
Node level performance
optimization

May 18 – 20, 2021

CSC – IT Center for Science Ltd., Espoo

Jussi Enkovaara, CSC
Mikko Byckling, Intel
Michael Klemm, AMD

Unless otherwise noted, material (C) 2011–2021 by CSC – IT Center for
Science Ltd, and licensed under a Creative Commons Attribution-
ShareAlike 4.0, http://creativecommons.org/licenses/by-sa/4.0

Introduction to Application PerformanceIntroduction to Application Performance
CSC Training, 2021-05

1

Course outlineCourse outline

Analyzing and understanding performance issues
Awareness of modern CPUs

Improving performance through vectorization
Improving performance through memory optimization
Improving performance though advanced threading techniques

2

Why worry about application performance?Why worry about application performance?

Obvious benefits
Better throughput => more science
Cheaper than new hardware
Save energy, compute quota, money etc.

...and some non-obvious ones
Potential cross-disciplinary research with computer science
Deeper understanding of application

3

Factors affecting performance in HPCFactors affecting performance in HPC

Single node performance
single core performance
threading (and MPI within a node)

Communication between nodes
Input/output to disk

4

Choose good algorithm
e.g. vs.
remember prefactor!

Use high performance libraries
linear algebra (BLAS/LAPACK), FFTs, ...

Experiment with compilers and
compiler options

There is no single best compiler and set
of options for all use cases

Experiment with threading options
Thread pinning, loop scheduling, ...

Optimize the program code

./fibonacci 20
With loop, Fibonacci number i=20 is 6765
Time elapsed 79 ums
With recursion, Fibonacci number i=20 is 6765
Time elapsed 343773 ums

Effort

Theore�cal peak

Pe
rfo

rm
an

ce

How to improve single node performance?How to improve single node performance?

5

Doesn't the compiler do everything?Doesn't the compiler do everything?

You can make a big difference to code performance with how you express things
Helping the compiler spot optimisation opportunities
Using the insight of your application

language semantics might limit compiler

Removing obscure (and obsolescent) “optimizations” in older code
Simple code is the best, until otherwise proven

This is a dark art, mostly: optimize on case-by-case basis
First, check what the compiler is already doing

6

Compilers have vast amount of
heuristics for optimizing common
programming patters
Most compilers can provide a report
about optimizations performed, with
various amount of detail

See compiler manuals for all options

Look into assembly code with
-S -fverbose-asm

Compiler Opt. report

GNU -fopt-info

Intel -qopt-report

Clang -Rpass=.*

...
 vfmadd213pd %ymm0, %ymm2, %ymm10
 vfmadd213pd %ymm0, %ymm2, %ymm9
 vfmadd213pd %ymm0, %ymm2, %ymm8
...

What the compiler is doing?What the compiler is doing?

7

Measuring performanceMeasuring performance

8

CSC customer
I’m performing simulations with my Fortran code. It seems

to perform much worse with MKL library in the new system

than with IMSL library in the old system.

No

CSC specialist

Have you profiled your code?

A day in life at CSCA day in life at CSC

9

A day in life at CSCA day in life at CSC

Profiled the code: 99.9% of the execution time was being spent on these lines:
do i=1,n ! Removing these unnecessary loop iterations reduced the
 do j=1,m ! wall-time of one simulation run from 17 hours to 3 seconds…
 do k=1,fact(x)

 do o=1,nchoosek(x)

 where (ranktypes(:,:)==k)

 ranked(:,:,o)=rankednau(o,k)

 end where

 end do

 end do

 end do

end do

10

Measuring performanceMeasuring performance

First step should always be measuring the performance and finding performance
critical parts

Application can contain hundreds of thousands of lines of code, but typically a small

part of the code (~10 %) consumes most (~90%) of the execution time
“Premature code optimization is the root of all evil”

Choose test case which represents a real production run
Measurements should be carried out on the target platform

"Toy" run on laptop may provide only limited information

11

Applications own timing information
Can be useful for big picture

Performance analysis tools
Provide detailed information about the
application
Find hot-spots (functions and loops)
Identify causes of less-than-ideal
performance
Information about low-level hardware
Intel VTune, AMD uProf, perf, Tau,
Scalasca, PAPI, ...

 Orthonormalize: 54.219 0.003 0.0% |

 calc_s_matrix: 11.150 11.150 2.8% ||

 inverse-cholesky: 5.786 5.786 1.5% ||

 projections: 18.136 18.136 4.6% |-|

 rotate_psi_s: 19.144 19.144 4.8% |-|

 RMM-DIIS: 229.947 29.370 7.4% |--|

 Apply hamiltonian: 9.861 9.861 2.5% ||

Profiling applicationProfiling application

http://www.vi-hps.org/tools/tools.html

12

Profiling applicationProfiling application

Collecting all possible performance metrics with single run is not practical
Simply too much information
Profiling overhead can alter application behavior

Start with an overview!
Call tree information, what routines are most expensive?

13

Sampling vs. tracingSampling vs. tracing

When application is profiled using sampling, the execution is stopped at
predetermined intervals and the state of the application is examined

Lightweight, but may give skewed results

Tracing records every event, e.g. function call
Usually requires modification to the executable

These modifications are called instrumentation
More accurate, but may affect program behavior
Generates lots of data

14

Hardware performance countersHardware performance counters

Hardware performance counters are special registers on CPU that count hardware
events
They enable more accurate statistics and low overhead

In some cases they can be used for tracing without any extra instrumentation

Number of counters is much smaller than the number of events that can be
recorded
Different CPUs have different counters

15

Optimizing programOptimizing program

16

Code optimization cycleCode optimization cycle

(Instrument) Run
Select test

case

Validate / debug

Optimize

Identify single-node issu

17

Two fundamental limits
CPUs peak floating point performance

clock frequency
number of instructions per clock cycle
number of FLOPS per instruction
number of cores
no real application achieves peak in
sustained operation

Main memory bandwidth
How fast data can be fed to the CPU

CPU: FLOPS

Memory

Bandwidth

How to assess application's performance?How to assess application's performance?

18

How to assess application's performance?How to assess application's performance?

Example: maximum performance of axpy x[i] = a x[i] + y[j]
Two FLOPS (multiply and add) per i

Three memory references per i
With double precision numbers arithmetic intensity

 FLOPS/byte

In Puhti, memory bandwidth is ~200 GB/s, so maximum performance is ~16
GFLOPS/s
Theoretical peak performance of Puhti node is ~2600 GFLOPS/s

19

How to assess application's performance?How to assess application's performance?

Example: matrix-matrix multiplication C[i,j] = C[i,j] + A[i,k] * B[k,j]
 FLOPS
 memory references

With double precision numbers arithmetic intensity FLOPS/byte
With large enough limited by peak performance

20

Simple visual concept for maximum
achievable performance

can be derived in terms of arithmetic
intensity , peak performance and
peak memory bandwidth

Machine balance = arithmetic intensity
needed for peak performance

Typical values 5-15 FLOPS/byte

Additional ceilings can be included
(caches, vectorization, threading)

Bound based on bandwidth
Bound based on peak performance

Pe
rf

or
m

an
ce

 [G
FL

O
PS

/s
]

Arithmetic intensity [FLOPS/byte]

Application 1

Application 2

Memory bound

Compute bound

100

10

1

0.1

1/4 1/2 1 2 4 8 16 32

Roofline modelRoofline model

21

Model does not tell if code can be
optimized or not

Application 1 may not be fundamentally
memory bound, but only implemented
badly (not using caches efficiently)
Application 2 may not have
fundamentally prospects for higher
performance (performs only additions
and not fused multiply adds)

However, can be useful for guiding the
optimization work

Bound based on bandwidth
Bound based on peak performance

Pe
rf

or
m

an
ce

 [G
FL

O
PS

/s
]

Arithmetic intensity [FLOPS/byte]

Application 1

Application 2

Memory bound

Compute bound

100

10

1

0.1

1/4 1/2 1 2 4 8 16 32

Vector add

Scalar add

Roofline modelRoofline model

22

Roofline modelRoofline model

How to obtain the machine parameters?
CPU specs
own microbenchmarks
special tools (Intel tools, Empirical Roofline Tool)

How to obtain application GFLOPS/s and arithmetic intensity?
Pen and paper and timing measurements
Performance analysis tools and hardware counters
True number of memory references can be difficult to obtain

23

Take-home messagesTake-home messages

Mind the application performance: it is for the benefit of you, other users and the
service provider
Profile the code and identify the performance issues first, before optimizing
anything

“Premature code optimization is the root of all evil”

Optimizing the code should be the last step in performance tuning
Serial optimization is mostly about helping the compiler to optimize for the target
CPU
Roofline model can work as a guide in optimization

24

Web resourcesWeb resources

Roofline performance model and Empiral Roofline Tool

Web service for looking assembly output from multitude of compilers
https://crd.lbl.gov/departments/computer-science/par/research/roofline/

https://gcc.godbolt.org

25

A look into modern CPU architectureA look into modern CPU architecture
CSC Training, 2021-05

26

Modern CPU coreModern CPU core

27

A CPU core is still largely based on the
von Neumann model

sequency of operations (instructions)
performed on given data
instructions and data are fetched from
memory into registers in CPU
ALU performs operations on data in
registers
Result is stored back to memory

From an external point of view,
operations are executed sequentially

von Neumann architecturevon Neumann architecture

28

Internally, each core is highly complex
Superscalar out-of-order instruction
execution
SIMD instructions
Multiple levels of hierarchical cache
memory Front End

FP

EX

LS

Schedulers

ALQ3ALQ0
16 entries

ALQ1 ALQ2 AGQ
28 entries

RCU
Rename/Allocate

ALU0 ALU1 ALU2 ALU3 AGU0
Ld/St

AGU1
Ld/St

AGU2
St

Store Queue
48 entries

Load Queue
44 entries

DAT0 TLB1TLB0 DAT1

LD0 Pick LD1 Pick
Prefetch

ST Pick

STP

MAB

L1 Data Cache
32 KB, 8-way, 64 B/line

Store
Commit

WCB

L1/L2 DTLB,
DC Tags

Rename/Allocate

Scheduling Queue
36 entries

FADD
Pipe 2

FMA
Pipe 1

FADD
Pipe 3

FMA
Pipe 0

LDCVT

Retire Queue
224 entries

Non-Scheduling Queue
64 entries

Dispatch
≤ 6 mops/cycle

Pick

4-way Decoder

Micro-OP Queue

Microcode Sequencer
Microcode ROM

Stack Engine
Memfile

Instruction Byte Queue
20 × 16 B

Instruction Cache
 32 KB, 8-way, 64 B/line

Next Address Logic

L1/L2 BTB, Return Stack, ITA
L1 BTB: 512, L2 BTB: 7168, RAS: 32, ITA: 1024 entries

L0/L1/L2 ITLB
L1: 64, L2: 512 entries

L1 Hashed Perceptron
L2 TAGE

Prediction
Queue

Micro-Tags

32 B/cycle
from L2

Op Cache
 4 K mops, 8-way, 8 mops/line

≤ 8 mops (≤ 8 x86 instr)

≤ ? mops (≤ 4 x86 instr)

Physical Register File
180 entries

PRFPhysical Register File
160 entries

Forwarding MuxesForwarding Muxes

≤ 6 mops ≤ 4 mops≤ 8 mops

32 B to/from L2 To L2

Competitively shared between threads

Watermarked

Statically partitioned

OC/IC mode

32 B

32 B

32 B

32 B

To/from L2

32 B

Modern CPU coreModern CPU core

29

How CPU core operates?How CPU core operates?

Clock frequency determines the pace at which CPU works
Zero to N instructions start at each clock cycle
Instruction latency = number of clock cycles that are required for completing the
execution
Instruction throughput = number of clock cycles to wait before starting same kind
of instruction again

Throughput can be much smaller than the latency
Sometimes given as cycles per instruction (CPI) or its inverse, instructions per cycle
(IPC)

30

Instructions are executed in stages
Fetch (F): control unit fetches
instruction from memory
Decode (D): decode the instruction and
determine operands

Instructions are broken into uops

Execute (E): perform the instruction
Utilize ALU or access memory

Enables simpler logic and pipelining
the operations

Fetch-decode-execute cycleFetch-decode-execute cycle

31

PipeliningPipelining

Instruction execution and arithmetic units can be pipelined
Instruction execution: work on multiple instructions simultaneously
Arithmetic units: execute different stages of a an instruction at the same time in an
assembly line fashion
Together: one result per cycle after the pipeline is full

Within the pipeline, hardware can execute instructions in different order than they
were issued (out-of-order scheduling)
Requires complicated software (compiler) and hardware to keep the pipeline full
Conditional branches can cause the pipeline to stall

32

Wind-up and wind-down phases: no
instructions retired
First result available after 5 cycles, total
time 7 cycles compared to 15 cycles
without a pipeline
Real pipeline in modern CPU cores can
be much more complex

Pipelining: examplePipelining: example

33

Hardware Instruction Level Parallelism
(ILP)
Multiple instructions per cycle issued to
the multiple execution units
Hardware data dependency resolution
preserve sequential execution
semantics

Actual execution may be out-of-order

Pipelining and superscalar execution
allow instruction throughputs less than
one

Memory

Fetch
unit

Decode andDecode and
issue unitissue unit

ExecutionExecution
unitunit

ExecutionExecution
unitunit

RegistersRegisters

ExecutionExecution
unitunit

Superscalar executionSuperscalar execution

34

VectorizationVectorization

Modern CPUs have SIMD (Single Instruction, Multiple Data) units and instructions
Operate on multiple elements of data with single instructions

AVX2 256 bits = 4 double precision numbers
AVX512 512 bits = 8 double precision numbers

single AVX512 fused multiply add instruction can perform 16 FLOPS

+

+
+

=

=
=

Scalar

AVX

AVX512

35

In order to alleviate the memory
bandwidth bottleneck, CPUs have
multiple levels of cache memory

when data is accessed, it will be first
fetched into cache
when data is reused, subsequent access
is much faster

L1 cache is closest to the CPU core and
is fastest but has smallest capacity
Each successive level has higher
capacity but slower access

Registers

L1 CacheL1 Cache

L2 CacheL2 Cache

L3 CacheL3 Cache

Physical memoryPhysical main memory

Remote memory (over interconnect)Remote memory (over interconnect)

File system disksFile system disks

<= 1

~4

~10

~25

O(105..6)

O(100 B)

O(100 kB)

O(1 MB)

O(10 MB)

GB’s

PB’s

TB’sO(103)

O(102)

Capacity

CP
U c

ycl
es

pe
r a

cce
ss

Cache memoryCache memory

36

It is difficult to fill-in all the available
hardware resources in a CPU core

Pipeline stalls due to main memory
latency, I/O, etc.

To maximize hardware utilization,
several hardware threads can be
executed on a single core

Seen as logical cores by OS

Benefits depend on the application,
and SMT can also worsen the
performance

Memory

Fetch
unit

Decode andDecode and
issue unitissue unit

ExecutionExecution
unitunit

ExecutionExecution
unitunit

RegistersRegisters

ExecutionExecution
unitunit

T2
T1

T1
T2

T2
T2

T2
T1

T1
T1

Symmetric Multithreading (SMT)Symmetric Multithreading (SMT)

37

Introduction to modern multicore CPUsIntroduction to modern multicore CPUs

38

The multicore CPU is packeted in a
socket
Typically, L1 and L2 caches are private
per core, and L3 cache is shared
between set of cores
All cores have shared access to the
main memory

T1T1 T2T2

P1P1

L1L1
L2L2

L3L3

MemoryMemory

T1T1 T2T2

P2P2

L1L1
L2L2

T1T1 T2T2

P3P3

L1L1
L2L2

T1T1 T2T2

P4P4

L1L1
L2L2

Multicore CPU schematicMulticore CPU schematic

39

With private caches per core, hardware
needs to ensure that the data is
consistent between the cores
When a core writes to a cache, CPU
may need to update the caches of other
cores

Possibly expensive operation

Cache coherencyCache coherency

40

A node can have multiple sockets with
memory attached to each socket
Non Uniform Memory Access (NUMA)

All memory within a node is accessible,
but latencies and bandwidths vary

Hardware needs to maintain cahce
coherency also between different
NUMA nodes (ccNUMA)

NUMA architecturesNUMA architectures

41

SummarySummary

Modern multicore CPUs are complex beasts
In order to maximally utilize the CPU, application needs to:

use multiple threads (or processes)
utilize caches for feeding data to CPU at fastest possible pace
keep the pipeline full and utilize instruction level parallelism
use vector instructions for maximizing FLOPS per instruction

42

Web resourcesWeb resources

Detailed information about processor microarchitectures:

Agner's optimization resources

https://en.wikichip.org/wiki/WikiChip
https://uops.info/

https://www.agner.org/optimize/

43

[ONLINE] Node Level Performance Optimization @ CSC, 18-20.5.2021

Performance optimization for
Intel® Xeon® Processor architecture
Dr. Mikko Byckling, IAGS DEE XCSS

44

2
Copyright © 2021 Intel Corporation. All rights reserved.

Contents

▪ Intel® microarchitectures

• Intel® Xeon® Processors
(codename “Broadwell”, BDW)

• 2nd generation Intel® Xeon® Scalable Processors
(codename “Cascade Lake-SP”, CLX)

▪ Introduction to SIMD ISA for Intel® processors

• Intel® AVX and Intel® AVX2

• Intel® AVX-512 and AVX-512 VNNI

45

3
Copyright © 2021 Intel Corporation. All rights reserved.

Intel® Xeon® Processor Architecture**

**Only applies to Intel® Xeon® Processor E5 v3 and E5 v4 Families
For all available options, see
https://ark.intel.com/products/family/91287/Intel-Xeon-Processor-E5-v4-Family

Instruction set architecture
64-bit x86 with Intel® AVX2

Platform Memory
Up to 1.54TB (4ch DDR4 2400)

Features
Up to 3.7GHz Frequency, Ring Architecture,
Out-of-Order cores, up to 2.5MB Shared L3
cache per core

Core:

(up to 22)

LLCCore

LLCCore

LLCCore

LLCCore

LLCCore

LLCCore

LLCCore

LLCCore

LLCCore

LLCCore

LLCCore

LLCCore

LLCCore

LLCCore

LLCCore

LLCCore

Memory controller

Home agent

Memory controller

Home agent

PCIe agent
& DMI

QPI agent

2 QPI lanes
9.6 GT/s

40 PCI* lanes
PCIe 3.0 (10 GT/s)

S
h

a
re

d

S
h

a
re

d

S
h

a
re

d

S
h

a
re

d

4 channels DDR4 2400

Core

32KB
L1D

32KB
L1I 256KB

L2
(8-way)

*Other names and brands may be claimed as the property of others.

46

4
Copyright © 2021 Intel Corporation. All rights reserved.

Intel® Xeon® Scalable Processor Architecture**

Instruction set architecture
64-bit x86 with Intel® AVX512 and AVX-512 VNNI

Platform Memory
Up to 1.54TB (6ch DDR4 2933)

Features
Up to 3.6GHz Frequency, Mesh Architecture,
Out-of-Order cores, up to 1.375MB Shared L3
cache per core

Core:

(up to 28)

Core

32KB
L1D

32KB
L1I 1MB

L2
(16-way)

*Other names and brands may be claimed as the property of others.

DDR4

CHA/LLC

Core

CHA/LLC

Core

CHA/LLC

Core

CHA/LLC

Core

CHA/LLC

Core

CHA/LLC

Core

CHA/LLC

Core

CHA/LLC

Core

CHA/LLC

Core

CHA/LLC

Core

CHA/LLC

Core

CHA/LLC

Core

CHA/LLC

Core

CHA/LLC

Core

CHA/LLC

Core

CHA/LLC

Core

CHA/LLC

Core

CHA/LLC

Core

CHA/LLC

Core

CHA/LLC

Core

CHA/LLC

Core

CHA/LLC

Core

CHA/LLC

Core

CHA/LLC

Core

CHA/LLC

Core

CHA/LLC

Core

CHA/LLC

Core

CHA/LLC

Core

PCIe
2x
UPI

1x
UPI

PCIe PCIe
integ.

PCIe

MC MC

DDR4

3 UPI lanes
10.4 GT/s

48 PCI* lanes
PCIe 3.0 (10 GT/s)

**Only applies to 2nd Generation Intel® Xeon® Scalable Processor Gold and Platinum
families. For all available options, see
https://ark.intel.com/content/www/us/en/ark/products/series/192283/2nd-generation-
intel-xeon-scalable-processors.html

47

5
Copyright © 2021 Intel Corporation. All rights reserved.

Microarchitecture Enhancements

▪ Larger and improved branch predictor, higher throughput decoder, larger window to extract ILP

▪ Improved scheduler and execution engine, improved throughput and latency of divide/sqrt

▪ More load/store bandwidth, deeper load/store buffers, improved prefetcher

▪ Intel® AVX-512 with 2 FMAs per core, larger 1MB MLC

Broadwell
uArch

Cascade
Lake uArch

Out-of-order
Window

192 224

In-flight Loads +
Stores

72 + 42 72 + 56

Scheduler
Entries

60 97

Registers –
Integer + FP

168 + 168 180 + 168

Allocation Queue 56 64/thread

L1D BW (B/Cyc)
– Load + Store

64 + 32 128 + 64

L2 Unified TLB
4K+2M:

1024
4K+2M:

1536 1G: 16

Load
Buffer

Store
Buffer

Reorder
Buffer

5

6

Scheduler

Allocate/Rename/Retire
In order

OOO

IN
T

V
E

C

Port 0 Port 1

MUL

ALU

FMA

Shift
ALU

LEA

Port 5

ALU

Shuffle
ALU

LEA

Port 6

JMP 1

ALU
Shift

JMP 2

ALU

ALU

DIV
Shift

Shift

FMA

Port 4

32KB L1 D$

Port 2

Load/STAStore Data

Port 3

Load/STA

Port 7

STA

Load Data 2

Load Data 3 Memory Control

Fill Buffers

Fill Buffers

μop Cache

32KB L1 I$ Pre decode Inst Q
DecodersDecodersDecodersDecoders

Branch Prediction Unit

μop

Queue

Memory

Front End

1MB L2$

FMA

48

6
Copyright © 2021 Intel Corporation. All rights reserved.

Mesh Interconnect Architecture

 CBO

IDI/Q
PII

ID
I

Core
Core

Bo
Cache

Bo
SAD

LLC
2.5MB

 CBO

ID
I/Q

PI
I

ID
I Core

Core

Bo
Cache

Bo
SAD

LLC
2.5MB

 CBO

D

N

IDI/Q
PII

ID
I U

P
Core

Core

Bo
Cache

Bo
SAD

LLC
2.5MB

 CBO

D

N

ID
I/Q

PI
I

IDIU

P
Core

Core

Bo
Cache

Bo
SAD

LLC
2.5MB

 CBO

IDI/Q
PII

ID
I

Core
Core

Bo
Cache

Bo
SAD

LLC
2.5MB

 CBO

ID
I/Q

PI
I

ID
I Core

Core

Bo
Cache

Bo
SAD

LLC
2.5MB

 CBO

D

N

IDI/Q
PII

ID
I U

P
Core

Core

Bo
Cache

Bo
SAD

LLC
2.5MB

 CBO

D

N

ID
I/Q

PI
I

IDIU

P
Core

Core

Bo
Cache

Bo
SAD

LLC
2.5MB

DN
UP

D

N

U

P

D

N

U

P

 CBO

IDI/Q
PII

ID
I

Core
Core

Bo
Cache

Bo
SAD

LLC
2.5MB

 CBO

IDI/Q
PII

ID
I

Core
Core

Bo
Cache

Bo
SAD

LLC
2.5MB

 CBO

IDI/Q
PII

ID
I

Core
Core

Bo
Cache

Bo
SAD

LLC
2.5MB

 CBO

IDI/Q
PII

ID
I

Core
Core

Bo
Cache

Bo
SAD

LLC
2.5MB

 CBO

ID
I/Q

PI
I

ID
I Core

Core

Bo
Cache

Bo
SAD

LLC
2.5MB

 CBO

ID
I/Q

PI
I

ID
I Core

Core

Bo
Cache

Bo
SAD

LLC
2.5MB

 CBO

ID
I/Q

PI
I

ID
I Core

Core

Bo
Cache

Bo
SAD

LLC
2.5MB

 CBO

ID
I/Q

PI
I

ID
I Core

Core

Bo
Cache

Bo
SAD

LLC
2.5MB

 CBO

D

N

IDI/Q
PII

ID
I U

P
Core

Core

Bo
Cache

Bo
SAD

LLC
2.5MB

 CBO

D

N

IDI/Q
PII

ID
I U

P
Core

Core

Bo
Cache

Bo
SAD

LLC
2.5MB

 CBO

D

N

IDI/Q
PII

ID
I U

P
Core

Core

Bo
Cache

Bo
SAD

LLC
2.5MB

 CBO

D

N

IDI/Q
PII

ID
I U

P
Core

Core

Bo
Cache

Bo
SAD

LLC
2.5MB

 CBO

D

N

ID
I/Q

PI
I

IDIU

P
Core

Core

Bo
Cache

Bo
SAD

LLC
2.5MB

 CBO

D

N

ID
I/Q

PI
I

IDIU

P
Core

Core

Bo
Cache

Bo
SAD

LLC
2.5MB

 CBO

D

N

ID
I/Q

PI
I

ID
IU

P
Core

Core

Bo
Cache

Bo
SAD

LLC
2.5MB

 CBO

D

N

ID
I/Q

PI
I

IDIU

P
Core

Core

Bo
Cache

Bo
SAD

LLC
2.5MB

QPI Agent

QPI

Link

R3QPI

QPI

Link

IIO

R2PCI

PCI-E

X16

IOAPIC

CB DMA

PCI-E

X16

PCI-E

X8

PCI-E

X4 (ESI)
UBoxPCU

Home Agent
DDR

Mem Ctlr
DDR

Home Agent
DDR

Mem Ctlr
DDR

Broadwell EX 24-core die Cascade Lake-SP 28-core die

2x UPI x20 PCIe x16 PCIe x16

DMI x 4

CBDMA

On Pkg

PCIe x16

1x UPI x20 PCIe x16

CHA/SF/LLC

CLX Core

CHA/SF/LLC

CLX Core

CHA/SF/LLC

CLX Core

CHA/SF/LLC

CLX Core

CHA/SF/LLC

CLX Core

CHA/SF/LLC

CLX Core

CHA/SF/LLC

CLX Core

CHA/SF/LLC

CLX Core

CHA/SF/LLC

CLX Core

CHA/SF/LLC

CLX Core

CHA/SF/LLC

CLX Core

CHA/SF/LLC

CLX Core

CHA/SF/LLC

CLX Core

CHA/SF/LLC

CLX Core

CHA/SF/LLC

CLX Core

CHA/SF/LLC

CLX Core

CHA/SF/LLC

CLX Core

CHA/SF/LLC

CLX Core

CHA/SF/LLC

CLX Core

CHA/SF/LLC

CLX Core

CHA/SF/LLC

CLX Core

CHA/SF/LLC

CLX Core

CHA/SF/LLC

CLX Core

CHA/SF/LLC

CLX Core

CHA/SF/LLC

CLX Core

CHA/SF/LLC

CLX Core

CHA/SF/LLC

CLX Core

CHA/SF/LLC

CLX Core

MCDDR4

DDR4

DDR4

MC DDR4

DDR4

DDR4

CHA – Caching and Home Agent ; SF – Snoop Filter ; LLC – Last Level Cache ;

CLX Core – Cascade Lake Server Core; UPI – Intel® UltraPath Interconnect

49

7
Copyright © 2021 Intel Corporation. All rights reserved.

Cache Hierarchy Architecture

▪ On-chip cache balance shifted from shared-distributed to private-local

• Shared-distributed ➔ shared-distributed L3 is primary cache

• Private-local ➔ private L2 becomes primary cache with shared L3 used as overflow cache

▪ Shared L3 changed from inclusive to non-inclusive

• Inclusive ➔ L3 has copies of all lines in L2

• Non-inclusive ➔ lines in L2 may not exist in L3

Shared L3
2.5MB/core
(inclusive)

Core

L2
(256KB private)

Core

L2
(256KB private)

Core

L2
(256KB private)

Shared L3
1.375MB/core
(non-inclusive)

Core

L2
(1MB private)

Core

L2
(1MB private)

Core

L2
(1MB private)

Broadwell Architecture Cascade Lake-SP Architecture

50

8
Copyright © 2021 Intel Corporation. All rights reserved.

Inclusive vs Non-Inclusive L3 Cache

1.375 MB

L3

L2
1MB

1

2

3

Non-Inclusive L3
(Cascade Lake-SP architecture)

Memory

L2
256kB

2.5 MB L3

1

2

3

Inclusive L3
(Broadwell architecture)

Memory

1. Memory reads fill directly to the L2, no
longer to both the L2 and L3

2. When a L2 line needs to be removed, both
modified and unmodified lines are written
back

3. Data shared across cores are copied into the
L3 for servicing future L2 misses

Cache hierarchy architected and optimized for
data center use cases:

• Virtualized use cases get larger private L2
cache free from interference

• Multithreaded workloads can operate on
larger data per thread (due to increased L2
size) and reduce uncore activity

51

9
Copyright © 2021 Intel Corporation. All rights reserved.

Introduction to SIMD ISA for Intel®

processors
History, features of Intel® AVX, Intel® AVX2 and Intel® AVX-512

52

10
Copyright © 2021 Intel Corporation. All rights reserved.

History of SIMD ISA extensions*

MMX™ (1997)

Intel® Streaming SIMD Extensions (Intel® SSE in 1999 to Intel® SSE4.2 in 2008)

Intel® Advanced Vector Extensions (Intel® AVX in 2011 and Intel® AVX2 in 2013)

Intel® AVX-512 in 2016

Intel® Pentium® processor (1993)

* Illustrated with the number of 32-bit data elements that are processed by one “packed” instruction.

