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subplot refers to the unique ID of the streamflow gauge in CAMELS dataset. The lower and 

upper whiskers represent 𝑄1 − 1.5 ∗ 𝐼𝑄𝑅 and 𝑄3 + 1.5 ∗ 𝐼𝑄𝑅, respectively. Here 𝑄1 and 𝑄3 
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S1. Parameter estimation of FARIMA models 

The calibration of FARIMA model parameter involved several steps. The procedure followed in 

this paper was similar to that described in Montanari et al. (1997). First, the streamflow time-series 

were deseasonalized by subtracting the corresponding seasonal components. Seasonal components 

were computed using two methods: the LOWESS method (Cleveland, 1979) and simple averaging. 

In the simple averaging method, the seasonal component was computed as follows: 

 
𝑋sea,𝑘 =

1

𝑛
∑ 𝑋𝑘,𝑛

𝑛

𝑖=1

, 
(S1) 

where 𝑋𝑘,𝑛 is the streamflow value at 𝑘th day of the 𝑛th year and 𝑋sea,𝑘 is average of streamflow 

values on 𝑘th day computed over 𝑛 years. The time-series 𝑋sea,𝑘, 𝑘 = 1,2, … ,365 represents the 

seasonal component. Figure S1 shows an example of deseasonalization. The LOWESS and simple 

averaging methods yield similar values (Figure 4b); therefore, the LOWESS seasonal component 

method was used for deseasonalization. The LOWESS algorithm had two parameters to be 

specified by the user: number of iterations and fraction of data used for regression at each time-



step. In this study, 2 iterations were used with fraction of data used at each time-step equal to 0.02. 

In a few watersheds, the seasonal component obtained by the LOWESS model was unrealistic and 

was very different from the seasonal component obtained by the simple averaging method. In these 

watersheds, the seasonal component obtained by simple averaging approach was used for 

deseasonalization. 

The parameter estimation procedure was carried out in two steps. In the first step, number of AR 

and MA parameters, denoted by 𝑝 and 𝑞, respectively, were determined. In the second step, the 

value of the AR parameters, MA parameters, and 𝑑 were determined. In the first step, a preliminary 

estimate of the 𝑑 value was obtained as the average of the two values obtained by two methods: 

R/S method and aggregate variance method (Montanari et al., 1997). For a given 𝑑 value, 

fractionally differenced time-series 𝑌𝑡 can be obtained as (using Equation 1 of the main text) 

 𝑌𝑡 =  (1 − 𝐵)𝑑𝑋𝑡 = 𝛷𝑝(𝐵)−1 𝛹𝑞(𝐵)𝜖𝑡, (S2) 

where (1 − 𝐵)𝑑 can be written in the polynomial form as 

 
(1 − 𝐵)𝑑 = ∑ 𝑎𝑖𝐵

𝑖

∞

𝑖=0

, 

(S3) 
 

𝑎𝑖 =
Γ(−𝑑 + 𝑖)

Γ(−𝑑)Γ(𝑖 + 1)
, 

 
Figure S1. Deseasonalization illustration. (a) Streamflow time-series, (b) seasonal component obtained using 

LOWESS and simple averaging, and (c) deseasonalized streamflow using seasonal component obtained by 

LOWESS. 

 



where 𝑎𝑖 is the coefficient of 𝑖th power of backward shift operator 𝐵, and it is a function of 𝑑 and  

𝑖 as defined above. Using (S2), 

 
𝑌𝑡 = ∑ 𝑎𝑖𝑋𝑡−𝑖

∞

𝑖=0

. 
(S4) 

Equation (S2) tells us that 𝑌𝑡 is an ARMA process. Eq. (S4) tells us that 𝑌𝑡 can be computed from 

past and current values of 𝑋𝑡 for a given value of 𝑑. In this study, 𝑌𝑡 was computed using the past 

100 values and the current value of 𝑋𝑡. This is reasonable since the coefficients 𝑎𝑖′s drop to zero 

very quickly and the contribution of the later terms to the summation is negligible. Once the time-

series 𝑌𝑡 were obtained, several ARMA models were fitted to it using the python statsmodel 

package (Seabold & Perktold, 2010) with different values of 𝑝 and 𝑞 between 0 and 10. Thus, 121 

sets of the parameters were obtained. The 𝑝 and 𝑞 corresponding to the set with minimum Aikaike 

Information Criterion (AIC, Akaike, 1973) were chosen as the optimal values.  

