1.1km, segment 7 = 1km).
It consists of two off-ramps (in segments 2 and 5) and two
on-ramps (in segments 3 and 7). The number of lanes varies
from 4 to 6 and the speed limit is 120 km/h.

Two distinct traffic scenarios are considered:
• Scenario 1 is an 1-hour traffic simulation representing

free-flow traffic conditions. The true traffic density of
each lane varies between 0-20 veh/km for all segments.

• Scenario 2 is a 2.5-hour traffic simulation representing
congested traffic conditions. The true traffic density
of each lane varies between 0-120 veh/km for all
segments. The scenario involves an accident at the
downstream boundary of segment 4 which results in
closure of lanes L5, L6 for 1 hour.

To create traffic within the network, we have considered the
Intelligent-Driver Model (IDM) which is one of the build-
in car-following models of the SUMO microsimulator. The
IDM parameters of individual vehicles are drawn from nor-
mal distributions as follows: vehicle length lv ∼ N(4.9, 0.2)
[m] conditional on 3.5 ≤ lv ≤ 5.5, maximum speed
umax
v ∼ N(28, 3) [m/s], acceleration θ ∼ N(2.5, 0.6)

[m/s2], deceleration ϑ ∼ N(4.5, 0.8) [m/s2], minimum gap
distance dg ∼ N(2.5, 0.4) [m], and simulation time-step 0.2
[s]. In the simulation, we consider two types of vehicles:
(i) CVs which do not collect any data, and (ii) connected
vehicles which measure position zc, speed uc and spacing
yc every 0.2 seconds (assuming a maximum detection range
of 200 m). Based on these measurements, each connected
vehicle calculates and communicates to an operation center
its speed, uc, time-spent, tc, and time-space region, ac. All

results are averaged over ten (10) simulations due to the
stochastic nature of SUMO.

The true densities of segments 3, 4 and 5 for Scenarios
1 and 2 are given in Figures 4(a) and 4(b), for TW = 2
minutes. Note that the true density is re-calculated as
the time-window changes in order to obtain the MAPE.
These represent different segment types found in a highway:
on-ramp (segment 3), off-ramp (segment 5) and normal
(segment 4). For the BTSEf we use three speed ranges:
[0,40), [40, 80) and [80, ∞) km/h to represent high and
moderate congestion and free-flow conditions, respectively.
These speed ranges can be subjectively chosen to represent
different congestion levels, without affecting the basic steps
of the methodology described in Figure 2.
Results. We present estimation results for BTSEf , BTSEo

and PTSE algorithms obtained using different penetration
rates and time-window durations for the simulation network
given in Figure 3 under Scenarios 1 and 2.

Table I illustrates the MAPE (15) of the three estima-
tion approaches (BTSEf , BTSEo and PTSE) under both
scenarios for penetration rates 5%, 10%, 20% and 30%. A
different traffic density is estimated for each lane and each
segment every TW = 2 minutes. As shown in Table I, the
BTSEf approach results in significantly better MAPE for
low penetration rates, i.e. 5% and 10%. For example, the
resulting MAPE from BTSEf is about 2-3 times lower than
BTSEo and 3-4 times lower than PTSE when the penetration
rate is 5%. For high penetration rates, the three algorithms
yield similar performance. Furthermore, notice that while the
performance of BTSEo and PTSE improves significantly for
increasing penetration rate, the corresponding improvement
for BTSEf is negligible. This may occur because the BTSEf

utilises information collected from all time-windows to form
the prior in Eq. (7), instead from only Tj and Tj−1 used in
the BTSEo. Interestingly, the performance of BTSEo and



Scenario 1
Segment 1 Segment 2 Segment 3 Segment 4 Segment 5 Segment 6 Segment 7

PR BTSEf BTSEo PTSE BTSEf BTSEo PTSE BTSEf BTSEo PTSE BTSEf BTSEo PTSE BTSEf BTSEo PTSE BTSEf BTSEo PTSE BTSEf BTSEo PTSE
5% 11.9 32.6 47.0 10.3 26.9 40.1 14.9 30.8 33.8 13.6 36.6 55.3 11.5 29.1 37.8 15.7 29.7 45.6 14.7 30.1 41.9
10% 11.3 20.7 30.9 10.0 18.3 26.4 14.2 20.4 23.4 12.7 22.4 36.7 10.4 18.5 26.4 14.7 21.6 34.0 14.2 19.9 29.0
20% 11.0 13.4 17.9 9.5 13.1 17.1 14.1 13.8 16.9 12.3 15.3 23.8 10.0 12.2 16.7 12.3 13.3 18.7 14.2 14.4 20.3
30% 10.8 10.3 12.4 9.2 11.2 13.2 14.1 11.3 12.7 11.1 11.9 15.8 9.9 10.1 11.5 12.1 10.0 12.9 14.2 11.1 13.0