53

11
Copyright © 2021 Intel Corporation. All rights reserved.

Intel® AVX and Intel® AVX2

▪ Intel® AVX is a 256 bit vector extension to SSE

• SSE uses dedicated 128 bit registers called XMM (16 for Intel® 64)

• Extends all XMM registers to 256 bit called YMM

• Lower 128 bit of YMM register are mapped/shared with XMM

• AVX works on either

• The whole 256 bit

• The lower 128 bit; zeros the higher 128 bit

▪ Intel® AVX2

• Doubles width of integer vector instructions to 256 bits

• Floating point fused multiply add (FMA)

• Bit Manipulation Instructions (BMI)

• Gather instructions

• Any-to-any permutes

• Vector-vector shifts

256 bits (2010)

YMM

XMM

128 bits (1999)

54

12
Copyright © 2021 Intel Corporation. All rights reserved.

Intel® AVX and Intel® AVX2 vector types

Intel® AVX

Intel® AVX2

8x single precision FP

32x 8 bit integer

16x 16 bit integer

8x 32 bit integer

4x 64 bit integer

plain 256 bit

4x double precision FP

55

13
Copyright © 2021 Intel Corporation. All rights reserved.

Intel® AVX-512

• 512-bit wide vectors

• 32 operand registers

• 8 64b mask registers

• Embedded broadcast

• Embedded rounding

Microarchitecture Instruction Set
SP FLOPs /

cycle
DP FLOPs /

cycle

Intel® Xeon® Processor
family

SSE (128b) 8 4

Intel® Xeon® E5 and
E5v2 Processor
families

Intel AVX (256b) 16 8

Intel® Xeon® E5v3 and
E5v4 Processors
families

Intel AVX2 & FMA
(256b)

32 16

1st and 2nd generation
Intel® Xeon® Scalable
Processor Gold and
Platinum families

AVX-512 & FMA (512b) 64 32

56

14
Copyright © 2021 Intel Corporation. All rights reserved.

Intel® AVX-512 vector types

 Includes AVX and AVX2

Intel® AVX-512

16x single precision FP

32x 16 bit integer

16x 32 bit integer

8x 64 bit integer

8x double precision FP

64x 8 bit integer

plain 512 bit

64 bit masks

57

15
Copyright © 2021 Intel Corporation. All rights reserved.

Intel® AVX-512 registers

▪ Extended VEX encoding (EVEX) to introduce another prefix

▪ Extends previous AVX and SSE registers to 512 bit:
• 32 bit: 8 ZMM registers (same as YMM/XMM)

• 64 bit: 32 ZMM registers (2x of YMM/XMM)

▪ 8 mask registers (K0 is special)

▪  No penalty when switching between XMM, YMM and ZMM!

ZMM0-31

512 bit

K0-7

64 bit

XMM0-15

128 bit

YMM0-15

256 bit3
2

 b
it

6
4

 b
it

58

16
Copyright © 2021 Intel Corporation. All rights reserved.

Intel® AVX-512 for Intel® CPUs

▪ Intel® Xeon Phi™ and Intel® Xeon® processors
share a large set of instructions

▪ Instruction sets are not identical

▪ Subsets are represented by individual
feature flags (CPUID)

AVX AVXAVX AVX

AVX2 AVX2AVX2

Intel® Xeon Phi™

Processor
1st and 2nd

generation Intel®

Xeon® Scalable
processor
families

Intel® Xeon®

E5 and E5v2
processor families

Intel® Xeon®

E5v3 and E5v4
processor families

Intel® Xeon®

processor
family

SSE SSESSE SSESSE

AVX-512PR AVX-512BW

AVX-512ER AVX-512DQ

AVX-512VL

MPX,SHA, …

C
o

m
m

o
n

 I
n

st
ru

ct
io

n
 S

e
t

AVX-512F AVX-512F

AVX-512CD AVX-512CD

AVX-512 VNNI

59

17
Copyright © 2021 Intel Corporation. All rights reserved.

Intel® AVX-512
https://software.intel.com/en-us/blogs/additional-avx-512-instructions

Available in all products supporting Intel® AVX-512

▪ Intel® AVX-512 Foundation (AVX-512F)

• Extension of AVX instruction sets including mask registers

▪ Intel® AVX-512 Conflict Detection (AVX-512CD)

• Check identical values inside a vector (for 32 or 64 bit integers) to finding colliding indexes (32 or 64 bit)
before a gather-operation-scatter sequence

Available on Intel® Xeon® processors

▪ Intel® AVX-512 Vector Length Extension (AVX-512VL)

• Freely select the vector length (512 bit, 256 bit and 128 bit)

▪ Intel® AVX-512 Byte/Word (AVX-512BW) and Doubleword/Quadword (AVX-512DQ)

• Two groups (8 and 16 bit integers and 32 and 64 bit integers/FP)

Available on Intel® Xeon Phi™ processors

▪ Intel® AVX-512 Exponential & Reciprocal Instructions (AVX-512ER) and Intel® AVX-512 Prefetch
Instructions (AVX-512PF)

60

18
Copyright © 2021 Intel Corporation. All rights reserved.

Sign Mantissa

INT8 07 06 05 04 03 02 01 00

Intel® AVX-512 VNNI

Available in selected 2nd Generation Intel® Xeon® Scalable Processors

▪ Intel® AVX-512 Vector Neural Network Instructions (AVX-512 VNNI)

• Adds vpdpbusd/vpdpbusds instructions for 8-bit inputs and
vpdpwssd/vpdpwssds instructions for 16-bit inputs to accelerate DL convolutions

vpdpbusd OUTPUT
INT32

CONSTANT
INT32

INPUT
INT8

INPUT
INT8

INT8 convolution with AVX-512 VNNI: vpdpbusd

INPUT
INT8

INPUT
INT8

vpmaddubsw

vpmaddwd
vpaddd

OUTPUT
INT16 OUTPUT

INT32
CONSTANT

INT16 CONSTANT
INT32

OUTPUT
INT32

INT8 convolution with AVX-512: vpmaddubsw, vpmaddwd, vpaddd

61

19
Copyright © 2021 Intel Corporation. All rights reserved.

Intel® AVX* and core turbo frequency

▪ Cores running non-AVX, Intel® AVX2 light/heavy, and
Intel® AVX-512 light/heavy code have different turbo
frequency limits

▪ Frequency of each core is determined independently
based on type of workload, number of active cores,
estimated current and power consumption, and
processor temperature

*AVX refers to Intel® AVX, Intel® AVX2 or Intel® AVX-512

Code Type All Core Frequency Limit

SSE
AVX2-Light (without FP & int-mul)

Non-AVX All Core Turbo

AVX2-Heavy (FP & int-mul)
AVX512-Light (without FP & int-mul)

AVX2 All Core Turbo

AVX512-Heavy (FP & int-mul) AVX512 All Core Turbo

AVX2

Non-AVX

Cores using AVX-512

Cores using AVX2

Cores not using AVX

Non-AVX_Turbo

AVX2_Turbo

F
re

q
u

e
n

cy

Cores

Non-AVX_Base

AVX2_Base

AVX512_Turbo

AVX512_Base

AVX512

Mixed Workloads

N
o

n
-A

V
X

A
V

X
5

1
2 N
o

n
-A

V
X

…

A
V

X
2

A
V

X
2

62

20

63

21
Copyright © 2021 Intel Corporation. All rights reserved.

Notices & Disclaimers

Performance varies by use, configuration, and other factors. Learn more at www.Intel.com/PerformanceIndex.

Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available
updates. See configuration disclosure for details.

Your costs and results may vary.

Intel technologies may require enabled hardware, software or service activation.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries.
Other names and brands may be claimed as the property of others.

64

The AMD “Zen 2” and “Zen 3”

Architectures

Dr.-Ing. Michael Klemm

Senior FAE, Principal Member of Technical Staff

HPC Center of Excellence

65

2 | The AMD “Zen 2” and “Zen 3” Architectures

[AMD Public Use]

AMD EPYC™ Processor Generations

“Rome” “Milan”“Naples”

66

3 | The AMD “Zen 2” and “Zen 3” Architectures

[AMD Public Use]

AMD EPYC™ SoC Architecture

Memory sub-system:

▪ 8 memory channels per socket (2 DPC)

▪ DDR4 @ 3200 GT/sec

Hierarchical SoC composition:

▪ Up to four cores per CCX

▪ Two CCXs form a CCD

Cache sizes:

▪ L1D: 32K, 8-way

▪ L1I: 32K, 8-way

▪ L2: 512K, 8-way

▪ L3: 16M per CCX

32M per CCD

Acronym decoder:

▪ CCX: Core Complex

▪ CCD: Core Complex Die

▪ DPC: DIMM(s) per Channel

▪ DIMM: Dual In-line Memory Module

C
C

D

I/O Die

D
D

R

D
D

R

D
D

R

D
D

R

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

C
C

D

C
C

D

C
C

D

C
C

D

C
C

D

C
C

D

C
C

D

4 channels

(2 DPC)

4 channels

(2 DPC)

67

4 | The AMD “Zen 2” and “Zen 3” Architectures

[AMD Public Use]

AMD EPYC™ 7002 Series NUMA Configurations

System can be configured to have 1, 2, and 4 NUMA domains per socket (NPS)

NPS=1:

Die 0

IO DieIO Die

NUMA 0 NUMA 1

$ numactl -H
[...]
node 0 1

0: 10 32
1: 32 10

68

5 | The AMD “Zen 2” and “Zen 3” Architectures

[AMD Public Use]

AMD EPYC™ 7002 Series NUMA Configurations

System can be configured to have 1, 2, and 4 NUMA domains per socket (NPS)

NPS=2:

Die 0

IO DieIO Die

NUMA 1 NUMA 0 NUMA 3 NUMA 2

$ numactl -H
[...]
node 0 1 2 3

0: 10 12 32 32
1: 12 10 32 32
2: 32 32 10 12
3: 32 32 12 10

69

6 | The AMD “Zen 2” and “Zen 3” Architectures

[AMD Public Use]

AMD EPYC™ 7002 Series NUMA Configurations

System can be configured to have 1, 2, and 4 NUMA domains per socket (NPS)

NPS=4:

Die 0

IO DieIO Die

NUMA 3 NUMA 2

NUMA 1 NUMA 0

NUMA 7 NUMA 6

NUMA 5 NUMA 4

$ nmumactl -H
[...]
node 0 1 2 3 4 5 6 7
0: 10 12 12 12 32 32 32 32
1: 12 10 12 12 32 32 32 32
2: 12 12 10 12 32 32 32 32
3: 12 12 12 10 32 32 32 32
4: 32 32 32 32 10 12 12 12
5: 32 32 32 32 12 10 12 12
6: 32 32 32 32 12 12 10 12
7: 32 32 32 32 12 12 12 10

70

7 | The AMD “Zen 2” and “Zen 3” Architectures

[AMD Public Use]

Cache Hierarchy and Core Complex (CCX)

Structure of the CCX consists of

• Four cores with two-way SMT and

• L1D and L1I cache in the core (32K each, 8-way associative, 64 sets)

• Core-local L2 cache (512KB, 8-way associative, 1,024 sets)

• Four L3 slides of 4MB that form the 16MB L3 cache

• 16-way associative, 16,384 sets

• Used as a victim cache to receive data evicted from the L2 cache

CORE 1CORE 0
L3 slice

4MB
L2

512KB
L2

512KB
L3 slice

4MB

CORE 3CORE 2
L2

512KB
L3 slice

4MB
L3 slice

4MB
L2

512KB

71

8 | The AMD “Zen 2” and “Zen 3” Architectures

[AMD Public Use]

CORE 1CORE 0
L3 slice

4MB
L2

512KB
L2

512KB
L3 slice

4MB

CORE 3CORE 2
L2

512KB
L3 slice

4MB
L3 slice

4MB
L2

512KB

Cache Hierarchy and Core Complex

32B/cycle

32B fetch 32B/cycle

2*32B load

1*32B store

512K L2

I+D Cache

8-way32K L1D Cache

8-way

32K L1I Cache

8-way

CORE 0

72

9 | The AMD “Zen 2” and “Zen 3” Architectures

[AMD Public Use]

512K

L2 Cache

8 Way

4 instructions

FADD
FMA

FMUL
FADD

FMA

FMUL

2 loads + 1 store per cycle

6 dispatch ops

INTEGER FLOATING POINT

ALU ALU
AGU

Ld/St

AGU

Ld/St

Integer Physical Register File

Decode Op Cache

Micro-Op Queue

32K L1I Cache (8 way) Branch Prediction

Load/Store

Queues

32K L1D Cache

8 Way

FP Register File

8 fused instructions

AGU

St

Sched Sched Sched SchedulerScheduler

Integer Rename Floating Point Rename

“Zen 2” Core Micro-architecture

ALU

CORE 2
L2

512KB
L3 slice

4MB

ALU

Sched

73

10 | The AMD “Zen 2” and “Zen 3” Architectures

[AMD Public Use]

Floating-point/Vector execute

“Zen 2”

AVX 256-bit instruction support ✓

width data path 256b

width vector register file 256b

width loads (2 per cycle) 256b

width stores (1 per cycle) 256b

4 Micro-Op Dispatch

256b

Loads

Int to FP

FP to Int, Store

8 Micro-Op Retire

224-Entry Reorder Buffer64-Entry NSQ

32-Entry Scheduler

FMA FADD FMA FADD

LDCVT

Forwarding MUXes

160-Entry Vector Register File

74

11 | The AMD “Zen 2” and “Zen 3” Architectures

[AMD Public Use]

AMD EPYC™ Processor Generations

“Rome” “Milan”“Naples”

75

12 | The AMD “Zen 2” and “Zen 3” Architectures

[AMD Public Use]

AMD EPYC™ 7003 Series – Soc Architecture

76

13 | The AMD “Zen 2” and “Zen 3” Architectures

[AMD Public Use]

AMD EPYC™ 7003 Series – Micro-architectural Improvements

77

14 | The AMD “Zen 2” and “Zen 3” Architectures

[AMD Public Use]

(Not Compatible With “Naples” MB)

AMD EPYC™ Processors – Summary

78

15 | The AMD “Zen 2” and “Zen 3” Architectures

[AMD Public Use]

Disclaimer

The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions, and

typographical errors. The information contained herein is subject to change and may be rendered inaccurate for many reasons, including but

not limited to product and roadmap changes, component and motherboard version changes, new model and/or product releases, product

differences between differing manufacturers, software changes, BIOS flashes, firmware upgrades, or the like. Any computer system has

risks of security vulnerabilities that cannot be completely prevented or mitigated. AMD assumes no obligation to update or otherwise correct

or revise this information. However, AMD reserves the right to revise this information and to make changes from time to time to the content

hereof without obligation of AMD to notify any person of such revisions or changes.

THIS INFORMATION IS PROVIDED ‘AS IS.” AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE

CONTENTS HEREOF AND ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS, OR OMISSIONS THAT MAY

APPEAR IN THIS INFORMATION. AMD SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT,

MERCHANTABILITY, OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT WILL AMD BE LIABLE TO ANY PERSON FOR

ANY RELIANCE, DIRECT, INDIRECT, SPECIAL, OR OTHER CONSEQUENTIAL DAMAGES ARISING FROM THE USE OF ANY

INFORMATION CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

© 2021 Advanced Micro Devices, Inc. All rights reserved.

AMD, the AMD Arrow logo, EPYC, and combinations thereof are trademarks of Advanced Micro Devices, Inc. PCIe is a registered

trademark of PCI-SIG Corporation. Other product names used in this publication are for identification purposes only and may be trademarks

of their respective companies.

15

79

80

[ONLINE] Node Level Performance Optimization @ CSC, 18-20.5.2021

Performance analysis with Intel® tools

Dr. Mikko Byckling, IAGS DEE XCSS

81

2
Copyright © 2021 Intel Corporation. All rights reserved.

Contents

▪ Intel® oneAPI performance analysis tools overview

▪Application Performance Snapshot

▪ Introduction to Intel® VTune™ Profiler

• Features and analysis types

• Graphical User Interface (GUI)

• Command Line Interface (CLI)

▪ Intel® VTune™ Profiler HPC workflow

▪ Summary

82

3
Copyright © 2021 Intel Corporation. All rights reserved.

Intel® oneAPI performance analysis tools
overview

83

4
Copyright © 2021 Intel Corporation. All rights reserved.

Introducing oneAPI

▪ Cross-architecture programming that
delivers freedom to choose the best
hardware

▪ Based on industry standards and open
specifications

▪ Exposes cutting-edge performance features
of latest hardware

▪ Compatible with existing high-performance
languages and programming models
including C++, OpenMP, Fortran, and MPI

Learn More: intel.com/oneAPI

84

5
Copyright © 2021 Intel Corporation. All rights reserved.

oneAPI Industry Initiative

▪ A cross-architecture language based on C++
and SYCL standards

▪ Powerful libraries designed for acceleration
of domain-specific functions

▪ Low-level hardware abstraction layer

▪ Open to promote community and industry
collaboration

▪ Enables code reuse across architectures and
vendors

oneAPI Industry Specification

The productive, smart path to freedom for
accelerated computing from the economic
and technical burdens of proprietary
programming models

...

Learn More: intel.com/oneAPI

85

6
Copyright © 2021 Intel Corporation. All rights reserved.

Intel® oneAPI
Base & HPC Toolkit

▪ Intel® oneAPI Tools for HPC: Deliver Fast
Applications that Scale

▪ A toolkit that adds to the Intel® oneAPI Base
Toolkit for building high-performance,
scalable parallel code on C++, Fortran,
OpenMP & MPI from enterprise to cloud, and
HPC to AI applications.

▪ Targeted for C++, Fortran, OpenMP, MPI
Developers

▪ Accelerate performance on Intel® Xeon® &
Core™ Processors and Accelerators

▪ Deliver fast, scalable, reliable parallel code
with less effort; built on industry standards

Learn More: intel.com/oneAPI-HPCKit

86

7
Copyright © 2021 Intel Corporation. All rights reserved.

Intel® VTune™ Profiler

▪ Get the Right Data to Find Bottlenecks

• Profiling for CPU, GPU, FPGA, threading,
memory, cache, storage, offload, power…

• DPC++, C, C++, Fortran, Python*, Go*, Java*, or a mix

• Linux, Windows, FreeBSD, Android, Yocto and more

▪ Analyze Data Faster

• See data on your source, in architecture diagrams,
as a histogram, on a timeline…

• Filter and organize data to find answers

▪ Work Your Way

• Graphical user interface or command line

• Profile locally and remotely

• Install as an application

• Install as a server accessible with a web browser

Part of the Intel® oneAPI Base Toolkit

87

8
Copyright © 2021 Intel Corporation. All rights reserved.

Intel® Advisor

▪ Offload Modelling

• Efficiently offload your code to GPUs even before
you have the hardware

▪ Automated Roofline Analysis

• Optimize your GPU/CPU code for memory and compute

▪ Vectorization Optimization

• Enable more vector parallelism and improve its efficiency

▪ Thread Prototyping

• Add effective threading to unthreaded applications

▪ Flow Graph Analyzer

• Create, visualize and analyze task and dependency
computation graphs

Part of the Intel® oneAPI Base Toolkit

88

9
Copyright © 2021 Intel Corporation. All rights reserved.

Performance Analysis Types
Get the big picture first with a Snapshot or Platform Profiler

Snapshot
Quickly size

potential performance gain.
Run a test “during a coffee break”.

In-Depth
Advanced collection & analysis.

Insight for effective optimization.

Application Focus
• HPC App developer

focus
• 1 app running during

test

VTune Profiler’s

Application Performance
Snapshot

VTune Profiler  Many profiles

Intel Advisor  Vectorization

ITAC  MPI Optimization

System Focus
• Deployed system focus
• Full system load test

VTune Profiler
- System-wide sampling
- Platform Profiler:

Maximum collection times: L=long (hours) M=medium (minutes) S=short (seconds-few minutes)

S-M

L
S

S-L

L
S-M

89

10
Copyright © 2021 Intel Corporation. All rights reserved.

Application Performance Snapshot
A part of Intel® Intel® VTune™ Profiler

90

11
Copyright © 2021 Intel Corporation. All rights reserved.

A Fast Way to Discover Untapped Performance
Intel® VTune™ Profiler - Application Performance Snapshot

Quick & easy performance overview
▪ Install & run a test case during a coffee break

All the data in one place
▪ MPI + OpenMP + Memory + Floating Point

Popular MPI implementations
▪ Intel® MPI, MPICH, OpenMPI and Cray MPI

New for 2020:
▪ Communication pattern diagnosis
▪ See time in high bandwidth, not just average
▪ Profile large MPI applications >64K ranks

Linux* only.

91

12
Copyright © 2021 Intel Corporation. All rights reserved.

Better Snapshots – More Ranks
Intel® VTune Profiler – Application Performance Snapshot

Find MPI communication patterns
that cause poor MPI scaling

▪ See rank-to-rank communication
by both time and volume

▪ See time in high bandwidth,
not just average

Profile larger MPI applications

▪ Scales to >64K ranks

Learn More: https://software.intel.com/content/www/us/en/develop/documentation/get-started-with-application-performance-snapshot/top.html

92

13
Copyright © 2021 Intel Corporation. All rights reserved.

Source Application Performance Snapshot environment

> source /opt/intel/oneapi/vtune/latest/apsvars.sh

Collect data

> mpirun -np 4 -env OMP_NUM_THREADS=2 aps ./testc

Generate report

> aps --report aps_result_20210512/ -s

Loading 100.00%

| Summary information

|--

Application : testc

Report creation date : 2021-05-12 14:02:57

Number of ranks : 4

Ranks per node : 4

OpenMP threads number per rank: 2

HW Platform : Intel(R) Xeon(R) Processor code named Broadwell

Frequency : 2.19 GHz

Logical core count per node : 88

Collector type : Driverless Perf system-wide counting

...

Intel® Application Performance Snapshot
Example

93

14
Copyright © 2021 Intel Corporation. All rights reserved.

Introduction to Intel® VTune™ Profiler
Features and analysis types, Graphical User Interface (GUI),
Command Line Interface (CLI)

94

15
Copyright © 2021 Intel Corporation. All rights reserved.

Intel® VTune™ Profiler analysis

▪Analysis separated into two (three) steps

• Collect: collection of analysis data

• Finalize*: resolve symbol information for the data

• Report: compilation of reports from the data

• The use of GUI and/or CLI is supported in both steps

▪Nonintrusive sampling -based collection

• No special (re)compiles needed

• Works on optimized builds, to view source code, compile with debugging symbols (i.e., -g)

• Statistical analysis to determine approximate behaviour

95

16
Copyright © 2021 Intel Corporation. All rights reserved.

Data Collection

Software Collector Hardware Collector

Uses OS interrupts Uses the on-chip Performance Monitoring Unit (PMU)

Collects from a single process tree Collect system wide or from a single process tree.