In the second step, the values of the parameter were estimated using an iterative-𝑑 method. The 

values of 𝑝 and 𝑞 were fixed as obtained in the previous step. The 𝑑 value was varied between 0 

and 0.5 with a step of 0.01. Thus 51 sets of FARIMA parameters corresponding to each 𝑑 value 

were obtained for a deseasonalized streamflow time-series and the set with minimum AIC was 

chosen as the optimum parameter set. Denote the parameter vector of the FARIMA model by 𝜽. 

The confidence intervals (credible region in Bayesian language) over 𝜽 were computed using the 

asymptotic Normality of posterior distribution (Berger, 1985) according to which the posterior 

distribution is approximated as Gaussian with maximum likelihood estimate 𝜽̂ as mean and 

covariance matrix 𝜮 such that 

 
𝜮−1 = −

∂2𝐿(𝜽)

∂𝜽2
, 

(S5) 

where 𝐿(𝜽) is the log-likelihood function of 𝜽. Given the mean and covariance matrix of 𝜽, the 

confidence intervals can be easily computed. In this study, instead of an exact log-likelihood, 

Whittle’s approximate log-likelihood  𝐿W(𝜽) was used for analytical convenience (Beran, 1994): 

 
𝐿W(𝜽) = ∑ ℎ(𝜔𝑖; 𝜽) +

𝐼(𝜔𝑖)

ℎ(𝜔𝑖; 𝜽)
,

𝑚

𝑖=1

 

𝑚 = {

𝑁

2
, 𝑁 even

𝑁 + 1

2
, 𝑁 odd.

 

(S6) 

where ℎ(𝜔; 𝜽) is the same as in Equation (4) (in the main text) with dependency on parameter 𝜽 

shown explicitly, 𝐼(𝜔) is periodogram of deseasonalized streamflow (equivalent to observed 

PSD), 𝑚 denotes the total number of discrete frequencies used in the summation (S6), and 𝜔𝑖 

denotes the 𝑖th discrete frequency such that 𝜔𝑖 = 𝑖
1

𝑁
 day−1, 𝑖 = 1, 2, … , 𝑚. 

S2. FARIMA model validation 



 

Figure S2. 1st time window. The autocorrelation of fitted residuals at each time-lag for the models created in first 

time-window. For each time-lag, the autocorrelation is shown for all the watersheds as boxplot. This figure shows 

that for all the watersheds except a few, the autocorrelation at every lag was between -0.10 and 0.10. In fact, for 

most watersheds it was between -0.05 and 0.05. 

 

 

 

Figure S3. 2nd time window. Same as Figure S2 but for time-window 2. 

 



 

Figure S4. 3rd time window. Same as Figure S2 but for time-window 3. 

 

 

 

Figure S5. 4th time window. Same as Figure S2 but for time-window 4. 

 



 

Figure S6. 5th time window. Same as Figure S2 but for time-window 5. 

 

 

 

Figure S7. 6th time window. Same as Figure S2 but for time-window 6. 

 



 

Figure S8. 7th time window. Same as Figure S2 but for time-window 7. 

 

 

 

Figure S9. 8th time window. Same as Figure S2 but for time-window 8. 

 

 



 

Figure S10. 9th time window. Same as Figure S2 but for time-window 9. 

