‘o «" » 2
o d AN -
Vv ﬂhl Ig b B b= j §—prid 2t

Fl e ‘v,,__ N o o / : ‘
. '.+—.—L w(1- “‘Hd”g@d'z"";“" .__;+hsmnx‘) 2 ,mf“

. SR
ot \ =B e g A [t
. HR
- e —A—‘B@.b n-—‘sul.d’, LA
Ble 2= 8y » ’

Node level performance
optimization

May 18 — 20, 2021
CSC-IT Center for Science Ltd., Espoo

Jussi Enkovaara, CSC
Mikko Byckling, Intel
Michael Klemm, AMD

* #—****""
>*

CscC

Training for ‘* * *

Brilliant Minds

Unless otherwise noted, material (C) 2011-2021 by CSC - IT Center for
Science Ltd, and licensed under a Creative Commons Attribution-

ShareAlike 4.0, http://creativecommons.org/licenses/by-sa/4.0

Introduction to Application Performance

CSC Training, 2021-05

CSC — Finnish expertise in ICT for research, education-and public administration

Course outline

« Analyzing and understanding performance issues
o Awareness of modern CPUs
« Improving performance through vectorization
« Improving performance through memory optimization
« Improving performance though advanced threading techniques

Why worry about application performance?

» Obvious benefits
o Better throughput => more science
o Cheaper than new hardware
o Save energy, compute quota, money etc.
« ...and some non-obvious ones
o Potential cross-disciplinary research with computer science
o Deeper understanding of application

Factors affecting performance in HPC

« Single node performance

o single core performance

o threading (and MPI within a node)
« Communication between nodes

« Input/output to disk

How to improve single node performance?

« Choose good algorithm ./fibonacci 20
With loop, Fibonacci number i=20 is 6765
- e.g. O(NlogN) vs. O(N?)

Time elapsed 79 ums
o rennerrﬂjer'prefactgr! With recursion, Fibonacci number i=20 is 6765
Time elapsed 343773 ums

« Use high performance libraries
o linear algebra (BLAS/LAPACK), FFTs, ...
« Experiment with compilers and 4 Theoretical peak
compiler options ~ FTTssssssss-mmooooooo-
o There is no single best compiler and set

of options for all use cases

ormance

« Experiment with threading options

o Thread pinning, loop scheduling, ...
« Optimize the program code Effort

Doesn't the compiler do everything?

« You can make a big difference to code performance with how you express things
« Helping the compiler spot optimisation opportunities
« Using the insight of your application
o language semantics might limit compiler
» Removing obscure (and obsolescent) “optimizations” in older code
o Simple code is the best, until otherwise proven
« Thisis a dark art, mostly: optimize on case-by-case basis
o First, check what the compiler is already doing

What the compiler is doing?

» Compilers have vast amount of
heuristics for optimizing common
programming patters

» Most compilers can provide a report
about optimizations performed, with
various amount of detail

o See compiler manuals for all options
 Look into assembly code with

-S -fverbose-asm

Measuring performance

Compiler Opt. report

GNU -fopt-info
Intel -gopt-report
Clang -Rpass=.*

vfmadd213pd %ymm@, %ymm2, %ymm10@

vfmadd213pd %ymm@, %ymm2, %ymm9
vfmadd213pd %ymm@, %ymm2, %ymm8

PRACE +
cse

A day in life at CSC

CSC customer CSC specialist
I'm performing simulations with my Fortran code. It seems
to perform much worse with MKL library in the new system
than with IMSL library in the old system.
Have you profiled your code?

No

A day in life at CSC

« Profiled the code: 99.9% of the execution time was being spent on these lines:

do i=1,n ! Removing these unnecessary loop iterations reduced the
do j=1,m ! wall-time of one simulation run from 17 hours to 3 seconds..
do k=1, fact(x)
do o=1,nchoosek(x)
where (ranktypes(:,:)==k)
ranked(:, :,o)=rankednau(o,k)
end where
end do
end do
end do
end do

10

Measuring performance

« First step should always be measuring the performance and finding performance

critical parts

o Application can contain hundreds of thousands of lines of code, but typically a small

part of the code (~10 %) consumes most (~9o0%) of the execution time
o “Premature code optimization is the root of all evil”

» Choose test case which represents a real production run

« Measurements should be carried out on the target platform
o "Toy" run on laptop may provide only limited information

Profiling application

« Applications own timing information
o Can be useful for big picture
« Performance analysis tools
o Provide detailed information about the
application
o Find hot-spots (functions and loops)
o |dentify causes of less-than-ideal
performance
o Information about low-level hardware
o Intel VTune, AMD uProf, perf, Tau,
Scalasca, PAPI, ...
o http://www.vi-hps.org/tools/tools.html

11

Orthonormalize: 54.219 0.003 0.0% |
calc_s_matrix: 11.150 11.150 2.8% ||
inverse-cholesky: 5.786 5.786 1.5% ||
projections: 18.136 18.136 4.6% |-|
rotate_psi_s: 19.144 19.144 4.8% |-|
RMM-DIIS: 229.947 29.370 7.4% |--1
Apply hamiltonian: 9.861 9.861 2.5% |1

() Effective Physical Core Utilization : 88.3% (3.532 out of 4)
Effective Logical Core Utilization : 88.3% (7.064 aut of 8)
) Effective CPU Utilization Histogram

&) Memory Bound : 5.7% of Pipeline Slots
Cache Bound : 31.3% ® of Clockiicks
©) DRAM Bound : 3.8% of Clockticks
2 Bandwidth Utilization Histogram

) Vectorization :0.0% k of Packed FP Operations &

© Instruction Mix:

© SPFLOPs : 00% ofuOps

© DP FLOPs 339% of uOps
© Packed : 0.0% from DP FP
Scalar 100.0% X from DP FP

X87 FLOPS 00% of uOps

12

Profiling application

« Collecting all possible performance metrics with single run is not practical
o Simply too much information
o Profiling overhead can alter application behavior

« Start with an overview!
o Call tree information, what routines are most expensive?

13

Sampling vs. tracing

« When application is profiled using sampling, the execution is stopped at
predetermined intervals and the state of the application is examined
o Lightweight, but may give skewed results
« Tracing records every event, e.g. function call
o Usually requires modification to the executable
o These modifications are called instrumentation
o More accurate, but may affect program behavior
o Generates lots of data

14

csc

Hardware performance counters

« Hardware performance counters are special registers on CPU that count hardware
events
 They enable more accurate statistics and low overhead
o In some cases they can be used for tracing without any extra instrumentation
« Number of counters is much smaller than the number of events that can be
recorded
» Different CPUs have different counters

15

PRACE +
cse

Optimizing program

16

Code optimization cycle

Select test
case (Instrument) Run

Validate / debug tify single-node is

17

How to assess application's performance?

« Two fundamental limits

« CPUs peak floating point performance CPU: FLOPS
o clock frequency

o number of instructions per clock cycle
o number of FLOPS per instruction
o number of cores

Memory

o no real application achieves peakin

sustained operation
« Main memory bandwidth
o How fast data can be fed to the CPU

18

How to assess application's performance?

« Example: maximum performance of axpy x[i] = a x[i] + y[j]
o Two FLOPS (multiply and add) per i
o Three memory references per i

o With double precision numbers arithmetic intensity
I = FLOPS — _ 2 — 0.08 FLOPS/byte

memorytraffic 3%8
o In Puhti, memory bandwidth is ~200 GB/s, so maximum performance is ~16

GFLOPS/s
o Theoretical peak performance of Puhti node is ~2600 GFLOPS/s

19

How to assess application's performance?

« Example: matrix-matrix multiplication C[i,j] = C[i,j] + A[i,k] * B[k, j]
- 2N3 FLOPS
> 3N2 memory references
o With double precision numbers arithmetic intensity I = % FLOPS/byte
o With large enough NN limited by peak performance

20

Roofline model

« Simple visual concept for maximum

achievable performance i
o can be derived in terms of arithmetic g . | aoplaton
intensity I, peak performance 7 and % 1? N
peak memory bandwidth 8 ;o Mm:Zp'dt1 Compute boune
P =min { g o I T T 3 3 3 % 2 mmmemmey riormme
« Machine balance = arithmetic intensity e
needed for peak performance o ——

o Typical values 5-15 FLOPS/byte
« Additional ceilings can be included

(caches, vectorization, threading) oty ouest) ot
21
Roofline model
« Model does not tell if code can be
Bound based on bandwidth.”
Optlmlzed or no.t ______________________________ R Bound based on peak performance

o
3

Vector add

e Application 2

o Application 1 may not be fundamentally
memory bound, but only implemented
badly (not using caches efficiently)

o Application 2 may not have
fundamentally prospects for higher
performance (performs only additions
and not fused multiply adds)

« However, can be useful for guiding the
optimization work

o
N

Scalar add

® Application 1 e

Memory bound

Performance [GFLOPS/s]

4 12 2 4 8 16 32 Arithmetic intensity [FLOPS/byte]

22

Roofline model

» How to obtain the machine parameters?
o CPU specs
o own microbenchmarks
o special tools (Intel tools, Empirical Roofline Tool)
« How to obtain application GFLOPS/s and arithmetic intensity?
o Pen and paper and timing measurements
o Performance analysis tools and hardware counters
o True number of memory references can be difficult to obtain

23

csc

Take-home messages

« Mind the application performance: it is for the benefit of you, other users and the
service provider

« Profile the code and identify the performance issues first, before optimizing
anything

o “Premature code optimization is the root of all evil”

« Optimizing the code should be the last step in performance tuning

« Serial optimization is mostly about helping the compiler to optimize for the target
CPU

« Roofline model can work as a guide in optimization

24

Web resources

« Roofline performance model and Empiral Roofline Tool
o https://crd.Ibl.gov/departments/computer-science/par/research/roofline/
« Web service for looking assembly output from multitude of compilers
o https://gcc.godbolt.org

25

A look into modern CPU architecture

CSC Training, 2021-05

CSC — Finnish expertise in ICT for research, education-and public administration

26

PRACE +
cse

Modern CPU core

27

von Neumann architecture

« A CPU core is still largely based on the

von Neumann model

o sequency of operations (instructions)
performed on given data

o instructions and data are fetched from
memory into registers in CPU

o ALU performs operations on data in
registers

o Result is stored back to memory

« From an external point of view,
operations are executed sequentially

Modern CPU core

« Internally, each core is highly complex

« Superscalar out-of-order instruction
execution

« SIMD instructions

« Multiple levels of hierarchical cache
memory

Input
Device

Central Processing Unit

Arithmetic/Logic Unit

Output
Device

28

29

How CPU core operates?