~10ms default resolution
~1ms default resolution (finer granularity - finds small

functions)

Either an Intel® or a compatible

processor
Requires a genuine Intel® processor for collection

Call stacks show calling sequence Optionally collect call stacks

Works in virtual environments
Works in a VM only when supported by the VM

(e.g., vSphere*, KVM)

No driver required Uses Intel driver or perf if driver not installed

No special recompiles - C, C++, DPC++, C#, Fortran, Java, Python, Assembly

96

17
Copyright © 2021 Intel Corporation. All rights reserved.

VTune Graphical User Interface (GUI)

▪Graphical tool vtune-gui
• Default location (Linux):
/opt/intel/oneapi/vtune/2021.2.0/bin64/vtune-gui

▪ Pure GUI workflow

• Set up a project

• Choose analysis type

• View analysis results

97

18
Copyright © 2021 Intel Corporation. All rights reserved.

VTune GUI
Intel® VTune™ Profiler

▪Welcome page
• Quick access to documentation and

training

▪ Built-in sample code, pre-collected
results
• Easy to explore tutorials

▪Help tour overlay
• Quickly learn essential user interface

controls

98

19
Copyright © 2021 Intel Corporation. All rights reserved.

VTune GUI: Profile Python & Go!
And Mixed Python / C++ / Fortran

Low Overhead Sampling

▪ Accurate performance data without high
overhead instrumentation

▪ Launch application or attach to a
running process

Precise Line Level Details
▪ No guessing, see source line level detail

Mixed Python / native C, C++, Fortran…
▪ Optimize native code driven by Python

99

20
Copyright © 2021 Intel Corporation. All rights reserved.

VTune GUI: Hotspots
Double Click from Grid or Timeline

Right click for instruction reference manualView Source / Asm or both CPU Time

Click jump to scroll Asm

Quick Asm navigation:
Select source to highlight Asm

Scroll Bar “Heat Map” is an overview of hot spots

100

21
Copyright © 2021 Intel Corporation. All rights reserved.

CPU Time

Hovers:

Transitions
Basic Hotspots Advanced HotspotsLocks & Waits

VTune GUI: Threading

▪ Optional: Use API to mark frames and user tasks

▪ Optional: Add a mark during collection

101

22
Copyright © 2021 Intel Corporation. All rights reserved.

VTune GUI: HPC Performance Characterization
Threading, Memory Access, Vectorization

▪ Threading: CPU Utilization
• Serial vs. Parallel time

• Top OpenMP regions by potential gain

• Tip: Use hotspot OpenMP region analysis for more
detail

▪ Memory Access Efficiency
• Stalls by memory hierarchy

• Bandwidth utilization

• Tip: Use Memory Access analysis

▪ Vectorization: FPU Utilization
• FLOPS † estimates from sampling

• Tip: Use Intel Advisor for precise metrics and

vectorization optimization

102

23
Copyright © 2021 Intel Corporation. All rights reserved.

VTune GUI: Microarchitecture Exploration

Front
End

Bound

Memory
Bound

Core
Bound

Memory
Bound

103

24
Copyright © 2021 Intel Corporation. All rights reserved.

VTune GUI: Memory Access Analysis

▪ Tune data structures for performance

• Attribute cache misses to data structures
(not just the code causing the miss)

• Support for custom memory allocators

▪ Optimize NUMA latency & scalability
• True & false sharing optimization

• Auto detect max system bandwidth

• Easier tuning of inter-socket bandwidth

▪ Easier install, Latest processors
• No special drivers required on Linux*

• Intel® Xeon Phi™ processor MCDRAM
(high bandwidth memory) analysis

104

25
Copyright © 2021 Intel Corporation. All rights reserved.

VTune GUI: Memory Consumption Analysis

See What Is Allocating Memory
• Lists top memory consuming functions and

objects

• View source to understand cause

• Filter by time using the memory consumption
timeline

▪ Standard & Custom Allocators
• Recognizes libc malloc/free, memkind and

jemalloc libraries

• Use custom allocators after
markup with ITT Notify API

Languages
• Python*

• Linux*: Native C, C++, Fortran
Native language support is not currently available for Windows*

105

26
Copyright © 2021 Intel Corporation. All rights reserved.

VTune GUI: Results comparison

▪Quickly identify cause of regressions.

• Run a command line analysis daily

• Identify the function responsible so you know who to alert

▪Compare 2 optimizations – What improved?

▪Compare 2 systems – What didn’t speed up as much?

106

27
Copyright © 2021 Intel Corporation. All rights reserved.

VTune CLI: syntax

▪VTune command line application vtune
vtune <-action> [-action-option] [-global-option] [[--]

<target> [target-options]]

• -action: collect, finalize or report

• -action-option: modifies the behaviour of an action

• -global-option: adjusts global settings

• <target>: denotes the target application to profile

> vtune –collect hotspots –r result_dir -- ./app

107

28
Copyright © 2021 Intel Corporation. All rights reserved.

VTune CLI: collect

▪ Syntax:
-c[ollect] <analysis type> [-analysis-option]

• The type of analysis defined with analysis type

• Analysis type defines the set of available analysis-option modifiers or
”knob”s

▪Command line help with -help on each analysis type and available
knobs

> vtune -help collect # List analysis types available

> vtune –help collect hotspots # List knobs for “hotspots”

108

29
Copyright © 2021 Intel Corporation. All rights reserved.

VTune CLI: collect - analysis types

▪ For HPC, the analysis types of interest are

• hotspots: Identify hotspots, collect stacks and call trees

• hpc-performance: Analyze CPU and FPU utilization and memory access efficiency

• threading: Analyze threading efficiency

• memory-access: Identify memory access related issues and estimate memory bandwidth

• memory-consumption: Identify memory consumption

• io: Analyze processor and disk input and output

• uarch-exploration: Identify low-level hardware issues

109

30
Copyright © 2021 Intel Corporation. All rights reserved.

VTune CLI: collect - global modifiers

▪A large number of global modifiers available

• -finalization-mode: whether to finalize the result after the collection
stops

• -data-limit: limit the amount of data collected. The default is 1GB, set to 0
for unlimited

• -quiet: limit the amount of information displayed

• -search-dir: path where the binary and symbol files are stored

• -result-dir: path where the result will be stored

110

31
Copyright © 2021 Intel Corporation. All rights reserved.

VTune CLI: finalize

▪ To free compute resources, it may be beneficial to finalize the
collected results separately

• Examples: proling runs on a cluster with multiple nodes, profiling runs on a
KNL, re-resolving symbols

▪ Syntax:
-finalize –result-dir <result_directory>

[-search-dir <symbols_directory>]

▪ Finalization can be performed on a different platform than what the
results were collected on

111

32
Copyright © 2021 Intel Corporation. All rights reserved.

VTune CLI: report

▪ Syntax:
-r[eport] <report type> [-report-option]

• The type of report defined with report type

• Report type defines the set of available report-option modifiers

▪Command line help with –help

▪NOTE: using a GUI to view results is preferrable

> vtune -help report # List report types available

> vtune –help report hotspots # Usage of “hotspots” report

112

33
Copyright © 2021 Intel Corporation. All rights reserved.

VTune CLI: report - report types

▪ For HPC, the report types of interest are

• summary: Report overall application performance

• hotspots: Report CPU time for application

• hw-events: Display the total number of hardware events

▪A report is automatically based on the type of data collected!

113

34
Copyright © 2021 Intel Corporation. All rights reserved.

VTune CLI: report - global modifiers

▪A large number of global modifiers available

• -column: Specify which columns to include or exclude

• -filter: Specify which data to include or exclude

• -group-by: Specify grouping in a report

• -time-filter: Specify which time range to include

• -source-search-dir: path where the source code is stored

• -result-dir: path where the result will be stored

114

35
Copyright © 2021 Intel Corporation. All rights reserved.

VTune CLI: example

▪Collect hotspots of application nbody, store results to directory
nbody_hs

▪View available columns in the result and then compile a hotspots
report from specific columns

> vtune -collect hotspots -r nbody_hs -- ./nbody 262144

> vtune -report hotspots -r nbody_hs column=?

> vtune -report hotspots -r nbody_hs -column="CPU

Time:Self","Source File"

115

36
Copyright © 2021 Intel Corporation. All rights reserved.

Intel® VTune™ Profiler HPC workflow
Use of Intel® VTune™ Profiler in a cluster environment

116

37
Copyright © 2021 Intel Corporation. All rights reserved.

Profiling HPC applications

▪VTune can profile hybrid MPI+OpenMP applications on a cluster

• For profiling MPI, use Intel® Trace Analyzer and Collector or Intel® MPI
Performance Snapshot

▪ Recommended workflow:

• Run collect (and finalize) with CLI on a cluster

• Run report with GUI on a local workstation or a cluster login node

• Finalized collection results can be transferred if needed

117

38
Copyright © 2021 Intel Corporation. All rights reserved.

VTune with MPI applications (1/3)

▪ Single node application launch:
<vtune_command> [--] <mpi_command> <application>

▪ Encapsulates all the ranks to result directory

• Example: ranks 0-47 in result_dir

▪Works whenever VTune is able to track the processes created

• Limited to profiling over a single node

> vtune –collect advanced-hotspots –r result_dir -- mpirun –np 48

./mpi_app

118

39
Copyright © 2021 Intel Corporation. All rights reserved.

VTune with MPI applications (2/3)

▪Multiple node application launch:
<mpi_command> <vtune_command> [--] <application>

• Results encapsulated to per-node directories suffixed with
hostname

• Example: ranks 0-15 in result_dir.hostname1, ranks 16-31 in
result_dir.hostname2, ranks 32-47 in result_dir.hostname3

> aprun –n 48 -ppn 16 vtune –collect hotspots –r result_dir

./mpi_app

119

40
Copyright © 2021 Intel Corporation. All rights reserved.

VTune with MPI applications (3/3)

▪ Selective rank profiling by modifying the MPI process launch:

▪ Intel MPI supports –gtool “<command>:<rank-set>[=mode]”

option:

> mpirun -n 1 ./mpi_app : -n 1 vtune –collect hotspots –r

result_dir ./mpi_app : -n 14 ./mpi_app

> mpirun -n 16 –gtool “vtune –collect hotspots –r result_dir :1”

./mpi_app

120

41

121

42
Copyright © 2021 Intel Corporation. All rights reserved.

Notices & Disclaimers

Performance varies by use, configuration, and other factors. Learn more at www.Intel.com/PerformanceIndex.

Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available
updates. See configuration disclosure for details.

Your costs and results may vary.

Intel technologies may require enabled hardware, software or service activation.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries.
Other names and brands may be claimed as the property of others.

122

Dr.-Ing. Michael Klemm

Senior FAE, Principal Member of Technical Staff

HPC Center of Excellence

Introduction to AMD µProf Profiler v3.4

123

◢ [AMD Public Use]

AMD offers software development tools

optimized for HPC applications on EPYC™ CPUs

while supporting developer choice with tools and methods

◢ AMD Optimizing CPU Compiler (AOCC)

◢ AMD Optimized CPU Libraries (AOCL)

◢ AMD µProf profiler

◢ Spack package support of HPC applications

◢ Support of open-source tools

developer.amd.com

AMD µProf Profiler Introduction - v3.4 2021

124

◢ [AMD Public Use]

µ u

◢ ronounced as “MICROprof”

◢ “uprof” is used for computer-readable form

• Directory path names

• Command lines

• Scripts

• URLs

AMD µProf Profiler Introduction - v3.4 2021

125

◢ [AMD Public Use]

AGENDA

◢ AMD µProf – Overview

◢ Profiling Overview

◢ System Analysis

◢ Application Analysis

AMD µProf Profiler Introduction - v3.4 2021

126

Overview of AMD µProf

127

◢ [AMD Public Use]

AMD Profiler Strategy

◢ perf kernel – common profiler utility used to build custom profiler applications on Linux®

• Enabled to reflect counters and events supported by latest AMD processors

• PAPI is automatically supported given PERF kernel support

• Tools built on PERF kernel driver or PAPI have the necessary support to work well on latest AMD

processors

‒ PERF tool (application)

‒ PAPI-based tools like HPCTool kit etc

◢ AMD µProf offers a richer experience with AMD support

• Intuitive graphical user interface and command line interface

• Supporting Linux®, Windows® and FreeBSD

• Supports performance monitoring recipes – data from set of events and associated calculation around

them

Offer developer choices – the profiler that best suites the need and development environment

AMD µProf Profiler Introduction - v3.4 2021

128

◢ [AMD Public Use]

AMD µProf Profiler Overview

◢ System Analysis

• Monitors basic core, level 3 cache

and data fabric performance metrics

◢ Application Analysis

• CPU Profiling to identify runtime

performance bottlenecks of an

application or the entire system

◢ Power Profiling

• Monitors thermal & power

characteristics of system

◢ Energy Analysis

• Identifies energy hotspots in the

application

Measure and analyze the performance of an application or the entire system

running Linux® or Windows®

AMD µProf Profiler Introduction - v3.4 2021

129

◢ [AMD Public Use]

Broad AMD µProf 3.4 support of

Operating Systems & and Compilers

AMD µProf Profiler Introduction - v3.4 2021

Component Supported Version Languages

OpenMP® Spec • OpenMP® v5.0

Compiler

• LLVM™ 8 - 12 • C, C++

• AOCC 2.x, 3.0 • C, C++, Fortran

• Intel® Compiler Collection (ICC) 19.1 • C, C++, Fortran

OS

• Ubuntu® 18.04 LTS

• Ubuntu® 20.04 LTS

• Red Hat® Enterprise Linux® 8.x

• CentOS™ 8.x

• Windows® 10 thru 20H2

• Windows Server® 2019

130

◢ [AMD Public Use]

µProf – Feature support matrix
Feature Linux® Windows® FreeBSD

System Analysis*

AMD uProfPcm Yes Yes Yes

Application Analysis (CPU Performance Profiling)

Micro-Architecture Analysis (EBP) Yes Yes Yes

Instruction Based Sampling (IBS) Yes Yes

OS Timer based profiling (TBP) Yes Yes

Callstack sampling – Native (C, C++, Fortran) Yes Yes Yes

Callstack sampling – Java Yes

Callstack sampling – System-wide Yes Yes

HPC - OpenMP Tracing Yes

HPC - MPI Code Analysis (single & multi node) Yes

Cache Analysis Yes Yes

Thread Concurrency Chart Yes

* Only on EPYC server platforms

AMD µProf Profiler Introduction - v3.4 2021

131

◢ [AMD Public Use]

µProf – Feature support matrix
Feature Linux Windows FreeBSD

Power Profiling

Live Power Profiling Yes Yes

Power Application Analysis# Yes

Usability

Graphical Interface Yes Yes

Command Line Interface Yes Yes Yes

Virtualization – TBP and EBP support

VMware ESXi™ Yes Yes

KVM Yes Yes

Experimental feature

AMD µProf Profiler Introduction - v3.4 2021

132

◢ [AMD Public Use]

Support

◢ Releases

• Public release : https://developer.amd.com/amd-uProf/

◢ Documentation

• User guide: <installation-path>/Help/User_Guide.pdf

• Online user guide: https://developer.amd.com/amd-uProf/

◢ Installation path:

• Linux® : /opt/AMDuProf_<version>/

• Windows® : C:\Program Files\AMD\AMDuProf

AMD µProf Profiler Introduction - v3.4 2021

133

Profiling - Overview

134

◢ [AMD Public Use]

What is profiling?

◢ Profiling measures how a program interacts with the hardware it is running on

◢ Used to evaluate performance and solve problems

• What part of my code is the most critical (most utilized or accessed)?

• Why is my critical loop too slow?

• Am I hitting or missing cache?

• Is the hardware configured optimally for this code?

• Is the code optimal for this hardware?

◢ Profiling can also be used in comparative evaluation of architectures

• How does this code run on machine A vs. machine B?

◢ Profiling can solve power problems (which can lead to performance problems)

• What part of my code causes the CPU to consume the most power?

• Power and heat may be a cause of performance problems
AMD µProf Profiler Introduction - v3.4 2021

135

◢ [AMD Public Use]

Types of Profilers

◢ Counter-based profiling

• Periodically collect PMC event counts while

the application is running

• Distinguish what happened in hardware or

software

• Accurate with minimal overhead

◢ Statistical sampling profiling

• Based on certain triggers, collect profile data

(IP, PID, TID, Callstack)

‒ Processor triggers - Performance Monitor Counter (PMC)

threshold interrupts

‒ Software triggers – Timer, Context Switches, Page faults

• Identify where an event happens and how

frequently

• Overhead is a function of sampling frequency

◢ Trace profiling

• Capture interesting events while running the

code – ETW, OMPT, PMPI etc.,

• Identify what happened in the software

• Some overhead but accurate

◢ Call Graph profiling

• Call sequence

◢ Code Instrumentation profling

• May require changing the code – manual or

automatic process

• Some tools can do this to the compiled binary

(dynamic instrumentation)

AMD µProf Profiler Introduction - v3.4 2021

136

◢ [AMD Public Use]

Processor Performance Monitoring Counters (PMCs)

◢ PMCs are AMD processor registers (MSRs)

• Covering Core, L3 cache, and Data Fabric functions

• Hundreds of processor events available

‒ Ex: CPU Cycles not in Halt, Retired Instructions

• PMCs can be programmed to monitor processor

events

◢ Processor in socket hierarchy

• Chiplets in processor connected by Data Fabric

‒ Core Complexes (CCXs) in Chiplets

◢ Cores in CCX

◢ L3 cache in CCX

AMD µProf Profiler Introduction - v3.4 2021

◢ L3 Cache PMCs

• Operate at the core complex (CCX) level for each

CCX in the processor

• 6 MSRs; Count mode only

◢ Data Fabric PMCs

• Apply at the chiplet die level

• 4 MSRs; Count mode only

◢ Processor Core PMCs

• 6 MSRs per core thread

• Core PMC events can be monitored

in Sampling & Count mode

‒ Count mode – running count value of processor events

‒ Sampling mode

◢ Based on certain triggers, collect profile data (IP, PID, TID, call

stack)

◢ HW Triggers - Performance Monitor Counter (PMC) threshold

interrupts

◢ Software triggers – Timer, Context Switches, Page faults

137

◢ [AMD Public Use]

Processor PMC Domains

AMD µProf Profiler Introduction - v3.4 2021

FP: floating point

LS: load/store

IC/BP: instruction cache and branch

prediction

EX: integer ALU

execution and

scheduling

L2

DE: instruction decode, dispatch, microcode

sequencer, & micro-op cache

L3
DF: Data

Fabric

UMC:

Unified

Memory

Controller

138

Application Analysis

139

◢ [AMD Public Use]

Application Analysis – Overview

◢ CPU Profile - to identify runtime

performance bottlenecks of an application

or the entire system

• Where the application spends its time

(hotspots)

• Bottlenecks due to core micro-architectural

constraints (IPC, cache misses, etc.)

• Parallelism issues - Thread concurrency

◢ Data Collection

• Statistical sampling – Timer, Core PMC, IBS

• Callstack

• Tracing – ETW, JVMTI (Java), OMPT

◢ Data Visualization

• Data attribution at various program units -

Process / Module / Thread / Function / Source

/ Instruction

• Flame graph, Callgraph

◢ Ease of use

• No special recompile – C, C++, C#, Fortran,

Java, Assembly

• Debug info required for function & source

• Graphical interface (AMDuProf)

• Command Line interface (AMDuProfCLI)

AMD µProf Profiler Introduction - v3.4 2021

140

◢ [AMD Public Use]

Application Analysis – Performance Data

Primary data

◢ Basic hotspots - Timer based profiling

(TBP)

• Which functions consume most of time?

◢ Micro-architectural exploration - Core PMC

Event based profiling (EBP)

• Which functions consume most of the cycles?

• Why - cache misses?, branch mispredictions?

◢ Memory access - Instruction Based

Sampling (IBS)

• Memory access

• Potential false cache sharing

◢ HPC using OMPT

• OpenMP® parallel region analysis

Secondary data

◢ Call graph

• Call sequence

◢ Thread concurrency

• Windows® only

AMD µProf Profiler Introduction - v3.4 2021

141

◢ [AMD Public Use]

Application Analysis – data collection

Select profile target –

application, process,

system

Feed in profile application

details

AMD µProf Profiler Introduction - v3.4 2021

142

◢ [AMD Public Use]

Application analysis – data collection

AMD µProf Profiler Introduction - v3.4 2021

Predefined analysis types –

group of interesting Core PMC

events to monitor

Core PMC events that are

monitored to generate

interrupts

Profile types – CPU or Live Power

Advanced Options to enable

callstack, profile schedule

Custom profile – add/delete events,

change unit-masks, sampling period

143

◢ [AMD Public Use]

Application Analysis – data collection (CLI)

Collect assess performance data

$ AMDuProfCLI collect --config assess –o /tmp/namd-assess /tmp/run-namd.sh

Profile completed ...

Generated raw file : /tmp/namd-assess.caperf

Generate Report – this will create /tmp/namd-assess/namd-assess.db & /tmp/namd-

assess/namd-assess.csv

$ AMDuProfCLI report –i /tmp/namd-assess.caperf

Translation started ...

...

Generated report file : /tmp/namd-assess/namd-assess.csv

To only translate – this will create /tmp/namd-assess/namd-assess.db (import in GUI)

$ AMDuProfCLI translate –i /tmp/namd-assess.caperf

Translation started ...

...

Generated db file : /tmp/namd-assess/namd-assess.db

Importing

The rawfile collected or the processed db file can also be imported in GUI for further analysis

AMD µProf Profiler Introduction - v3.4 2021

144

◢ [AMD Public Use]

Application analysis – Function hotspots

AMD µProf Profiler Introduction - v3.4 2021

Double click on a function to

view Source

Filters & Options

View: Select what metric to report;

Show data by: count or %;

Include or exclude system modules;

Low confidence level due to

low number of samples

collected – values will be

grayed

Issue threshold – CPI > 1.0 will

be highlighted

145

◢ [AMD Public Use]

Application analysis – Analyze

AMD µProf Profiler Introduction - v3.4 2021

Program units – load modules

and threads

Hot functions for the selected

program unit;

Double click function to view

Source

146

◢ [AMD Public Use]

Application analysis – Source view

AMD µProf Profiler Introduction - v3.4 2021

Select source line to highlight

corresponding assembly

Heatmap – overview of

hotspots

Filter by Process and Thread

147

◢ [AMD Public Use]

Callstack – Combined User & Kernel Callstack (Linux®)

AMD µProf Profiler Introduction - v3.4 2021

Visualization of sampled stack-

traces to identify hot code-paths

Sampling event and Process

filtering

Tooltip reporting exclusive &

inclusive samples

Function search

User space frames

Kernel frames

148

◢ [AMD Public Use]

Predefined Events

AMD µProf Profiler Introduction - v3.4 2021

149

◢ [AMD Public Use]

HPC Analysis

◢ When the threads execute the parallel

region code, maximize CPU utilization.

◢ Due to several reasons the threads wait

without doing useful work

• Idle: A thread finishes it task within the parallel

region and waits at the barrier for the other

threads to complete.

• Sync: If locks are used inside the parallel

region, threads can wait on synchronization

locks to acquire the shared resource.

• Overhead: Thread management overhead.

◢ Analysis

• Parallel Regions: List of all the parallel regions

executed with associated metrics.

• Region Detailed Analysis: thread timeline view

– activity of all the threads in a parallel region.

‒ Thread spending too much time on non work activity ?

‒ Change scheduling, loop chunk size

AMD µProf Profiler Introduction - v3.4 2021

150

◢ [AMD Public Use]

HPC Analysis – Example

AMD µProf Profiler Introduction - v3.4 2021

Collection run using CLI

$ AMDuProfCLI collect --omp --config tbp -o /tmp/myapp_perf <openmp-app>

Report Generation

$ AMDuProfCLI report -i /tmp/myapp_perf.caperf

Data Collection

151

◢ [AMD Public Use]

HPC Analysis – Ex) Hotspots

AMD µProf Profiler Introduction - v3.4 2021

152

◢ [AMD Public Use]

HPC Analysis – Ex) Thread State Timeline

AMD µProf Profiler Introduction - v3.4 2021

153

◢ [AMD Public Use]

HPC Analysis

◢ Env variables

• uProf_MAX_PR_INSTANCES - Set the

max number of unique parallel regions to

be traced. The default value is set to 512

• uProf_MAX_PR_INSTANCE_COUNT -

Set the max number of times one unique

parallel region to be traced

◢ Notes

• Data processing and loading of HPC page

can be slower – depending on number of

parallel regions and their instances

traced.

◢ Limitations not supported

• OpenMP® profiling with system-wide

profiling scope.

• Loop chunk size and schedule type when

these parameters are specified using

schedule clause. It shows the default

values (i.e., ‘1’ & ‘Static’) in this case.

• Nested parallel regions.

• GPU offloading and related constructs.

• Call stack for individual OpenMP threads.

• OpenMP profiling on Windows® and

FreeBSD platforms.

• Applications with static linkage of

OpenMP libraries.

AMD µProf Profiler Introduction - v3.4 2021

154

◢ [AMD Public Use]

MPI Code Profiling

Component Supported Version

MPI Spec • MPI 3.1

MPI Libraries

• Open MPI v4.1.0

• MPICH 3.4.1

• ParaStation® MPI 5.4.8

• Intel® MPI 2019

OS

• Ubuntu® 18.04 LTS

• Ubuntu® 20.04 LTS

• Red Hat® Enterprise

Linux® 8.x

• CentOS™ 8.x

◢ Support matrix Usage Model:

Collect performance data

$ mpirun -np <n> AMDuProfCLI collect

--config tbp --mpi --output-dir /tmp/mpi-prof-data ./my-

app

Collect performance data in multiple node

$ mpirun -np 16 -H host1,host2 AMDuProfCLI collect --

config tbp --mpi --output-dir /tmp/myapp-perf myapp.exe

Profiling specific rank

$ export AMDuProfCLI_CMD='AMDuProfCLI collect --config

tbp --mpi --output-dir /tmp/myapp-perf'

$ mpirun -np 4 -host host1 myapp.exe : -host host2 -np 2

"$AMDuProfCLI_CMD" myapp.exe

Translate profile data

$ AMDuProfCLI translate --input-dir /tmp/myapp-perf/ --

host host1

Import the DB for further analysis

AMD µProf Profiler Introduction - v3.4 2021

155

◢ [AMD Public Use]

Application analysis – Command Line Interface

◢ List supported predefined profile configs are recorded by the hardware

• $./AMDuProfCLI info --list collect-configs

◢ Collect profile data for “assess” predefined configuration, launching NAMD application

• $./AMDuProfCLI collect --config assess –o /tmp/amd/namd-assess /home/amd/apps/NAMD/runme.sh

• Profile completed ...

• Generated raw file : /tmp/amd/namd-assess.caperf

◢ Generate profile report from the raw profile data collected using “assess” configuration

• $./AMDuProfCLI report -i /tmp/amd/namd-assess.caperf --src-path

/home/amd/apps/NAMD/NAMD_2.12_Source/

• Translation started ...

• …

• Generating report file...

• Report generation completed...

• Generated report file : /tmp/amd/namd-assess/namd-assess.csv

AMD µProf Profiler Introduction - v3.4 2021

156

◢ [AMD Public Use]

Application analysis – Linux® perf kernel module constraints

◢ Profiling as non-root user requires /proc/sys/kernel/perf_event_paranoid to be set to -1

◢ Open file descriptors should be increased to (using “ulimit -n” command)

• ~100 * number of logical cores

◢ For Gen2 and Gen3 EPYC™ processors, following distributions are supported:

• Red Hat Enterprise Linux (RHEL) 8.0.2 with kernel version 4.18.0-80.7.1.el8 or later

• CentOS® 8.0.1905 with kernel version 4.18.0-80.7.1.el8 or later

• Ubuntu® 18.04.3 LTS or 19.10 or later

• SUSE® Linux Enterprise Server (SUSE) 15 SP1 with kernel version 4.12.14-197.26 or later

◢ On Gen2 and Gen3 EPYC, older Linux® kernels may lead to following error messages:

• kernel: “Uhhuh. NMI received for unknown reason 3d on CPU 1.”