 

S3. Trends in streamflow temperature relationship 

In this study, snow signatures proposed by Horner et al. (2020) were used to identify the changes 

in temperature snow relationship. They defined streamflow, temperature, and SWE regimes as a 

30-day moving average of their respective seasonal components. Let us denote streamflow, 

temperature, and SWE regimes by 𝑄reg, 𝑇reg, and 𝑆𝑊𝐸reg, respectively.  Figure 8 (in main text) 

shows the relationship between temperature and streamflow regimes for a hypothetical snow-

dominated watershed. The segment AB is the snowmelt period where both streamflow and 

temperature rise. Streamflow reaches its peak at point B. After point B, temperature continues to 

rise but streamflow decreases because of the lack of snow availability. During segment CD, 

temperature decreases without significant change in streamflow. During the segment DA, snow 

accumulates. The segments AB and CD capture the snowmelt dynamics. Horner et al. (2020) fitted 

linear relationships between temperature and streamflow regimes to model segments AB and CD 

and defined the slopes of these segments as snow signatures. In the study, we found that the linear 

relation was a good model for the segment AB in all the watersheds, but not for the segment BC 

in several watersheds (even though the line BC shown in Figure 8 (in main text) is linear). 

Therefore, we focused only on segment AB which we refer to as the rising limb of temperature-

streamflow relationship. Let this relationship be modeled as 

 𝑄̂reg,𝑖 = 𝛿snow𝑇reg,𝑖 + 𝛽snow, (S7) 

where 𝑇reg,𝑖 and 𝑄̂reg,𝑖 denote the temperature and estimated streamflow regime value on 𝑖th day 

of the water year during the first phase of snowmelt (limb AB), 𝛿snow and 𝛽snow denote the slope 

and intercept of the relationship. We used both 𝛿snow and 𝛽snow as the snow signatures. 

The slope, 𝛿snow, is a measure of rate of increase of snowmelt per unit increase in temperature. 

The intercept 𝛽snow is the streamflow when the mean temperature is zero and snowmelt has not 

started. An intuitive way of thinking about 𝛽snow is as follows.  For a given value of 𝛿snow, the 



value of 𝛽snow determines the point where line AB intersects with the x-axis (𝑄reg = 0).  By 

making 𝑄reg equal to 0 in Eq. (S7), one gets 𝑇reg = 𝛽snow/𝛿snow. Thus, given 𝛿snow, the intercept 

𝛽snow is the measure of threshold mean watershed temperature required to start the snowmelt. 

Keeping the 𝛿snow fixed, higher 𝛽snow implies smaller values of threshold temperature and smaller 

values of 𝛽snow implies larger values of threshold temperature. But note that 𝛽snow is not equal to 

the threshold temperature required to start the snowmelt. Along with 𝛿snow and 𝛽snow, time to 

peak – number of days since the start of the water year after which streamflow regime peaks – was 

also computed as a snow signature. We computed the snow signatures for the moving time 

windows of 10 years each as illustrated in Table 1 (in main text). Subsequently, trends in these 

signatures were computed over the time-windows. The trend values provide an estimate of change 

in snow signatures. In the context of this paper, trends in snow signature are related to the change 

in snowmelt dynamics. 

Figure S11 shows the trend in the three snow signatures over snow-dominated CAMELS 

watersheds. Clustering of positive with positive and negative with negative trend watersheds is 

remarkable. Which indicates that in snow-dominated watersheds change in climatic statistics is 

responsible for hydrological changes and the differences in watershed properties has only 

secondary importance. Magnitude of trends in 𝛿snow and 𝛽snow are larger in western watersheds 

than in eastern watersheds. The magnitude of 𝛽snow decreased in most of the western watersheds. 

