

HBRP Publication Page 1-11 2022. All Rights Reserved Page 1

 Journal of Advancement in Software Engineering and Testing

Volume 5 Issue 3

Enabling Extreme Programming (XP) in Global Software

Development (GSD) Practice

Trailokya Raj Ojha1*, Prajwal Chaudhary2
1Assistant Professor, Department of Computer Science and Engineering

Nepal Engineering College, Bhaktapur, Nepal
2 Department of Computer Science and Engineering

Nepal Engineering College, Bhaktapur, Nepal.

*Corresponding Author

Email Id: - trailokyaro@nec.edu.np

 ABSTRACT

Many software development companies currently are expanding their operations globally.

Competitive advantage and the financial profits it brings to an organization are the driving

forces behind the globalization of software. Organizations are benefiting from GSD, but

communication has been a problem that has limited its expansion. In contrast to co-located

projects, miscommunication and misunderstanding caused by the distance between

development sites occur considerably more frequently in GSD projects, which ultimately

affects customer satisfaction and software quality. Agile Methods are seen as excellent

processes for GSD because of their flexibility. The most popular Agile approach, Extreme

Programming (XP), is examined in our study, and different factors supporting GSD are

suggested.

Keywords: Extreme Programming, global software development, agile, success factors,

virtual software development

INTRODUCTION

The software sector has seen a consistent

trend toward company globalization over

the past few decades as the global

economy has expanded. The schedule has

become essential to the success of

organizations launching products as IT

development has grown globally spread.

Recent years have seen a tremendous

expansion of the worldwide software

development industry, bringing with it

innovations that affect application

development initiatives. Because of Global

Software Development's (GSD)

advantages in a variety of areas, including

cost reduction and the availability of

competent labor, it is currently one of the

most alluring approaches to software

development. The software development

activities are carried out at remote

development sites using the GSD

technique. When compared to GSD

projects, in-house projects perform better.

In-house software performs better in terms

of quality than, GSD in terms of cost. In

the GSD approach, this is caused due to

less frequent communication between

cross-site workers, language barriers, time

zone, and intercultural issues.

Improving the different factors such as;

frequent communication, proper

development strategy, and proper set of

key performance indicators, the cross-site

project can perform better than the in-

house project performance [1]. Today's

extremely challenging software

development process is made much more

challenging by problems with trust and

commitment, longer feedback loops,

asynchronous communication, and

knowledge management [2]. These

HBRP Publication Page 1-11 2022. All Rights Reserved Page 2

 Journal of Advancement in Software Engineering and Testing

Volume 5 Issue 3

problems appear to make it impossible to

employ methods like agile techniques that

rely on informal communication [3].

Agile Methods' introduction, with their

focus on adaptability, informal teamwork,

and working code, gave GSD a new way

of software development. To gain the

advantages of both, software development

companies have been attempting to

combine GSD projects with Agile

Methods. The most popular of them,

Extreme Programming (XP) [4], follows

the principles of software development

outlined in the Agile Manifesto [5] but

goes beyond. XP is a collection of twelve

distinct software development methods

that were originally developed for small

teams working on projects with plenty of

change but have since been effectively

extended to larger teams. However, there

are several fundamental distinctions

between XP and GSD.

GSD has presented its own distinct set of

difficulties. Today's extremely challenging

software development process is made

even more challenging by problems with

trust and commitment, longer feedback

loops, asynchronous communication, and

knowledge management [2]. These

problems appear to make it impossible to

adopt processes that rely on informal

communication, like agile techniques. A

GSD team's ability to communicate,

especially informally, is essential to its

success. In this study, we investigate the

characteristics of XP and GSD initiatives

to discover their shared interests and

potential fusion areas.

BACKGROUND

In this section, a brief description of

requirement engineering in global software

development practice is illustrated. The

background knowledge about agile

methods and extreme programming is also

presented in this section.