• kernel: “Do you have a strange power saving mode enabled?”

• kernel: “Dazed and confused, but trying to continue”

AMD µProf Profiler Introduction - v3.4 2021

157

◢ [AMD Public Use]

DISCLAIMER AND TRADEMARKS
DISCLAIMER The information contained herein is for informational purposes only, and is subject to change without notice. While every precaution has been taken in

the preparation of this document, it may contain technical inaccuracies, omissions and typographical errors, and AMD is under no obligation to update or otherwise

correct this information. Advanced Micro Devices, Inc. makes no representations or warranties with respect to the accuracy or completeness of the contents of this

document, and assumes no liability of any kind, including the implied warranties of noninfringement, merchantability or fitness for particular purposes, with respect

to the operation or use of AMD hardware, software or other products described herein. No license, including implied or arising by estoppel, to any intellectual

property rights is granted by this document. Terms and limitations applicable to the purchase or use of AMD’s products are as set forth in a signed agreement

between the parties or in AMD's Standard Terms and Conditions of Sale.

© 2021 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo, EPYC, and combinations thereof are trademarks of Advanced Micro Devices,

Inc. Other product names used in this publication are for identification purposes only and may be trademarks of their respective companies. The CentOS Marks are

trademarks of Red Hat, Inc. Intel is a registered mark of Intel Corporation. Java is a registered mark of Oracle and/or its affiliates. LLVM is a trademark

of LLVM Foundation. Linux is the registered trademark of Linus Torvalds in the U.S. and other countries. The OpenMP name and the OpenMP logo are registered

trademarks of the OpenMP Architecture Review Board. Oracle is a registered mark of Oracle and/or its affiliates. ParTec and ParaStation are registered trademarks

of ParTec Cluster Competence Center GmbH. Red Hat and the Shadowman logo are registered trademarks of Red Hat, Inc. www.redhat.com in the U.S. and other

countries. SUSE is a registered trademark of SUSE LLC or its subsidiaries or affiliates. Windows is a registered trademark of Microsoft Corporation in the US

and/or other countries. Ubuntu and the Ubuntu logo are registered trademarks of Canonical Ltd. VMware ESXi is a trademark of VMware. Windows and Windows

Server are registered trademarks of Microsoft Corporation in the US and/or other countries.

AMD µProf Profiler Introduction - v3.4 2021

158

159

[ONLINE] Node Level Performance Optimization @ CSC, 18-20.5.2021

Vectorization with Intel® Compilers and
OpenMP* SIMD
Dr. Mikko Byckling, IAGS DEE XCSS

*Other names and brands may be claimed as the property of others.

Acknowledgements: Martyn Corden, Intel; Steve “Dr. Fortran” Lionel, ex-Intel

160

2
Copyright © 2021 Intel Corporation. All rights reserved.

Contents

▪ Vectorization overview

• Terminology, vectorization code types, data layout and alignment

▪ SIMD instruction set switches (for Intel® compilers)

▪ OpenMP* SIMD

• OpenMP* SIMD construct

• OpenMP* DECLARE SIMD construct

▪ SIMD programming patterns

• Reduction, outer loop vectorization, compress, search and histogram loops

▪ Summary

*Other names and brands may be claimed as the property of others.

161

3
Copyright © 2021 Intel Corporation. All rights reserved.

Vectorization of code

▪ Transform sequential code to exploit SIMD processing capabilities of
Intel® processors

• Calling a vectorized library

• Automatically by tools like a compiler

• Manually by explicit syntax

for(i = 0; i <= MAX; i++)

c[i] = a[i] + b[i];

+

a[i+7] a[i+6] a[i+5] a[i+4] a[i+3] a[i+2] a[i+1] a[i]

b[i+7] b[i+6] b[i+5] b[i+4] b[i+3] b[i+2] b[i+1] b[i]

c[i+7] c[i+6] c[i+5] c[i+4] c[i+3] c[i+2] c[i+1] c[i]

=

162

4
Copyright © 2021 Intel Corporation. All rights reserved.

Vectorization terminology

▪ Single Instruction Multiple Data (SIMD)
• Processing vector with a single operation

• Provides data level parallelism (DLP)

• More efficient than scalar processing due to DLP

▪ Vector
• Consists of more than one element

• Elements are of same scalar data types (e.g. floats, integers, …)

▪ Vector length (VL), i.e., number of elements in the vector

Scalar
Processing

A B

C

+ Vector
Processing

BiBi

Ci

+

Ai

Ci

Ai

Ci

Ai

Ci

Ai

VL

BiBi

163

5
Copyright © 2021 Intel Corporation. All rights reserved.

Peel, main and remainder loops

▪ A vectorized loop consists of

• Peel loop (optional)

• Used for the unaligned references in the loop. Uses scalar or slower vector.

• Main loop body

• Typically, the fastest part

• Loop remainder (optional)

• Used when the number of iterations (trip count) is not divisible by the vector length. Uses Scalar or slower vector.

▪ Larger vector registers mean more iterations in peel/remainder

▪ To avoid overhead from peel/remainder loops

• Avoid loops with a very small trip count

• Align the data

• If possible, let the number of iterations be divisible by the vector length

This is where we want our loops to
be executing!

164

6
Copyright © 2021 Intel Corporation. All rights reserved.

Vectorization software architecture

Intel® Math Kernel Library

Array Notation: Fortran,
Intel® Cilk™ Plus

Auto vectorization

Semi-auto vectorization:
#pragma (vector, ivdep, simd)

OpenCL*

C/C++ Vector Classes
(F32vec16, F64vec8)

Intrinsics

Ease of use

Fine control

Vector Options

165

7
Copyright © 2021 Intel Corporation. All rights reserved.

Overview of vector code types

▪ Auto vectorization
for (int i = 0; i < N; ++i) {

A[i] = B[i] + C[i];

}

▪ Array notation
A(:) = B(:) + C(:)

▪ OpenMP SIMD construct
#pragma omp simd

for (int i = 0; i < N; ++i) {

A[i] = B[i] + C[i];

}

▪ OpenMP SIMD function
#pragma omp declare simd

float ef(float a, float b) {

return a + b;

}

#pragma omp simd

for (int i = 0; i < N; ++i)

A[i] = ef(B[i], C[i]);

166

8
Copyright © 2021 Intel Corporation. All rights reserved.

Automatic vectorization

▪ The compiler vectorizer works similarly for SSE, AVX, AVX2 and
AVX-512 (C/C++, Fortran)

• Enabled by default at optimization level -O2

• Some ISA features, such as vector masks, gather/scatter instructions and fused
multiply-add (FMA) enable better vectorization of code

▪ Vectorized loops may be recognized by

• Compiler vectorization and optimization reports (Intel compilers)
-qopt-report-phase=vec –qopt-report=5

• Looking at the assembly code, -S

• Using Intel® VTune™ or Intel Advisor

167

9
Copyright © 2021 Intel Corporation. All rights reserved.

Optimization report: Example

▪ Example novec.f90: 1: subroutine fd(y)

2: integer :: i

3: real, dimension(10), intent(inout) :: y

4: do i=2,10

5: y(i) = y(i-1) + 1

6: end do

7: end subroutine fd

$ ifort –c novec.f90 –qopt-report=5

ifort: remark #10397: optimization reports are generated in *.optrpt files in the output location

$ cat novec.optrpt

…

LOOP BEGIN at novec.f90(4,5)

remark #15344: loop was not vectorized: vector dependence prevents vectorization

remark #15346: vector dependence: assumed FLOW dependence between y line 5 and y line 5

remark #25436: completely unrolled by 9

LOOP END

…

168

10
Copyright © 2021 Intel Corporation. All rights reserved.

Reasons why automatic vectorization fails

▪ Compiler prioritizes code correctness

▪ Compiler heuristics to estimate vectorization efficiency

▪ Vectorization could lead to incorrect or inefficient code due to

• Data dependencies

• Alignment

• Function calls in loop block

• Complex control flow / conditional branches

• Mixed data types

• Non-unit stride between elements

• Loop body too complex (register pressure)

• ...

169

11
Copyright © 2021 Intel Corporation. All rights reserved.

Preparing code for SIMD
Identify Hotspots

Integer
or FP?

Can
convert
to SP?

Change to SP

Re-layout data for SIMD efficiency

Align data structures

Convert code to SIMD form

Follow SIMD coding guidelines

Optimize memory access patterns
and prefetch (if appropriate)

Further optimization

IntegerFP

Yes

No

Precision is
important:
impacts the
SIMD width.

170

12
Copyright © 2021 Intel Corporation. All rights reserved.

Data Layout – why it is important

▪ Instruction-Level

• Hardware is optimized for contiguous loads/stores

• Support for non-contiguous accesses differs with hardware
(e.g., AVX2/AVX-512 gather)

▪ Memory-Level

• Contiguous memory accesses are cache-friendly

• Number of memory streams can place pressure on prefetchers

171

13
Copyright © 2021 Intel Corporation. All rights reserved.

Data layout – common layouts

Array-of-Structs (AoS)

▪ Pros:
Good locality of

{x, y, z},

1 memory stream

▪ Cons:
Potential for gather/scatter

Struct-of-Arrays (SoA)

▪ Pros:
Contiguous load/store

▪ Cons:
Poor locality of

{x, y, z},

3 memory streams

Hybrid (AoSoA)

▪ Pros:
Contiguous load/store,

1 memory stream

▪ Cons:
Not a “normal” layout

x x xx x x

y y yy y y

z z zz z z

x x

x x

x x

y y

y y

y y

z z

z z

z z

x x

x x

x x

yy

yy

yy

z z

z z

z z

172

14
Copyright © 2021 Intel Corporation. All rights reserved.

Data alignment – why it is important

0 1 2 3 … … 6 7 8 9 … … … … … …

Cache Line 0 Cache Line 1

0 1 2 3 6 7 8 9

Aligned Load
▪ Address is aligned

▪ One cache line

▪ One instruction

Unaligned Load
▪ Address is not aligned

▪ Potentially multiple cache lines

▪ Potentially multiple instructions

173

15
Copyright © 2021 Intel Corporation. All rights reserved.

Data alignment – sample applications

▪ 1) Align Memory
_mm_malloc(bytes, 64) / !dir$ attributes align:64

▪ 2) Access Memory in an Aligned Way
for (i = 0; i < N; i++) { array[i] … }

▪ 3) Tell the Compiler (C\C++ / Fortran)
#pragma omp simd aligned(p) / !$omp simd aligned(p)

__assume_aligned(p, 16) / !dir$ assume_aligned (p, 16)

__assume(i % 16 == 0) / !dir$ assume (mod(i,16) .eq. 0)

174

16
Copyright © 2021 Intel Corporation. All rights reserved.

Alignment impact: example

▪ Unaligned access: ▪ Aligned access
void mult(int N, double* a, double* b, double* c)

{

int i;

#pragma omp simd aligned(a,b,c)

for (i = 0; i < N; i++)

c[i] = a[i] * b[i];

}

LOOP BEGIN at mult.c(5,3)
remark #15388: vectorization support: reference c[i] has aligned access [mult.c(6,5)]
remark #15388: vectorization support: reference a[i] has aligned access [mult.c(6,12)]
remark #15388: vectorization support: reference b[i] has aligned access [mult.c(6,19)]

...
remark #15448: unmasked aligned unit stride loads: 2
remark #15449: unmasked aligned unit stride stores: 1
remark #15475: --- begin vector cost summary ---
remark #15476: scalar cost: 8
remark #15477: vector cost: 1.250
remark #15478: estimated potential speedup: 5.260
remark #15488: --- end vector cost summary ---

LOOP END
...

void mult(int N, double* a, double* b, double* c)

{

int i;

#pragma omp simd

for (i = 0; i < N; i++)

c[i] = a[i] * b[i];

}

LOOP BEGIN at mult.c(5,3)
<Peeled loop for vectorization>

remark #25015: Estimate of max trip count of loop=3
LOOP END

LOOP BEGIN at mult.c(5,3)
remark #15388: vectorization support: reference c[i] has aligned access [mult.c(6,5)]
remark #15389: vectorization support: reference a[i] has unaligned access [mult.c(6,12)]
remark #15389: vectorization support: reference b[i] has unaligned access [mult.c(6,19)]
remark #15381: vectorization support: unaligned access used inside loop body

...
remark #15449: unmasked aligned unit stride stores: 1
remark #15450: unmasked unaligned unit stride loads: 2
remark #15475: --- begin vector cost summary ---
remark #15476: scalar cost: 8
remark #15477: vector cost: 1.750
remark #15478: estimated potential speedup: 3.890
remark #15488: --- end vector cost summary ---

LOOP END
...

Both cases compiled as: icc -qopenmp -xCORE-AVX2 -qopt-report=5 -c mult.c -o mult.o

175

17
Copyright © 2021 Intel Corporation. All rights reserved.

SIMD instruction set switches (for Intel®
compilers)
Instruction set architecture switches, instruction set defaults

176

18
Copyright © 2021 Intel Corporation. All rights reserved.

SIMD instruction set switches (1/3)
For Intel® compilers

▪ Linux*, OS X*: -x<feature>, Windows*: /Qx<feature>

• Might enable Intel processor specific optimizations

• Processor-check added to “main” routine:
Application errors in case SIMD feature missing or non-Intel processor with appropriate/informative
message

▪ Linux*, OS X*: -ax<features>, Windows*: /Qax<features>

• Multiple code paths: baseline and optimized/processor-specific

• Optimized code paths for Intel processors defined by <features>

• Multiple SIMD features/paths possible, e.g.: -axSSE2, CORE-AVX2

• Baseline code path defaults to –msse2 (/arch:sse2)

• The baseline code path can be modified by –m<feature> or –x<feature> (/arch:<feature> or
/Qx<feature>)

177

19
Copyright © 2021 Intel Corporation. All rights reserved.

SIMD instruction set switches (2/3)
For Intel® compilers

▪ Linux*, OS X*: -m<feature>, Windows*: /arch:<feature>

• Neither check nor specific optimizations for Intel processors:
Application optimized for both Intel and non-Intel processors for selected SIMD feature

• Missing check can cause application to fail in case extension not available

▪ Default for Linux*: -msse2, Windows*: /arch:sse2

• Activated implicitly

• Implies the need for a target processor with at least Intel® SSE2

▪ Default for OS X*: -xsse3 (IA-32), -xssse3 (Intel® 64)

178

20
Copyright © 2021 Intel Corporation. All rights reserved.

SIMD instruction set switches (3/3)
For Intel® compilers

▪ Special switch for Linux*, OS X*: -xHost, Windows*: /QxHost

• Compiler checks SIMD features of current host processor (where built on) and makes use of latest SIMD
feature available

• Code only executes on processors with same SIMD feature or later as on build host

• As for -x<feature> or /Qx<feature>, if “main” routine is built with
–xHost or /QxHost the final executable only runs on Intel processors

▪ Disabling vectorization Linux*, OS X*: -no-vec, Windows*: /Qvec-

• Disables vectorization for the compile unit

• The compiler can still use some SIMD features

179

21
Copyright © 2021 Intel Corporation. All rights reserved.

SIMD feature set names (1/2)
For Intel® compilers

SIMD Feature Description

CORE-AVX512 May generate Intel® Advanced Vector Extensions 512 (Intel® AVX-512) Foundation instructions, Intel® AVX-512 Conflict
Detection instructions, and other AVX-512 subsets which will be available on future Intel® XEON™ architecture
Optimizes for Intel® processors that support Intel® AVX-512 instructions. Sets –qopt-zmm-usage=low by default.

MIC-AVX512 May generate Intel® Advanced Vector Extensions 512 (Intel® AVX-512) Foundation instructions, Intel® AVX-512 Conflict
Detection instructions, Intel® AVX-512 Exponential and Reciprocal instructions, Intel® AVX-512 Prefetch instructions for
Intel® processors, and the instructions enabled with CORE-AVX2. Optimizes for Intel® processors that support Intel®
AVX-512 instructions.

COMMON-AVX512 May generate Intel® Advanced Vector Extensions 512 (Intel® AVX-512) Foundation instructions and Intel® AVX-512
Conflict Detection instructions. Optimizes for Intel® processors that support Intel® AVX-512 instructions. Sets –qopt-
zmm-usage=high by default.

CORE-AVX2 May generate Intel® Advanced Vector Extensions 2 (Intel® AVX2), Intel® AVX, SSE4.2, SSE4.1, SSE3, SSE2, SSE and Intel
SSSE3 instructions.

CORE-AVX-I May generate Intel® Advanced Vector Extensions (Intel® AVX), including instructions in 3rd generation Intel® Core™
processors, Intel® SSE4.2, SSE4.1, SSE3, SSE2, SSE and Intel SSSE3.

180

22
Copyright © 2021 Intel Corporation. All rights reserved.

SIMD feature set names (2/2)
For Intel® compilers

SIMD Feature Description

AVX May generate Intel® Advanced Vector Extensions (Intel® AVX), SSE4.2, SSE4.1, SSE3, SSE2, SSE and Intel SSSE3.

ATOM_SSE4.2 May generate MOVBE instructions for Intel processors (depending on setting of -minstruction or /Qinstruction). May
also generate Intel® SSE4.2, SSE3, SSE2 and SSE instructions for Intel processors. Optimizes for Intel® Atom™
processors that support Intel® SSE4.2 and MOVBE instructions.

SSE4.2 May generate Intel® SSE4.2, SSE4.1, SSE3, SSE2, SSE and Intel SSSE3.

SSE4.1 May generate Intel® SSE4.1, SSE3, SSE2, SSE and Intel SSSE3.

ATOM_SSSE3
deprecated:

SSE3_ATOM & SSSE3_ATOM

May generate MOVBE instructions for Intel processors (depending on setting of -minstruction or /Qinstruction). May
also generate Intel® SSE3, SSE2, SSE and Intel® SSSE3 instructions for Intel processors. Optimizes for Intel® Atom™

processors that support Intel® SSE3 and MOVBE instructions.

SSSE3 May generate Intel® SSE3, SSE2, SSE and Intel SSSE3.

SSE3 May generate Intel® SSE3, SSE2 and SSE.

SSE2 May generate Intel® SSE2 and SSE.

181

23
Copyright © 2021 Intel Corporation. All rights reserved.

OpenMP* SIMD
OpenMP* SIMD construct, OpenMP* DECLARE SIMD construct

*Other names and brands may be claimed as the property of others.

182

24
Copyright © 2021 Intel Corporation. All rights reserved.

OpenMP* API

▪ De-facto standard, OpenMP* 5.1 out since November 2020

▪ API for C/C++ and Fortran for shared-memory parallel programming

▪ Based on directives

▪ Portable across vendors and platforms

▪ Supports various types of parallelism

*Other names and brands may be claimed as the property of others.

183

25
Copyright © 2021 Intel Corporation. All rights reserved.

Cluster Group of computers
communicating through fast interconnect

Coprocessors/Accelerators Special compute devices
attached to the local node through special interconnect

Node Group of processors
communicating through shared memory

Socket Group of cores
communicating through shared cache

Core Group of functional units
communicating through registers

Hyper-Threads Group of thread contexts sharing functional units

Superscalar Group of instructions sharing functional units

Pipeline Sequence of instructions sharing functional units

Vector Single instruction using multiple functional units

Levels of parallelism in OpenMP 5.1

OpenMP 5.1 SIMD

OpenMP 5.1 for Devices

OpenMP 4.0 AffinityOpenMP 4.0 AffinityOpenMP 4.0 AffinityOpenMP 5.1 Threading

184

26
Copyright © 2021 Intel Corporation. All rights reserved.

Explicit vectorization

▪ Compiler Responsibilities

• Allow programmer to declare that code can and should be run in SIMD

• Generate the code the programmer asked for

▪ Programmer Responsibilities

• Correctness (e.g., no dependencies, no invalid memory accesses)

• Efficiency (e.g., alignment, loop order, masking)

185

27
Copyright © 2021 Intel Corporation. All rights reserved.

Explicit vectorization: example

▪ The two += operators have different meaning from each other

▪ The programmer should be able to express those differently

▪ The compiler has to generate different code

▪ The variables i, p and step have different “meaning” from each other

float sum = 0.0f;

float *p = a;

int step = 4;

#pragma omp simd reduction(+:sum) linear(p:step)

for (int i = 0; i < N; ++i) {

sum += *p;

p += step;

}

186

28
Copyright © 2021 Intel Corporation. All rights reserved.

Explicit vectorization: example

▪ mandel() function is called from a loop over X/Y points

▪ We would like to vectorize that outer loop

▪ Compiler creates a vectorized function that acts on a vector of N values of c

#pragma omp declare simd simdlen(16)

uint32_t mandel(fcomplex c)

{

uint32_t count = 1; fcomplex z = c;

for (int32_t i = 0; i < max_iter; i += 1) {

z = z * z + c; int t = cabsf(z) < 2.0f;

count += t;

if (!t) { break; }

}

return count;

}

187

29
Copyright © 2021 Intel Corporation. All rights reserved.

Before OpenMP 5.1 SIMD

▪ Programmers had to rely on auto-vectorization…

▪ … or to use vendor-specific extensions
• Programming models (e.g., Intel® Cilk™ Plus)

• Compiler pragmas (e.g., #pragma vector)

• Low-level constructs (e.g., _mm_add_pd())

#pragma omp parallel for

#pragma vector always

#pragma ivdep

for (int i = 0; i < N; i++) {

a[i] = b[i] + ...;

}

You need to trust the compiler
to do the “right” thing.

188

30
Copyright © 2021 Intel Corporation. All rights reserved.

OpenMP SIMD Loop Construct

▪ Vector parallelism is decribed with simd construct

• Cut loop into chunks that fit a SIMD vector register

• No thread parallelization of the loop body

▪ Syntax (C/C++)
#pragma omp simd [clause[[,] clause],…]

for-loop

▪ Syntax (Fortran)
!$omp simd [clause[[,] clause],…]

do-loop

189

31
Copyright © 2021 Intel Corporation. All rights reserved.

OpenMP SIMD: example

void ssum(int n, double *a, double *b, double *c) {

#pragma omp simd

for (int k=0; k<n; k++)

c[k] = a[k] + b[k];

}

a[k]

+

b[k]

=

c[k]

0 8 16 24

190

32
Copyright © 2021 Intel Corporation. All rights reserved.

OpenMP SIMD loop clauses

▪ private(var-list):

Uninitialized vectors for variables in var-list

▪ reduction(op:var-list):

Create private variables for var-list and apply reduction operator op at the end of the construct

42x: ? ? ? ?

42x:12 5 8 17

191

33
Copyright © 2021 Intel Corporation. All rights reserved.

OpenMP SIMD loop clauses

▪ safelen(length)

• Maximum number of iterations that can run concurrently without breaking a dependence

• in practice, maximum vector length

▪ linear(list[:linear-step])

• The variable’s value is in relationship with the iteration number

xi = xorig + i * linear-step

▪ aligned(list[:alignment])

• Specifies that the list items have a given alignment

• Default is alignment for the architecture

▪ collapse(n)

• Combine the iteration space of the next n loops

192

34
Copyright © 2021 Intel Corporation. All rights reserved.

OpenMP SIMD worksharing construct

▪ Parallelize and vectorize a loop nest

• Distribute a loop’s iteration space across a thread team

• Subdivide loop chunks to fit a SIMD vector register

▪ Syntax (C/C++)
#pragma omp for simd [clause[[,] clause],…]

for-loop

▪ Syntax (Fortran)
!$omp do simd [clause[[,] clause],…]

do-loop

193

35
Copyright © 2021 Intel Corporation. All rights reserved.

OpenMP SIMD workshare: example

void ssum(int n, double *a, double *b, double *c) {

#pragma omp for simd

for (int k=0; k<n; k++)

c[k] = a[k] + b[k];

}

a[k]

+

b[k]

=

c[k]

0 8 16 24

Thread 0 Thread 1

194

36
Copyright © 2021 Intel Corporation. All rights reserved.

SIMD function vectorization

▪ Declare one or more functions to be compiled for calls from a SIMD-
parallel loop

▪ Syntax (C/C++):
#pragma omp declare simd [clause[[,] clause],…]

[#pragma omp declare simd [clause[[,] clause],…]]

[…]

function-definition-or-declaration

▪ Syntax (Fortran):
!$omp declare simd ! Within function body

!$omp declare simd(proc-name-list) ! At call site

195

37
Copyright © 2021 Intel Corporation. All rights reserved.

OpenMP DECLARE SIMD: example

▪ Generate a SIMD-enabled (vector) version of a scalar function that can be called
from a vectorized loop

REAL FUNCTION func(x, xp)

!$omp declare simd(func) uniform(xp)

REAL :: x, xp, denom

denom = (x-xp)**2

func = 1./sqrt(denom)

END FUNCTION

!$omp simd private(x) reduction(+:sumx)

DO i = 1, nx-1

x = x0 + i * h

sumx = sumx + func(x, xp)

END DO

SIMD function must have an explicit interface

remark #15301: OpenMP SIMD LOOP WAS VECTORIZED

…

remark #15484: vector function calls: 1

xp is constant, x can be a vector

These clauses are required for correctness, just
like with OpenMP threading

remark #15347: FUNCTION WAS VECTORIZED with...

196

38
Copyright © 2021 Intel Corporation. All rights reserved.

OpenMP DECLARE SIMD: example

▪ Generate a SIMD-enabled (vector) version of a scalar subroutine that can be
called from a vectorized loop:

SUBROUTINE compute(x, y)

!$omp declare simd(compute) linear(ref(x, y))

real, intent(in) :: x

real, intent(out) :: y

y = 1. + sin(x)**3

END SUBROUTINE compute

…

!$omp simd

DO j = 1,n

CALL compute(a(j), b(j))

END DO

remark #15301: OpenMP SIMD LOOP WAS VECTORIZED

…

remark #15484: vector function calls: 1

Important because arguments are passed by
reference in Fortran

remark #15347: FUNCTION WAS VECTORIZED with...