» Clock frequency determines the pace at which CPU works
« Zero to N instructions start at each clock cycle
« Instruction latency = number of clock cycles that are required for completing the
execution
« Instruction throughput = number of clock cycles to wait before starting same kind
of instruction again
o Throughput can be much smaller than the latency

o Sometimes given as cycles per instruction (CPI) or its inverse, instructions per cycle
(IPC)

Fetch-decode-execute cycle

« Instructions are executed in stages

g | '
« Fetch (F): control unit fetches B .m"%mmm |
instruction from memory | M:Bu:r ‘
« Decode (D): decode the instruction and | e |

Trono [v [vz [s [oone [ooms |

determine operands
o Instructions are broken into uops
 Execute (E): perform the instruction
o Utilize ALU or access memory

Execution Engine

« Enables simpler logic and pipelining

the operations

30

31

Pipelining

« Instruction execution and arithmetic units can be pipelined
o Instruction execution: work on multiple instructions simultaneously
o Arithmetic units: execute different stages of a an instruction at the same time in an
assembly line fashion
o Together: one result per cycle after the pipeline is full
« Within the pipeline, hardware can execute instructions in different order than they
were issued (out-of-order scheduling)
« Requires complicated software (compiler) and hardware to keep the pipeline full
« Conditional branches can cause the pipeline to stall

32

Pipelining: example

« Wind-up and wind-down phases: no L, o
instructions retired EeCE

« First result available after 5 cycles, total B0
time 7 cycles compared to 15 cycles | xecute | 80
without a pipeline aca

« Real pipeline in modern CPU cores can
be much more complex

33

Superscalar execution

« Hardware Instruction Level Parallelism Memory

(ILP)

v

« Multiple instructions per cycle issued to _
the multiple execution units v —

» Hardware data dependency resolution issue unit
preserve sequential execution

semantics

o Actual execution may be out-of-order ﬂ
« Pipelining and superscalar execution

allow instruction throughputs less than

one

Vectorization

34

csc

» Modern CPUs have SIMD (Single Instruction, Multiple Data) units and instructions
o Operate on multiple elements of data with single instructions

« AVX2 256 bits = 4 double precision numbers

« AVX512 512 bits = 8 double precision numbers
o single AVX512 fused multiply add instruction can perform 16 FLOPS

Scalar
AVX
AVX512

N+ H-0

(I -+ D -
[(TTIITT T[T T I = [T T T T T

35

Cache memory

« In order to alleviate the memory
bandwidth bottleneck, CPUs have
multiple levels of cache memory

o when data is accessed, it will be first
fetched into cache

o when data is reused, subsequent access
is much faster

« L1 cache is closest to the CPU core and
is fastest but has smallest capacity

« Each successive level has higher
capacity but slower access

1 0(100B)
>
&
§ a
Q% ~10 o1mMB) %
S 2,
NG Z
S “ R
Q
&

Symmetric Multithreading (SMT)

o It is difficult to fill-in all the available

hardware resources in a CPU core
o Pipeline stalls due to main memory
latency, 1/0, etc.

» To maximize hardware utilization,
several hardware threads can be
executed on a single core

o Seen as logical cores by OS

« Benefits depend on the application,
and SMT can also worsen the
performance

36

Decode and
issue unit

Execution
unit unit unit

Execution |l Execution

Registers

37

PRACE +
csc

Introduction to modern multicore CPUs

38

Multicore CPU schematic

» The multicore CPU is packeted in a
socket

« Typically, L1 and L2 caches are private
per core, and L3 cache is shared
between set of cores

« All cores have shared access to the

TIT2TI T2 T1 T2
P2 | P3 | P4
TN EH WX
v BFN BP;

13
|

Memory

main memory

39

Cache coherency

« With private caches per core, hardware
needs to ensure that the data is
consistent between the cores

« When a core writes to a cache, CPU
may need to update the caches of other

cores
o Possibly expensive operation

(x180) Axuasayodayoed)

NUMA architectures

» A node can have multiple sockets with
memory attached to each socket

« Non Uniform Memory Access (NUMA)
o All memory within a node is accessible,
but latencies and bandwidths vary

« Hardware needs to maintain cahce
coherency also between different
NUMA nodes (ccNUMA)

CPU
TAT2|TAT2 T1T2| T1T2

P1| P2 P3||P2
L1 L1 L1 L1

L2 L2 L2 L2

[13 |

40

CPU
TIT2|TAT2ATAT2|T1T2

P1 P2 P3 P4
L1 L1 L1 L1

L2 L2 L2 L2
Memory interface

41

Summary

» Modern multicore CPUs are complex beasts

« In order to maximally utilize the CPU, application needs to:
o use multiple threads (or processes)
o utilize caches for feeding data to CPU at fastest possible pace
o keep the pipeline full and utilize instruction level parallelism
o use vector instructions for maximizing FLOPS per instruction

42

Web resources

» Detailed information about processor microarchitectures:
o https://en.wikichip.org/wiki/WikiChip
o https://uops.info/
« Agner's optimization resources https://[www.agner.org/optimize/

43

Performance optimization for
Intel® Xeon® Processor architecture

Dr. Mikko Byckling, IAGS DEE XCSS

intel.

44

Contents

» Intel” microarchitectures

* Intel” Xeon® Processors
(codename “Broadwell”, BDW)

« 2nd generation Intel” Xeon" Scalable Processors
(codename “Cascade Lake-SP”, CLX)

= [ntroduction to SIMD ISA for Intel” processors
* Intel” AVX and Intel” AVX2
* Intel” AVX-512 and AVX-512 VNNI

intel. -

45

Intel” Xeon® Processor Architecture™

Instruction set architecture 3 Jofanes ‘ ‘ ‘

64-bit x86 with Intel® AVX2

Platform Memory
Up to 1.54TB (4ch DDR4 2400)

Features

Up to 3.7GHz Frequency, Ring Architecture,
Out-of-Order cores, up to 2.5MB Shared L3
cache per core

40 PCI* lanes
PCle 3.0 (10 GT/s)

Core:
32KB
L1l | 256KB
L2
(up to 22) 32KB || gy
L1D
Core

*Other names and brands may be claimed as the property of others.

Achanmets DBR42400

**Only applies to Intel” Xeon® Processor E5 v3 and E5 v4 Families
For all available options, see

https://ark.intel.com/products/family/91287/Intel-Xeon-Processor-E5-v4-Family

intel.

46

Intel” Xeon® Scalable Processor Architecture™

Instruction set architecture
64-bit x86 with Intel® AVX512 and AVX-512 VNNI

Platform Memory
Up to 1.54TB (6ch DDR4 2933)

Features

Up to 3.6GHz Frequency, Mesh Architecture,
Out-of-Order cores, up to 1.375MB Shared L3
cache per core

Core:
32KB

L1 | 1MB DDR4

et || 2
(up to 28) 32KB | (16-way)
L1D

Core

*Other names and brands may be claimed as the property of others.

3 UPI lanes
10.4 GT/s

48 PCI* lanes
PCle 3.0 (10 GT/s)

m CHA/LLC CHA/LLC CHA/LLC CHA/LLC CHA/LLC

I
|
|
|
f
‘I
[
|
f
I
|
|

DDR4

**Only applies to 2nd Generation Intel® Xeon® Scalable Processor Gold and Platinum

families. For all available options, see

https://ark.intel.com/content/www/us/en/ark/products/series/192283/2nd-generation-

intel-xeon-scalable-processors.html

intel.

47

3

4

Microarchitecture Enhancements

=& 5 Broadwell Cascade
. uArch Lake uArch
L swomseeuw Out-of-order
(N S Qe Window 192 224
Allocate/Rename/Retire In-ﬂight Loads +
- Stores 72 + 42 72 + 56
cheduter Scheduler
Entries 60 97
Registers -
Store Data Load/STA Load/STA
T -‘F Integer + FP 168 + 168 | 180 + 168
““““““““““““““““““ t“:f;a‘az —— Allocation Queue 56 64/thread
oad Data lemory Control
4—_ L1D BW (B/Cyc)
""""""""""""""""" <m.>_I ~Load + Store_| 4732 | 128+ 54
= L2 Unified TLB RS 15;§+12GM-:16|

Larger and improved branch predictor, higher throughput decoder, larger window to extract ILP

Improved scheduler and execution engine, improved throughput and latency of divide/sqrt

More load/store bandwidth, deeper load/store buffers, improved prefetcher
Intel® AVX-512 with 2 FMAs per core, larger TMB MLC

intel.

48

Mesh Interconnect Architecture

Broadwell EX 24-core die Cascade Lake-SP 28-core die

|| $ || $ || $ || !
s el gl ¢
s s L8 s

0
o
s

“"
H
3

CHA - Caching and Home Agent ; SF - Snoop Filter; LLC - Last Level Cache;
CLX Core - Cascade Lake Intel® UltraPath t

intel.

49

Cache Hierarchy Architecture

Broadwell Architecture Cascade Lake-SP Architecture

Shared L3
Shared L3 1.375MB/core
2.5MB/core (non-inclusive)
(inclusive)

L2 L2

L2
(1MB private) (1MB private) (1MB private)

L2 L2 L2
(256KB private) (256KB private) (256KB private)

Core Core Core Core Core Core

= On-chip cache balance shifted from shared-distributed to private-local

» Shared-distributed =» shared-distributed L3 is primary cache

* Private-local = private L2 becomes primary cache with shared L3 used as overflow cache
= Shared L3 changed from inclusive to non-inclusive

* Inclusive =» L3 has copies of all lines in L2

* Non-inclusive = lines in L2 may not exist in L3

intel.
Inclusive L3 Non-Inclusive L3
(Broadwell architecture) (Cascade Lake-SP architecture)
1. Memory reads fill directly to the L2, no
longer to both the L2 and L3
L2
256k8 2. When a L2 line needs to be removed, both
modified and unmodified lines are written

2 back

3. Data shared across cores are copied into the
L3 for servicing future L2 misses

1.375 MB

Cache hierarchy architected and optimized for

L3 data center use cases:

+ Virtualized use cases get larger private L2

cache free from interference

Multithreaded workloads can operate on
larger data per thread (due to increased L2
size) and reduce uncore activity

intel.