Global Software Development and

Requirement Engineering Practices

Global software development (GSD) is

currently one of the most enticing methods

for software development due to its

benefits in several areas, including cost

reduction and the accessibility of qualified

workers. Using the GSD technique, the

software development tasks are completed

at remote development sites. In-house

initiatives function better than GSD

projects. GSD is more expensive than in-

house software while performing better in

terms of quality. According to the GSD

strategy, this is a result of fewer cross-site

communications, language difficulties,

time zone differences, and multicultural

issues [6]. Improving the different factors

such as; frequent communication, proper

development strategy, and proper set of

key performance indicators, the cross-site

project can perform better than the in-

house project performance [7].

Requirements-related activities, such as

negotiation and requirements definition,

design, and project management, are one

type of software development activities

directly impacted by communication

issues. One of the biggest challenges in

international firms is requirements

engineering [8]. The several aspects that

have an impact on the efficient

management of requirements in GSD are

identified by in-depth field research of

requirements engineering in a global firm

[9]. To get a shared understanding of the

necessary functionality, the language

barrier alone could be a major obstacle.

Terms that have diverse connotations in

various organizational contexts may not be

correctly understood until the very end of

the project, with potentially disastrous

outcomes. Major difficulties affecting the

entire software development process also

result from the multicultural interactions

between developers and clients, time

delays, and the difficulty to keep track of

HBRP Publication Page 1-11 2022. All Rights Reserved Page 3

 Journal of Advancement in Software Engineering and Testing

Volume 5 Issue 3

the working environment at remote sites.

Budget and schedule overruns and,

eventually, strained client-supplier

relationships emerge from a lack of

understanding of all necessary system

requirements, diminished trust, and an

inability to successfully address

disagreements [9].

Since distance has a major impact on

requirements management operations [9],

GSD projects benefit by having well-

defined requirements specifications at the

outset of the project [10], preventing the

need to reaffirm feature comprehension.

This specification is crucial for the

structure and management of distributed

projects and is frequently used in planning

processes [8]. Frequent deliverables are

also considered good practices in GSD.

The complexity of the project environment

will increase with the number of

stakeholders, which will have an impact on

how quickly the project moves forward.

This issue becomes even more challenging

when project teams are dispersed

throughout the globe, there are several

stakeholders in various nations, and there

are individuals with diverse cultural

backgrounds involved.

Agile Modelling and Extreme

Programming

Software development techniques have

evolved through time along with our

culture. The goal of meeting

environmental needs is demonstrated by

the progress of development from the

traditional Waterfall method to iterative

and agile methods as shown in figure 1.

The chaordic, practice-based methodology

for effectively modeling and commenting

software systems is known as agile

modeling. It does not describe how to

create the model; rather, it describes how

modelers might be efficient. It is chaotic

because it combines the randomness of

straightforward modeling with the inherent

order of software modeling artifacts.

Fig.1:- Evolution of Software Development Models [4]

The best thing about agile modeling (AM)

is that it allows you to choose the best

characteristics from many software

processes that are already in existence and

model them using AM to create a process

that meets your requirements. Although

HBRP Publication Page 1-11 2022. All Rights Reserved Page 4

 Journal of Advancement in Software Engineering and Testing

Volume 5 Issue 3

AM is independent of other models like

XP or UP, it significantly improves those

processes. Agile modelers are anyone who

uses AM practices by the agile

methodology's principles and values. A

developer who uses the agile method for

software development is known as an agile

developer. As a result, not all agile

developers are agile modelers, but all agile

modelers are agile developers.

The significance of project plans and

documentation are emphasized in

conventional project development

methods. At the outset of the project, they

work to identify every requirement and

manage unforeseen changes as they arise.

However, the development team

frequently does not influence significant

changes in requirements, scope, and

technology in the present dynamic

business context. The authors of [11] note

that a project's ability to better manage

unavoidable changes throughout its life

cycle is frequently the matter at hand

rather than how to limit changes in a

project. Agile methodologies provide their

solutions as a potential answer to this

conundrum. Numerous agile

methodologies that have been discussed or

used for some time are listed in the Agile

Manifesto, including Dynamic Systems

Development Method (DSDM) [12],

Feature Driven Development (FDD) [13],

Internet-Speed Development (ISD) [14],

Extreme Programming (XP) [4], SCRUM

[15], Crystal [16], and Pragmatic

Programming (PP) [17]. The most popular

agile methodology among these is Extreme

Programming.