SIMD function must have an explicit interface

197

39
Copyright © 2021 Intel Corporation. All rights reserved.

SIMD function vectorization clauses

▪ simdlen (length)

• Generate function to support a given vector length

▪ uniform (argument-list)

• Argument has a constant value between the iterations of a given loop

▪ inbranch

• Function always called from inside an if statement

▪ notinbranch

• Function never called from inside an if statement

▪ linear(argument-list[:linear-step])

▪ aligned(argument-list[:alignment])

▪ reduction(operator:list)
Same as in SIMD

198

40
Copyright © 2021 Intel Corporation. All rights reserved.

SIMD function arguments and LINEAR(REF)

▪ Whenever SIMD function arguments are passed by reference:

• The compiler places consecutive addresses in a vector register, resulting in a
gather from the addresses when the values are needed (=slow)

• LINEAR(REF(…)) tells the compiler that the addresses are consecutive,
resulting to a single dereference and then copy of the consecutive values to a
vector register (=fast)

▪ Recall that Fortran passes all arguments by reference

• LINEAR(REF(…)) is very important for efficient SIMD vectorization of Fortran
functions and subroutines

199

41
Copyright © 2021 Intel Corporation. All rights reserved.

Targeting SIMD functions for CPU ISA

▪ The default binary ABI requires passing arguments in 128 bit xmm registers

• ABI is selected irrespective of –xCORE-AVX2 or -xCORE-AVX512 feature flags

• Results in inefficient 128 bit code instead of 256 or 512 bit

• Compiler optimization report:
remark #15347: FUNCTION WAS VECTORIZED with xmm, simdlen=4,…

▪ Intel® compiler flag -vecabi=cmdtarget

• SIMD register width chosen according to the –x<feature>

• Compiler optimization report:
remark #15347: FUNCTION WAS VECTORIZED with zmm, simdlen=16, …

200

42
Copyright © 2021 Intel Corporation. All rights reserved.

Example: OpenMP 4.0 SIMD in Elmer
2S Intel® Xeon® Gold 6148

0,00E+00

5,00E-05

1,00E-04

1,50E-04

2,00E-04

2,50E-04

SSE2 AVX2 AVX512 SSE2 AVX2 AVX512

Original Optimized

T
im

e
 (

s
)

3D element basis function evaluation, 100 repetitions, p=1

Tetrahedral Prismatic Hexahedral

0,00E+00

5,00E-02

1,00E-01

1,50E-01

2,00E-01

2,50E-01

SSE2 AVX2 AVX512 SSE2 AVX2 AVX512

Original Optimized

T
im

e
 (

s
)

3D element basis function evaluation, 100 repetitions, p=5

Tetrahedral Prismatic Hexahedral

Performance varies by use, configuration, and other factors. Learn more at www.Intel.com/PerformanceIndex. Performance results are based on testing as of dates shown in
configurations and may not reflect all publicly available updates. See configuration disclosure for details. For configuration info, see System Setup.

Results from paper: Byckling, M., Kataja, J., Klemm, M. and Zwinger, T., 2017, September. OpenMP* SIMD Vectorization and
Threading of the Elmer Finite Element Software. In International Workshop on OpenMP (pp. 123-137). Springer, Cham.

201

43
Copyright © 2021 Intel Corporation. All rights reserved.

SIMD programming patterns
Reduction, outer loop vectorization, compress, search and histogram loops

202

44
Copyright © 2021 Intel Corporation. All rights reserved.

SIMD programming patterns

▪ Dependencies can make vectorization unsafe

▪ Some special patterns can still be handled by the compiler

• The compiler may recognize a pattern (auto-vectorization)

• Often works only for simple, ‘clean’ examples

• The compiler is enforced (explicit vector programming)

• May work for more complex cases

• Examples: reduction, compress/expand, search, etc.

▪ Speed-up can come from vectorizing the rest of a large loop more
than from vectorization of the pattern itself

203

45
Copyright © 2021 Intel Corporation. All rights reserved.

Reduction

▪ Reduction operations commonly auto-vectorize with any instruction set

real function reduce(n, arr)

implicit none

integer :: n, i

real :: arr(n), sum

sum = 0.0

do i=1,n

if (arr(i)>0) sum=sum+arr(i) ! sum causes a dependency

end do

reduce = sum

end function reduce

> ifort -xCORE-AVX512 -qopt-report=5 -qopt-report-file=stdout \

-c reduce.F90 -o reduce

…

LOOP BEGIN at reduce.F90(6,3)

…

remark #15300: LOOP WAS VECTORIZED

…

204

46
Copyright © 2021 Intel Corporation. All rights reserved.

Reduction and floating point models

▪ Vectorization would change order of operations and hence the compiler is
unable to vectorize

real function reduce(n, arr)

implicit none

integer :: n, i

real :: arr(n), sum

sum = 0.0

do i=1,n

if (arr(i)>0) sum=sum+arr(i) ! sum causes a dependency

end do

reduce = sum

end function reduce

> ifort -xCORE-AVX512 -qopt-report=5 -qopt-report-file=stdout \

-fp-model=precise -c reduce.F90 -o reduce

…

LOOP BEGIN at reduce.F90(6,3)

remark #15331: loop was not vectorized: precise FP model implied by

the command line or a directive prevents vectorization. Consider using

fast FP model [reduce.F90(7,20)]

…

205

47
Copyright © 2021 Intel Corporation. All rights reserved.

OpenMP reductions

▪ Floating point model can be overridden with explicit vector reduction (OpenMP
SIMD reduction)

real function reduce(n, arr)

implicit none

integer :: n, i

real :: arr(n), sum

sum = 0.0

!$omp simd reduction(+:sum)

do i=1,n

if (arr(i)>0) sum=sum+arr(i) ! sum causes a dependency

end do

reduce = sum

end function reduce

> ifort -xCORE-AVX512 -qopt-report=5 -qopt-report-file=stdout \

-fp-model=precise –qopenmp -c reduce.F90 -o reduce

…

LOOP BEGIN at reduce.F90(7,3)

…

remark #15301: OpenMP SIMD LOOP WAS VECTORIZED

…

206

48
Copyright © 2021 Intel Corporation. All rights reserved.

OpenMP SIMD outer loop vectorization

▪ When nd is small (typically <8), outer loop vectorization may be profitable.
Private copies of j and d needed for correctness

subroutine dist(pt, dis, n, nd, ptref)

implicit none

integer :: n, nd, ipt, j

real :: pt(nd,n), dis(n), ptref(nd), d

!$omp simd private(j,d)

do ipt=1,n

d = 0.

do j=1,nd

d = d + (pt(j,ipt) - ptref(j))**2

end do

dis(ipt) = sqrt(d)

end do

end subroutine dist

LOOP BEGIN at dist.F90(7,3)

…

remark #15301: OpenMP SIMD LOOP WAS VECTORIZED

…

LOOP BEGIN at dist.F90(9,6)

remark #25460: No loop optimizations reported

LOOP END

Outer loop with a large trip count n

Inner loop with a small trip count nd

207

49
Copyright © 2021 Intel Corporation. All rights reserved.

OpenMP SIMD outer loop vectorization

▪ If the inner loop trip count is fixed and the compiler knows it, the inner loop can
be completely unrolled

subroutine dist(pt, dis, n, nd, ptref)

implicit none

integer :: n, nd, ipt, j

real :: pt(nd,n), dis(n), ptref(nd), d

!$omp simd private(j,d)

do ipt=1,n

d = 0.

do j=1,KNOWN_TRIP_COUNT

d = d + (pt(j,ipt) - ptref(j))**2

end do

dis(ipt) = sqrt(d)

end do

end subroutine dist

LOOP BEGIN at dist.F90(7,3)

…

remark #15301: OpenMP SIMD LOOP WAS VECTORIZED

…

LOOP BEGIN at dist.F90(10,6)

remark #25436: completely unrolled by 3 (pre-vector)

LOOP END

Outer loop with a large trip count n

Inner loop with a compile time constant small trip count
KNOWN_TRIP_COUNT (for example 3)

208

50
Copyright © 2021 Intel Corporation. All rights reserved.

Compress pattern

▪ Compress pattern does not auto-vectorize with Intel® AVX2

subroutine compress(a, b, na, nb)

implicit none

real, intent(in) :: a(na)

real, intent(out) :: b(*)

integer, intent(in) :: na

integer, intent(out) :: nb

integer :: ia

nb = 0

do ia=1, na

if(a(ia) > 0.) then

nb = nb + 1 ! dependency

b(nb) = a(ia) ! compress

end if

end do

end subroutine compress

> ifort -qopenmp -xCORE-AVX2 \

-qopt-report=5 -qopt-report-file=stdout \

-c compress.F90 -o compress.o

…

LOOP BEGIN at compress.F90(9,3)

remark #25084: Preprocess Loopnests: \

Moving Out Store [compress.F90(11,9)]

remark #15344: loop was not vectorized: \

vector dependence prevents vectorization

…

209

51
Copyright © 2021 Intel Corporation. All rights reserved.

Compress pattern

▪ Auto-vectorizes with Intel® AVX512 (vcompressps instruction)

subroutine compress(a, b, na, nb)

implicit none

real, intent(in) :: a(na)

real, intent(out) :: b(*)

integer, intent(in) :: na

integer, intent(out) :: nb

integer :: ia

nb = 0

do ia=1, na

if(a(ia) > 0.) then

nb = nb + 1 ! dependency

b(nb) = a(ia) ! compress

end if

end do

end subroutine compress

> ifort -qopenmp -xCORE-AVX512 \

-qopt-report=5 -qopt-report-file=stdout \

-c compress.F90 -o compress.o

…

LOOP BEGIN at compress.F90(9,3)

remark #25084: Preprocess Loopnests: \

Moving Out Store [compress.F90(11,9)]

…

remark #15300: LOOP WAS VECTORIZED

…

remark #15497: vector compress: 1

…

210

52
Copyright © 2021 Intel Corporation. All rights reserved.

Compress pattern (OpenMP SIMD)

subroutine compress(a, b, na1, na2, nb)

real :: a(na1,na2), b(*)

integer :: na1, na2, nb, ia1, ia2, ib

real :: sum

nb = 0; ib=0

!$omp simd private(ia1,sum)

do ia2=1, na2

sum = 0.0

do ia1=1, na1

sum = sum + a(ia1,ia2)

end do

!$omp ordered simd monotonic(ib)

if (sum > 0.) then

ib = ib + 1

b(ib) = sum

end if

!$omp end ordered

end do

nb = ib

end subroutine compress

> ifort -qopenmp -xCORE-AVX512 \

-qopt-report=5 -qopt-report-file=stdout \

-c compress.F90 -o compress.o

…

LOOP BEGIN at compress.F90(7,3)

...

remark #15301: OpenMP SIMD LOOP WAS VECTORIZED

...

remark #15497: vector compress: 1

...

An extension supported by the Intel compiler, not in OpenMP
standard yet. Needed to express dependency on ib, code not correct
otherwise as !$omp simd ignores dependencies.

211

53
Copyright © 2021 Intel Corporation. All rights reserved.

Search loops

▪ A vectorizable loop must have a single exit and the iteration count
must be known at the start of execution

• Else a later iteration may have started before an earlier iteration decides the
loop should be terminated

▪ Simple “search” loops are an exception which the compiler
recognizes

• executes special code if an exit occurs during a SIMD iteration

• only works if no stores back to memory

212

54
Copyright © 2021 Intel Corporation. All rights reserved.

Search pattern (simple)

▪ Search pattern auto-vectorizes if it contains no stores back to memory

integer function search(na, target, array)

implicit none

integer, intent(in) :: na, target, array(na)

integer :: i

do i=1,na

if (array(i) == target) exit

end do

search = i

end function search

…

LOOP BEGIN at search.F90(6,3)

…

remark #15300: LOOP WAS VECTORIZED

…

213

55
Copyright © 2021 Intel Corporation. All rights reserved.

Search pattern (with stores)

▪ Search pattern with stores does not auto-vectorize

integer function search(a,b,c,n)

implicit none

real, dimension(n) :: a, b, c

integer :: n, i

do i=1,n

if (a(i) < 0.) exit

c(i) = sqrt(a(i)) * b(i)

end do

search = i-1

end function search

LOOP BEGIN at search_store.F90(6,3)

remark #15520: loop was not vectorized: loop with multiple \

exits cannot be vectorized unless it meets search loop \

idiom criteria [search_store.F90(9,3)]

LOOP END

214

56
Copyright © 2021 Intel Corporation. All rights reserved.

Search pattern (with stores, vectorized)

▪ Splitting the loop enables vectorization with the cost of reloading a

integer function search(a,b,c,n)

implicit none

real, dimension(n) :: a, b, c

integer :: n, i, j

do i=1,n

if (a(i) < 0.) exit

end do

search = i-1

do j=1,search

c(j) = sqrt(a(j)) * b(j)

end do

end function search

LOOP BEGIN at search_split.F90(6,3)

…

remark #15300: LOOP WAS VECTORIZED

…

LOOP BEGIN at search_split.F90(11,3)

…

remark #15300: LOOP WAS VECTORIZED

…

215

57
Copyright © 2021 Intel Corporation. All rights reserved.

Search pattern (with stores, OpenMP SIMD)

▪ OpenMP SIMD enables vectorization without the cost of reloading a

integer function search(a,b,c,n)

implicit none

real, dimension(n) :: a, b, c

integer :: n, i, j

!$omp simd early_exit

do i=1,n

if (a(i) < 0.) exit

c(j) = sqrt(a(j)) * b(j)

end do

search = i-1

end function search

LOOP BEGIN at search_simd.F90(7,3)

…

remark #15301: OpenMP SIMD LOOP WAS VECTORIZED…

An extension supported by the Intel compiler, not in OpenMP
standard yet. Needed to express a loop with multiple exits.

216

58
Copyright © 2021 Intel Corporation. All rights reserved.

Histogram pattern

▪ Histogram pattern does not auto-vectorize with Intel® AVX2

• Store to a is a scatter (indirect addressing) and ia can have the same value for
different values of i

• Vectorization with !$omp simd may cause incorrect results

subroutine histogram(n,a, b, ind)

implicit none

real :: a(n), b(n), ib

integer :: n, i, ia, ind(n)

! Accumulate inverse to a

do i=1,n

ia=ind(i)

a(ia) = a(ia)+1/b(i)

end do

end subroutine histogram

> ifort -qopenmp -xCORE-AVX2 \

-qopt-report=5 -qopt-report-file=stdout \

-c histogram.F90 -o histogram.o

…

LOOP BEGIN at histogram.F90(7,3)

remark #15344: loop was not vectorized: vector dependence \

prevents vectorization

…

217

59
Copyright © 2021 Intel Corporation. All rights reserved.

Histogram pattern

▪ Histogram pattern auto-vectorizes with Intel® AVX512

• The VPCONFLICT instruction detects elements with conflicting indexes, allowing the
generationg of a mask for the conflict free subset of elements

• Then re-execute the computation for remaining elements recursively

subroutine histogram(n,a, b, ind)

implicit none

real :: a(n), b(n), ib

integer :: n, i, ia, ind(n)

! Accumulate inverse to a

do i=1,n

ia=ind(i)

a(ia) = a(ia)+1/b(i)

end do

end subroutine histogram

> ifort -qopenmp -xCORE-AVX512 \

-qopt-report=5 -qopt-report-file=stdout \

-c histogram.F90 -o histogram.o

…

LOOP BEGIN at histogram.F90(7,3)

…

remark #15300: LOOP WAS VECTORIZED

…

remark #15499: histogram: 1

218

60
Copyright © 2021 Intel Corporation. All rights reserved.

Histogram pattern (OpenMP SIMD)

subroutine histogram(n,a, b, ind)

implicit none

real :: a(n), b(n), ib

integer :: n, i, ia, ind(n)

! Accumulate inverse to a

!$omp simd

do i=1,n

ia=ind(i)

!$omp ordered overlap(ia)

a(ia) = a(ia)+1/b(i)

!$omp end ordered

end do

end subroutine histogram

> ifort -qopenmp -xCORE-AVX512 \

-qopt-report=5 -qopt-report-file=stdout \

-c histogram.F90 -o histogram.o

…

LOOP BEGIN at histogram.F90(8,3)

…

remark #15301: OpenMP SIMD LOOP WAS VECTORIZED

…

An extension supported by the Intel compiler, not in OpenMP
standard yet. Needed to express potential dependency with ia, code
not correct otherwise as !$omp simd ignores dependencies.

219

61
Copyright © 2021 Intel Corporation. All rights reserved.

Histogram speed-up

▪ Speed-up depends on the problem details

• Comes mostly from vectorization of other heavy computation in the loop, not
from the scatter itself

• Speed-up may be (much) less if there are many conflicts, for instance for
histograms with a singularity or a narrow spike

• Speed-up due to vectorization would be considerably higher on Intel® Xeon
Phi™ x200 processors because scalar processor is slower.

▪ Many problems map to histograms

• For instance: energy deposition in cells in particle transport Monte Carlo
simulation, etc.

220

62
Copyright © 2021 Intel Corporation. All rights reserved.

Summary

▪ With Intel® Xeon processors, vectorization (and multithreading) are the
keys to good floating point performance

▪ Application may have to be modified to improve vectorization (and
threading) properties

▪ OpenMP is a standardized way to program vectorized and
multithreaded programs

221

63

222

64
Copyright © 2021 Intel Corporation. All rights reserved.

Configuration details

Benchmarks computed on Intel internal system with Intel OPA.
Intel® Xeon® processor Gold 6148: Dual Intel® Xeon® processor Gold 6148 2.4Ghz, 20 cores/socket, 40 cores, 40 threads (HT and Turbo ON), DDR4 192 GB,
2666 MHz, RHEL 7.3, 1.0 TB SATA drive WD1003FZEX-00MK2A0, /proc/sys/vm/nr_hugepages=8000, Intel® Parallel Studio XE 2017 Update 4, tbbmalloc_proxy
Intel® Xeon® settings: Environment variables: KMP_AFFINITY=scatter,granularity=fine, I_MPI_FABRICS=shm,
I_MPI_PIN_PROCESSOR_LIST=allcores:map=bunch

*Other names and brands may be claimed as the property of others.

223

65
Copyright © 2021 Intel Corporation. All rights reserved.

Notices & Disclaimers

Performance varies by use, configuration, and other factors. Learn more at www.Intel.com/PerformanceIndex.

Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available
updates. See configuration disclosure for details.

Your costs and results may vary.

Intel technologies may require enabled hardware, software or service activation.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries.
Other names and brands may be claimed as the property of others.

224

Memory optimizationMemory optimization
CSC Training, 2021-05

225

OutlineOutline

Deeper view into data caches
Basic considerations for cache efficiency

Loop traversal and interchange
Data structures

Cache optimization techniques
Cache blocking

226

Deeper view into data cachesDeeper view into data caches

227

Data cachesData caches

Modern CPUs use multilevel caches to access data
Utilize spatial and temporal locality of data: if data is already in the cache, latency
and bandwidth are improved
For instance, on Intel Cascade lake

L1 cache: latency 4-6 cycles, sustained bandwidth 133 B/cycle/core
L2 cache: latency 14 cycles, sustained bandwidth 52 B/cycle/core
L3 cache: latency 50-70 cycles, sustained bandwidth 16 B/cycle/core
Main memory: latency 120-150 ns, bandwidth 128 GB/s per socket

228

Data cachesData caches

Sizes of the data caches are small compared to the main memory
L1 ~32 KiB
L2 512-1024 KiB
L3 1-4 MiB / core

Terminology
Cache hit: the requested data is in the cache
Cache miss: the requested data is not in the cache

Optimizing the use of caches is extremely important to leverage the full power of
modern CPUs

229

Cache organizationCache organization

Cache is read and written in units of cache lines
64 bytes in current x86 CPUs

Upon miss, a line is evicted from the cache and replaced by the new line
Cache replacement policy determines which line is evicted

Inclusive cache: all the lines in the upper-level cache are also in the lower level
Exclusive cache: lines in the upper-level cache are not in the lower level
Cache can be also non-inclusive non-exclusive, i.e. line may or may not be present in
lower-level cache

230

Cache organizationCache organization

Memory

Cache

...

Memory address
aligned to cache line

231

Write policiesWrite policies

Most modern CPUs employ a write-back cache write policy
a changed cache line is updated in the lower level hierarchy only when it is evicted

Upon write miss, the cache line is typically first read from the main memory (write-
allocate policy)
In multicore CPUs with private caches, writes may require updates also in the
caches of the other cores

232

Cache associativityCache associativity

A cache with the size of 32 KiB can fit 32 KiB / 64 B = 512 cache lines
In fully associate cache, each of the 512 entries can contain any memory location

Each entry needs to be checked for a hit which can be expensive for large caches

In direct mapped cache, each memory location maps into exactly one cache line
Part of the cache is not fully utilized if memory addresses are not evenly distributed:
some cache lines are evicted repeteadly while others remain empty

Set associative caches can achieve best of the both worlds: efficient search and
good utilization

233

Set associative cacheSet associative cache

A N-way set associative cache is divided into sets with N cache lines in each
8-way set associative 32 KiB cache has 64 sets with 8 cache line entries per set

A memory address is mapped into any entry within a set
need to search only over N entries for a hit
better utilization than in a direct mapped cache, but conflict misses still possible

Fully associative and direct mapped as limiting cases N=∞ and N=1

234

Example: 2-way set associative cacheExample: 2-way set associative cache

Memory

Set 1

Set 2

Set 3

Set 4

...

Total cache size = 8 cache lines

235

Types of cache missesTypes of cache misses

Compulsory misses: happens the first time a memory address is accessed
Prefetching may prevent compulsory misses

Capacity misses: happens when data the data is evicted due to cache becoming full
Can be caused by bad spatial and temporal locality of data in the application
(inherent or bad implementation)

Conflict misses: happens when a set becomes full even when other sets have space
Can be caused by particular memory access patterns

236

Optimizing data accessOptimizing data access

237

Accessing multidimensional arrays in
incorrect order can generate poor
cache behaviour
Loops should written such that the
innermost loop index matches the
contiguous array index

C/C++ uses row major layout, i.e. last
index is contiguous
Fortran uses column major layout, i.e.
first index is contiguous

Logical layout
a
b

Layout in memory
a b c

c C/C++

Logical layout

a b c
Layout in memory

a b c

Fortran

Compiler optimizations may permute
the loop indices automatically if
possible

Accessing multidimensional arraysAccessing multidimensional arrays

238

Original loop
real :: a(N,M)

real :: sum

do i=1,N

 do j=1,M

 sum = sum + a(i,j)

 end do

end do

Interchanged
real :: a(N,M)

real :: sum

do j=1,M

 do i=1,N

 sum = sum + a(i,j)

 end do

end do

Loop interchage example: FortranLoop interchage example: Fortran

239

Original loop
float **a;

float sum;

for (int i=0; i < M; i++)

 for (int j=0; j < N; j++)

 sum = sum + a[j][i];

Interchanged
float **a;

float sum;

for (int j=0; j < N; j++)

 for (int i=0; i < M; i++)

 sum = sum + a[j][i];

Loop interchage example: C/C++Loop interchage example: C/C++

240

Data structuresData structures

Data structure choice has an effect on the memory layout
Structure of arrays (SoA) vs. Array of Structures (AoS)

Data should be stored based on its usage pattern
Avoid scattered memory access

Occasionally, use of nonconventional ordering or traversal of data is beneficial
Colorings, space filling curves, etc.