Scenario 2
Segment 1 Segment 2 Segment 3 Segment 4 Segment 5 Segment 6 Segment 7

PR BTSEf BTSEo PTSE BTSEf BTSEo PTSE BTSEf BTSEo PTSE BTSEf BTSEo PTSE BTSEf BTSEo PTSE BTSEf BTSEo PTSE BTSEf BTSEo PTSE
5% 11.2 29.6 42.8 18.9 31.2 41.4 22.1 29.6 40.9 24.4 37.0 50.3 15.7 31.3 43.4 13.6 29.5 42.4 13.6 28.0 39.0
10% 10.1 19.9 29.5 18.1 20.9 31.7 21.6 20.8 28.5 21.8 26.5 36.2 15.0 21.8 30.4 11.8 19.5 28.1 12.7 19.1 27.2
20% 9.4 12.8 16.7 17.5 14.4 18.3 21.3 14.0 17.1 18.7 19.8 24.1 14.3 14.6 18.9 10.9 13.6 17.1 12.6 13.3 16.9
30% 7.5 10.2 12.0 16.9 11.5 13.7 19.1 11.4 12.4 12.2 16.4 17.2 12.3 12.2 13.2 9.6 10.7 11.7 11.3 10.7 11.8

TABLE I: M25 Highway simulation: MAPE (%) calculated for BTSEf , BTSEo and PTSE for all segments shown in Figure
3 for both scenarios and penetration rates (PR) 5%, 10%, 20% and 30% when TW = 2 minutes.
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Fig. 5: M25 Highway simulation: Average MAPE for different time-window durations, TW , for each penetration rate and
all segments for Scenario 1 (first row) and Scenario 2 (second row). The three solid lines show the average MAPE for each
algorithm and the shaded area around the lines represents the 95% confidence intervals calculated using bootstrapping.

PTSE is sometimes marginally better compared to BTSEf

for high penetration rates. This may happen because the
information provided from the current and the previous
time-windows used in BTSEo represents better the prior
distribution compared to BTSEf that constructs the prior
distribution using data from the entire traffic scenario. In
addition, BTSEo has a better performance compared to
PTSE for all segments, especially for low penetration rates.
The estimation error of BTSEo increases from about 11%
to 31% as the penetration rate decreases from 30% to 5%,
whereas the estimation error of the PTSE increases from
about 13% to 45% for the respective rates. For example, let
us consider Segment 2. Although the MAPE for BTSEo and
PTSE is relatively close for penetration rate 30%, when the
penetration rate decreases to 5%, the MAPE for BTSEo is
about 15% better (26.85% compared to 40.10%).

In addition, the impact of the duration of the time-

window TW is examined in terms of the MAPE for the
three algorithms. Results are obtained using varying time-
window durations from 2 to 10 minutes, the four different
penetration rates of connected vehicles and all segments.
Figure 5 depicts the average MAPE for each penetration
rate and time-window duration, where the first row of figures
shows results for Scenario 1 and the second row for Scenario
2, for the four penetration rates. As shown, there is an overall
decrease of the MAPE for all algorithms as the size of the
time-window increases, with BTSEo and PTSE resulting in
higher improvement compared to BTSEf . For example, for
penetration rate 5%, increasing the time-window duration
from 2 to 10 minutes improves the MAPE from about 32%
to 15% for BTSEo and from about 45% to 20% for PTSE, in
both scenarios, while the improvement of BTSEf is around
5%. Additionally, the increase of time-window duration has
less impact on the MAPE as the penetration rate increases.
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Fig. 6: M25 Highway simulation: Average MAPE for pen-
etration rates 5%, 10%, 20% and 30%. The results are
averaged over time-window duration {1, 2, . . . , 9, 10} min.
for (a) Scenario 1 and (b) Scenario 2.

For instance, for penetration rate 30% increasing the time-
window duration from 2 to 10 minutes yields less than
10% improvement for all approaches and the two scenarios.
The impact of the time-window duration is lower for higher
penetration rates and the estimation results are more accurate
for longer time-windows. These observations are consistent
with the fact that more data is collected in longer time-
windows, resulting in more accurate estimations. Another
reason that the time-window variation might decrease the
MAPE is the fact that as the time-windows are increased,
the true densities become smoother functions and hence
easier to predict. In addition, for higher connected vehicle
penetration rates, sufficient data can be provided for smaller
time-windows yielding lower MAPE.