A short planning horizon characterizes the

iterative development approach known as

XP (1–2 week iterations, 3 months

releases). A release in XP refers to a

stable, deployable version of the software

that consumers can use. Iterations are

shorter development increments in which

specific tasks are given to developers and a

functioning system prototype is developed

and frequently assessed by project

stakeholders. The creation of detailed

requirements or design documentation

before beginning development is not a part

of the XP methodology. As a result, XP

significantly relies on regular stakeholder

communication and close feedback loops

to describe feature implementation,

provide clarity, and adapt to change. This

paper's main point is that ongoing

communication might be difficult for GSD

teams. In XP, user stories are used to

represent functional requirements. On an

index card, user stories are informal, plain-

language explanations of system

functionality. The customer is in charge of

creating each user story and designating

the importance of each one. Each user

story has a matching customer acceptance

test (CAT) that, when passed, declares the

user story to be finished. User stories are

continually clarified and improved during

the development process by developers

and consumers because the first user

narrative frequently lacks the exact

information required for implementation.

The following points can be used to

explain why XP is so widely used: First,

XP covers the majority of the software

development life cycle. Second, XP

supports context appropriateness, which

means it can be adjusted to meet the needs

of specific projects. Third, and perhaps

most importantly, XP is fully backed by

real-world examples, unlike most

methodologies. This research makes XP a

realistic strategy by balancing these

benefits against the traits of GSD.

APPLYING AGILE METHOD AND

EXTREME PROGRAMMING IN GSD

Good communication is achieved in co-

located software development projects by

XP methods. Due to the delays in client

input, it is more challenging to adapt to

HBRP Publication Page 1-11 2022. All Rights Reserved Page 5

 Journal of Advancement in Software Engineering and Testing

Volume 5 Issue 3

worldwide development projects. In XP

initiatives, continuous contact between

clients and developers is expected.

However, when customers and engineers

are not physically close to one another,

their inability to provide timely feedback

might pose a serious challenge. In our

study, the best outcomes came from

adapting and integrating certain current

approaches with the best practices of XP,

creating a channel of communication that

is quicker.

Virtual Software Teams and XP

In virtual teams, members are located in

various parts of the world and we are

required to work on different components

of a project which are independent of each

other. Face-to-face interactions are not

important for these types of teams. A

virtual team and a distributed team are

distinguished by the fact that members of a

virtual team collaborate on the same

projects [18].

Virtual teams have been proven to have

great advantages in terms of business

values and low financial requirements.

Greater adaptability in locating necessary

resources when they are needed is one of

the primary benefits. Another one is the

reduced cost as a result of outsourcing to

locations with less expensive labor and

lower training costs [19]. For applying XP

in virtual software teams there are a few

work processes that need to be considered.

They are; project coordination,

synchronous communication, and active

notifications information routing, and

integrated process execution with

knowledge management [20].

Project coordination: Therefore, project

coordination assistance is crucial for

virtual teams. The XP team should be able

to do to allocate tasks to development

teams, set deadlines, and gain an overview

of the project's present status. Team

members should readily be able to access

their to-do lists and find the information

they need to complete their assignments.

Synchronous Communication

In XP, face-to-face communication is

adopted rather than communication

documentation. Since face-to-face

communication is impractical for virtual

teams due to location restrictions, it needs

to be replaced by some technological tools.

Synchronous communication tools like

text chat, audio, video calls, etc. are used

with occasional use of emails also.

Active Notifications Information

Routing

Rather than simply making material

available for pull access, it would be

beneficial to push important information to

users as soon as it becomes available.

When key events take place in a project,

notifications should be included in this

push strategy.

Active Notifications Information

Routing

There is a strong demand for training new

employees on their tasks and maintaining

reliable knowledge sources for the

company due to frequent changes in the

members of virtual teams. Maintaining the

contents of an experience base up to date

is a tough effort that needs to be linked as

much as possible with the routine

procedures of carrying out processes as

software development often struggles due

to rapidly changing technology.