241

Array of Structures
type point

 real :: x, y, z

end type point

type(point), allocatable :: points

allocate(points(N))

Structure of Arrays
type point

 real, allocatable :: x(:)

 real, allocatable :: y(:)

 real, allocatable :: z(:)

end type point

type(point) :: points

allocate(points%x(N), &

 points%y(N), &

 points%z(N))

Data structures: memory layoutData structures: memory layout

242

Array of Structures
integer :: i, j

real :: dist(4,4)

do i = 1, 4

 do j = i, 4

 dist(i,j) = sqrt(&

 (points(i)%x-points(j)%x)**2 + &

 (points(i)%y-points(j)%y)**2 + &

 (points(i)%z-points(j)%z)**2)

 end do

end do

Structure of Arrays
integer :: i, j

real :: dist(4,4)

do i = 1, 4

 do j = i, 4

 dist(i,j) = sqrt(&

 (points%x(i)-points%x(j))**2 + &

 (points%y(i)-points%y(j))**2 + &

 (points%z(i)-points%z(j))**2)

 end do

end do

Data structures: memory layoutData structures: memory layout

243

Cache blockingCache blocking

Multilevel loops can be iterated in blocks in order improve data locality
Perform more computations with the data that is already in the cache

Complicated optimization: optimal block size is hardware dependent (cache sizes,
SIMD width, etc.)
Cache oblivious algorithms use recursion to improve performance portability

244

Consider a 2D Laplacian
do j=1, 8

 do i=1, 16

 a(i,j) = u(i-1, j) + u(i+1, j) &

 - 4*u(i,j) &

 + u(i,j-1) + u(i,j+1)

 end do

end do

(Fictitious) cache structure
Each line holds 4 elemets
Cache can hold 12 lines of data

No cache reuse between outer loop
iterations

Cache blocking exampleCache blocking example

245

Blocking the inner loop
do IBLOCK = 1, 16, 4

 do j=1, 8

 do i=1, IBLOCK, IBLOCK + 3

 a(i,j) = u(i-1, j) + u(i+1, j) &

 - 4*u(i,j) &

 + u(i,j-1) + u(i,j+1)

 end do

 end do

end do

Better reuse for the j+1 data

Cache blocking exampleCache blocking example

246

Iterate over 4x4 blocks
do JBLOCK = 1, 8, 4

 do IBLOCK = 1, 16, 4

 do j=JBLOCK, JBLOCK + 3

 do i=1, IBLOCK, IBLOCK + 3

 a(i,j) = u(i-1, j) + u(i+1, j) &

 - 4*u(i,j) &

 + u(i,j-1) + u(i,j+1)

 end do

 end do

 end do

end do

Cache blocking exampleCache blocking example

247

Cache blocking with OpenMPCache blocking with OpenMP

OpenMP 5.1 standard has tile construct for blocking
Compiler support not necessarily ready yet

!$omp tile sizes(4, 4)

do j=1, 8

 do i=1, 16

 a(i,j) = u(i-1, j) + u(i+1, j) &

 - 4*u(i,j) &

 + u(i,j-1) + u(i,j+1)

 end do

end do

!$omp end tile

248

Array paddingArray padding

When data is accessed in strides which are multiple of the cache set size, conflict
misses may occur

In 8-way associative 32 KiB cache, there are 64 sets
Memory address which are 64*64 = 4096 bytes apart map into a same set

Example: in float a[1024][1024] each column maps into a same set

Array padding, i.e. allocating extra data can in some cases reduce conflict misses
float a[1024 + 16][1024]

Padding should preferably preserve alignment of data

249

PrefetchingPrefetching

Modern CPUs try to predict data usage patterns and prefetch data to caches before
it is actually needed

Can alleviate even compulsory misses

Prefetching can be requested also by software
Compiler
Programmer via software directives and intrinsinc functions
Difficult optimization:

Too early: cache is filled with unnecessary data
Too late: CPU has to wait for the data

250

Non-temporal storesNon-temporal stores

With write-allocate policy, a write miss incurs a load from main memory
If data is going to be just written and not reused, some CPUs contain instructions
for bypassing the cache by writing directly into the memory with non-temporal
stores
Non-temporal stores can be used via pragmas, compiler options, or intrinsincs

omp simd nontemporal(list) (OpenMP 5.0)
Possible benefits depend a lot on application, and misuse can degragade
performance
Hardware may also recognize access pattern and switch into non-temporal stores

251

SummarySummary

Efficient cache usage is on of the most important aspects for achieving good
performance

Exploite spatial and temporal locality

Progammer can improve the cache usage by optimizing data layouts and access
patterns

252

Miscellaneous single core optimizationsMiscellaneous single core optimizations
CSC Training, 2021-05

253

OutlineOutline

Loop transformations
Mathematical routines
Branches
Function inlining
Intrincic functions

254

Loop transformationsLoop transformations

255

Loop transformationsLoop transformations

Loop transformations can provide better vectorization prospects, improve
instruction level parallelism, pipeline utilization and cache usage
Common transformations: interchange, unrolling, fusion, fission, sectioning, unroll
and jam
In many cases compiler can make loop transformations with high enough
optimization level

Understanding the concepts is still be useful for the programmer

In some cases manual programming can be useful
When misused, transformation can be disadvantageous for performance
Readability of code often suffers

256

If the loop body is very small, overhead
from incrementing the loop counter
and from the test for the end of the
loop can be high
When vectorizing, loop is implicitly
unrolled by the vector length
May improve pipeline utilization and
instruction level parallelism
Additional logic needed for remainder
May increase register pressure

do i=1,N

 c[i] = a[i] + b[i]

end do

do i=1,N,4 ! unroll four times

 c[i] = a[i] + b[i]

 c[i+1] = a[i+1] + b[i+1]

 c[i+2] = a[i+2] + b[i+2]

 c[i+3] = a[i+3] + b[i+3]

end do

Loop unrollingLoop unrolling

257

Loop fission (or loop distribution) splits
one loop into sequence of loops
May improve cache usage and reduce
register pressure
May allow vectorization by moving
dependencies
Some dependencies may prohibit
fission

do j=1,N

 b(i) = a(i) * a(i)

 d(i) = c(i) - d(i-1) ! flow dependency

end do

do j=1,N ! vectorization possible

 b(i) = a(i) * a(i)

end do

do j=1,N

 d(i) = c(i) - d(i-1)

end do

Loop fissionLoop fission

258

Loop fusion (or loop jamming) merges
multiple loops into one
May improve cache usage
May allow better pipeline utilization
and instruction level parallelism
May cause dependencies which prevent
applying the transformation

do j=1,N

 b(i) = a(i) * a(i)

end do

do j=1,N

 c(i) = c(i) * a(i)

end do

do j=1,N

 b(i) = a(i) * a(i)

 c(i) = c(i) * a(i)

end do

Loop fusionLoop fusion

259

Loop sectioning (or strip mining)
transforms a loop into smaller chunks
by creating additional inner loops
May improve cache usage
May make the code easier for compiler
to vectorize

do i=1,N

 process1(data(i))

 process2(data(i))

end do

do i=1,N,S

 do j=i, min(N, i + S)

 process1(data(i))

 end do

 do j=i, min(N, i + S)

 process2(data(i))

 end do

end do

Loop sectioningLoop sectioning

260

Unroll and jam unrolls an outer loop
and fuses then the inner loop
May allow better pipeline utilization
and instruction level parallelism
May potentiate other optimizations

do i=1,N

 do j=1,M

 b = 2 * a(i, j)

 c(i,j) = b * b

 end do

end do

do j=1,N,2

 do i=1,M

 b1 = 2 * a(i, j)

 b2 = 2 * a(i, j + 1)

 c(i, j) = b1*b1

 c(i, j + 1) = b2*b2

 end do

end do

Loop unroll and jamLoop unroll and jam

261

Other optimizationsOther optimizations

262

Optimizing mathematical operationsOptimizing mathematical operations

Due to finite precision of floating point numbers, compilers need to be carefull in
some optimizations

(a + b) + c ≠ a + (b + c)
Some mathematical routines (sqrt, pow, sin, cos, ...) can be calculated with
different algorithms with different performance and precision

In some applications it is possible to compromise precision for speed

Most compilers have an option for faster mathematics ('-ffast-math' for gcc/clang
and '-fp-model fast=2' for Intel)

Important to check that results are valid !

263

If fast math options cannot be use (i.e.
part of the application requires higher
precision), programmer can make some
optimizations by hand
Examples:

Move division out of the loop

Replace pow(x, n) where n is small
integer with multiplications (C/C++)

do i=1, n

 do j=1, m

 L(i,j) = (A(i-1,j) - 2.0*A(i,j) + A(i+1,j)) / dx**2 + &

 (A(i,j-1) - 2.0*A(i,j) + A(i,j+1)) / dx**2

 end do

end do

vs.
idx2 = 1.0 / dx**2

do i=1, n

 do j=1, m

 L(i,j) = (A(i-1,j) - 2.0*A(i,j) + A(i+1,j)) * idx2 + &

 (A(i,j-1) - 2.0*A(i,j) + A(i,j+1)) * idx2

 end do

end do

double x3 = x*x*x // instead of pow(x, 3)

Optimizing mathematical operationsOptimizing mathematical operations

264

Optimizing branchesOptimizing branches

Branches have the possibility of stalling the CPU pipeline, and can thus be
expensive
When possible, if statements should be outside loop bodies

manual loop transformations can be helpful

Hardware branch predictor works well when the branching follows regular pattern
performing extra work for improving predictability may be worthwhile

265

Inline functionsInline functions

When inlining, compiler replaces a call to function by the function body
Reduces function call overhead
If function is called within a loop, may provide additional optimization prospects

Compiler uses heuristics to decide if inlining is beneficial
Might require "interprocedural optimization" options

In C/C++ inline keyword is hint for the compiler to inline
In Fortran, programmer can force inlining only via compiler directives, otherwise
compiler makes the decision whether to inline a function
Overuse of inlining increases the executable size and may hurt performance

266

Intrinsic functionsIntrinsic functions

Intrinsic functions are special functions that the compiler replaces with equivalent
CPU instruction

"high level assembly"
Often compiler specific

Examples:
Software prefetch: _mm_prefetch (C/C++), mm_prefetch (Fortran)

Non-temporal stores: _mm_stream_xxx (C/C++ only)
AVX instructions

Recommended only in special cases
Can make the code non-portable
Can also degragade performance - compiler might know better when to use

267

SummarySummary

Loops can be transformed in various ways in order to improve performance
Often better leave the transformations for the compiler

Many mathematical operations can be performed faster with some compromise on
precision
Hard to predict branches may stall the CPU pipeline

268

Web resourcesWeb resources

Intel Intrinsics guide: https://software.intel.com/sites/landingpage/IntrinsicsGuide/

269

OpenMP Tutorial

Members of the OpenMP Language Committee
1

Programming OpenMP

Michael Klemm

Parallel Region

Credit for these slides go to the OpenMP tutorial gang:
Bronis R. de Supinski, Christian Terboven, Ruud van der Pas, Xavier Teruel

270

OpenMP Tutorial

Members of the OpenMP Language Committee
2

• OpenMP: Shared-Memory Parallel Programming Model.

All processors/cores access
a shared main memory.

Real architectures are
more complex, as we
will see later / as we

have seen.

Parallelization in OpenMP
employs multiple threads.

OpenMP‘s machine model

Memory

Cache Cache Cache Cache

Proc Proc Proc Proc

Crossbar / Bus

271

OpenMP Tutorial

Members of the OpenMP Language Committee
3

• All threads have access to
the same, globally shared
memory

• Data in private memory is
only accessible by the thread
owning this memory

• No other thread sees the
change(s) in private memory

• Data transfer is through shared
memory and is 100% transparent
to the application

The OpenMP Memory Model

T

private
memory

T

private
memory

T T
private

memory

private
memory

T

private
memory

Shared
Memory

accelerator
memory

PU

PU

PU

PU

272

OpenMP Tutorial

Members of the OpenMP Language Committee
4

• OpenMP programs start with
just one thread: The Master.

• Worker threads are spawned
at Parallel Regions, together
with the Master they form the
Team of threads.

• In between Parallel Regions the
Worker threads are put to sleep.
The OpenMP Runtime takes care
of all thread management work.

• Concept: Fork-Join.

• Allows for an incremental parallelization!

The OpenMP Execution Model

Master Thread Serial Part

Parallel
RegionSlave

ThreadsSlave
ThreadsWorker
Threads

Parallel
Region

Serial Part

273

OpenMP Tutorial

Members of the OpenMP Language Committee
5

◼ Specification of number of threads:

– Environment variable: OMP_NUM_THREADS=…

– Or: Via num_threads clause:

add num_threads(num) to the

parallel construct

• The parallelism has to be expressed explicitly.

• Structured Block

– Exactly one entry point at the top

– Exactly one exit point at the bottom

– Branching in or out is not allowed

– Terminating the program is allowed
(abort / exit)

Parallel Region and Structured Blocks

C/C++

#pragma omp parallel

{

...

structured block

...

}

Fortran

!$omp parallel

...

structured block

...

!$omp end parallel

274

OpenMP Tutorial

Members of the OpenMP Language Committee
6

• From within a shell, global setting of the number of threads:

export OMP_NUM_THREADS=4

./program

• From within a shell, one-time setting of the number of threads:

OMP_NUM_THREADS=4 ./program

Starting OpenMP Programs on Linux

275

OpenMP Tutorial

Members of the OpenMP Language Committee
7

Programming OpenMP

Tasking Introduction

276

OpenMP Tutorial

Members of the OpenMP Language Committee
8

◼ Lets solve Sudoku puzzles with brute multi-core force

Sudoko for Lazy Computer Scientists

◼ (1) Search an empty field

◼ (2) Try all numbers:

◼ (2 a) Check Sudoku

◼ If invalid: skip

◼ If valid: Go to next field

◼ Wait for completion

277

OpenMP Tutorial

Members of the OpenMP Language Committee
9

◼ This parallel algorithm finds all valid solutions

Parallel Brute-force Sudoku

◼ (1) Search an empty field

◼ (2) Try all numbers:

◼ (2 a) Check Sudoku

◼ If invalid: skip

◼ If valid: Go to next field

◼ Wait for completion

first call contained in a
#pragma omp parallel

#pragma omp single

such that one tasks starts the
execution of the algorithm

#pragma omp task

needs to work on a new copy
of the Sudoku board

#pragma omp taskwait

wait for all child tasks

278

OpenMP Tutorial

Members of the OpenMP Language Committee
10

Performance Evaluation

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8 9 10 11 12 16 24 32

Sp
ee

d
u

p

R
u

n
ti

m
e

[s
ec

]
fo

r
1

6
x1

6

#threads

Sudoku on 2x Intel Xeon E5-2650 @2.0 GHz

Intel C++ 13.1, scatter binding speedup: Intel C++ 13.1, scatter binding

Is this the best
we can can do?

279

OpenMP Tutorial

Members of the OpenMP Language Committee
11

Tasking Overview

280

OpenMP Tutorial

Members of the OpenMP Language Committee
12

◼ Tasks are work units whose execution

→ may be deferred or…

→ … can be executed immediately

◼ Tasks are composed of

→ code to execute, a data environment (initialized at creation time), internal control variables (ICVs)

◼ Tasks are created…

… when reaching a parallel region → implicit tasks are created (per thread)

… when encountering a task construct → explicit task is created

… when encountering a taskloop construct → explicit tasks per chunk are created

… when encountering a target construct → target task is created

What is a task in OpenMP?

281

OpenMP Tutorial

Members of the OpenMP Language Committee
13

◼ Supports unstructured parallelism

→ unbounded loops

→ recursive functions

◼ Several scenarios are possible:

→ single creator, multiple creators, nested tasks (tasks & WS)

◼ All threads in the team are candidates to execute tasks

Tasking execution model

while (<expr>) {

...

}

void myfunc(<args>)

{

...; myfunc(<newargs>); ...;

}

Task pool

Parallel Team

#pragma omp parallel

#pragma omp master

while (elem != NULL) {

#pragma omp task

compute(elem);

elem = elem->next;

}

◼ Example (unstructured parallelism)

282

OpenMP Tutorial

Members of the OpenMP Language Committee
14

!$omp task [clause[[,] clause]...]

…structured-block…

!$omp end task

Synchronization

Cutoff Strategies

Data Environment

◼ Deferring (or not) a unit of work (executable for any member of the team)

◼ Where clause is one of:

The task construct

→ if(scalar-expression)

→ mergeable

→ final(scalar-expression)

→ depend(dep-type: list)

→ untied

→ priority(priority-value)

→ affinity(list)

→ private(list)

→ firstprivate(list)

→ shared(list)

→ default(shared | none)

→ in_reduction(r-id: list)

→ allocate([allocator:] list)

→ detach(event-handler)

#pragma omp task [clause[[,] clause]...]

{structured-block}

Task Scheduling
Miscellaneous

283

OpenMP Tutorial

Members of the OpenMP Language Committee
15

◼ Tasks are tied by default (when no untied clause present)

→ tied tasks are executed always by the same thread (not necessarily creator)

→ tied tasks may run into performance problems

◼ Programmers may specify tasks to be untied (relax scheduling)

→ can potentially switch to any thread (of the team)

→ bad mix with thread based features: thread-id, threadprivate, critical regions...

→ gives the runtime more flexibility to schedule tasks

→ but most of OpenMP implementations doesn’t “honor” untied 

Task scheduling: tied vs untied tasks

#pragma omp task untied

{structured-block}

284

OpenMP Tutorial

Members of the OpenMP Language Committee
16

◼ Task scheduling points (and the taskyield directive)

→ tasks can be suspended/resumed at TSPs → some additional constraints to avoid deadlock problems

→ implicit scheduling points (creation, synchronization, ...)

→ explicit scheduling point: the taskyield directive

◼ Scheduling [tied/untied] tasks: example

Task scheduling: taskyield directive

#pragma omp taskyield

#pragma omp parallel

#pragma omp single

{

#pragma omp task

{

foo();

#pragma omp taskyield

bar()

}

}

single

foo()

bar()

untied:

single

foo() bar()tied:

untied

(default)

285

OpenMP Tutorial

Members of the OpenMP Language Committee
17

◼ The taskwait directive (shallow task synchronization)

→ It is a stand-alone directive

→ wait on the completion of child tasks of the current task; just direct children, not all descendant tasks;

includes an implicit task scheduling point (TSP)

Task synchronization: taskwait directive

#pragma omp taskwait

#pragma omp parallel

#pragma omp single

{

#pragma omp task

{

#pragma omp task

{ … }

#pragma omp task

{ … …}

#pragma omp taskwait

}

} // implicit barrier will wait for C.x

C.1 C.2

wait for…

A

: A

{ … #C.1; #C.2; …}

B C
: B

: C

286

OpenMP Tutorial

Members of the OpenMP Language Committee
18

◼ OpenMP barrier (implicit or explicit)

→ All tasks created by any thread of the current team are guaranteed to be completed at barrier exit

→ And all other implicit barriers at parallel, sections, for, single, etc…

Task synchronization: barrier semantics

#pragma omp barrier

287

OpenMP Tutorial

Members of the OpenMP Language Committee
19

◼ The taskgroup construct (deep task synchronization)

→ attached to a structured block; completion of all descendants of the current task; TSP at the end

→ where clause (could only be): reduction(reduction-identifier: list-items)

Task synchronization: taskgroup construct

#pragma omp taskgroup [clause[[,] clause]...]

{structured-block}

#pragma omp parallel

#pragma omp single

{

#pragma omp taskgroup

{

#pragma omp task

{ … }

#pragma omp task

{ … #C.1; #C.2; …}

} // end of taskgroup

}

wait for…

B C

C.1 C.2

A

:B

:C

: A

288

OpenMP Tutorial

Members of the OpenMP Language Committee
20

Data Environment

289

OpenMP Tutorial

Members of the OpenMP Language Committee
21

◼ Explicit data-sharing clauses (shared, private and firstprivate)

◼ If default clause present, what the clause says

→ shared: data which is not explicitly included in any other data sharing clause will be shared

→ none: compiler will issue an error if the attribute is not explicitly set by the programmer (very useful!!!)

Explicit data-sharing clauses

#pragma omp task shared(a)

{

// Scope of a: shared

}

#pragma omp task private(b)

{

// Scope of b: private

}

#pragma omp task firstprivate(c)

{

// Scope of c: firstprivate

}

#pragma omp task default(shared)

{

// Scope of all the references, not explicitly

// included in any other data sharing clause,

// and with no pre-determined attribute: shared

}

#pragma omp task default(none)

{

// Compiler will force to specify the scope for

// every single variable referenced in the context

}

Hint: Use default(none) to be forced to think about every
variable if you do not see clearly.

290

OpenMP Tutorial

Members of the OpenMP Language Committee
22

◼ threadprivate variables are threadprivate (1)

◼ dynamic storage duration objects are shared (malloc, new,…) (2)

◼ static data members are shared (3)

◼ variables declared inside the construct

→static storage duration variables are shared (4)

→automatic storage duration variables are private (5)

◼ the loop iteration variable(s)…

Pre-determined data-sharing attributes

void foo(void){

static int s = MN;

}

#pragma omp task

{

foo(); // s@foo(): shared

}

int A[SIZE];

#pragma omp threadprivate(A)

// ...

#pragma omp task

{

// A: threadprivate

}

int *p;

p = malloc(sizeof(float)*SIZE);

#pragma omp task

{

// *p: shared

}

#pragma omp task

{

int x = MN;

// Scope of x: private

}

#pragma omp task

{

static int y;

// Scope of y: shared

}

1 2 3

4

5

291

OpenMP Tutorial

Members of the OpenMP Language Committee
23

Implicit data-sharing attributes (in-practice)

int a = 1;

void foo() {

int b = 2, c = 3;

#pragma omp parallel private(b)

{

int d = 4;

#pragma omp task

{

int e = 5;

// Scope of a: shared

// Scope of b: firstprivate

// Scope of c: shared

// Scope of d: firstprivate

// Scope of e: private

}

}

}

◼ (in-practice) variable values within the task:

→ value of a: 1

→ value of b: x // undefined (undefined in parallel)

→ value of c: 3

→ value of d: 4

→ value of e: 5

◼ Implicit data-sharing rules for the task region

→ the shared attribute is lexically inherited

→ in any other case the variable is firstprivate

→ Pre-determined rules (could not change)

→ Explicit data-sharing clauses (+ default)

→ Implicit data-sharing rules

292

OpenMP Tutorial

Members of the OpenMP Language Committee
24

Task reductions (using taskgroup)
int res = 0;
node_t* node = NULL;
...
#pragma omp parallel
{

#pragma omp single
{

#pragma omp taskgroup task_reduction(+: res)
{ // [1]

while (node) {
#pragma omp task in_reduction(+: res) \

firstprivate(node)
{ // [2]

res += node->value;
}
node = node->next;

}
} // [3]

}
}

◼ Reduction operation

→ perform some forms of recurrence calculations

→ associative and commutative operators

◼ The (taskgroup) scoping reduction clause

→ Register a new reduction at [1]

→ Computes the final result after [3]

◼ The (task) in_reduction clause [participating]

→ Task participates in a reduction operation [2]

#pragma omp task in_reduction(op: list)

{structured-block}

#pragma omp taskgroup task_reduction(op: list)

{structured-block}

293

OpenMP Tutorial

Members of the OpenMP Language Committee
25

Task reductions (+ modifiers)
int res = 0;
node_t* node = NULL;
...
#pragma omp parallel reduction(task,+: res)
{ // [1][2]

#pragma omp single
{

#pragma omp taskgroup
{

while (node) {
#pragma omp task in_reduction(+: res) \

firstprivate(node)
{ // [3]

res += node->value;
}
node = node->next;

}
}

}
} // [4]

◼ Reduction modifiers

→ Former reductions clauses have been extended

→ task modifier allows to express task reductions

→ Registering a new task reduction [1]

→ Implicit tasks participate in the reduction [2]

→ Compute final result after [4]

◼ The (task) in_reduction clause [participating]

→ Task participates in a reduction operation [3]

#pragma omp task in_reduction(op: list)

{structured-block}

294

OpenMP Tutorial

Members of the OpenMP Language Committee
26

Tasking illustrated

295

OpenMP Tutorial

Members of the OpenMP Language Committee
27

◼Only one Task / Thread enters fib() from main(), it is responsible for

creating the two initial work tasks

◼ Taskwait is required, as otherwise x and y would get lost

Fibonacci illustrated
14 int fib(int n) {

15 if (n < 2) return n;

16 int x, y;

17 #pragma omp task shared(x)

18 {

19 x = fib(n - 1);

20 }

21 #pragma omp task shared(y)

22 {

23 y = fib(n - 2);

24 }

25 #pragma omp taskwait

26 return x+y;

27 }

1 int main(int argc,

2 char* argv[])

3 {

4 [...]

5 #pragma omp parallel

6 {

7 #pragma omp single

8 {

9 fib(input);

10 }

11 }

12 [...]

13 }

296

OpenMP Tutorial

Members of the OpenMP Language Committee
28

◼ T1 enters fib(4)

fib(4)
◼ T1 creates tasks for

fib(3) and fib(2)

Task Queue

fib(3) fib(2)

◼ T1 and T2 execute tasks

from the queue

fib(3) fib(2)◼ T1 and T2 create 4 new

tasks

fib(2) fib(1) fib(1) fib(0)

◼ T1 - T4 execute tasks

fib(2) fib(1) fib(1) fib(0)

297

OpenMP Tutorial

Members of the OpenMP Language Committee
29

◼ T1 enters fib(4)

fib(4)
◼ T1 creates tasks for

fib(3) and fib(2)

◼ T1 and T2 execute tasks

from the queue

fib(3) fib(2)◼ T1 and T2 create 4 new

tasks

◼ T1 - T4 execute tasks

fib(2) fib(1) fib(1) fib(0)◼ …

fib(1) fib(0)

298

OpenMP Tutorial

Members of the OpenMP Language Committee
30

The taskloop Construct

299

OpenMP Tutorial

Members of the OpenMP Language Committee
31

Tasking use case: saxpy (taskloop)

#pragma omp parallel

#pragma omp single

for (i = 0; i<SIZE; i+=TS) {

UB = SIZE < (i+TS)?SIZE:i+TS;

#pragma omp task private(ii) \

firstprivate(i,UB) shared(S,A,B)

for (ii=i; ii<UB; ii++) {

A[ii]=A[ii]*B[ii]*S;

}

}

◼ Difficult to determine grain

→ 1 single iteration → to fine

→ whole loop → no parallelism

◼ Manually transform the code

→ blocking techniques

◼ Improving programmability

→ OpenMP taskloop

→ Hiding the internal details

→ Grain size ~ Tile size (TS) → but implementation

decides exact grain size

for (i = 0; i<SIZE; i+=1) {

A[i]=A[i]*B[i]*S;

}

for (i = 0; i<SIZE; i+=TS) {

UB = SIZE < (i+TS)?SIZE:i+TS;

for (ii=i; ii<UB; ii++) {

A[ii]=A[ii]*B[ii]*S;

}

}

#pragma omp taskloop grainsize(TS)

for (i = 0; i<SIZE; i+=1) {

A[i]=A[i]*B[i]*S;

}

300

OpenMP Tutorial

Members of the OpenMP Language Committee
32

◼ Task generating construct: decompose a loop into chunks, create a task for each loop chunk

◼ Where clause is one of:

!$omp taskloop [clause[[,] clause]…]

…structured-do-loops…

!$omp end taskloop

Scheduler (R/H)

Cutoff Strategies

Data Environment

The taskloop Construct

→ if(scalar-expression)

→ final(scalar-expression)

→ mergeable

→ untied

→ priority(priority-value)

→ collapse(n)

→ nogroup

→ allocate([allocator:] list)

→ shared(list)

→ private(list)

→ firstprivate(list)

→ lastprivate(list)

→ default(sh | pr | fp | none)

→ reduction(r-id: list)

→ in_reduction(r-id: list)

→ grainsize(grain-size)

→ num_tasks(num-tasks)

#pragma omp taskloop [clause[[,] clause]…]

{structured-for-loops}

Chunks/Grain

Miscellaneous

301

OpenMP Tutorial

Members of the OpenMP Language Committee
33

Worksharing vs. taskloop constructs (1/2)
subroutine worksharing

integer :: x

integer :: i

integer, parameter :: T = 16

integer, parameter :: N = 1024

x = 0

!$omp parallel shared(x) num_threads(T)

!$omp do

do i = 1,N

!$omp atomic

x = x + 1

!$omp end atomic

end do

!$omp end do

!$omp end parallel

write (*,'(A,I0)') 'x = ', x

end subroutine

subroutine taskloop

integer :: x

integer :: i

integer, parameter :: T = 16

integer, parameter :: N = 1024

x = 0

!$omp parallel shared(x) num_threads(T)

!$omp taskloop

do i = 1,N

!$omp atomic

x = x + 1

!$omp end atomic

end do

!$omp end taskloop

!$omp end parallel

write (*,'(A,I0)') 'x = ', x

end subroutine

302

OpenMP Tutorial

Members of the OpenMP Language Committee
34

Worksharing vs. taskloop constructs (2/2)
subroutine worksharing

integer :: x

integer :: i

integer, parameter :: T = 16

integer, parameter :: N = 1024

x = 0

!$omp parallel shared(x) num_threads(T)

!$omp do

do i = 1,N

!$omp atomic

x = x + 1

!$omp end atomic

end do

!$omp end do

!$omp end parallel

write (*,'(A,I0)') 'x = ', x

end subroutine

subroutine taskloop

integer :: x

integer :: i

integer, parameter :: T = 16

integer, parameter :: N = 1024

x = 0

!$omp parallel shared(x) num_threads(T)

!$omp single

!$omp taskloop

do i = 1,N

!$omp atomic

x = x + 1

!$omp end atomic

end do

!$omp end taskloop

!$omp end single

!$omp end parallel

write (*,'(A,I0)') 'x = ', x

end subroutine

303

OpenMP Tutorial

Members of the OpenMP Language Committee
35

◼ Clause: grainsize(grain-size)

→ Chunks have at least grain-size iterations

→ Chunks have maximum 2x grain-size iterations

Taskloop decomposition approaches

int TS = 4 * 1024;

#pragma omp taskloop grainsize(TS)

for (i = 0; i<SIZE; i+=1) {

A[i]=A[i]*B[i]*S;

}

◼ Clause: num_tasks(num-tasks)

→ Create num-tasks chunks

→ Each chunk must have at least one iteration

int NT = 4 * omp_get_num_threads();

#pragma omp taskloop num_tasks(NT)

for (i = 0; i<SIZE; i+=1) {

A[i]=A[i]*B[i]*S;