The trends in 𝛿snow are positive in most of the north-western watersheds and negative in south-

western watersheds. Thus, in western USA mainly two kinds of trends are observed: (1) Increasing 

value of 𝛿snow and decreasing value of 𝛽snow, and (2) decreasing value of 𝛿snow and decreasing 

value of 𝛽snow. Increasing value of 𝛿snow combined with decreasing value of 𝛽snow. indicates two 

possibilities: 

(a) The threshold temperature to start snowmelt has increased. This, in turn, is likely due to a 

decrease in availability of snow at lower elevations. For snowmelt to begin at higher 

elevations, higher mean watershed temperatures are required. Another implication is that 

watershed is in a regime where 𝜕𝑄/𝜕𝑇 is higher which is plausible in higher temperatures 

regime. Increase in mean watershed temperature and lack of snow availability at lower 

elevations is a likely cause of increase in 𝛿snow and decrease in 𝛽snow. We note that for 

this possibility to realize the increase in mean watershed temperature should be so large 

that mean temperature at higher elevations is also increased. This is supported by the fact 

that in north-western watersheds, increases in mean watershed temperature are very large, 

both daily minimum temperature and winter maximum (Figure 4 in the main text). 

Moreover, other researchers have noted using snow course observations and VIC model 

simulations that the effects of the increasing temperatures are more significant at low 

elevations than at high elevations in western watersheds (Knowles et al., 2006; Mote et al., 

2005; Mote, 2006; Belmecheri et al., 2016; Berg & Hall, 2017). This is also supported by 

the Figure S10d which shows that SWE has decreased in the majority of the western 

watersheds. Also, note that the trend in 𝛽snow is positive in a few Sierra Nevada watersheds 

located in California - in these watersheds SWE has indeed increased over the study period 

(Figure S11d). 

(b) Another possibility is that the increase in 𝛿snow is so large that the threshold temperature 

to start snowmelt decreases even if 𝛽snow has decreased. Decrease in temperature threshold 

is possible if more snow is available at lower elevations. However, this possibility seems 

unlikely to have realized because SWE has decreased over Western USA over the study 



period (Figure S11) and snowline has been reported to move to higher elevations as 

discussed above. 

 
Figure S11. Snow-dominated watersheds. Trend in snow signatures (a) rising limb slope (𝛿snow), (b) rising limb 

intercept (𝛽snow), and (c) time to peak, and (d) trend in snow water equivalent (SWE). The ‘+’ sign indicates that the 

trend in statistically significant at 5% significance level. The number of watersheds in subplots (a), (b), and (c) are 

different from that in subplot (d) because some of the snow dominated watersheds did not follow the linear 

relationship. 

Decreases in both 𝛿snow and 𝛽snow indicate lack of snow availability at lower elevations and no 

change or decrease in temperatures at higher elevations. In summary, it seems likely that in the 

western USA (1) snow has moved to higher elevations, and (2) temperatures at higher elevations 

have increased in northern watersheds and changed negligibly in southern watersheds.  

In eastern watersheds also two kinds of trends are observed: (1) Increasing 𝛿snow and increasing 

𝛽snow, and (2) Increasing 𝛿snow and decreasing 𝛽snow. Increases in 𝛿snow and 𝛽snow indicate that 

more snow is available at lower elevations and temperatures have increased. This is supported by 

the fact that SWE has increased over eastern snow dominated watersheds over the study period 

(Figure S11d). Increase in 𝛿snow and decrease in 𝛽snow indicates that less snow is available at 

lower elevations and temperatures have increased significantly at higher elevations (as explained 

above). Since SWE has increased in these watersheds, this seems unlikely. Also note that in none 

of the eastern watersheds were both an increase in 𝛿snow and a decrease in 𝛽snow statistically 

significant. 

The only case not discussed so far is decreasing 𝛿snow and increasing 𝛽snow. There exists only one 

watershed (in western USA) with a statistically significant negative trend in 𝛿snow and statistically 



significant positive trend in 𝛽snow. In the eastern region, no such watershed exists. This case 

indicates two possibilities:  

(a) The temperature threshold to start snowmelt has decreased but 𝜕𝑄/𝜕𝑇 has decreased. This 

possibility can be realized either when more snow is available at lower elevations and 

temperatures have decreased significantly at lower elevations, or when less snow is 

available at lower elevations and the temperatures have increased significantly at higher 

elevations. The second possibility is unlikely since increasing temperature are expected to 

result in lesser snow at lower elevations. The first possibility is unlikely in western 

watersheds because snowline is known to have moved up in these watersheds.  