EXAMINING EXTREME

PROGRAMMING

This section examines XP practices within

the context of global software

development and discusses which

practices may and cannot be included in

GSD. We list the XP components that are

essential for GSD project adaptation.

HBRP Publication Page 1-11 2022. All Rights Reserved Page 6

 Journal of Advancement in Software Engineering and Testing

Volume 5 Issue 3

XP’s Benefit in Communication

All stages of the lifecycle of software

development require communication.

Another fundamental principle of the XP

discipline is communication. The

techniques of XP are centered on

enhancing various forms of

communication. Table 1 provides an

overall summary of which types of

communication are benefited from XP

techniques in general. As we can see,

communication is beneficial to the

majority of XP methods [21]. Due to the

various types of barriers in GSD, some

benefits of communication in globally

distributed software development are

difficult to achieve. The most necessary

communication types needed in software

development are listed below.

• Customer and project manager

communication

• Customer and developer

communication

• Developer and project manager

communication

• Developer and developer

communication

• Customer and customer

communication.

Table 1:- XP’s common practices for benefiting communication [21]

Practices Benefits

Planning game Communication between the project manager, developer, and

clients is advantageous.

Small release Benefits from quick customer and developer feedback.

Metaphor

Gives developers, project managers, and consumers a platform for

simple, clear communication.

Simple design

Communication between developers and project management is

made easier.

Tests Provide rapid feedback between customers and developers.

Refactoring Facilitates communication between clients and developers.

Pair programming Instantaneous communication between paired developers is

provided.

Continuous integration Gives quick feedback to developers on the quality of the code.

Collective ownership Communication between developers is beneficial.

On-site customer Benefits from the improved customer, project manager, and

developer communication.

40-hour weeks Not identified

Open workspace Communication is advantageous between developers and between

developers and project management.

Examination of XP’s Practices

XP’s practice examination includes

different techniques such as on-site

customers, planning game, small release,

simple design, and collective ownership.

These techniques are discussed in this

section.

On-Site Customer

One of the most significant XP practices is

on-site customer support. The majority of

XP initiatives demand an on-site customer.

Customer availability throughout the

majority of the project phases is crucial for

the success of XP initiatives. He works

HBRP Publication Page 1-11 2022. All Rights Reserved Page 7

 Journal of Advancement in Software Engineering and Testing

Volume 5 Issue 3

with the development team and belongs to

part of the team. It is quite challenging to

have a customer available at all times

while implementing XP methods in a GSD

project. When the requirements are

ambiguous, the on-site customer's role is

to assist the developers [22]. A developed

module or component of the software from

the client is also clarified and approved by

the developers.

In most circumstances, several clients will

be involved in providing the development

team with all of the requirements. Setting

up on-site clients is expensive when a

project is scattered around the globe.

Additionally, there are other concerns, like

getting a foreign visa, travel duration, etc.

It's difficult to guarantee timely customer

presence, especially in an emergency.

Customers must travel between the sites

when the project is spread across multiple

locations, which lowers productivity and

raises costs. To apply this strategy to GSD

projects, a technology that can deliver the

customer's virtual on-site presence is

required. Globally dispersed development

teams and customers can effectively

communicate with one another through

email, instant messaging, and conference

calls [21].

Small Releases

The customer needs a lot of time to

validate all of the new features when the

code is delivered in a bulk release.

Additionally, work could be put on hold as

developers wait for the customer's

approval to move on to the next release.

Smaller releases simplify things. As a

result, the validation period's length is

likewise shortened [23].

Collective Ownership

Coordination of developers' activities in

software development projects should

include collective ownership and coding

standards. The approach that controls how

developers manage their work and

contribute to the teamwork outputs of their

colleagues is known as collective

ownership. In complicated processes with

high levels of reciprocal interaction, like

software development, coordination of

such activity is essential. Developers

might not feel obligated to keep an eye on

the software they collaborate on with

others if there is no collective ownership.