50

51

7

8

Introduction to SIMD ISA for Intel”
ODrocessors

History, features of Intel” AVX, Intel” AVX2 and Intel” AVX-512

History of SIMD ISA extensions’

Intel’ Pentium’ processor (1993)

MMX" (1997)

Intel’ Streaming SIMD Extensions (Intel’ SSE in 1999 to Intel’ SSE4.2 in 2008)

Intel’ Advanced Vector Extensions (Intel” AVX in 2011 and Intel’ AVX2 in 2013)

Intel’ AVX-512 in 2016

* [llustrated with the number of 32-bit data elements that are processed by one “packed” instruction.

intel.

intel.

52

10

53

9

Intel” AVX and Intel” AVX2

= Intel” AVXis a 256 bit vector extension to SSE
+ SSE uses dedicated 128 bit registers called XMM (16 for Intel” 64)
* Extends all XMM registers to 256 bit called YMM
* Lower 128 bit of YMM register are mapped/shared with XMM
* AVX works on either
* The whole 256 bit
* The lower 128 bit; zeros the higher 128 bit
= |ntel” AVX2
» Doubles width of integer vector instructions to 256 bits 128 bits (1999)
+ Floating point fused multiply add (FMA)
* Bit Manipulation Instructions (BMI)
* Gather instructions

* Any-to-any permutes 256 bits (2010)
» Vector-vector shifts
Copyright © 2021 Intel Corporation. All rights reserved. intel» n
54
Intel” AVX and Intel” AVX2 vector types
Intel’ AVX
FEFEERRRREREERRN scovtimese
. 16x 16 bit integer
Copyright © 2021 Intel Corporation. All rights reserved intelx 2

55

Intel” AVX-512

512-bit wide vectors

32 operand registers

8 64b mask registers
Embedded broadcast
Embedded rounding

Microarchitecture Instruction Set SP FLOPs / DP FLOPs /
cycle cycle
Inte! Xeon’ Processor SSE (128b) 8 4
family
Intel” Xeon® E5 and
E5v2 Processor Intel AVX (256b) 16 8
families
Intel” Xeon® E5v3 and
E5v4 Processors Intel AVX2 & FMA 32 16
L (256b)
families
1stand 2nd generation
Intel” Xeon® Scalable
Processor Gold and AVX-512 & FMA (512b) 64 32
Platinum families
intel

Intel” AVX-512 vector types

Intel’ AVX-512

= Includes AVX and AVX2

16x single precision FP

8x double precision FP

64x 8 bit integer

32x 16 bitinteger

16x 32 bitinteger

8x 64 bit integer

plain 512 bit

64 bit masks

intel

56

57

13

14

Intel” AVX-512 registers

» Extended VEX encoding (EVEX) to introduce another prefix

» Extends previous AVX and SSE registers to 512 bit:
* 32 bit: 8 ZMM registers (same as YMM/XMM)

* 64 bit: 32 ZMM registers (2x of YMM/XMM) —
" 8 mask registers (KO is special) =
rE YMMO-15 |
i R 256 bit
3 E] Ko-7
3! 64 bit
i ZMMO-31
i 512 bit
v
» = No penalty when switching between XMM, YMM and ZMM!
intel. s

58
® ®
Intel” AVX-512 for Intel CPUs
AVX-512 VNNI
* Intel” Xeon Phi” and Intel” Xeon" processors AvxsizvL
share a large set of instructions AVK-5128W
* Instruction sets are not identical AVX-5120Q
» Subsets are represented by individual -
feature flags (CPUID) .
I
I
%
o
£
g
(9}
Intel” Xeon" Intel” Xeon" Intel” Xeon" Intel” Xeon Phi” 1stand 2"
processor ES and E5v2 E5v3 and E5v4 Processor generation Intel”
family processor families processor families Xeon' Scalable
Pfamies
intel. ¢

59

Intel” AVX-512

https://software.intel.com/en-us/blogs/additional-avx-512-instructions

Available in all products supporting Intel” AVX-512
= Intel” AVX-512 Foundation (AVX-512F)

* Extension of AVX instruction sets including mask registers
= |ntel” AVX-512 Conflict Detection (AVX-512CD)

» Checkidentical values inside a vector (for 32 or 64 bit integers) to finding colliding indexes (32 or 64 bit)
before a gather-operation-scatter sequence

Available on Intel” Xeon® processors
(AVX-512VL)
* Freely select the vector length (572 bit, 256 bit and 128 bit)
(AVX-512BW) and (AVX-512DQ)
» Two groups (8 and 16 bit integers and 32 and 64 bit integers/FP)
Available on Intel® Xeon Phi™ processors

= Intel” AVX-512 Exponential & Reciprocal Instructions (AVX-512ER) and Intel” AVX-512 Prefetch
Instructions (AVX-512PF)

intel.

60

Intel” AVX-512 VNNI

Available in selected 2nd Generation Intel® Xeon® Scalable Processors
(AVX-512 VNNI)

* Adds vpdpbusd/vpdpbusds instructions for 8-bit inputs and
vpdpwssd/vpdpwssds instructions for 16-bit inputs to accelerate DL convolutions

INT8 convolution with AVX-512: vpomaddubsw, vomaddwd, vpaddd

Sign Mantissa

07 06 05 04 03 02 01 OO

OUTPUT
INT32

OUTPUT
INT16

vpmaddubsw

OUTPUT
INT32

vpmaddwd

CONSTANT vpaddd

INT16

CONSTANT
INT32

INT8 convolution with AVX-512 VNNI: vpdpbusd
INT32
CONSTANT T .
intel.

61

Intel” AVX* and core turbo frequency

= Cores running non-AVX; Intel® AVX2 light/heavy, and Mixed Workloads

Intel® AVX-512 light/heavy code have different turbo
frequency limits

))) Non-AVX_Turbo
= Frequency of each core is determined independently AVX2 Turbo > o
based on type of workload, number of active cores, T AVX512 Turbo > Z
estimated current and power consumption, and B - ~ T
processor temperature 3 SNNEHN B
@ Non-AVX_Base <J9 =
>
Code Type All Core Frequency Limit b AVX2_Base <
AVX512_Base
SSE Non-AVX All Core Turbo
AVX2-Light (without FP & int-mul) Cores

AVX2-Heavy (FP & int-mul) .
AVX512-Light (without FP & int-mul) AVX2 All Core Turbo Cores using AVX-512

Cores using AVX2
[Non-avx | Cores not using AVX

AVX512-Heavy (FP & int-mul) AVX512 All Core Turbo

*AVX refers to Intel® AVX, Intel® AVX2 or Intel® AVX-512 intel.

62

intel.

63

Notices & Disclaimers

Performance varies by use, configuration, and other factors. Learn more at www.Intel.com/Performancelndex.

Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available
updates. See configuration disclosure for details.

Your costs and results may vary.
Intel technologies may require enabled hardware, software or service activation.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries.
Other names and brands may be claimed as the property of others.

intel. =

64

The AMD “Zen 2” and “Zen 3”
Architectures

Dr.-Ing. Michael Klemm
Senior FAE, Principal Member of Technical Staff
HPC Center of Excellence

AMD EPYC™ Processor Generations

ﬂ HZEN 2::
“ZEN”

and

HZEN_'_U

“Naples”

2 The AMD “Zen 2" and “Zen 3" Architectures

AMD EPYC™ SoC Architecture

Memory sub-system:
8 memory channels per socket (2 DPC)
DDR4 @ 3200 GT/sec

Hierarchical SoC composition:
Up to four cores per CCX
Two CCXs form a CCD

Cache sizes:
L1D: 32K, 8-way
L1l 32K, 8-way
L2: 512K, 8-way
4 channels 4 channels
L3: 16M per CCX
2 DPC 2DPC
32M per CCD () ()

Acronym decoder:
CCX: Core Complex
CCD: Core Complex Die
DPC: DIMM(s) per Channel
3 | The AMD “Zen 2" and “Zen 3" Architectures - DIMM: Dual In-line Memory Module AMDA1

AMD EPYC™ 7002 Series NUMA Configurations

System can be configured to have 1, 2, and 4 NUMA domains per socket (NPS)

$ numactl -H

sool]

node © 1
0: 10 32
1: 32 10

4 | The AMD “Zen 2" and “Zen 3" Architectures

AMD EPYC™ 7002 Series NUMA Configurations

System can be configured to have 1, 2, and 4 NUMA domains per socket (NPS)

$ numactl -H

looo]]

nod o 1
0:

ilg
2:
Bl

5 | The AMD “Zen 2" and “Zen 3" Architectures

AMD EPYC™ 7002 Series NUMA Configurations

System can be configured to have 1, 2, and 4 NUMA domains per socket (NPS)

$ nmumactl -H
[...]

node

6 | The AMD “Zen 2" and “Zen 3" Architectures

Cache Hierarchy and Core Complex (CCX)

Structure of the CCX consists of

Four cores with two-way SMT and
L1D and L1l cache in the core (32K each, 8-way associative, 64 sets)
Core-local L2 cache (512KB, 8-way associative, 1,024 sets)

Four L3 slides of 4MB that form the 16MB L3 cache
16-way associative, 16,384 sets

Used as a victim cache to receive data evicted from the L2 cache
1 Bl |

L3 slice L3 slice
4MB 4MB

L3 slice L3 slice
4MB 4MB

7 | The AMD “Zen 2" and “Zen 3" Architectures

Cache Hierarchy and Core Complex

COREO
328 fetch 30K L1l Cache 32B/cycle
—2Bfetch |

32B/cycle

evion ORUBCRRET o ey
—_—] 8-way
e |

1*32B store

L3 slice
4MB

L3 slice L3 slice
4MB 4MB

8 | The AMD “Zen 2" and “Zen 3" Architectures

“Zen 2” Core Micro-architecture

9 | The AMD “Zen 2" and “Zen 3" Architectures

Floating-point/Vector execute

“Zen 2”
AVX 256-bit instruction support
width data path
width vector register file
width loads (2 per cycle)

width stores (1 per cycle)

10 | The AMD “Zen 2" and “Zen 3" Architectures

I,
32K L1I Cache (8 way)

!