The impact of the penetration rate is also examined for
all algorithms in both scenarios. In Figure 6 the barplots
summarise the average MAPE of each approach using the
corresponding penetration rate and all time-window dura-
tions from 2 to 10 minutes in each scenario. It is evident that
the BTSEf approach achieves estimation error of about 12%
for Scenario 1 and 14% for Scenario 2 using 5% penetration
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Fig. 7: M25 Highway simulation: Examples of traffic density
estimations for a specific time-space region obtained from
each methodology using 5% and 30% penetration rates for
(a) Scenario 1 and (b) Scenario 2. The probability density
function (PDF) of BTSEo and BTSEf is depicted with the
orange and green shaded areas, respectively.

rate. Compared to BTSEf , BTSEo and PTSE yield about
2 and 3 times higher estimation error for Scenario 1 and
about 1.5 and 2 times higher estimation error for Scenario
2, respectively. In order to achieve similar estimation error
to BTSEf , BTSEo requires a 20% and 10% penetration
connected vehicle rate for Scenarios 1 and 2, while the
corresponding penetration rates for PTSE are 30% and 20%.

In Figure 7 an example of traffic density estimation
obtained from each algorithm (PTSE, BTSEf , BTSEo) along
with the real traffic density is shown for penetration rates 5%
and 30%. These results are obtained for lane 3 of segment
4 under both scenarios, over a 2-minute time-window. As
shown, the BTSE methodology provides a PDF whereas
the PTSE approach provides a single point estimate of the
traffic density. For 30% penetration rate the distributions
of BTSEf and BTSEo have less variance compared to the
ones provided for 5% penetration rate. This means that the
traffic density estimation for 5% penetration rate is more
‘uncertain’ compared to the 30% penetration rate, which is
a result of the amount of information utilised in the prior
distribution. Both BTSE distributions are ‘closer’ to the true
value of the traffic density compared to the PTSE estimate,
resulting in the MAPE difference shown in Table I and
Figures 5 and 6.

All the above results were obtained by applying the pro-
posed Bayesian methodology to estimate the traffic density
of each lane for a simulation scenario in M25 motorway in
both free-flow and congested conditions. The BTSEo algo-
rithm consistently yields better estimation results compared
to PTSE, especially for low penetration rates. The BTSEf

algorithm produces significantly better estimations compared
to both BTSEo and PTSE for low penetration rates. The
performance of the algorithms is similar for high penetration



rates. Next, we examine the performance of BTSEf , BTSEo

and PTSE for a real-life dataset.

B. Case Study II: HighD real-life dataset

Dataset description and estimation setup. HighD is
an open source dataset consisting of vehicle trajectories
recorded at six different locations in highways around
Cologne, Germany, using unmanned aerial vehicles (UAV)
[59]. The length of each observed road segment varies
between 400-420 m. For improved image stability, video
recordings were made between the hours 8am and 5pm on
days with no wind. The resolution of each video recording is
4K (4096×2160 pixels) at 25 frames per second, with an av-
erage video length of 17 minutes. The total recording time is
approximately 16.5 hours. The dataset contains information
for more than 110,000 vehicles (90,000 passenger vehicles
and 20,000 trucks) with a total driven distance of 45,000 km
and a total driven time of 447 hours. The dataset consists of
information about the frames in which each vehicle appears,
as well as its position, velocity, acceleration and the IDs
of its surrounding vehicles. Details regarding the time and
space headway for each vehicle and each frame are also
included. Finally, statistical values such as the minimum,
maximum and mean velocity, time and space headway of
each vehicle are provided.

We present results for the BTSEf , BTSEo and PTSE
algorithms for traffic density estimation (see Sections IV-A
and III). Due to the fact that the length of the videos
is around 15 minutes the minimum and maximum time-
window duration is set to 1 and 5 minutes, respectively. Four
different connected vehicle penetration rates are assumed for
the collection of measurements: 5%, 10%, 20% and 30%.
Similar to Case Study I, the performance of the proposed
methodology is evaluated in terms of the MAPE (15).
Results. Figure 8 illustrates the performance of each
algorithm evaluated for the four different penetration rates
and the results are averaged over all different time-window
durations. As a general observation BTSEf yields the best
performance, while BTSEo is better than PTSE. As the
penetration rate of connected vehicles increases the average
MAPE decreases with both the BTSEf and BTSEo consis-
tently resulting in lower MAPE than the PTSE. Although
for a penetration rate of 30% the BTSEo and BTSEf

yield around 3.5% and 6.5% lower MAPE compared to
PTSE, the corresponding performance difference for 5%
penetration rate increases to 10.5% and 25.5%, respectively.
Interestingly, for 5% and 10% penetration rates, BTSEf

results in about two times lower MAPE compared to PTSE.
Moreover, as the penetration rate increases from 5% to 30%
the BTSEf algorithm is improved by around 4%. Note that
the estimation performance of BTSEo and BTSEf is better
than PTSE for 30% penetration rate, in contrast with the
corresponding estimation results presented in Case Study I
where all algorithms had similar performance.