If such a sense of collective ownership is

not there, errors or inefficient software

code (such as functionality duplication)

may go undetected.

Developers may be very protective of the

code they are responsible for if there is no

collective ownership. Any modifications to

a specific piece of code must be negotiated

with the person in charge of it [4]. As a

result, the development process could

experience bottlenecks. In conclusion, we

anticipate that software project teams with

common ownership will create software

code that is of higher technical quality

(fewer coding mistakes) than software

project teams without collective

ownership, everything else being

equivalent [24].

Planning Game

The stories that have not yet been finished

or scheduled for an iteration are all listed

in the release planning. Users can utilize

this to group particular stories that will be

added to the current or upcoming iteration.

Users' tasks and assignments can be

displayed to them on the Iteration display.

In the majority of XP initiatives, users are

often allowed to sign up for a specific job

as soon as it becomes available.

The disadvantage of this strategy is that it

could be challenging for all users to be

present every time a new job is added.

This is particularly true for big distributed

projects where the development team is

often spread over many time zones [25].

HBRP Publication Page 1-11 2022. All Rights Reserved Page 8

 Journal of Advancement in Software Engineering and Testing

Volume 5 Issue 3

Simple Design

XP keeps things simple, stays away from

complex requirements, and uses

straightforward designs up front, which

provide clear and concise documentation

that helps developers better understand the

software project. XP practices put a greater

emphasis on delivering functional software

rather than producing vast quantities of

documentation that add nothing to the

actual software development process and

impede the creation and delivery of

sustainable software [26]. Accepting that

their idealized system almost usually has

extraneous or unnecessarily complex

features is the customer's challenge. Two

crucial early lessons for customers are

learning to trade off features to deliver a

story and assessing the anticipated

development effort for a given feature in

discussions with programmers. Project

managers must work to control

programmers' inclinations to write code

that is more sophisticated than is required

[27].

SUCCESS FACTORS

In a global software development scenario,

usually, we think the team means a group

of people working on one site but in

actuality, it is a group of people working

on various sites to achieve a common goal.

While implementing XP in GSD, it is

noted that teamwork and cooperation are

the most significant success factors. A few

common success factors are team, process,

project, and project outcome factors.

Team Factors

Team factors in GSD always have a great

role in the successful completion of the

project. Proper implementation of XP in

GSD has a great impact on the team for

motivation towards the project by enabling

scattered teams with a good

communication channel, shared ideas, and

problem-solving attitude.

A customer should work closely with the

team throughout the whole life cycle,

according to XP. This procedure

necessitates that the client has a solid grasp

of the needed program. In most

circumstances, numerous clients will be

involved in providing the development

team with all of the requirements. Setting

up on-site clients is expensive when a

project is scattered around the globe.

Additionally, there are other concerns,

such as getting a foreign visa, travel

duration, etc. It's difficult to guarantee

timely customer presence, especially in an

emergency. Customers must travel

between the sites when the project is

spread across multiple locations, which

lowers productivity and raises costs. To

apply this strategy to GSD projects, a

technology that can deliver the customer's

virtual on-site presence is required.

Globally dispersed development teams and

customers can effectively communicate

with one another through e-mail, instant

messaging, and conference calls.

Telecommunication can take place at the

start and conclusion of each release and

iteration for teams that are more than five

time zones apart, as well as whenever

necessary. Email is less effective than

face-to-face communication, yet it can still

be answered within a day. Additionally,

when there is a language barrier, writing is

frequently preferred to vocal

communication. Accommodating all the

barriers helps in the positive growth of the

project.

Process Factor

The effects of technologies utilized in the

software development process are

discussed in this section. The

technological aspects, such as the software

development methodology, project

management, techniques for preventing

and eliminating bugs, external/system

testing, language, and reusable materials,

HBRP Publication Page 1-11 2022. All Rights Reserved Page 9

 Journal of Advancement in Software Engineering and Testing

Volume 5 Issue 3

provide an overview of the software

development approach.

In a research conducted by [28], the team

adopted many XP process principles and

modified others to suit their needs. Test-

driven development (TDD) was used by

the team, and all code was unit-tested.