Decode

L.

Micro-Op Queue
4 instructions

6 dispatch ops I

Branch Prediction

!

Op Cache

- |

8 fused instructions

!

Integer Rename

Sched Sched Sched Sched Scheduler

] Integzlr PhysicLI Registér File ,

AGU
Ld/st

AGU

ALY Ldist st

2 loads + 1 store per cycle

4 Micro-Op Dispatch
BN

64-Entry NSQ

32-Entry Scheduler

} }

AGU

160-Entry Vector Register File

R et Y YT

L ll

| ! |

> FP to Int, Store

l FLOATING POINT

L2 Cache
8 Way

AMDA1

8 Micro-Op Retire

!

===,
<> 224-Entry Reorder Buffer

— P o6

LDCVT <+— Loads

|I=orwar!|ng a&es

Intto FP

AMD EPYC™ Processor Generations

H “JEN 3"
" l “ZEN 2
“ZEN” -

and

HZEN_'_JJ

“‘Naples”

11 | The AMD “Zen 2" and “Zen 3" Architectures

AMD EPYC™ 7003 Series — Soc Architecture

8 CORES 8 CORES 8 CORES 8 CORES
+32M8B 13 +32MB 13 +32MB L3 +32MB L3

[Cemi2 | [Comiz | [Comiz_| [Comiz_|

| “ZEN 27

vyaaxz
2x DDR4

MEMORY / 10 DIE

vyaaxz
2x DDR4

| “ZEN 3"

[Comi2 | [Com2 | [Com2 | [Com2 |

8 CORES 8 CORES 8 CORES 8 CORES
+32M8B 13 +32MB 13 +32M8B 13 +32MB L3

12 | The AMD “Zen 2" and “Zen 3" Architectures

AMD EPYC™ 7003 Series — Micro-architectural Improvements

“ZEN 2” A ——— “ZEN 3”

2X Larger L1 BTB (1024)
32k;€v§vache . Improved branch predictor bandwidth 32“3"’2?"'5 Branch Prediction
“No-bubble” branch prediction

Faster recovery from mispredict
E . 0, he fetch Op Cache
il Op Cache aster sequencing of Op-cache fetches
Finer-grained switching of Op-cache pipes
4 Instructions/Cycle 8 Macro/Ops Cycle
Micro-Op Queue A ———
4 Instructions 8 Fused Instructions y
Dispatch

INTEGER — 1 AATING DOINT Int: Dedicated Branch and St-data pickers
Int: Larger windows (+32)
l l FP/Int: Reduced latency for select ops l l

1 AATING DAOINT
INTEGER 6 macro ops/cycle Dispatched

Integer Rename Floating Point Rename FP: 6-wide dispatch and issue (+2) Integer Rename Floating Point Rename I

FP: Faster FMAC (-1 cycle) l l l l
FP: Two INT8 IMAC pipes (+1)
(oo o]])] N | [==)l==]

Integer Physical ngvster File FP Register File i i FP Register File

I l LOAD / STORE I T 1 11
’ i i “ i Higher load bandwidth (+1) . . .

Higher store bandwidth (+1)
More flexibility in load/store ops

2 LOADS + 1 STORE [e 32K L1D Cache 512K 12 Cache l

3 LOADS PER CYCLE Load/Store 32K D-Cache 512K L2 (1+D) Cache
PER CYCLE 8 Way 8 Way

Improved memory dependence detection 2 STORE PER CYCLE Queues 8 Way 8 Way
TLB: 6 table walkers (+4)

13 | The AMD “Zen 2" and “Zen 3" Architectures AMDD

AMD EPYC™ Processors — Summary

CATEGORY EPYC 7002 EPYC 7003

Socket sP3 SP3

Core/Process “Zen2” [7nm “Zen3” [7nm

Max Core Count/Threads 64/128 64/128

L3 Cache Size 256MB 256MB

CCX Arch 4 Cores + 16MB 8 Cores + 32MB

Memory 8 Ch DDR4-3200, NVDIMM-N 8 Ch DDR4-3200, NVDIMM-N

PCle® Tech & Lane Count PCle Gen4, 128L/Socket PCle Gen4, 1281 /Socket

Security Features SME, SEV SME, SEV, SNP

Chipset NA NA

Power 120W - 280W 120W - 280W

14 | The AMD “Zen 2" and “Zen 3" Architectures

Disclaimer

The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions, and
typographical errors. The information contained herein is subject to change and may be rendered inaccurate for many reasons, including but
not limited to product and roadmap changes, component and motherboard version changes, new model and/or product releases, product
differences between differing manufacturers, software changes, BIOS flashes, firmware upgrades, or the like. Any computer system has
risks of security vulnerabilities that cannot be completely prevented or mitigated. AMD assumes no obligation to update or otherwise correct
or revise this information. However, AMD reserves the right to revise this information and to make changes from time to time to the content
hereof without obligation of AMD to notify any person of such revisions or changes.

THIS INFORMATION IS PROVIDED ‘AS IS.” AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE
CONTENTS HEREOF AND ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS, OR OMISSIONS THAT MAY
APPEAR IN THIS INFORMATION. AMD SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY, OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT WILLAMD BE LIABLE TO ANY PERSON FOR
ANY RELIANCE, DIRECT, INDIRECT, SPECIAL, OR OTHER CONSEQUENTIAL DAMAGES ARISING FROM THE USE OF ANY
INFORMATION CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

© 2021 Advanced Micro Devices, Inc. All rights reserved.

AMD, the AMD Arrow logo, EPYC, and combinations thereof are trademarks of Advanced Micro Devices, Inc. PCle is a registered
trademark of PCI-SIG Corporation. Other product names used in this publication are for identification purposes only and may be trademarks
of their respective companies.

15 | The AMD “Zen 2" and “Zen 3" Architectures

Performance analysis with Intel” tools

Dr. Mikko Byckling, IAGS DEE XCSS

intel.

81

Contents

= Intel” oneAPI performance analysis tools overview
» Application Performance Snapshot

* [ntroduction to Intel” VTune™ Profiler
* Features and analysis types
* Graphical User Interface (GUI)

* Command Line Interface (CLI)
* [ntel” VTune” Profiler HPC workflow

= Summary

intel

82

Intel” oneAPI performance analysis tools
overview

intel.

83

Introducing oneAP|

Application Workloads Need Diverse Hardware

» Cross-architecture programming that § W"”m"m @g B
delivers freedom to choose the best Scalar Ve Spatial i
hardware

» Based on industry standards and open e

specifications

» Exposes cutting-edge performance features
of latest hardware Industry Intel

Initiative Product
» Compatible with existing high-performance
languages and programming models
including C++, OpenMP, Fortran, and MPI

FPGA Other accel.

Learn More: intel.com/oneAPI .
intel. ¢

84

oneAPI Industry Initiative

= A cross-architecture language based on C++
and SYCL standards

» Powerful libraries designed for acceleration
of domain-specific functions

» Low-level hardware abstraction layer

» Open to promote community and industry
collaboration

= Enables code reuse across architectures and
vendors

The productive, smart path to freedom for
accelerated computing from the economic
and technical burdens of proprietary

|
oneAPI programming models

Learn More: intel.com/oneAPI

Intel® oneAPI

Base & HPC Toolkit

= |ntel® oneAP| Tools for HPC: Deliver Fast
Applications that Scale

= A toolkit that adds to the Intel® oneAPI Base
Toolkit for building high-performance,
scalable parallel code on C++, Fortran,
OpenMP & MPI from enterprise to cloud, and
HPC to Al applications.

» Targeted for C++, Fortran, OpenMP, MP]|
Developers

= Accelerate performance on Intel® Xeon® &
Core™ Processors and Accelerators

» Deliver fast, scalable, reliable parallel code
with less effort; built on industry standards

Learn More: intel.com/oneAPI-HPCKit

. Intel® oneAPI HPC Toolkit +

. Intel® oneAPI Base Toolkit

Application Workloads Need Diverse Hardware

Middleware & Frameworks

Frensorflow PyTorch @xnet @ {Enumpy X OpenViIN®

1 oneAPI Industry Specification

oneAPT
Direct Programming API-Based Programming

Libraries

DPC++

Math | Threading | |3 -

Data Parallel C++ Analytics/

)
ML DNN ML Comm

Video Processing

Low-Level Hardware Interface

Other accel.

intel

Intel® oneAPI Base & HPC Toolkit

Direct Programming API-Based Programming Analysis & debug Tools

Intel® C++ Compiler

Classic Intel® MPI Library

Intel® Inspector

Intel® oneAPI DPC++
Library

Intel® Fortran Compiler
Classic

Intel® Trace Analyzer &
Collector

Intel® Fortran Compiler
(Beta)

IS oneAPI ik Intel® Cluster Checker
Kernel Library
Intel® oneAPI Intel® oneAPI Data Intel® VTune™ Profiler
DPC++/C++ Compiler Analytics Library COAAIC LAt
Intel® DPC++
Compatibility Tool

Intel® oneAPI Threading

Building Blocks IE-AE e

Intel® Distribution for
Python*

Intel® oneAPI Video
Processing Library

5
g

Intel® FPGA Add-on for Intel® oneAPI Collective

oneAPI Base Toolkit Communications
Library

Intel® oneAPI Deep
Neural Network Library 1

Intel® Integrated oneAPI
Performance Primitives

HPC TOOLKIT

intel

85

86

5

6

Intel® VTune™ Profiler

» Get the Right Data to Find Bottlenecks

» Profiling for CPU, GPU, FPGA, threading,
memory, cache, storage, offload, power...