(b) Temperature threshold to start snowmelt has increased and temperatures have decreased 

significantly in snow available regions. This possibility can be realized if the snow is only 

available at higher elevations compared to earlier time-period and temperature have 

decreased at higher elevations. The decrease in AMJ temperatures gives some evidence, 

albeit weak, toward this possibility. 

Finally, Figure S11d shows that SWE has decreased (increased) in majority of the western 

(eastern) snow dominated watersheds. In summary, the discussion above indicates that snowmelt 

dynamics have changed significantly in many of the snow dominated watersheds. Some 

hypotheses along with preliminary evidence have also been proposed to explain the changes in 

snowmelt dynamics. In western watersheds, these changes are primary linked to increase in 

temperature and movement of the snowline to higher elevation. 

S4. Trend in rainfall runoff relationship 

The method of Lamb & Beven (1997) was used for hydrograph separation and identification of 

rainfall-runoff events. Baseflow corresponding to each rainfall-runoff event was identified using 

the method of Collischonn & Fan et al., (2013). The baseflow thus obtained was subtracted from 

the streamflow time-series to obtain streamflow according to excess rainfall which will be referred 

to as direct streamflow in what follows.  

The event-based model had two components. First component processed rainfall time-series and 

yielded excess rainfall time-series and the second component routed excess rainfall to watershed 

outlet. The SCS-CN method was used to convert rainfall time-series to excess rainfall using the 

equation (Ponce & Hawkins, 1996). SCS-CN method has the advantage that it is parametrically 

simple with only two parameters, but this simplicity comes at the cost of the sacrificing physical 

realism. Also, it is argued that this method is applicable only to agricultural watersheds, but many 

authors have applied this method to watersheds with other land uses and reported good agreement 

between observed and simulated excess rainfall (e.g., Mishra & Singh, 1999; Geetha et al., 2007; 

Soulis & Valiantzas, 2012; Soulis & Valiantzas, 2013). Therefore, to keep the methodology 

manageable we used the SCS-CN method in this study. The SCS-CN model is follows: 

 
𝑃e =

(𝑃 − 𝐼a)2

𝑃 − 𝐼a + 𝑆
, 𝑡 > 0, 

(S8)  𝐼a = 𝜆𝑆, 
 

𝑆 =
25400

𝐶𝑁
− 254, 



where 𝐼a denotes initial abstraction, 𝑆[in mm] denotes antecedent maximum retention capacity, 

the parameter 𝜆 denotes the fraction of 𝑆 that is lost as initial abstraction, and the parameter 𝐶𝑁 

determines maximum retention capacity and varied between (0, 100), excluding the extreme 

values. Typically, the parameter 𝜆 is fixed at 0.20 and the parameter 𝐶𝑁 is determined based on 

land-use type, but in this study, these were treated as calibration parameter and their values varied 

from event to event. 

The excess rainfall obtained using the SCS-CN method was routed to the watershed outlet using 

the D-duration unit hydrograph approach (Brutsaert, 2005). The D-duration unit hydrograph was 

obtained using instantaneous unit hydrograph (IUH). The instantaneous unit hydrograph was 

assumed to the form of a 2-parameter gamma distribution with parameter 𝛼 and 𝛽[T−1] (Botter et 

al., 2013): 

  
𝑓(𝑡) =

𝛽𝛼𝑡𝛼−1e−𝛽𝑡

Γ(𝛼)
, 𝑡 > 0, 

(S9) 

where 𝑡 denotes time. The mean of the distribution is 𝛼/𝛽, and the variance is 𝛼/𝛽2. The parameter 

𝜆, 𝐶𝑁, 𝛼, and 𝛽 were estimated for each rainfall-runoff event of a watershed so that the mean 

square error between simulated and observed direct streamflows was minimized. The optimization 

was carried out using the Dynamic Dimension Search (DDS) algorithm (Tolson & Shoemaker, 

2007). A good fit could be obtained for most of rainfall-runoff events in all the watersheds. But 

there were a few rainfall-runoff events for which no set of the parameter could yield a good fit. 