According to the XPlanner tool, more than

75% of the work was completed in pairs

while adhering to strict coding standards.

Every eight hours, a regression test suite

was run on the build machine on which the

developers' work was integrated at least

once a day. Additionally, the developers

engaged in collective code ownership,

even if a single pair would frequently

complete most of the work on a given

piece of code. In contrast to the typical XP

procedure, planning sessions were only

attended by the lead developers [28]. The

success of the GSD project also relies on

how and what kind of communication,

management, and technical tools are used

in the project. Among all, communication

mechanisms and tools play a vital role as

teams are distributed around the world in

the GSD approach.

Project Factors

To get a better understanding of the project

size and scope, the project's characteristics

should be summarized and stated clearly.

In a study [28], the project team delivered

65 user stories in the final product.

Because the team was not familiar with

XP, there was a wide range in the real

amount of labor required for each user

story. The development of a graphical

depiction of hardware components for one

user narrative in this project, for instance,

took 45 hours. By contrast, it took 6 hours

to validate an input instruction. The project

required a total of 7.62 person-months of

work, although this work was not

dispersed equally. The level of effort rose

as the release deadline drew near, peaked

during the last revision before the release,

and then began to decline as the project

moved into its maintenance phase. The

addition and removal of staff was the main

cause of the effort variations. Four

developers were initially part of the team,

which grew to seven as the delivery

deadline drew near. After delivery, there

were just two developers left on the team,

and they spent most of their time repairing

bugs rather than developing new features.

The modest size of the development

company made it necessary to move

workers between projects as needed to

satisfy impending client requests. Ten

working days were allocated to each

iteration.

Project Outcome

Project outcome measures that concern the

business-oriented results of the project are

also a critical success factor for XP in

GSD. Quality, productivity, and customer

satisfaction are considered major factors

for project success. If the outcome of the

project addresses all these factors, the

project is considered as successful. The

project outcome should satisfy the

customers based on the requirements

presented by the customer.

CONCLUSION

From the study, it is clear that even while

XP places a strong emphasis on

communication and GSD is bred with a

communication gap, the two can be

combined to benefit from each other.

Project management procedures are

required when utilizing XP because it does

not support it. We discovered that project

management of crucial components makes

it easier to install XP. These essential

components include information on the

project, the project site, the project team

members, the user story, the project

release strategy, the project iterations, and

the project events. By giving each

stakeholder a comprehensive picture of the

project, the management of this

HBRP Publication Page 1-11 2022. All Rights Reserved Page 10

 Journal of Advancement in Software Engineering and Testing

Volume 5 Issue 3

information aims to reduce the need for

and difficulties of communication. For

gaining more benefits by implementing XP

in GSD, different factors such as factors

team, process, project, and project

outcome factors should be considered

carefully. We believe that informal

communication-centric approaches can be

used to deliver effective initiatives despite

time, language, and distance limitations.

REFERENCES

1. Setamanit, S. O., Wakeland, W., &

Raffo, D. (2007, August). Improving

global software development project

performance using simulation. In

PICMET'07-2007 Portland

International Conference on

Management of Engineering &

Technology (pp. 2458-2466). IEEE.

2. Damian, D. (2003). Global software

development: growing opportunities,

ongoing challenges. Software Process:

Improvement and Practice, 8(4), 179-

182.

3. Cockburn, A. (2001). Agile Software

Development. Addison-Wesley

Longman, Reading, MA.

4. Beck, K. (1999). Embracing change

with extreme programming. Computer,

32(10), 70-77.

5. Manifesto for Agile Software

Development,

http://agilemanifesto.org/. [Accessed

on: December 03, 2022].

6. Ojha, T. R., & Mainaly, B. (2022).

Implementation of Key Performance

Indicators (KPI) for Global Software

Development-A Comprehensive Study.

Journal of Advancement in Software

Engineering and Testing, 5(2).

7. Setamanit, S. O., Wakeland, W., &

Raffo, D. (2007, August). Improving

global software development project

performance using simulation. In

PICMET'07-2007 Portland

International Conference on

Management of Engineering &

Technology (pp. 2458-2466). IEEE.