* DPC++, C, C++, Fortran, Python*, Go*, Java*, or a mix
¢ Linux, Windows, FreeBSD, Android, Yocto and more

» Analyze Data Faster

» See data on your source, in architecture diagrams,

as a histogram, on a timeline...
« Filter and organize data to find answers
= Work Your Way
» Graphical user interface or command line
* Profile locally and remotely

* Install as an application

* Install as a server accessible with a web browser

Intel® Advisor

Offload Modelling

* Efficiently offload your code to GPUs even before

you have the hardware

» Automated Roofline Analysis

* Optimize your GPU/CPU code for memory and compute

= Vectorization Optimization

» Enable more vector parallelism and improve its efficiency

Thread Prototyping

» Add effective threading to unthreaded applications

* Flow Graph Analyzer

» Create, visualize and analyze task and dependency

computation graphs

ALGORITHM MICROARCHITECTURE
0 Q o Snapshot 0 e

Hotspots Memory Anomaly Microarchitecture Memory
Consumption Detection Exploration Access

PARALLELISM 1/0

e o

Threading HPC Input and Output
Performance
Characterization

ACCELERATORS PLATFORM ANALYSES

@ @ O

GPU CPU/FPGA System Throttling Platform
Compute/Media Interaction Overview Profiler
Hotspots

Assembly — L L T

0o

GPU Instructions Executed by Instruction T...”

@ Control Flow @ Send & Wait

Int32 & SP Float § Int64 & DP Float § Other

75,002,500 @]
12,500,000
12,500,000

Part of the Intel® oneAPI Base Toolkit intel

Offload Modeling
m Accelerated Regions

Top Metrics

| 105.9x . | 58% I 2

Speed Up for Acceler dahl's Law Speed Uy Fraction of Accelerate Number of Offioads

Program Metrics

| ugen

Accelerated

Y P ime on Host After Target Platform Target
Device
Number of Offioads
Speed Up for Accelerated Code
Amdahfs Law Speed Up

Fraction of Accelerated Code

Y L3, GTI (Memory) v || * Guidence v

VY
a
GTl
047168

"B s
, beros {25701 68| e

Matrix2<float>

Self Performance 8.02 GFLOPS

Self L3 Arithmetic Intensity 0.23 FLOP/Byte
Self Elapsed Time: 0.268 s

Self Memory Traffic: 9.169 GE

04 07 1

Part of the Intel® oneAPI Base Toolkit intel

87

88

7

8

Performance Analysis Types
Get the big picture first with a Snapshot or Platform Profiler

Snapshot
Quickly size

In-Depth
Advanced collection & analysis.

R e Insight for effective optimization.

Run a test “during a coffee break”.

Application Focus)
+« HPC App developer VTune Profiler's VTune Profiler - Many profiles ~ S-M®

focus Application Performance Intel Advisor - Vectorization S®

* 1 app running during Snapshot L* ITAC - MPI Optimization S-L®
test

VTune Profiler

System Focus

« Deployed system focus - System-wide sampling S-MS
* Full system load test - Platform Profiler: L
Maximum collection times: L®=long (hours) M®=medium (minutes) S®=short (seconds-few minutes)
intel. °

89

Application Performance Snapshot
A part of Intel” Intel® VTune™ Profiler

intel.

90

A Fast Way to Discover Untapped Performance

Intel® VTune™ Profiler - Application Performance Snapshot

Quick & easy performance overview
» Install & run a test case during a coffee break

Application Performance Snapshot

Your application is MPI bound.
he,

ron-optimal communication schema or MP1 Ibxary settings. Use ME1

= perde. 12
i e sy

All the data in one place .

* MPI + OpenMP + Memory + Floating Point

Popular MPl implementations
* Intel® MPI, MPICH, OpenMPI and Cray MPI

New for 2020:
» Communication pattern diagnosis
= See time in high bandwidth, not just average
» Profile large MPI applications >64K ranks

Linux* only.

intel.

91

Better Snapshots — More Ranks

Intel® VTune Profiler — Application Performance Snapshot

Application Performance Snapshot

Rank-to-rank ication matrix

Find MPI communication patterns
that cause poor MPI scaling
» See rank-to-rank communication
by both time and volume
» See time in high bandwidth,
not just average

2 o266 os0

Application Performance Snapshot

Rank-to-rank ication matrix

Profile larger MPI applications
» Scales to >64K ranks

Learn More: https://software.intel.com/content/www/us/en/develop/documentation/get-started-with-application-performance-snapshot/top.html

intel.

92

Intel” Application Performance Snapshot
Example

Copyright ® 2021 Intel Corporation. All rights reserved. intel. =
93
. ® ™ .
Introduction to Intel’ VTune Profiler
Features and analysis types, Graphical User Interface (GUI),
Command Line Interface (CLI)
intel.

Copyright © 2021 Intel Corporation. All rights reserved.

94

Intel” VTune” Profiler analysis

» Analysis separated into two (three) steps

* Collect: collection of analysis data

* Finalize*: resolve symbol information for the data

* Report: compilation of reports from the data

* The use of GUl and/or CLlI is supported in both steps
= Nonintrusive sampling -based collection

* No special (re)compiles needed

* Works on optimized builds, to view source code, compile with debugging symbols (i.e., -g)

« Statistical analysis to determine approximate behaviour

intel. s

95

Data Collection

Software Collector Hardware Collector

Uses OS interrupts Uses the on-chip Performance Monitoring Unit (PMU)
Collects from a single process tree Collect system wide or from a single process tree.
~1ms default resolution (finer granularity - finds small

~10ms default resolution i
functions)

Either an Intel’ or a compatible
processor

Call stacks show calling sequence Optionally collect call stacks

Works in a VM only when supported by the VM
(e.g., vSphere*, KVM)

No driver required Uses Intel driver or perf if driver not installed

Requires a genuine Intel” processor for collection

Works in virtual environments

No special recompiles - C, C++, DPC++, C#, Fortran, Java, Python, Assembly

intel.

96

VTune Graphical User Interface (GUI)

» Graphical tool vtune-gui

» Default location (Linux):

/opt/intel/oneapi/vtune/2021.2.0/bin64/vtune-gui

= Pure GUI workflow
* Set up a project
* Choose analysis type
* View analysis results

VTune GUI

Intel® VTune™ Profiler

= Welcome page

* Quick access to documentation and

training

= Built-in sample code, pre-collected

results
* Easy to explore tutorials

» Help tour overlay

* Quickly learn essential user interface

controls

ALGORITHM MICROARCHITECTURE
erformance
Snapshot
(0] o O
Hotspots Memory Anomaly Microarchitecture Memory
Consumption Detection Exploration Access
PARALLELISM 170
(<] 1)
Threading HPC Input and Output
Performance
Characterization
ACCELERATORS PLATFORM ANALYSES
© O @ @ O
GPU GPU CPU/FPGA System Throttling Platform
Offload Compute/Media Interaction Overview Profiler
Hotspots
intel
WELCOME
P Configure Analysis...

% New Proje

? Documentation # Cookbook ¢} Get Support

FEATURED CONTENT...

< 56 >

Drag and drop to select a
range on the timeline area.
Zoom and/or filter in from

the context menu. Learn

more...

-k

intel

17

97

18

98

VTune GUI: Profile Python & Go! Fﬁm ,,w

And Mixed Python / C++ / Fortran

Low Overhead Sampling Precise Line Level Details
= Accurate performance data without high = No guessing, see source line level detail
overhead instrumentation Mixed Python / native C, C++, Fortran...

= [aunch application or attach to a

: = Optimize native code driven by Python
running process

Source l | Assembly ‘ | ‘ oD | B | @ ‘ Assembly grouping: | Address v‘ ‘ CPU Time v‘
CPUTime: Total ~~ JViewing { 1of1 |» selected stack(s)
Source
Iinchis Source Effective Time by Utilization l 100.0% (3.388s of 3.388s) l
@ Idle @Poor Ok @ Ideal [Over core.pyd!_pvx f 4core 12SlowpokeCore ..
10 def doLeg(): core.pyd!_pyx pf 4core 12SlowpokeCore...
1 template, cbjects = makeParams () python274IIfan@Dxle]DWDD*'DxZQQ-[u.A.
12 for _ in xrange(1000): main.pyidoLog+0x30 - main.py- 13
T . - python27.dlIfunc@0x1e10fbc0+0x383 - [un...
13 > logging.info(template.format (*objects)) 26.7% (I . -
. main.py!main+0x18 - main.py:18

intel.

VTune GUI: Hotspots

Double Click from Grid or Timeline

View Source / Asm or both CPU Time Right click for instruction reference manual

Source Assembly n Assembly grouping. Address v ‘ o

CPU Time: 1
[vzars e

0x40dcbf
0x40dcbf 572
0x40dcct 572

565 curpos = nXp;

Quick Asm navigation:
Select source to highlight Asm

cur = g->cells(veoxindex];

"0x40dcc3 573 mov eax, dwerd per [esi+0x4] || 0.053s |
0x40dccé 573 mov ecx, dword ptr [edi+0x10] | 07505 (NN
0x40dcc9 573 mov edx, dword ptr [adi+Oxc] 0.020s |

while (cur != NULL) { Oxd0dcce 573 mov eax, dword ptr [eax] 0.055s |
if (ry->mbox[cur->obj->id] != x| 2. Oxdodcce 573 cmp dword ptr [ecx*eax*4], edx|| 1.177s
574 ry->mbox [cur->cbi->1d] = ry->(0.604s B 0x40dcd1 573 0x40d Block 48 0.003s

Block 46:

cur->obj=->methods->intersect (

| 06575 W

scx-eax*4], =dx | 0604s (NN
ptr [esi+0xd] 0.175s @

OO T TV VIO

cur = cur->next;

| 0.423s 0x40dcd6 575 mov eax, dwo

0.005s
| 0.019s | 0.004s ¢
>maxdist < tmax.z || curvol 0.011s | 0= ox40dcab 575 0.027s |
I = oxdodcde 575 0130s @

| 0xdodce0 575

0.078s |

I P R

voxindex += step.z*g->xsize¥g->ys| 0.006s

Scroll Bar “Heat Map” is an overview of hot spots Click jump to scroll Asm

intel.