We removed all the rainfall-runoff events with NSE of fit less than 0.75 from the further analyses. 

Once these parameters are obtained for each of the rainfall-runoff events, then the change in these 

parameters over time can be used as a measure of the change in the rainfall-runoff response of a 

watershed. One difficulty is that these parameters vary from event to event in a seemingly random 

fashion. Therefore, the change in probability distributions of these parameters had to be measured. 

This was achieved using the moving windows as illustrated in Table 1 (in the main text). All the 

events contained in a moving window were used to create a probability distribution of the four 

parameters. The change in probability distribution was measured by estimating the trend in several 

statistics of the probability distributions which includes mean, mean of 0-10 percentiles, mean of 

10-30 percentiles, mean of 30-60 percentiles, mean of 60-90 percentiles, and mean of 90-100 

percentiles. The important variables were recognized using the same method as in snow dominated 

watersheds. 

Figure S12 shows the trends in mean values of the parameters of the rainfall-runoff model 

described above. Spatial clustering discussed above is observed in these plots also. Also, these 

watersheds have negligible anthropogenic influences. Thus, it appears that the change in these 

parameters is caused by change in climatic statistics. Trends in mean 𝜆 seem to be spatially random 

with very small correlation length scale. Trends in mean 𝐶𝑁 have a strong spatial structure: 

Majority of the watersheds in the east have negative trend and majority of the watersheds in the 

Pacific Northwest have positive trend. However, the largest magnitude of trends value is -2.4 time-

window-1 which translates to a decrease of 21.6; this is not a significant decrease. Decrease 

(increase) in mean 𝐶𝑁 indicates a decrease (increase) in equilibrium soil moisture in eastern 

(Pacific Northwestern) rain dominated watersheds. Decrease (increase) in equilibrium soil 

moisture is related to decrease (increase) in rainfall amount, and/or increase (decrease) in 

evapotranspiration. Thus, change in 𝐶𝑁 seem to be related to climate change, not to any physical 

characteristics of the watershed. 



 

 

Figure S12. Rain-dominated watersheds. Trend in mean parameter values of rainfall-runoff models: (a) 𝜆, (b) 𝐶𝑁, 

(c) 𝛼/𝛽, and (d) √𝛼/𝛽2. The ‘+’ sign indicates that the trend is statistically significant at 5% significance level. The 

units in subplot (c) and (d) are minutes time-window-1. 

Trends in 𝛼/𝛽 and √𝛼/𝛽2  also show a spatial structure similar to that of 𝐶𝑁: positive (negative) 

trends are more likely in East (West). Increase in both 𝛼/𝛽 and √𝛼/𝛽2  in a watershed implies 

that it takes more time to drain the watershed and the contribution of high frequency components 

to streamflow variations is decreasing. However, since the magnitude of change is small for both 

𝛼/𝛽 and 𝛼/𝛽2, change in NPSD of streamflow is unlikely to be related to change in mean value 

of these parameters. 

S5. Evidence of robustness of changes in streamflow statistical structure (SSS) 

In this section, we discuss why the changes in the SSS reported in this study are robust. For the 

sake of brevity, only the changes in less than 1-month timescale components (𝐹4) are discussed. 

The same conclusions can be made for other components. 