Figure 9 shows the average MAPE when varying the
time-window duration for the four penetration rates. Three
main observations can be made. First, all algorithms result
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window duration {1, 2, 3, 4, 5} min.

in lower error as the time-window duration increases with
the BTSEf and BTSEo resulting in up to 30% and 10%
lower MAPE compared to the PTSE, respectively. Second,
it can be seen that BTSEf provides high-quality estimation
results resulting in less than 20% MAPE in almost all cases
considered, irrespective of the time-window duration and
penetration rate. Third, the rate of improvement of BTSEo

and PTSE is similar, with BTSEo being consistently better
by 3% to 10% in terms of the MAPE.

The derived results for Case Study II are in line with
the results of Case Study I and support that the proposed
Bayesian methodology exhibits more accurate estimation
results of the traffic density even for small penetration
rates. Finally, note that the estimation results for the PTSE
algorithm are inline with the results presented in [35].



VI. DISCUSSION

Use conditions. This work proposes a Bayesian approach
that makes use of only xFCD obtained by CAVs or con-
nected vehicles with the capability of measuring the distance
to their leading vehicle. The Bayesian framework is a natural
way to express uncertainty about an unknown variable, i.e.
the traffic density, particularly when the available data is lim-
ited and sparse. This method estimates a conditional distribu-
tion of the measurements (posterior distribution) by using the
available prior information that represents all the available
knowledge apart from the data themselves, meaning that no
relevant information is omitted from the analysis, and in
turn a PDF that represents the traffic density if all vehicles
in the highway were CAVs. The most important aspects of
this work are that: (i) no traffic model is used, outlasting the
need of sufficiently calibrating the model prior to its use as
well as avoiding the risk of the model failing to capture real-
world traffic due to the ideal assumptions and conditions
assumed; (ii) no extensive historical data are required for
accurate estimations; (iii) even small penetration rates, i.e.
5% of CAVs deployed in the highway, are sufficient to
provide traffic density estimations with small error. Hence,
the only requirement for the application of this method in
real-life networks is the deployment of a small penetration
rate of CAVs in the network of interest that will collect
the measurements, which will be transmitted and processed
centrally to provide the information needed to follow the
steps of the methodology as illustrated in Figure 2 either in
an offline or online setup, depending on the specifications of
the estimation procedure objective of the study. This work
has investigated the estimation accuracy for time-windows
in the range [2, 10] minutes and road segment lengths in the
range [0.4, 1.5] km and penetration rates as small as 5%,
showing that the methodology is robust in different time-
space combinations.
Limitations. As discussed the applicability of this work is
straightforward. One issue that might rise is when there are
time-space regions with no available measurements, i.e. they
are not visited by CAVs and hence no prior information is
available. Such an issue might occur under small penetration
rates of CAVs, small time-window durations, and short
road segments. One approach to resolve it is to consider
time-space interpolation techniques for such regions. It is
important to note however that zero measurements indicate
that the density in such regions is very low, implying that
accurate traffic state estimation is not critical.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a novel Bayesian method-
ology, aiming to derive a probability distribution of the
traffic density in a specific road segment assuming that we
have available measurements acquired by CAVs. We have
developed algorithms for both offline and online Bayesian
traffic density estimation (BTSEf and BTSEo, respectively).
We compared the BTSEf and BTSEo algorithms with an
approach previously presented in the literature [35] (PTSE)
under two case studies: (a) a simulation scenario in both

free-flow and congested conditions and (b) a real-life traffic
dataset (highD) [59]. The results of the two case studies are
in line and can be summarized as follows. The BTSEf algo-
rithm is the best among the examined algorithms, yielding
up to three and four times better estimation performance
compared to BTSEo and PTSE. The performance of the
BTSEf algorithm is consistent for different penetration rates
and time-window durations, yielding excellent results in all
examined settings. Comparing the two online algorithms,
BTSEo yields up to 1.5 times lower estimation error com-
pared to PTSE, especially for low penetration rates.

Future plans include the comparison of the proposed
Bayesian methodology with other TSE methods in the litera-
ture. In terms of the Bayesian methodology we intend to in-
vestigate the robustness and dependence of the methodology
on the chosen prior distributions, assumed hyperparameters
and the effective size of the MCMC algorithm. Furthermore,
we intend to use our methodology to estimate traffic flow and
speed. Finally, we aim to investigate the correlation between
neighbouring time-space regions and integrate macroscopic
traffic dynamics to achieve highly accurate network traffic
state estimation.
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