100

20

VTune GUI: Threading

¢ & Transitions 4.4 CPU Time
Locks & Waits Basic Hotspots Advanced Hotspots
e M) L B i B il A
; e, [¥] = Frame
[WWinMainCRTStartu... Thread ST T T —
[Thread (0x1364) 8 Running P ———
B [Thread (0x136¢)) waits e ————
£ [thread (0x1374) =2 User Task P)
[Thread (0x137¢) [¥] * & Transiton g ———
[Thread (0x1384) Thread Concurrency e A —— |
Mk Concurrency
S —— e TN
Frames over Trme N i
= » =] »
— B =7 User Task
rame ¢ &Transmon =
H « |Frame Transition Start: 29.958s Duration: 0.018s
OVErS: s 2085: durstion: 0017 wWinMainCRTStartup (0:12c4) to Thread (0x138¢) (20.899s to 29.8995) Task Type: Smoke::FrameWork:execute():Other
Frame: 72 Sync Object: TBB Scheduler Task End Call Stack: Framework: Execute
Frame Domain: Smoke:F Object Creation File: taskmanagertbb.cpp
Frame Type: Good Object Creation Line: 318 CPU Time
Frame Rate: 595242179 04.232472%

= Optional: Use API to mark frames and user tasks @ Frame <= User Task
= Optional: Add a mark during collection €@

intel. =
101
Threading, Memory Access, Vectorization
@ HPC Performance Characterization
» Threading: CPU Utilization RO SRCIREN = -/
Elapsed Time : 10.253s
* Serial vs. Parallel time
. . . SPGFLOPS : 129.325
* Top OpenMP regions by potential gain
. . .) Effective Physical Core Utilization : 52.7% (23.181 out of 44) k&
* Tip: Use hotspot OpenMP region analysis for more v o s Uion - 523% 48020603
detail P o T 1012087
OpenMP Potential Gain : 4.493s (43.8%) &
= Memory Access Efficiency D
‘ Stalls by memory hierarChy ~) Memory Bound : 21.9% K of Pipeline Slots
* Bandwidth utilization ORAM Bt % otGocicn
« Tip: Use Memory Access analysis Bt nnisiognm
. . ope . ~) FPU Utilization : 1.9% &
» Vectorization: FPU Utilization soiompecra
* FLOPS T estimates from sampling e
« Tip: Use Intel Advisor for precise metrics and Fpm?‘silif:;}i"."m.,.n: mmy
vectorization optimization i
intel. 2

102

VTune GUI: Microarchitecture Exploration

Issue: A significant portion of Pipeline Slots
is remaining empty due to issues in the
Front-End.

The metrc vae is high. This can
incate it the sgndcant Facton of

Tips: Make sure the code working size is not
too large, the code layout does not require
too many memory accesses per cycle to get

I - -

intel. =

VTune GUI: Memory Access Analysis

» Tune data structures for performance Top Memory Objects by Latency

This section lists memory objects that introduced the highest latency to the overall application execution.

° Attrlbute CaChe mISSGS tO data StrUCtUI’eS Memory Object Total Latency Loads Stores LLC Miss Count
;)) alloc_test.cpp:157 (30 MB) 656% 4239327176 4475334256 0
(not JUSt the code causing the m|SS) alloc_test.cpp:135 (305 MB) 68% 411212336 441613248 0
alloc_test.cpp:109 (305 MB) 63% 439213176 449.613488 0
e Su pport for custom memory allocators alloc_test!l_data_init436.0.6 (576 B) 52% 742422272 676820304 0
0

[vmlinux] 46% 173605208 116,003480

» Optimize NUMA latency & scalability S

“N/A is applied to non-summable metrics.

* True & false sharing optimization
* Auto detect max system bandwidth
 Easier tuning of inter-socket bandwidth

(¥ DRAM Bandwidth, GB/sec
(] ik Bandwidth, GB/sec
[¥] 4" Rezd Bandwidth, GB/sec

GB/sec

5 package.1

[V] 4™, Write Bandwidth, GB/sec
[v] QP1 Outgoing Bandwidth, GB/sec

b QPI Bandwidth, GB/sec
. . package 0 220 [¥] CPU Time
» Easier install, Latest processors WAW e
« No special drivers required on Linux* forme 5 Wm
* Intel® Xeon Phi™ processor MCDRAM . .

CPUTime QPI Outgoing ... DRAM Bandwidth,

ERE
g
&

(high bandwidth memory) analysis

intel. 2

104

VTune GUI: Memory Consumption Analysis

Top Memory-Consuming Objects

This section lists the most memory-consuming objects in your
application. Optimizing these objects results in improving an overall

See What Is Allocating Memory application memory consumpion.
* Lists top memory consuming functions and Memory Object Memory Consumption
Ob-ects dictobject.c:632 (768 B) 768 B
) J filedoalloc.c:120 (4 KB) 4 KB
* View source to understand cause iofopen ¢ 76 (568 B) 568 B
« Filter by time using the memory consumption | Torczie) e

dictobject.c:632 (3KB) 3KB

timeline 217 TB

= Standard & Custom Allocators
* Recognizes libc malloc/free, memkind and

] , -
Grouping: [Process / Module [?] @ E]

Process / Module | Allocation Size ¥ | Deallocation Size | Allocation/Deallocation Delta | Viewing « 10of 1801 » selected stac...
jemalloc libraries T | Y
* Use custom allocators after [ttt
markup with ITT Notify API R
5 | python2.7Irun_mod+0x2c - pyt..
Languages
* Python*

e Linux*: Native C, C++, Fortran

Native language support is not currently available for Windows*

2 intel. =
105
VTune GUI: Results comparison
» Quickly identify cause of regressions.
* Run a command line analysis daily
* |dentify the function responsible so you know who to alert
» Compare 2 optimizations — What improved?
» Compare 2 systems — What didn't speed up as much?
Grouping: ’chtim/CdlStad(']
Function / Call Stack CPU Time:Differencev Module CPU Timed07hs # CPU Time006hs *
FireObject::checkCollision SystemProceduralFire.DLL ’:I
[FireObject::ProcessFireCollisionsRange| 4.644s - SystemProceduralFire.DLL 5.643s - 0.999s l
® dliStopPlugin 3.765s (] RenderSystem_Direct3D9.DLL 9.184s I 5419 ()]

intel. 2

106

opyright © 2021 Intel Corporation. All rights reserved lntel’

VTune CLI: syntax

= \/Tune command line application vtune
vtune <-action> [-action-option] [-global-option] [[--]
<target> [target-options]]

» —action: collect, finalize or report

* ~action-option: modifies the behaviour of an action
* -global-option: adjusts global settings

* <target>: denotes the target application to profile

27

107

VTune CLI: collect

= Syntax:
-c[ollect] <analysis type> [-analysis-option]

* The type of analysis defined with analysis type

* Analysis type defines the set of available analysis-option modifiers or
"knob”s

» Command line help with ~help on each analysis type and available
knobs

. i 28
opyright © 2021 Intel Corporation. All rights reserved Intel’

108

VTune CLI: collect - analysis types

» For HPC, the analysis types of interest are
* hotspots: Identify hotspots, collect stacks and call trees
* hpc-performance: Analyze CPU and FPU utilization and memory access efficiency
* threading: Analyze threading efficiency
* memory-access: [dentify memory access related issues and estimate memory bandwidth
* memory-consumption: Identify memory consumption
* io: Analyze processor and disk input and output

* uarch-exploration: Identify low-level hardware issues

intel. =

109

VTune CLI: collect - global modifiers

= A large number of global modifiers available

» -finalization-mode: whether to finalize the result after the collection
stops

* ~data-1limit: limit the amount of data collected. The default is 1GB, set to O
for unlimited

* —quiet: limit the amount of information displayed
* —search-dir: path where the binary and symbol files are stored

* —-result-dir: path where the result will be stored

intel. =

110

VTune CLI: finalize

» To free compute resources, it may be beneficial to finalize the
collected results separately

* Examples: proling runs on a cluster with multiple nodes, profiling runs on a
KNL, re-resolving symbols

= Syntax:
-finalize -result-dir <result directory>
[-search-dir <symbols directory>]

» Finalization can be performed on a different platform than what the
results were collected on

intel. =

111

VTune CLI: report

= Syntax:
-r[eport] <report type> [-report-option]

* The type of report defined with report type
* Report type defines the set of available report-option modifiers

» Command line help with ~help

= NOTE: using a GUI to view results is preferrable

intel. =

112

VTune CLI: report - report types

» For HPC, the report types of interest are
* summary: Report overall application performance
* hotspots: Report CPU time for application

* hw-events: Display the total number of hardware events

= A report is automatically based on the type of data collected!

intel. =

113

VTune CLI: report - global modifiers

= A large number of global modifiers available
* —column: Specify which columns to include or exclude
» —-filter: Specify which data to include or exclude
* —group-by: Specify grouping in a report
* —time-filter: Specify which time range to include
* —source-search-dir: path where the source code is stored

* —-result-dir: path where the result will be stored

intel. =

114

VTune CLI: example

= Collect hotspots of application nbody, store results to directory
nbody hs

= VView available columns in the result and then compile a hotspots
report from specific columns

Copyright © 2021 Intel Corporation. All rights reserved. |nte|s 35

115

Intel” VTune” Profiler HPC workflow

Use of Intel” VTune” Profiler in a cluster environment

Copyright © 2021 Intel Corporation. All rights reserved. |nte|, 3

116

Profiling HPC applications

= \/Tune can profile hybrid MPI+OpenMP applications on a cluster

* For profiling MPI, use Intel” Trace Analyzer and Collector or Intel” MPI
Performance Snapshot

= Recommended workflow:

* Run collect (and finalize) with CLI on a cluster

* Run report with GUI on a local workstation or a cluster login node

* Finalized collection results can be transferred if needed

Copyright © 2021 Intel Corporation. All rights reserved lntel‘ ¥

117

VTune with MPI applications (1/3)

» Single node application launch:
<vtune_command> [--] <mpi command> <application>

» Encapsulates all the ranks to result directory

* Example: ranks 0-47 in result _dir

= Works whenever VTune is able to track the processes created

* Limited to profiling over a single node

© 2021 Intel Corporation. All r 1ts reserved Intelv 38

118

VTune with MPI applications (2/3)

» Multiple node application launch:
<mpi_command> <vtune_ command> [--] <application>

* Results encapsulated to per-node directories suffixed with
hostname

« Example:ranks 0-15in result_dir.hostnamel, ranks 16-37in
result dir.hostname2, ranks 32-47 in result dir.hostname3

intel. =

Copyright © 2021 Intel Corporation. All rights reserved.