}

◼ If none of previous clauses is present, the number of chunks and the number of iterations per chunk

is implementation defined

◼ Additional considerations:

→ The order of the creation of the loop tasks is unspecified

→ Taskloop creates an implicit taskgroup region; nogroup → no implicit taskgroup region is created

304

OpenMP Tutorial

Members of the OpenMP Language Committee
36

◼ The collapse clause in the taskloop construct

→ Number of loops associated with the taskloop construct (n)

→ Loops are collapsed into one larger iteration space

→ Then divided according to the grainsize and num_tasks

◼ Intervening code between any two associated loops

→ at least once per iteration of the enclosing loop

→ at most once per iteration of the innermost loop

Collapsing iteration spaces with taskloop

#pragma omp taskloop collapse(n)

{structured-for-loops}

#pragma omp taskloop collapse(2)

for (i = 0; i<SX; i+=1) {

for (j= 0; i<SY; j+=1) {

for (k = 0; i<SZ; k+=1) {

A[f(i,j,k)]=<expression>;

}

}

}

#pragma omp taskloop

for (ij = 0; i<SX*SY; ij+=1) {

for (k = 0; i<SZ; k+=1) {

i = index_for_i(ij);

j = index_for_j(ij);

A[f(i,j,k)]=<expression>;

}

}

305

OpenMP Tutorial

Members of the OpenMP Language Committee
37

◼ Clause: reduction(r-id: list)

→ It defines the scope of a new reduction

→ All created tasks participate in the reduction

→ It cannot be used with the nogroup clause

◼ Clause: in_reduction(r-id: list)

→ Reuse an already defined reduction scope

→ All created tasks participate in the reduction

→ It can be used with the nogroup* clause, but it

is user responsibility to guarantee result

Task reductions (using taskloop)

double dotprod(int n, double *x, double *y) {

double r = 0.0;

#pragma omp taskloop reduction(+: r)

for (i = 0; i < n; i++)

r += x[i] * y[i];

return r;

}

double dotprod(int n, double *x, double *y) {

double r = 0.0;

#pragma omp taskgroup task_reduction(+: r)

{

#pragma omp taskloop in_reduction(+: r)*

for (i = 0; i < n; i++)

r += x[i] * y[i];

}

return r;

}

306

OpenMP Tutorial

Members of the OpenMP Language Committee
38

◼ Task generating construct: decompose a loop into chunks, create a task for each loop chunk

◼ Each generated task will apply (internally) SIMD to each loop chunk

→ C/C++ syntax:

→ Fortran syntax:

◼ Where clause is any of the clauses accepted by taskloop or simd directives

Composite construct: taskloop simd

!$omp taskloop simd [clause[[,] clause]…]

…structured-do-loops…

!$omp end taskloop

#pragma omp taskloop simd [clause[[,] clause]…]

{structured-for-loops}

307

OpenMP Tutorial

Members of the OpenMP Language Committee
39

Improving Tasking Performance:

Task dependences

308

OpenMP Tutorial

Members of the OpenMP Language Committee
40

◼ Task dependences as a way to define task-execution constraints

Motivation

int x = 0;

#pragma omp parallel

#pragma omp single

{

#pragma omp task depend(in: x)

std::cout << x << std::endl;

#pragma omp task depend(inout: x)

x++;

}

OpenMP 4.0int x = 0;

#pragma omp parallel

#pragma omp single

{

#pragma omp task

std::cout << x << std::endl;

#pragma omp task

x++;

}

OpenMP 3.1

OpenMP 3.1

OpenMP 4.0

#pragma omp taskwait

t1

t2

t1

t2

Task’s creation time

Task’s execution time

309

OpenMP Tutorial

Members of the OpenMP Language Committee
41

◼ Task dependences as a way to define task-execution constraints

Motivation

int x = 0;

#pragma omp parallel

#pragma omp single

{

#pragma omp task depend(in: x)

std::cout << x << std::endl;

#pragma omp task depend(inout: x)

x++;

}

OpenMP 4.0int x = 0;

#pragma omp parallel

#pragma omp single

{

#pragma omp task

std::cout << x << std::endl;

#pragma omp taskwait

#pragma omp task

x++;

}

OpenMP 3.1

t1

t2

t1

t2

Task’s creation time

Task’s execution time

OpenMP 3.1

OpenMP 4.0

Task dependences can help us to remove

“strong” synchronizations, increasing the look

ahead and, frequently, the parallelism!!!!

310

OpenMP Tutorial

Members of the OpenMP Language Committee
42

Motivation: Cholesky factorization
void cholesky(int ts, int nt, double* a[nt][nt]) {

for (int k = 0; k < nt; k++) {

// Diagonal Block factorization

#pragma omp task depend(inout: a[k][k])

potrf(a[k][k], ts, ts);

// Triangular systems

for (int i = k + 1; i < nt; i++) {

#pragma omp task depend(in: a[k][k])

depend(inout: a[k][i])

trsm(a[k][k], a[k][i], ts, ts);

}

// Update trailing matrix

for (int i = k + 1; i < nt; i++) {

for (int j = k + 1; j < i; j++) {

#pragma omp task depend(inout: a[j][i])

depend(in: a[k][i], a[k][j])

dgemm(a[k][i], a[k][j], a[j][i], ts, ts);

}

#pragma omp task depend(inout: a[i][i])

depend(in: a[k][i])

syrk(a[k][i], a[i][i], ts, ts);

}

}

} OpenMP 4.0

void cholesky(int ts, int nt, double* a[nt][nt]) {

for (int k = 0; k < nt; k++) {

// Diagonal Block factorization

potrf(a[k][k], ts, ts);

// Triangular systems

for (int i = k + 1; i < nt; i++) {

#pragma omp task

trsm(a[k][k], a[k][i], ts, ts);

}

#pragma omp taskwait

// Update trailing matrix

for (int i = k + 1; i < nt; i++) {

for (int j = k + 1; j < i; j++) {

#pragma omp task

dgemm(a[k][i], a[k][j], a[j][i], ts, ts);

}

#pragma omp task

syrk(a[k][i], a[i][i], ts, ts);

}

#pragma omp taskwait

}

}

OpenMP 3.1

nt

nt

ts

ts

ts

ts

311

OpenMP Tutorial

Members of the OpenMP Language Committee
43

Motivation: Cholesky factorization
void cholesky(int ts, int nt, double* a[nt][nt]) {

for (int k = 0; k < nt; k++) {

// Diagonal Block factorization

#pragma omp task depend(inout: a[k][k])

potrf(a[k][k], ts, ts);

// Triangular systems

for (int i = k + 1; i < nt; i++) {

#pragma omp task depend(in: a[k][k])

depend(inout: a[k][i])

trsm(a[k][k], a[k][i], ts, ts);

}

// Update trailing matrix

for (int i = k + 1; i < nt; i++) {

for (int j = k + 1; j < i; j++) {

#pragma omp task depend(inout: a[j][i])

depend(in: a[k][i], a[k][j])

dgemm(a[k][i], a[k][j], a[j][i], ts, ts);

}

#pragma omp task depend(inout: a[i][i])

depend(in: a[k][i])

syrk(a[k][i], a[i][i], ts, ts);

}

}

} OpenMP 4.0

void cholesky(int ts, int nt, double* a[nt][nt]) {

for (int k = 0; k < nt; k++) {

// Diagonal Block factorization

potrf(a[k][k], ts, ts);

// Triangular systems

for (int i = k + 1; i < nt; i++) {

#pragma omp task

trsm(a[k][k], a[k][i], ts, ts);

}

#pragma omp taskwait

// Update trailing matrix

for (int i = k + 1; i < nt; i++) {

for (int j = k + 1; j < i; j++) {

#pragma omp task

dgemm(a[k][i], a[k][j], a[j][i], ts, ts);

}

#pragma omp task

syrk(a[k][i], a[i][i], ts, ts);

}

#pragma omp taskwait

}

}

OpenMP 3.1

nt

nt

ts

ts

ts

ts

Using 2017 Intel compiler

312

OpenMP Tutorial

Members of the OpenMP Language Committee
4444

What’s in the spec

313

OpenMP Tutorial

Members of the OpenMP Language Committee
45

What’s in the spec: a bit of history

• The depend clause was added to the

target constructs

• Support to doacross loops

OpenMP 4.5

• The depend clause was added

to the task construct

OpenMP 4.0

• lvalue expressions in the depend clause

• New dependency type: mutexinoutset

• Iterators were added to the depend clause

• The depend clause was added to the taskwait construct

• Dependable objects

OpenMP 5.0

314

OpenMP Tutorial

Members of the OpenMP Language Committee
46

depend([depend-modifier,] dependency-type: list-items)

where:

→ depend-modifier is used to define iterators

→ dependency-type may be: in, out, inout, mutexinoutset and depobj

→ A list-item may be:

• C/C++: A lvalue expr or an array section depend(in: x, v[i], *p, w[10:10])

• Fortran: A variable or an array section depend(in: x, v(i), w(10:20))

What’s in the spec: syntax depend clause

315

OpenMP Tutorial

Members of the OpenMP Language Committee
47

◼ A task cannot be executed until all its predecessor tasks are completed

◼ If a task defines an in dependence over a list-item

→ the task will depend on all previously generated sibling tasks that reference that list-item in an out or

inout dependence

◼ If a task defines an out/inout dependence over list-item

→ the task will depend on all previously generated sibling tasks that reference that list-item in an in, out or

inout dependence

What’s in the spec: sema depend clause (1)

316

OpenMP Tutorial

Members of the OpenMP Language Committee
48

◼ A task cannot be executed until all its predecessor tasks are completed

◼ If a task defines an in dependence over a variable

→ the task will depend on all previously generated sibling tasks that reference at least one of the list items in

an out or inout dependence

◼ If a task defines an out/inout dependence over a variable

→ the task will depend on all previously generated sibling tasks that reference at least one of the list items in

an in, out or inout dependence

What’s in the spec: depend clause (1)

int x = 0;

#pragma omp parallel

#pragma omp single

{

#pragma omp task depend(inout: x) //T1

{ ... }

#pragma omp task depend(in: x) //T2

{ ... }

#pragma omp task depend(in: x) //T3

{ ... }

#pragma omp task depend(inout: x) //T4

{ ... }

}

T1

T2 T3

T4

317

OpenMP Tutorial

Members of the OpenMP Language Committee
49

◼ New dependency type: mutexinoutset

What’s in the spec: depend clause (2)

int x = 0, y = 0, res = 0;

#pragma omp parallel

#pragma omp single

{

#pragma omp task depend(out: res) //T0

res = 0;

#pragma omp task depend(out: x) //T1

long_computation(x);

#pragma omp task depend(out: y) //T2

short_computation(y);

#pragma omp task depend(in: x)

res += x;

#pragma omp task depend(in: y)

res += y;

#pragma omp task depend(in: res) //T5

std::cout << res << std::endl;

}

T3

T4

T5

T1 T2T0

depend(mutexinoutset: res) //T3depend(inout: res) //T3

depend(inout: res) //T4depend(mutexinoutset: res) //T4

T3

T4

1. inoutset property: tasks with a mutexinoutset

dependence create a cloud of tasks (an inout set) that

synchronizes with previous & posterior tasks that

dependent on the same list item

2. mutex property: Tasks inside the inout set can be

executed in any order but with mutual exclusion

318

OpenMP Tutorial

Members of the OpenMP Language Committee
50

What’s in the spec: depend clause (3)

◼ Task dependences are

defined among sibling tasks

//test1.cc

int x = 0;

#pragma omp parallel

#pragma omp single

{

#pragma omp task //T1

{

#pragma omp task depend(inout: x) //T1.1

x++;

#pragma omp taskwait

}

#pragma omp task depend(in: x) //T2

std::cout << x << std::endl;

}

depend(inout: x)

//test2.cc

int a[100] = {0};

#pragma omp parallel

#pragma omp single

{

#pragma omp task depend(inout: a[50:99]) //T1

compute(/* from */ &a[50], /*elems*/ 50);

#pragma omp task depend(in: a) //T2

print(/* from */ a, /* elem */ 100);

}

◼ List items used in the depend

clauses […] must indicate identical

or disjoint storage

T1

T2

???

319

OpenMP Tutorial

Members of the OpenMP Language Committee
51

What’s in the spec: depend clause (4)

◼ Iterators + deps: a way to define a dynamic number of dependences

std::list<int> list = ...;

int n = list.size();

#pragma omp parallel

#pragma omp single

{

for (int i = 0; i < n; ++i)

#pragma omp task depend(out: list[i]) //Px

compute_elem(list[i]);

#pragma omp task

print_elems(list);

}

depend(in: ???) //C

P1 PnP2 ...

C

???

depend(iterator(j=0:n), in : list[j]) //C

It seems innocent but it’s not:
depend(out: list.operator[](i))

Equivalent to:
depend(in: list[0], list[1], …, list[n-1])

320

OpenMP Tutorial

Members of the OpenMP Language Committee
5252

Philosophy

321

OpenMP Tutorial

Members of the OpenMP Language Committee
53

◼ Task dependences are orthogonal to data-sharings

→ Dependences as a way to define a task-execution constraints

→ Data-sharings as how the data is captured to be used inside the task

Philosophy: data-flow model

// test1.cc

int x = 0;

#pragma omp parallel

#pragma omp single

{

#pragma omp task depend(inout: x) \

firstprivate(x) //T1

x++;

#pragma omp task depend(in: x) //T2

std::cout << x << std::endl;

}

// test2.cc

int x = 0;

#pragma omp parallel

#pragma omp single

{

#pragma omp task depend(inout: x) //T1

x++;

#pragma omp task depend(in: x) \

firstprivate(x) //T2

std::cout << x << std::endl;

}

OK, but it always prints ‘0’ :(We have a data-race!!

322

OpenMP Tutorial

Members of the OpenMP Language Committee
54

◼ Properly combining dependences and data-sharings allow us to define

a task data-flow model

→Data that is read in the task → input dependence

→Data that is written in the task → output dependence

◼ A task data-flow model

→Enhances the composability

→Eases the parallelization of new regions of your code

Philosophy: data-flow model (2)

323

OpenMP Tutorial

Members of the OpenMP Language Committee
55

//test1_v2.cc

int x = 0, y = 0;

#pragma omp parallel

#pragma omp single

{

#pragma omp task depend(inout: x) //T1

{

x++;

y++;

}

#pragma omp task depend(in: x) //T2

std::cout << x << std::endl;

#pragma omp task depend(in: y) //T3

std::cout << y << std::endl;

}

//test1_v1.cc

int x = 0, y = 0;

#pragma omp parallel

#pragma omp single

{

#pragma omp task depend(inout: x) //T1

{

x++;

y++; // !!!

}

#pragma omp task depend(in: x) //T2

std::cout << x << std::endl;

#pragma omp taskwait

std::cout << y << std::endl;

}

//test1_v3.cc

int x = 0, y = 0;

#pragma omp parallel

#pragma omp single

{

#pragma omp task depend(inout: x) //T1

{

x++;

y++;

}

#pragma omp task depend(in: x) //T2

std::cout << x << std::endl;

#pragma omp task depend(in: x) //T3

std::cout << y << std::endl;

}

//test1_v4.cc

int x = 0, y = 0;

#pragma omp parallel

#pragma omp single

{

#pragma omp task depend(inout: x, y) //T1

{

x++;

y++;

}

#pragma omp task depend(in: x) //T2

std::cout << x << std::endl;

#pragma omp task depend(in: y) //T3

std::cout << y << std::endl;

}

If all tasks are properly annotated,

we only have to worry about the

dependendences & data-sharings of the new task!!!

Philosophy: data-flow model (3)

324

OpenMP Tutorial

Members of the OpenMP Language Committee
5656

Use case

325

OpenMP Tutorial

Members of the OpenMP Language Committee
57

Use case: intro to Gauss-seidel

void serial_gauss_seidel(int tsteps, int size, int (*p)[size]) {

for (int t = 0; t < tsteps; ++t) {

for (int i = 1; i < size-1; ++i) {

for (int j = 1; j < size-1; ++j) {

p[i][j] = 0.25 * (p[i][j-1] * // left

p[i][j+1] * // right

p[i-1][j] * // top

p[i+1][j]); // bottom

}

}

}

}

For a specific t, i and j

Access pattern analysis

tn

Each cell depends on:

- two cells (north & west) that are

computed in the current time step, and

- two cells (south & east) that were

computed in the previous time step

326

OpenMP Tutorial

Members of the OpenMP Language Committee
58

Use case: Gauss-seidel (2)

void serial_gauss_seidel(int tsteps, int size, int (*p)[size]) {

for (int t = 0; t < tsteps; ++t) {

for (int i = 1; i < size-1; ++i) {

for (int j = 1; j < size-1; ++j) {

p[i][j] = 0.25 * (p[i][j-1] * // left

p[i][j+1] * // right

p[i-1][j] * // top

p[i+1][j]); // bottom

}

}

}

}

For an specific t

We can exploit the wavefront to

obtain parallelism!!

1st parallelization strategy

tn

327

OpenMP Tutorial

Members of the OpenMP Language Committee
59

Use case : Gauss-seidel (3)
void gauss_seidel(int tsteps, int size, int TS, int (*p)[size]) {

int NB = size / TS;

#pragma omp parallel

for (int t = 0; t < tsteps; ++t) {

// First NB diagonals

for (int diag = 0; diag < NB; ++diag) {

#pragma omp for

for (int d = 0; d <= diag; ++d) {

int ii = d;

int jj = diag – d;

for (int i = 1+ii*TS; i < ((ii+1)*TS); ++i)

for (int j = 1+jj*TS; i < ((jj+1)*TS); ++j)

p[i][j] = 0.25 * (p[i][j-1] * p[i][j+1] *

p[i-1][j] * p[i+1][j]);

}

}

// Lasts NB diagonals

for (int diag = NB-1; diag >= 0; --diag) {

// Similar code to the previous loop

}

}

}

328

OpenMP Tutorial

Members of the OpenMP Language Committee
60

Use case : Gauss-seidel (4)

void serial_gauss_seidel(int tsteps, int size, int (*p)[size]) {

for (int t = 0; t < tsteps; ++t) {

for (int i = 1; i < size-1; ++i) {

for (int j = 1; j < size-1; ++j) {

p[i][j] = 0.25 * (p[i][j-1] * // left

p[i][j+1] * // right

p[i-1][j] * // top

p[i+1][j]); // bottom

}

}

}

}

2nd parallelization strategy

multiple time iterations

We can exploit the wavefront

of multiple time steps to obtain MORE

parallelism!!

tn

tn+1

tn+2

tn+3

329

OpenMP Tutorial

Members of the OpenMP Language Committee
61

void gauss_seidel(int tsteps, int size, int TS, int (*p)[size]) {

int NB = size / TS;

#pragma omp parallel

#pragma omp single

for (int t = 0; t < tsteps; ++t)

for (int ii=1; ii < size-1; ii+=TS)

for (int jj=1; jj < size-1; jj+=TS) {

#pragma omp task depend(inout: p[ii:TS][jj:TS])

depend(in: p[ii-TS:TS][jj:TS], p[ii+TS:TS][jj:TS],

p[ii:TS][jj-TS:TS], p[ii:TS][jj:TS])

{

for (int i=ii; i<(1+ii)*TS; ++i)

for (int j=jj; j<(1+jj)*TS; ++j)

p[i][j] = 0.25 * (p[i][j-1] * p[i][j+1] *

p[i-1][j] * p[i+1][j]);

}

}

}

Use case : Gauss-seidel (5)
inner matrix region

Q: Why do the input dependences
depend on the whole block rather

than just a column/row?

vs

330

OpenMP Tutorial

Members of the OpenMP Language Committee
62

void gauss_seidel(int tsteps, int size, int TS, int (*p)[size]) {

int NB = size / TS;

#pragma omp parallel

#pragma omp single

for (int t = 0; t < tsteps; ++t)

for (int ii=1; ii < size-1; ii+=TS)

for (int jj=1; jj < size-1; jj+=TS) {

#pragma omp task depend(inout: p[ii:TS][jj:TS])

depend(in: p[ii-TS:TS][jj:TS], p[ii+TS:TS][jj:TS],

p[ii:TS][jj-TS:TS], p[ii:TS][jj:TS])

{

for (int i=ii; i<(1+ii)*TS; ++i)

for (int j=jj; j<(1+jj)*TS; ++j)

p[i][j] = 0.25 * (p[i][j-1] * p[i][j+1] *

p[i-1][j] * p[i+1][j]);

}

}

}

Use case : Gauss-seidel (5)
inner matrix region

Q: Why do the input dependences
depend on the whole block rather

than just a column/row?

vs

331

OpenMP Tutorial

Members of the OpenMP Language Committee
63

Improving Tasking Performance:

Cutoff clauses and strategies

332

OpenMP Tutorial

Members of the OpenMP Language Committee
64

OpenMP: Memory Access

333

OpenMP Tutorial

Members of the OpenMP Language Committee
65

◼ Assume the following: you have learned that load imbalances can

severely impact performance and a dynamic loop schedule may

prevent this:

→What is the issue with the following code:

→How is A accessed? Does that affect performance?

Example: Loop Parallelization

double* A;

A = (double*) malloc(N * sizeof(double));

/* assume some initialization of A */

#pragma omp parallel for schedule(dynamic, 1)

for (int i = 0; i < N; i++) {

A[i] += 1.0;

}

334

OpenMP Tutorial

Members of the OpenMP Language Committee
66

◼ False Sharing: Parallel accesses to the same cache line may have a significant performance

impact!

False Sharing

Caches are organized in lines of typically

64 bytes: integer array a[0-4] fits into

one cache line.

Whenever one element of a cache line

is updated, the whole cache line is

Invalidated.

Local copies of a cache line have to be

re-loaded from the main memory and

the computation may have to be

repeated.

Core

memory

Core

on-chip cache

Core Core

on-chip cacheon-chip cache

bus

1: A[0]+=1;2: A[1]+=1;
3: A[2]+=1;4: A[3]+=1;

A[0-7]

335

OpenMP Tutorial

Members of the OpenMP Language Committee
67

double* A;

A = (double*)

malloc(N * sizeof(double));

for (int i = 0; i < N; i++) {

A[i] = 0.0;

}

Non-uniform Memory

Core

memory

Core

on-chip
cache

Core Core

memory

interconnect

on-chip
cache

on-chip
cache

on-chip
cache

How To Distribute The Data ?

336

OpenMP Tutorial

Members of the OpenMP Language Committee
68

◼ Serial code: all array elements are allocated in the memory of the NUMA node closest to the

core executing the initializer thread (first touch)

double* A;

A = (double*)

malloc(N * sizeof(double));

for (int i = 0; i < N; i++) {

A[i] = 0.0;

}

Non-uniform Memory

Core

memory

Core

on-chip
cache

Core Core

memory

interconnect

on-chip
cache

on-chip
cache

on-chip
cache

A[0] … A[N]

337

OpenMP Tutorial

Members of the OpenMP Language Committee
69

◼ Important aspect on cc-NUMA systems

→If not optimal, longer memory access times and hotspots

◼ Placement comes from the Operating System

→This is therefore Operating System dependent

◼Windows, Linux and Solaris all use the “First Touch” placement policy

by default

→May be possible to override default (check the docs)

About Data Distribution

338

OpenMP Tutorial

Members of the OpenMP Language Committee
70

◼ Serial code: all array elements are allocated in the memory of the NUMA node closest to the

core executing the initializer thread (first touch)

double* A;

A = (double*)

malloc(N * sizeof(double));

for (int i = 0; i < N; i++) {

A[i] = 0.0;

}

Non-uniform Memory

Core

memory

Core

on-chip
cache

Core Core

memory

interconnect

on-chip
cache

on-chip
cache

on-chip
cache

A[0] … A[N]

339

OpenMP Tutorial

Members of the OpenMP Language Committee
71

◼ First Touch w/ parallel code: all array elements are allocated in the memory of the NUMA

node that contains the core that executes the

thread that initializes the partition

double* A;

A = (double*)

malloc(N * sizeof(double));

omp_set_num_threads(2);

#pragma omp parallel for

for (int i = 0; i < N; i++) {

A[i] = 0.0;

}

First Touch Memory Placement

Core

memory

Core

on-chip
cache

Core Core

memory

interconnect

on-chip
cache

on-chip
cache

on-chip
cache

A[0] … A[N/2] A[N/2] … A[N]

340

OpenMP Tutorial

Members of the OpenMP Language Committee
72

◼ Stream example on 2 socket sytem with Xeon X5675 processors, 12

OpenMP threads:

Serial vs. Parallel Initialization

copy scale add triad

ser_init 18.8 GB/s 18.5 GB/s 18.1 GB/s 18.2 GB/s

par_init 41.3 GB/s 39.3 GB/s 40.3 GB/s 40.4 GB/s

CPU 0

T1 T2 T3

T4 T5 T6

CPU 1

T7 T8 T9

T10 T11 T12

MEM

a[0,N-1]

b[0,N-1]

c[0,N-1]

CPU 0

T1 T2 T3

T4 T5 T6

CPU 1

T7 T8 T9

T10 T11 T12

MEM

a[0,(N/2)-1]

b[0,(N/2)-1]

c[0,(N/2)-1]

ser_init:

par_init:

MEM

MEM

a[N/2,N-1]

b[N/2,N-1]

c[N/2,N-1]

341

OpenMP Tutorial

Members of the OpenMP Language Committee
73

◼ Before you design a strategy for thread binding, you should have a basic

understanding of the system topology. Please use one of the following

options on a target machine:

→Intel MPI‘s cpuinfo tool

→ cpuinfo

→Delivers information about the number of sockets (= packages) and the mapping of processor

ids to cpu cores that the OS uses.

→hwlocs‘ hwloc-ls tool

→ hwloc-ls

→Displays a graphical representation of the system topology, separated into NUMA nodes, along

with the mapping of processor ids to cpu cores that the OS uses and additional info on caches.

Get Info on the System Topology

342

OpenMP Tutorial

Members of the OpenMP Language Committee
74

◼ Selecting the „right“ binding strategy depends not only on the topology,

but also on application characteristics.

→Putting threads far apart, i.e., on different sockets

→May improve aggregated memory bandwidth available to application

→May improve the combined cache size available to your application

→May decrease performance of synchronization constructs

→Putting threads close together, i.e., on two adjacent cores that possibly share

some caches

→May improve performance of synchronization constructs

→May decrease the available memory bandwidth and cache size

Decide for Binding Strategy

343

OpenMP Tutorial

Members of the OpenMP Language Committee
75

◼ Define OpenMP Places

→set of OpenMP threads running on one or more processors

→can be defined by the user, i.e. OMP_PLACES=cores

◼ Define a set of OpenMP Thread Affinity Policies

→SPREAD: spread OpenMP threads evenly among the places,

partition the place list

→CLOSE: pack OpenMP threads near master thread

→MASTER: collocate OpenMP thread with master thread

◼ Goals

→user has a way to specify where to execute OpenMP threads

→ locality between OpenMP threads / less false sharing / memory bandwidth

Places + Binding Policies (1/2)

344

OpenMP Tutorial

Members of the OpenMP Language Committee
76

◼ Assume the following machine:

→ 2 sockets, 4 cores per socket, 4 hyper-threads per core

◼ Abstract names for OMP_PLACES:

→ threads: Each place corresponds to a single hardware thread on the target machine.