As explained in the main text, three tests were carried out to ascertain the statistical significance 

of the changes in SSS: (1) First significance test (see main text), (2) second significance test (see 

main text), and (3) Mann-Kendall test. The three tests agreed on the statistical significance of the 

changes for more than 70% of the watersheds. Figure S13 shows the boxplots of 𝐹4 such that the 

changes in 𝐹4 for the watersheds shown in were statistically significant according to the first and 

second significance tests, but statistically insignificant according to the Mann-Kendall test. The 



Mann-Kendall test could not recognize these changes because the changes were abrupt. This 

illustrates that the changes in SSS reported in this study are robust. 

Figure S13 also illustrates that these changes are robust to the length of the time window used 

because the 𝐹4 values in the last two or three time-windows (not just the last window) were 

significantly different from the 𝐹4 values in the last two or three time-windows. This implies that 

even if we had estimated streamflow spectra using up to 16 years of daily streamflow data; the 

same changes in 𝐹4 would have been obtained as obtained by using the 10-year time window.  

The robustness to time-window length is also illustrated in Figure S14. Figure 14 shows the 

boxplots of 𝐹4 values for each of the time-windows for a few of the watersheds for which all three 

tests (first significance test, second significance test, and Mann-Kendall test) agree that the 𝐹4 

values changed statistically significantly over the study period. 

Finally, Figure S15 illustrates the effectiveness of the first and second significance tests. For the 

watersheds shown in this figure, the second significance concluded that 𝐹4 changed significantly 

while the first significance concluded that 𝐹4 did not change significantly. On visual inspection of 

the boxplots also, it can be concluded the changes indeed might be due to periodic fluctuations in 

streamflow rather than due to a systematic change.  

  
Gauge number: 10259000 

 

Gauge number: 08200000 



  
Gauge number: 08198500 

 

Gauge number: 08086290 

  
Gauge number: 08086212 

 

Gauge number: 03159540 

  

Gauge number: 02092500 Gauge number: 02055100 



Figure S13. Boxplots of the contribution of less than 2-weeks timescale components (𝐹4) for 

each time-window. These plots correspond to the watersheds where the first and second 

significance concluded that 𝐹4 values changed statistically significantly while Mann-Kendall 

concluded that changed is statistically insignificant. Gauge number with each subplot refers to 

the unique ID of the streamflow gauge in CAMELS dataset. The lower and upper whiskers 

represent 𝑄1 − 1.5 ∗ 𝐼𝑄𝑅 and 𝑄3 + 1.5 ∗ 𝐼𝑄𝑅, respectively. Here 𝑄1 and 𝑄3 denote 25th and 75th 

percentiles, and 𝐼𝑄𝑅 denotes inter-quartile range, that is, 𝑄3 − 𝑄1. 
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Figure S14. Boxplots of the contribution of less than 2-weeks timescale components (𝐹4) for 

each time-window. These plots correspond to the watersheds where all three statistical agreed 

that the 𝐹4 values changed statistically significantly. Gauge number with each subplot refers to 

the unique ID of the streamflow gauge in CAMELS dataset. The lower and upper whiskers 

represent 𝑄1 − 1.5 ∗ 𝐼𝑄𝑅 and 𝑄3 + 1.5 ∗ 𝐼𝑄𝑅, respectively. Here 𝑄1 and 𝑄3 denote 25th and 75th 

percentiles, and 𝐼𝑄𝑅 denotes inter-quartile range, that is, 𝑄3 − 𝑄1. 
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Figure S15. Boxplots of the contribution of less than 2-weeks timescale components (𝐹4) for 

each time-window. These plots correspond to the watersheds where first and second significance 

tests disagreed that the 𝐹4 values changed statistically significantly. Gauge number with each 

subplot refers to the unique ID of the streamflow gauge in CAMELS dataset. The lower and 

upper whiskers represent 𝑄1 − 1.5 ∗ 𝐼𝑄𝑅 and 𝑄3 + 1.5 ∗ 𝐼𝑄𝑅, respectively. Here 𝑄1 and 𝑄3 

denote 25th and 75th percentiles, and 𝐼𝑄𝑅 denotes inter-quartile range, that is, 𝑄3 − 𝑄1. 
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