119

VTune with MPI applications (3/3)

» Selective rank profiling by modifying the MPI process launch:

" Intel MPI supports —gtool “<command>:<rank-set>[=mode]”
option:

Copyright © 2021 Intel Corporation. All rights reserved |nte|, 0

120

Intel.

121

Performance varies by use, configuration, and other factors. Learn more at www.Intel.com/Performancelndex.
Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available
updates. See configuration disclosure for details.
Your costs and results may vary.
Intel technologies may require enabled hardware, software or service activation.
© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries.
Other names and brands may be claimed as the property of others.

intel. <«

122

Introduction to AMD pProf Profiler v3.4

Dr.-Ing. Michael Klemm
Senior FAE, Principal Member of Technical Staff
HPC Center of Excellence

AMD offers software development tools
optimized for HPC applications on EPYC™ CPUs
while supporting developer choice with tools and methods

developer.amd.com

AMD Optimizing CPU Compiler (AOCC)
AMD Optimized CPU Libraries (AOCL)
AMD pProf profiler

Spack package support of HPC applications

Support of open-source tools

WProf vs. llprof usage

4 AMD pProf is pronounced as “MICROprof”

4 “uprof” is used for computer-readable form
+ Directory path names
« Command lines
+ Scripts
* URLs

AMD pProf Profiler Introduction - v3.4 2021

AGENDA

4 AMD pProf — Overview
4 Profiling Overview
4 System Analysis

4 Application Analysis

AMD pProf Profiler Introduction - v3.4 2021

Overview of AMD uProf

AMD Profiler Strategy

Offer developer choices —the profiler that best suites the need and development environment

4 perf kernel — common profiler utility used to build custom profiler applications on Linux®
+ Enabled to reflect counters and events supported by latest AMD processors
+ PAPI is automatically supported given PERF kernel support

 Tools built on PERF kernel driver or PAPI have the necessary support to work well on latest AMD
processors

- PERF tool (application)
- PAPI-based tools like HPCTool kit etc

4 AMD pProf offers a richer experience with AMD support
* Intuitive graphical user interface and command line interface
+ Supporting Linux®, Windows® and FreeBSD

+ Supports performance monitoring recipes — data from set of events and associated calculation around
them

AMD pProf Profiler Introduction - v3.4 2021

AMD pProf Profiler Overview

Measure and analyze the performance of an application or the entire system

running Linux® or Windows®

SYSICINPAEYSE PROFILE SUMMARY ANALYZE SOURCES
* Monitors basic core, level 3 cache Select Profile Target
and data fabric performance metrics
Application Analysis

* CPU Profiling to identify runtime
performance bottlenecks of an
application or the entire system

Power Profiling
* Monitors thermal &

characteristics o

Energy Analysis

 |dentifies energy hotspots in the
application

AMD pProf Profiler Introduction - v3.4 2021

Broad AMD pProf 3.4 support of
Operating Systems & and Compilers

SETTINGS

wex: | ESRORERE] [sartrofie|

Component Supported Version

Languages

OpenMP® Spec OpenMP® v5.0

LLVM™ 8 - 12

C, C++

Compiler AOCC 2.x, 3.0

C, C++, Fortran

Intel® Compiler Collection (ICC) 19.1

C, C++, Fortran

Ubuntu® 18.04 LTS

Ubuntu® 20.04 LTS

Red Hat® Enterprise Linux® 8.x
CentOS™ 8.x

Windows® 10 thru 20H2
Windows Server® 2019

AMD pProf Profiler Introduction - v3.4 2021

uProf — Feature support matrix

System Analysis®

AMD uProfPcm

Application Analysis (CPU Performance Profiling)

Micro-Architecture Analysis (EBP)

Instruction Based Sampling (IBS)

OS Timer based profiling (TBP)

Callstack sampling — Native (C, C++, Fortran)

Callstack sampling — Java

Callstack sampling — System-wide

HPC - OpenMP Tracing

HPC - MPI Code Analysis (single & multi node)

Cache Analysis

Thread Concurrency Chart

*Only on EPYC server platforms
AMD pProf Profiler Introduction - v3.4 2021

uProf — Feature support matrix

Power Profiling

Live Power Profiling

Power Application Analysis*

Usability

Graphical Interface

Command Line Interface

Virtualization — TBP and EBP support

VMware ESXi™

KVM

Experimental feature
AMD pProf Profiler Introduction - v3.4 2021

Support

4 Releases
* Public release : https://developer.amd.com/amd-uProf/

4 Documentation
+ User guide: <installation-path>/Help/User_Guide.pdf
* Online user guide: https://developer.amd.com/amd-uProf/

4 Installation path:
* Linux® : /opt/AMDuProf_<version>/
* Windows® : C:\Program Files\AMD\AMDuProf

AMD pProf Profiler Introduction - v3.4 2021

Profiling - Overview

What is profiling?

4 Profiling measures how a program interacts with the hardware it is running on

4 Used to evaluate performance and solve problems
* What part of my code is the most critical (most utilized or accessed)?
* Why is my critical loop too slow?
Am | hitting or missing cache?
Is the hardware configured optimally for this code?
* Is the code optimal for this hardware?

4 Profiling can also be used in comparative evaluation of architectures
* How does this code run on machine A vs. machine B?

4 Profiling can solve power problems (which can lead to performance problems)
* What part of my code causes the CPU to consume the most power?
« Power and heat may be a cause of performance problems

AMD pProf Profiler Introduction - v3.4 2021

Types of Profilers

4 Counter-based profiling 4 Trace profiling

+ Periodically collect PMC event counts while + Capture interesting events while running the
the application is running code — ETW, OMPT, PMPI etc.,

- Distinguish what happened in hardware or * ldentify what happened in the software
software

» Accurate with minimal overhead

* Some overhead but accurate

4 Call Graph profiling

4 Statistical sampling profiling - Call sequence

» Based on certain triggers, collect profile data . .
(IP, PID, TID, Callstack) 4 Code Instrumentation profling

Processor triggers - Performance Monitor Counter (PMC) May req,uwe changmg the code — manual or
threshold interrupts automatic process

- Software triggers — Timer, Context Switches, Page faults * Some tools can do this to the Comp”ed bmary

+ |dentify where an event happens and how (dynamic instrumentation)

frequently
» Overhead is a function of sampling frequency

AMD pProf Profiler Introduction - v3.4 2021

Processor Performance Monitoring Counters (PMCs)

4 PMCs are AMD processor registers (MSRSs)
+ Covering Core, L3 cache, and Data Fabric functions
* Hundreds of processor events available

Ex: CPU Cycles not in Halt, Retired Instructions

* PMCs can be programmed to monitor processor
events

4 Processor Core PMCs
* 6 MSRs per core thread
+ Core PMC events can be monitored
in Sampling & Count mode

- Count mode — running count value of processor events

Sampling mode

« Based on certain triggers, collect profile data (IP, PID, TID, call
stack)

4 HW Triggers - Performance Monitor Counter (PMC) threshold
interrupts

4 Software triggers — Timer, Context Switches, Page faults

AMD pProf Profiler Introduction - v3.4 2021

Processor PMC Domains

IC/BP: instruction cache and branch
prediction

DE: instruction decode, dispatch, microcode
sequencer, & micro-op cache

EX: integer ALU
execution and
scheduling

FP: floating point

LS: load/store

AMD pProf Profiler Introduction - v3.4 2021

4 Processor in socket hierarchy
» Chiplets in processor connected by Data Fabric

— Core Complexes (CCXs) in Chiplets

4 Cores in CCX
4 L3 cache in CCX

4 L3 Cache PMCs

Operate at the core complex (CCX) level for each
CCX in the processor

* 6 MSRs; Count mode only

4 Data Fabric PMCs
+ Apply at the chiplet die level
4 MSRs; Count mode only

Application Analysis

Application Analysis — Overview

4 CPU Profile - to identify runtime 4 Data Visualization
performance bottlenecks of an application - Data attribution at various program units -
or the entire system Process / Module / Thread / Function / Source
- Where the application spends its time / Instruction
(hotspots) * Flame graph, Callgraph
+ Bottlenecks due to core micro-architectural
constraints (IPC, cache misses, etc.)

+ Parallelism issues - Thread concurrency

4 Ease of use

* No special recompile — C, C++, C#, Fortran,
Java, Assembly

4 Data Collection + Debug info required for function & source
- Statistical sampling — Timer, Core PMC, IBS + Graphical interface (AMDuProf)

* Callstack + Command Line interface (AMDuProfCLI)
* Tracing — ETW, JVMTI (Java), OMPT

AMD pProf Profiler Introduction - v3.4 2021

Application Analysis — Performance Data

Primary data Secondary data

4 Basic hotspots - Timer based profiling 4 Call graph

(TBP) - Call sequence

* Which functions consume most of time?
4 Thread concurrency

4 Micro-architectural exploration - Core PMC - Windows® only
Event based profiling (EBP)

» Which functions consume most of the cycles?
* Why - cache misses?, branch mispredictions?