→ cores: Each place corresponds to a single core (having one or more hardware threads) on the target

machine.

→ sockets: Each place corresponds to a single socket (consisting of one or more cores) on the target

machine.

→ ll_caches: Each place corresponds to a set of cores that share the last level cache.

→ numa_domains: Each place corresponds to a set of cores for which their closest memory is: the

same memory; and at a similar distance from the cores.

Places

p0 p1 p2 p3 p4 p5 p6 p7

345

OpenMP Tutorial

Members of the OpenMP Language Committee
77

◼ Example‘s Objective:

→separate cores for outer loop and near cores for inner loop

◼ Outer Parallel Region: proc_bind(spread) num_threads(4)
Inner Parallel Region: proc_bind(close) num_threads(4)

→spread creates partition, compact binds threads within respective partition
OMP_PLACES=(0,1,2,3), (4,5,6,7), ... = (0-3):8:4 = cores

#pragma omp parallel proc_bind(spread) num_threads(4)
#pragma omp parallel proc_bind(close) num_threads(4)

◼ Example

→initial

→spread 4

→close 4

Places + Binding Policies (2/2)

p0 p1 p2 p3 p4 p5 p6 p7

p0 p1 p2 p3 p4 p5 p6 p7

p0 p1 p2 p3 p4 p5 p6 p7

346

OpenMP Tutorial

Members of the OpenMP Language Committee
78

◼ Assume the following machine:

→2 sockets, 4 cores per socket, 4 hyper-threads per core

◼ Parallel Region with two threads, one per socket

→OMP_PLACES=sockets

→#pragma omp parallel num_threads(2) proc_bind(spread)

More Examples (1/3)

p0 p1 p2 p3 p4 p5 p6 p7

347

OpenMP Tutorial

Members of the OpenMP Language Committee
79

◼ Assume the following machine:

◼ Parallel Region with four threads, one per core, but only on the first

socket

→OMP_PLACES=cores

→#pragma omp parallel num_threads(4) proc_bind(close)

More Examples (2/3)

p0 p1 p2 p3 p4 p5 p6 p7

348

OpenMP Tutorial

Members of the OpenMP Language Committee
80

◼ Spread a nested loop first across two sockets, then among the cores

within each socket, only one thread per core

→OMP_PLACES=cores

→#pragma omp parallel num_threads(2) proc_bind(spread)

→#pragma omp parallel num_threads(4) proc_bind(close)

More Examples (3/3)

349

OpenMP Tutorial

Members of the OpenMP Language Committee
81

◼ 1: Query information about binding and a single place of
all places with ids 0 … omp_get_num_places():

◼ omp_proc_bind_t omp_get_proc_bind(): returns the thread affinity policy

(omp_proc_bind_false, true, master, …)

◼ int omp_get_num_places(): returns the number of places

◼ int omp_get_place_num_procs(int place_num): returns the number of

processors in the given place

◼ void omp_get_place_proc_ids(int place_num, int* ids): returns the

ids of the processors in the given place

Places API (1/2)

350

OpenMP Tutorial

Members of the OpenMP Language Committee
82

◼ 2: Query information about the place partition:

◼ int omp_get_place_num(): returns the place number of the place to which the

current thread is bound

◼ int omp_get_partition_num_places(): returns the number of places in the

current partition

◼ void omp_get_partition_place_nums(int* pns): returns the list of place

numbers corresponding to the places in the current partition

Places API (2/2)

351

OpenMP Tutorial

Members of the OpenMP Language Committee
83

◼ Simple routine printing the processor ids of the place the calling thread

is bound to:

Places API: Example

void print_binding_info() {

int my_place = omp_get_place_num();

int place_num_procs = omp_get_place_num_procs(my_place);

printf("Place consists of %d processors: ", place_num_procs);

int *place_processors = malloc(sizeof(int) * place_num_procs);

omp_get_place_proc_ids(my_place, place_processors)

for (int i = 0; i < place_num_procs - 1; i++) {

printf("%d ", place_processors[i]);

}

printf("\n");

free(place_processors);

}

352

OpenMP Tutorial

Members of the OpenMP Language Committee
84

◼ Set OMP_DISPLAY_AFFINITY=TRUE

→Instructs the runtime to display formatted affinity information

→Example output for two threads on two physical cores:

→Output can be formatted with OMP_AFFINITY_FORMAT env var or

corresponding routine

→Formatted affinity information can be printed with

omp_display_affinity(const char* format)

OpenMP 5.0 way to do this

nesting_level= 1, thread_num= 0, thread_affinity= 0,1

nesting_level= 1, thread_num= 1, thread_affinity= 2,3

353

OpenMP Tutorial

Members of the OpenMP Language Committee
85

◼ Example:

→Possible output:

Affinity format specification

t omp_get_team_num()

T omp_get_num_teams()

L omp_get_level()

n omp_get_thread_num()

N omp_get_num_threads()

a omp_get_ancestor_thread_num() at level-1

H hostname

P process identifier

i native thread identifier

A thread affinity: list of processors (cores)

OMP_AFFINITY_FORMAT=“Affinity: %0.3L %.8n %.15{A} %.12H“

Affinity: 001 0 0-1,16-17 host003

Affinity: 001 1 2-3,18-19 host003

354

OpenMP Tutorial

Members of the OpenMP Language Committee
86

◼ Everything under control?

◼ In principle Yes, but only if

→threads can be bound explicitly,

→data can be placed well by first-touch, or can be migrated,

→you focus on a specific platform (= OS + arch) → no portability

◼What if the data access pattern changes over time?

◼What if you use more than one level of parallelism?

A first summary

355

OpenMP Tutorial

Members of the OpenMP Language Committee
87

◼ First Touch: Modern operating systems (i.e., Linux >= 2.4) decide for a
physical location of a memory page during the first page fault, when
the page is first „touched“, and put it close to the CPU causing the
page fault.

◼ Explicit Migration: Selected regions of memory (pages) are moved
from one NUMA node to another via explicit OS syscall.

◼ Next Touch: Binding of pages to NUMA nodes is removed and pages
are migrated to the location of the next „touch“. Well-supported in
Solaris, expensive to implement in Linux.

◼ Automatic Migration: No support for this in current operating systems.

NUMA Strategies: Overview

356

OpenMP Tutorial

Members of the OpenMP Language Committee
88

◼ Explicit NUMA-aware memory allocation:

→By carefully touching data by the thread which later uses it

→By changing the default memory allocation strategy

→Linux: numactl command

→Windows: VirtualAllocExNuma() (limited functionality)

→By explicit migration of memory pages

→Linux: move_pages()

→Windows: no option

◼ Example: using numactl to distribute pages round-robin:

→ numactl –interleave=all ./a.out

User Control of Memory Affinity

357

OpenMP Tutorial

Members of the OpenMP Language Committee
89

Improving Tasking Performance:

Task Affinity

358

OpenMP Tutorial

Members of the OpenMP Language Committee
90

◼ Techniques for process binding & thread pinning available

→OpenMP thread level: OMP_PLACES & OMP_PROC_BIND

→OS functionality: taskset -c

OpenMP Tasking:

◼ In general: Tasks may be executed by any thread in the team

→Missing task-to-data affinity may have detrimental effect on performance

OpenMP 5.0:

◼ affinity clause to express affinity to data

Motivation

359

OpenMP Tutorial

Members of the OpenMP Language Committee
91

◼ New clause: #pragma omp task affinity (list)

→Hint to the runtime to execute task closely to physical data location

→Clear separation between dependencies and affinity

◼ Expectations:

→Improve data locality / reduce remote memory accesses

→Decrease runtime variability

◼ Still expect task stealing

→In particular, if a thread is under-utilized

affinity clause

360

OpenMP Tutorial

Members of the OpenMP Language Committee
92

◼ Excerpt from task-parallel STREAM

→Loops have been blocked manually (see tmp_idx_start/end)

→Assumption: initialization and computation have same blocking and same affinity

Code Example

1 #pragma omp task \
2 shared(a, b, c, scalar) \
3 firstprivate(tmp_idx_start, tmp_idx_end) \
4 affinity(a[tmp_idx_start])
5 {
6 int i;
7 for(i = tmp_idx_start; i <= tmp_idx_end; i++)
8 a[i] = b[i] + scalar * c[i];
9 }

361

OpenMP Tutorial

Members of the OpenMP Language Committee
93

Selected LLVM implementation details

Encounter task
region …

Task with
data

affinity?

Push to local
queue

Location
for data

reference in
map?

Identify NUMA
domain where
data is stored

Select thread
pinned to

NUMA domain

Save
{reference,

location} in map

Push task into
other threads

queue
end

Yes

No

Yes

No

A map is introduced to
store location information
of data that was previously
used

Jannis Klinkenberg, Philipp Samfass,
Christian Terboven, Alejandro Duran,
Michael Klemm, Xavier Teruel, Sergi
Mateo, Stephen L. Olivier, and Matthias
S. Müller. Assessing Task-to-Data Affinity
in the LLVM OpenMP Runtime.
Proceedings of the 14th International
Workshop on OpenMP, IWOMP 2018.
September 26-28, 2018, Barcelona,

Spain.

362

OpenMP Tutorial

Members of the OpenMP Language Committee
94

Evaluation
Program runtime
Median of 10 runs

Distribution of single
task execution times

LIKWID: reduction of remote data volume from 69% to 13%

Speedup
of 4.3 X

363

OpenMP Tutorial

Members of the OpenMP Language Committee
95

◼ Requirement for this feature: thread affinity enabled

◼ The affinity clause helps, if

→tasks access data heavily

→single task creator scenario, or task not created with data affinity

→high load imbalance among the tasks

◼ Different from thread binding: task stealing is absolutely allowed

Summary

364

OpenMP Tutorial

Members of the OpenMP Language Committee
96

Managing Memory Spaces

365

OpenMP Tutorial

Members of the OpenMP Language Committee
97

◼ Traditional DDR-based memory

◼ High-bandwidth memory

◼ Non-volatile memory

◼…

Different kinds of memory

366

OpenMP Tutorial

Members of the OpenMP Language Committee
98

◼ Allocator := an OpenMP object that fulfills requests to allocate and

deallocate storage for program variables

◼OpenMP allocators are of type omp_allocator_handle_t

◼ Default allocator for Host

→via OMP_ALLOCATOR env. var. or corresponding API

◼OpenMP 5.0 supports a set of memory allocators

Memory Management

367

OpenMP Tutorial

Members of the OpenMP Language Committee
99

◼ Selection of a certain kind of memory

OpenMP Allocators

Allocator name Storage selection intent

omp_default_mem_alloc use default storage

omp_large_cap_mem_alloc use storage with large capacity

omp_const_mem_alloc use storage optimized for read-only variables

omp_high_bw_mem_alloc use storage with high bandwidth

omp_low_lat_mem_alloc use storage with low latency

omp_cgroup_mem_alloc use storage close to all threads in the contention group
of the thread requesting the allocation

omp_pteam_mem_alloc use storage that is close to all threads in the same
parallel region of the thread requesting the allocation

omp_thread_local_mem_alloc use storage that is close to the thread requesting the
allocation

368

OpenMP Tutorial

Members of the OpenMP Language Committee
100

◼ New clause on all constructs with data sharing clauses:

→ allocate([allocator:] list)

◼ Allocation:

→ omp_alloc(size_t size, omp_allocator_handle_t allocator)

◼ Deallocation:

→ omp_free(void *ptr, const omp_allocator_handle_t allocator)

→ allocator argument is optional

◼ allocate directive: standalone directive for allocation, or declaration of allocation

stmt.

Using OpenMP Allocators

369

OpenMP Tutorial

Members of the OpenMP Language Committee
101

◼ Allocator traits control the behavior of the allocator

OpenMP Allocator Traits / 1

sync_hint contended, uncontended, serialized, private
default: contended

alignment positive integer value that is a power of two
default: 1 byte

access all, cgroup, pteam, thread
default: all

pool_size positive integer value

fallback default_mem_fb, null_fb, abort_fb, allocator_fb
default: default_mem_fb

fb_data an allocator handle

pinned true, false
default: false

partition environment, nearest, blocked, interleaved
default: environment

370

OpenMP Tutorial

Members of the OpenMP Language Committee
102

◼ fallback: describes the behavior if the allocation cannot be fulfilled

→default_mem_fb: return system’s default memory

→Other options: null, abort, or use different allocator

◼ pinned: request pinned memory, i.e. for GPUs

OpenMP Allocator Traits / 2

371

OpenMP Tutorial

Members of the OpenMP Language Committee
103

◼ partition: partitioning of allocated memory of physical storage

resources (think of NUMA)

→environment: use system’s default behavior

→nearest: most closest memory

→blocked: partitioning into approx. same size with at most one block per

storage resource

→interleaved: partitioning in a round-robin fashion across the storage

resources

OpenMP Allocator Traits / 3

372

OpenMP Tutorial

Members of the OpenMP Language Committee
104

◼ Construction of allocators with traits via

→omp_allocator_handle_t omp_init_allocator(

omp_memspace_handle_t memspace,

int ntraits, const omp_alloctrait_t traits[]);

→Selection of memory space mandatory

→Empty traits set: use defaults

◼ Allocators have to be destroyed with *_destroy_*

◼ Custom allocator can be made default with
omp_set_default_allocator(omp_allocator_handle_t allocator)

OpenMP Allocator Traits / 4

373

OpenMP Tutorial

Members of the OpenMP Language Committee
105

◼ Storage resources with explicit support in OpenMP:

→Exact selection of memory space is implementation-def.

→Pre-defined allocators available to work with these

OpenMP Memory Spaces

omp_default_mem_space System’s default memory resource

omp_large_cap_mem_space Storage with larg(er) capacity

omp_const_mem_space Storage optimized for variables with constant value

omp_high_bw_mem_space Storage with high bandwidth

omp_low_lat_mem_space Storage with low latency

374

[ONLINE] Node Level Performance Optimization @ CSC, 18-20.5.2021

Threading optimization

Dr. Mikko Byckling, IAGS DEE XCSS

375

2
Copyright © 2021 Intel Corporation. All rights reserved.

Contents

▪ Common performance issues in thread parallel applications

▪ Analyzing multi-threaded performance with Intel® VTune™ Profiler

▪ Common NUMA Issues and Optimizations

▪ Thread affinity and pinning

• OpenMP Applications

• Hybrid MPI+OpenMP Applications

376

3
Copyright © 2021 Intel Corporation. All rights reserved.

Common performance issues in thread
parallel applications
Common issues, terminology

377

4
Copyright © 2021 Intel Corporation. All rights reserved.

Issues in (Thread) Parallel Applications

▪ Load imbalance

• Work distribution is not optimal

• Some threads are heavily loaded, while others idle

• Slowest thread determines total speed-up

▪ Locking issues

• Locks prohibit threads to concurrently enter code regions

• Effectively serialize execution

▪ Parallelization overhead

• With large no. of threads, data partition get smaller

• Overhead might get significant (e.g. OpenMP startup time)

378

5
Copyright © 2021 Intel Corporation. All rights reserved.

Threading Analysis Terminology

▪ Elapsed Time: 6 seconds

▪ CPU Time: T1 (4s) + T2 (3s) + T3 (3s) = 10 seconds

▪ Wait Time: T1(2s) + T2(2s) + T3 (2s) = 6 seconds

21 30

Concurrency
Summary

4

Thread1

Thread2

Thread3

Waiting

Waiting

Thread3Waiting

Thread2

Thread1

1sec 1sec 1sec 1sec 1sec 1sec

Thread running

Thread waiting

1 2 1 1 2 3
Threads
running

379

6
Copyright © 2021 Intel Corporation. All rights reserved.

Analyzing multi-threaded performance
with Intel® VTune™ Profiler
Overview, treading analysis, thread timeline, MPI+OpenMP analysis

380

7
Copyright © 2021 Intel Corporation. All rights reserved.

VTune GUI: OpenMP analysis

▪ Tracing of OpenMP constructs to provide region/work sharing context
and imbalance on barriers

• Advanced hotspots w/o stacks is recommended to make sampling
representative for small regions

▪ VTune is provided with information by Intel OpenMP RTL

• Fork-Join points of parallel regions with number of working threads (Intel
Compilers version 14 and later)

• OpenMP construct barrier points with imbalance info and OpenMP loop
metadata

• Embed source file name to an OpenMP region with -parallel-source-info=2

compiler option

381

8
Copyright © 2021 Intel Corporation. All rights reserved.

VTune GUI: Thread Concurrency Histogram
Global view of OpenMP concurrency

382

9
Copyright © 2021 Intel Corporation. All rights reserved.

Potential Gain as a sum of inefficiencies normalized by
number of threads

VTune GUI: OpenMP region view

Definition of Region Potential Gain (elapsed time metric)

Lock spinning (sampling)

Effective time (sampling)

Imbalance (tracing)

Actual Parallel Region Elapsed Time

Estimated Ideal Time =

Effective time / Number of Threads

Fork Join

Scheduling (sampling)

Work creation (sampling)

Atomics (sampling)

Reduction (sampling)

383

10
Copyright © 2021 Intel Corporation. All rights reserved.

VTune GUI: Threading Analysis (1/5)

Summary view:

1) Is the serial time of my application significant enough to prevent scaling?

2) How much performance can be gained by tuning OpenMP?

3) Which OpenMP regions / loops / barriers will benefit most from tuning?

4) What are the inefficiencies with each region? (click the link to see details)

1) 

2) 

4) 

3) 

384

11
Copyright © 2021 Intel Corporation. All rights reserved.

VTune GUI: Threading Analysis (2/5)

Focus On What’s Important
▪ What region is inefficient?

▪ Is the potential gain worth it?

▪ Why is it inefficient?
Imbalance? Scheduling? Lock spinning?

Actual Elapsed Time

Ideal Time

Fork Join

Potential
Gain

Potential

Gain

Imbalance Lock SchedulingFork

385

12
Copyright © 2021 Intel Corporation. All rights reserved.

VTune GUI: Threading Analysis (3/5)
Parallel Region Inefficiencies

Imbalance

Likely culprit:

Dynamic
scheduling
overhead

386

13
Copyright © 2021 Intel Corporation. All rights reserved.

VTune GUI: Threading Analysis (4/5)
Mapping regions to source code

▪ View data specific to the region at the source code level

▪ With ‘-parallel-source-info=2’ compiler option to embed source file name in
region name

387

14
Copyright © 2021 Intel Corporation. All rights reserved.

VTune GUI: Threading Analysis (5/5)
Understanding parallel inefficiency

Detailed Barrier to Barrier Analysis

▪ Tune each segment separately

▪ Easier to see tuning opportunities Parallel Region

Barrier-to-Barrier
Segment 1

Barrier-to-Barrier
Segment 2

Barrier-to-Barrier
Segment 3

Fork Join

User
Barrier

Omp
Single

Single
Barrier

Omp
For

Omp
For Barrier

#pragma omp parallel

{

…

#pragma omp barrier

#pragma omp single

{

…

{

#pragma omp for

{

388

15
Copyright © 2021 Intel Corporation. All rights reserved.

CPU Time

Hovers:

Transitions
Basic Hotspots Advanced HotspotsLocks & Waits

VTune GUI: Thread timeline

▪ Optional: Use API to mark frames and user tasks

▪ Optional: Add a mark during collection

389

16
Copyright © 2021 Intel Corporation. All rights reserved.

VTune GUI: Threading analysis
Common patterns for root causing low concurrency

Coarse Grain
Locks

High Lock
Contention

Load
Imbalance

Low
Concurrency

390

17
Copyright © 2021 Intel Corporation. All rights reserved.

VTune GUI: MPI + OpenMP analysis

Tune OpenMP performance of high impact ranks in VTune Profiler

Process names link
to OpenMP metrics

Ranks sorted by OpenMP
tuning impact on overall
performance

Per-rank OpenMP
Potential Gain and
Serial Time metrics

Detailed OpenMP
metrics

391

18
Copyright © 2021 Intel Corporation. All rights reserved.

Common NUMA Issues and
Optimizations
First touch policy, common optimizations

392

19
Copyright © 2021 Intel Corporation. All rights reserved.

(Almost) all HPC systems are NUMA

▪ (Almost) all multi-socket compute servers are NUMA systems

• Different access latencies for different memory locations

• Different bandwidth observed for different memory locations

▪ Example: Intel® Xeon E5-2600v3 Series processor

Xeon® E5-2600v3 Xeon® E5-2600v3

393

20
Copyright © 2021 Intel Corporation. All rights reserved.

NUMA - Does it matter?

0,00

10,00

20,00

30,00

40,00

50,00

60,00

70,00

80,00

90,00

100,00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

G
B

/
s
e
c
 [

h
ig

h
e
r
 i

s
 b

e
tt

e
r
]

of threads/cores

STREAM Triad, Intel® Xeon E5-2697v2

compact, par scatter, par compact, seq scatter, seq

394

21
Copyright © 2021 Intel Corporation. All rights reserved.

First touch policy

▪ Modern operating systems all use virtual memory

▪ The OS typically optimizes memory allocations

• malloc() does not allocate the memory directly

• Only the memory management “knows” about the memory allocation, but no memory
pages are made available

• At first memory access (write), the OS physically allocates the corresponding page (First
touch policy)

▪ On NUMA systems this might lead to performance issues in threaded
or multi-process applications

395

22
Copyright © 2021 Intel Corporation. All rights reserved.

NUMA Optimization with OpenMP

// Initialize data

for (size_t i = 0; i < N; i++)

for (size_t j = 0; j < M; j++) {…}

// Perform work

#pragma omp parallel for private(j)

for (size_t i = 0; i < N; i++)

for (size_t j = 0; j < M; j++) {…}

Mem Mem

Mem Mem

CPU

CPU

CPU

CPU

396

23
Copyright © 2021 Intel Corporation. All rights reserved.

NUMA Optimization with OpenMP

Mem Mem

Mem Mem

CPU

CPU

CPU

CPU

// Initialize data

#pragma omp parallel for private(j)

for (size_t i = 0; i < N; i++)

for (size_t j = 0; j < M; j++) {…}

// Perform work

#pragma omp parallel for private(j)

for (size_t i = 0; i < N; i++)

for (size_t j = 0; j < M; j++) {…}

397

24
Copyright © 2021 Intel Corporation. All rights reserved.

NUMA issues and MPI Applications

▪ MPI applications might also be affected by NUMA issues:

• A process allocates memory on one NUMA node…

• … and is then scheduled to run on another NUMA node.

▪ Intra-node communication might show different bandwidths and/or
latencies to network fabric adapter

▪ The file system cache

• Might reserve memory on one NUMA node..

• ..and thus push out allocations to a remote NUMA node.

398

25
Copyright © 2021 Intel Corporation. All rights reserved.

Summary

▪ Use threading analysis to find bottlenecks in the application

▪ NUMA can be an issue, so make sure that the application is NUMA-
aware

▪ Use pinning to keep thread in their NUMA domain and in their cores
(cache!)

399

26

400

27
Copyright © 2021 Intel Corporation. All rights reserved.

Notices & Disclaimers

Performance varies by use, configuration, and other factors. Learn more at www.Intel.com/PerformanceIndex.

Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available
updates. See configuration disclosure for details.

Your costs and results may vary.

Intel technologies may require enabled hardware, software or service activation.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries.
Other names and brands may be claimed as the property of others.

401

Thread/process affinityThread/process affinity
CSC Training, 2021-05

402

Thread and process affinityThread and process affinity

Normally, operating system can run threads and processes in any logical core
Operating system may even move running task from one core to another

Can be beneficial for load balancing
For HPC workloads often detrimental as private caches get invalidated and NUMA
locality is lost

User can control where tasks are run via affinity masks
Task can be pinned to a specific logical core or set of logical cores

403

Controlling affinityControlling affinity

Affinity for a process can be set with a numactl command
Limit the process to logical cores 0,3,7:

numactl --physcpubind=0,3,7 ./my_exe

Threads "inherit" the affinity of their parent process

Affinity of a thread can be set with OpenMP environment variables
OMP_PLACES=[threads,cores,sockets]

OMP_PROC_BIND=[true, close, spread, master]

OpenMP runtime prints the affinity with OMP_DISPLAY_AFFINITY=true

404

Controlling affinityControlling affinity

export OMP_AFFINITY_FORMAT="Thread %0.3n affinity %A"

export OMP_DISPLAY_AFFINITY=true

./test

Thread 000 affinity 0-7

Thread 001 affinity 0-7

Thread 002 affinity 0-7

Thread 003 affinity 0-7

OMP_PLACES=cores ./test

Thread 000 affinity 0,4

Thread 001 affinity 1,5

Thread 002 affinity 2,6

Thread 003 affinity 3,7

405

MPI library must be aware of the
underlying OpenMP for correct
allocation of resources

Oversubscription of CPU cores may
cause significant performance penalty

Additional complexity from batch job
schedulers
Heavily dependent on the platform
used!

00 01 02 03

04 05 06 07

cpu00

00 01 02 03

04 05 06 07

cpu01

Example (incorrect): oversubscription of resources

MPI task 0:
cpu00:00, cpu00:01,
cpu00:02, cpu00:03

MPI task 1:
cpu00:01, cpu00:02,
cpu00:03, cpu00:04

Example (correct): better use of resources

MPI task 0:
cpu00:00, cpu00:01,
cpu00:02, cpu00:03

MPI task 1:
cpu01:00, cpu01:01,
cpu01:02, cpu01:03

00 01 02 03

04 05 06 07

cpu00

00 01 02 03

04 05 06 07

cpu01

MPI+OpenMP thread affinityMPI+OpenMP thread affinity

406

Slurm configuration at CSCSlurm configuration at CSC

Within a node, --tasks-per-node MPI tasks are spread --cpus-per-task apart

Threads within a MPI tasks have the affinity mask for the corresponging
--cpus-per-task cores

export OMP_AFFINITY_FORMAT="Process %P thread %0.3n affinity %A"

export OMP_DISPLAY_AFFINITY=true

srun ... --tasks-per-node=2 --cpus-per-task=4 ./test

Process 250545 thread 000 affinity 0-3

...

Process 250546 thread 000 affinity 4-7

...

Slurm configurations in other HPC centers can be very different
Always experiment before production calculations!

407

SummarySummary

Performance of HPC applications is often improved when processes and threads are
pinned to CPU cores
MPI and batch system configurations may affect the affinity

very system dependent, try to always investigate

408