8. Prikladnicki, R., Nicolas Audy, J. L.,

& Evaristo, R. (2003). Global software

development in practice lessons

learned. Software Process:

Improvement and Practice, 8(4), 267-

281.

9. Damian, D., & Zowghi, D. (2003).

Requirements Engineering challenges

in multi-site software development

organizations. Requirements

Engineering Journal, 8(1), 149-160.

10. Tiwana, A. (2004). Beyond the black

box: knowledge overlaps in software

outsourcing. Ieee Software, 21(5), 51-

58.

11. Highsmith, J., & Cockburn, A. (2001).

Agile software development: The

business of innovation. Computer,

34(9), 120-127.

12. Stapleton, J. (1997). Dynamic systems

development method -The method in

practice: Addison Wesley.

13. Palmer, S., & Felsing, J. (2002). A

practical guide to feature-driven

development. Prentice Saddle Hall.

Upper Hill.

14. Baskerville, R., & Pries-Heje, J.

(2001). Racing the E-bomb: How the

Internet is redefining information

systems development methodology. In

Realigning research and practice in

information systems development (pp.

49-68). Springer, Boston, MA.

15. Schwaber, K. (1995). Scrum

Development Process. OOPLSA’95

Workshop on Business. Object Design

and Implementation. Austin.

16. Cockburn, A. (2001). Writing effective

use cases. Pearson Education India.

17. Thomas, D., & Hunt, A. (2019). The

Pragmatic Programmer: your journey

to mastery. Addison-Wesley

Professional.

18. Jalali, S., & Wohlin, C. (2012). Global

software engineering and agile

practices: a systematic review. Journal

HBRP Publication Page 1-11 2022. All Rights Reserved Page 11

 Journal of Advancement in Software Engineering and Testing

Volume 5 Issue 3

of software: Evolution and Process,

24(6), 643-659.

19. Maurer, F. (2002, August). Supporting

distributed extreme programming. In

Conference on Extreme Programming

and Agile Methods (pp. 13-22).

Springer, Berlin, Heidelberg.

20. Maurer, F., & Martel, S. (2002, May).

Process support for distributed extreme

programming teams. In ICSE 2002

workshop on global software

development.

21. Tian, Y. (2009). Adapting Extreme

Programming for Global Software

Development Project (Master’s

Thesis). Auburn University, Auburn,

AL 36849, United States.

22. Shah, S. M., & Amin, M. (2013).

Investigating the Suitability of

Extreme Programming for Global

Software Development: A Systematic

Review and Industrial Survey.

23. Xiaohu, Y., Bin, X., Zhijun, H., &

Maddineni, S. R. (2004, May).

Extreme programming in global

software development. In Canadian

Conference on Electrical and

Computer Engineering 2004 (IEEE

Cat. No. 04CH37513) (Vol. 4, pp.

1845-1848). IEEE.

24. Turk, D., Robert, F., & Rumpe, B.

(2005). Assumptions underlying agile

software-development processes.

Journal of Database Management

(JDM), 16(4), 62-87.

25. Reeves, M., & Zhu, J. (2004, June).

Moomba–a collaborative environment

for supporting distributed extreme

programming in global software

development. In International

Conference on Extreme Programming

and Agile Processes in Software

Engineering (pp. 38-50). Springer,

Berlin, Heidelberg.

26. Rashid, N., & Khan, S. U. (2018).

Agile practices for global software

development vendors in the

development of green and sustainable

software. Journal of Software:

Evolution and Process, 30(10), e1964.

27. Bailey, P., Ashworth, N., & Wallace,

N. (2002, May). Challenges for

stakeholders in adopting XP. In Proc.

3rd International Conference on

eXtreme Programming and Agile

Processes in Software Engineering-XP

(pp. 86-89).

28. Layman, L., Williams, L., Damian, D.,

& Bures, H. (2006). Essential

communication practices for Extreme

Programming in a global software

development team. Information and

software technology, 48(9), 781-794.