4 Memory access - Instruction Based
Sampling (IBS)
* Memory access
+ Potential false cache sharing

4 HPC using OMPT
* OpenMP® parallel region analysis

AMD pProf Profiler Introduction - v3.4 2021

141

Application Analysis — data collection

PROFILE

Start Profiling

Select profile target — >aved Configurations
application, process, specify program options, en
system i v - The w ty def s re the executable is located unl

, you can still collect system wi i work however. Optionally you can s
terminate the application after profiling or not

Select Profile Target Application ¥

Application Path \git\TestSuite\Samp rk dows_NT_v140_x64_Debug\Scimarkstable.exe X Browse

Application Ontian

Working Directory C:\git\TestSuite\Sample ams\ScimarkStab dows_NT_v140_x64_Debug X Browse

Feed in profile application Environment Variables

details
Collect System Wide Data

Terminate Application After Profiling

Core Affinity

Config Name AMDuProf-TBP-ScimarkStable(2) X evious Start Profile

AMD pProf Profiler Introduction - v3.4 2021 AMDa

142

Application analysis — data collection

Profile types — CPU or Live Power
AMDuProf
PROFILE

SEBLll Select Profile Type cpuprofie

" . Saved Configurations
Predefined analysis types — -
group of interesting Core PMC B S Use this configuration to get an overall assessment of performance and to

events to monitor Investigate Instruction Access find potential issues for investigation.
Investigate Data Access Mask = Sampling P: User Mode Kernel Mode Callstack

Investigate Branching

Assess Performance (Extended)

Assess Performance

Custom Profile

Core PMC events that are
monitored to generate The numb And INterTupts. prodify Events
interrupts

Advanced Options

Advanced Options to enable SO

callstack, profile schedule [= Admin privitege anavaiiaoie RS ¢ x Previous Nex _‘ Start Profile
g

Custom profile — add/delete events,
AMD Prof Profiler Introduction - v3.4 2021 change unit-masks, sampling period AMDZ

Application Analysis — data collection (CLI)

Collect assess performance data

$ /tmp/run-namd.sh
Profile completed

Generated raw file : /tmp/namd-assess.caperf

Generate Report this will create /tmp/namd-assess/namd-assess.db & /tmp/namd-
assess/namd-assess.csv

$

Translation started

Generated report file : /tmp/namd-assess/namd-assess.csv

To only translate - this will create /tmp/namd-assess/namd-assess.db (import in GUI)
$

Translation started

Generated db file : /tmp/namd-assess/namd-assess.db

Importing
The rawfile collected or the processed db file can also be imported in GUI for further analysis

AMD pProf Profiler Introduction - v3.4 2021

Application analysis — Function hotspots

SUMMARY ANALYZE

» Filters and Options

Filters & Options View All Data Show Values By Sample Count System Modules: Exclude m
View: Select what metric to report; Enable Regex Search
Show data by: count or %;
Include or exclude system modules;

Functions Modules L1_DEMAND DC REFILISALL | L2_CACHE ACCESS.FROM L1.DCMISS | IPC RETIRED_BR INST MISP (PTI) | %RETIRED,
ComputeNonbondedutil::calc_pair_energy(nonbonded*) |namd2 32022 32139 16.83
pairlist_from_pairlist(double, double, double, double, [, ... namd2 18286 18475 15.89

ComputeNonbondedutil::calc_pair_energy_fullelect(nonboi namd2 20440 19636 18.94

Comp: bondedUtil:calc_self_energy(nonbonded*) | namd2 23644 22869 7.48
ComputeNonbondedutil::calc_self_energy_fullelect(nonbor namd2 12080 13036 6.88
uble click on a function to read_hpet fvmlinux] 830 716 7.84
5 OIEUr S COMPULEror U DihedralElem?*, int, double*, |namd2 7 32.02
view Source sincos libm-2.27.50 61 21.85.
_ieee754_atan2_fma libm-2.27.50 69 X 16.35

PmeRealSpace::compute_forces_orderd(float const* const’|namd2

AngleElem::computeForce(AngleElem?, int, double*, doubl namd2
Issue threshold — CPI > 1.0 will Lattice::delta(Vector const&, Vector const&) const namd2
be highlighted - g EoreES

_ieee754_acos_fma libm-2.27.50
BondElem::computeForce(BondElem*, int, double*, double|namd2
Sequencer::submitHalfstep(int) namd2
PmeRealSpace:fill_charges_order4(float**, float**, int&, in|namd2
copy_user_generic_string [vmlinux]
HomePatch::addForceToMomentum(double, int, int) namd2

Sequencer::submitReductions(int) namd2

Low confidence level due to patch:forceBoxClosed) namd2
low number of samples Patch:positionsReady(int) namd2
collected — values will be e e libc-2.27.50
grayed Js

AMD pProf Profiler Introduction - v3.4 2021

145

Application analysis — Analyze

ANALYZE

» Filters and Options Load more profile data

View Al Data GroupBy Process Show Values By Sample Count System Modules: | Exclude m

Process CYCLES_NOT_IN HALT ¥ | MISALIGNED_ LOADS | RETIRED_INST RETIRED BR INST | RETIRED_BR INSTMISP | 11.0C ACCESSESALL | L1 DEMAND DC REFILISALL | L2 CACHE ACCESS.FR
namd2 (PID 170485) (Rank 1) 28858 15678 28876 19739 820 29721 28928 29258
namd2 (PID 170484) (Rank 0) 28815 15047 28809 19404 795 29668 28287, 28804
namd2 (PID 170487) (Rank 3) 28811 18463 28816 18568 752 29575 27689 28162

Program units — load modules namd2 (PID 170486) (Rank 2) 28795 15272 28800 19630 818 29605 28209 28800

w Load Modul
and threads St
17151 27731 27431

{Sys] (vmlinux] 1032 945 376
(Sys] libm-2.27.50 927 432
libfftw3f.50.3.5.8 314 378
(Sys] libc-2.27.50 12 51

Search

Functions (for namd2) CYCLES NOT_IN_HALT | MISALIGNED_LOADS | RETIRED_INST RETIRED_BR_INST RETIRED BR_INST MISP| L1_DC ACCESSESALL ¥ L1_ DEMAND_DC REFILLS.ALI L2 CACHE ACCESS.FR(
. ComputeNonbondedUtil::calc_pair_energy(nonbonded*) 7882 1819 4763 279 8432 7934
Hot functions for the selected

program unit; ¢_pair_energy_fullelect(nonbo 1079 2720 181 4792 4865
Double click function to view Util:calc_self_energy(nonbonded*) 5778 2471 72

pairlist_from_pairlist(double, double, double, double, [, 1692 3178 17 5565 4550

4742 6017

Source ComputeNonbondedutil::calc_self_energy_fullelect(nonbor 2602 1238 34 2918 3112

Dihedral Elem::computeForce(DihedralElem®, int, double*, 109 426 198 26
AngleElem::computeForce(AngleElem*, int, double*, doubl 93 333 140 16
Lattice::delta(Vector const&, Vector const&) const 70 285 139
PmeRealSpace:fill_charges_orderd(float**, float**, int&, in 137 124
PmeRealSpace::compute_forces_orderd(float const* const’ 151 99
BondElem::computeForce(BondElem*, int, double*, double 136 88

AMD pProf Profiler Introduction - v3.4 2021

Application

Filter by Process and Thread

Select source line to highlight
corresponding assembly

Heatmap — overview of
hotspots

AMD pProf Profiler Introduction - v3.4 2021

analysis — Source view

PROFILE

SUMMARY ANALYZE SOURCES

Compute”*~nbondedUtil:calc_pair_energy(nonbonded®) X
» Filters

PID: Al Process (100.00%) ¥ TID: All Threads (100.00%) ¥ View AllData Show Values By Sample Count | Show Assembly

A Line Source MISALIGNED_ LOADS RETIRED INST RETIRED BR INST | RETIRED BR INSTMISP L1 DC ACCESSESALL

BigReal vdw_d = A * table_four_i[0] - B * table_four_i(4];

BigReal vdw c = A * table_four_i[1] - B * table_four i[5];

BigReal vdw b = A *
3 ENERGY (

fast_c += vdw_c;

table_four_i[2] - B * table_four_i[6];

fast_b += vdw_b
(diffa * fast d + fast_c) * diffa + fast b
Address
0x49d354

0x49d359

Assembly MISALIGNED_ LOADS RETIRED INST RETIRED BR INST | RETIRED BR INSTMISP L1.DC ACCESSESALL

vunpcklpd %xmm9, %xmm3,
vmovddup ‘xmm11,%xmm9
ox49d3se vblendpd $0x01,%xmm8, %xmms , ¥xmn3
0x49d364 vunpckhpd %xmm13,%xmm5, sxmm5

0x49d369 vmovapd +6x00000130+(%rsp) , sxmm10

0x49d372 vmulpd %xmn7, Sxmmd, Sxmm6

0x49d376 vsubpd %xmm7, Sxmmd, Sxmmd

6x49d37a vblendpd $6x1,%xmm14,%xnm13, \xam?

0x49d380 vmulpd %xmm7,%xmm9, %xmm7

0x49d384 vfmadd231pd -6x00248a3d(%rip),%xmm3,%xmm7 0x254950
v o - -

147

Callstack — Combined User & Kernel Callstack (Linux®)

Sampling event and Process
filtering

Flame Graph

call Graph

Visualization of sampled stack-
traces to identify hot code-paths

Kernel frames

User space frames

AMD pProf Profiler Introduction - v3.4 2021

SUMMARY ANALYZE

Counters: CYCLES_NOT_IN_HALT ¥ Process IDs: [92880] Opcache = Zoom Entire Graph

Click on any block in Flame Graph to focus on it's children.
__const_udelay
amd_pmu_wait_on_overflow
amd_pmu_disable_all
x86_pmu_disable

native r... native_ write msr native_read ...

x86_pmu_disable_all

_perf_event_task _sched out
_schedule
schedule

deactivate_task

futex_wait_queue_me e M

futex wait Tooltip reporting exclusive &

inclusive samples futex wake

do_futex
_X64 sys f...
do_syscall 64
entry SYSC...
_new_sem_post
CDL::Semapho...

CDL::Synchronized_Parallel Test Manager<0 U ::Direct_Environment Traits>::run_test(CDL::Options<0, CDL::Linux Traits>::All Options>&)
CDL::Return_Code CDL::run_test<Opcache<CDL:LinuxATaits>, CDL::Synchronized_Parallel Test Manager<Opcache<CDL::Linux Traits>, CDL::Direct_Envifenment Traits> >(Opcache<CDL::Linux ..
CDL::Réturn_Code CDL::direct p DL::Linux_Traits> >(Opcache<CDL::Linux_Traits> ions&)
L::Return_Code CDL::diagnostic main<Opcache<CDL::Linux Traits> >(int, char**)
_libe _start_main

Syscall 64
entry SYSTA'" 4 after hwframe
do_futex wait

dosyscall 64
0 Inclusive Samples | 2.000000 Exclusive Samples

Predefined Events

PROFILE SUMMARY ANALYZE MEMORY

Srbusalh Select Profile Type cruprofie |+
saved Configurations

Time-based Sampling
Investigate Branching
Investigate Instruction Access

Investigate Data Access

Assess Performance ED_BR_INS

D_SSE
Instruction-based Sampling

Select the relevant events to profile.

ACCESSES.ALL

SOURCES

Monitored Events

Event Mask User Kernel Interval Callstack

=

X76 : 0x0) CYCLES_NOT_|

0x0 ¢ v - 10 00
[0xcO : 0x0] RETIRED_INST - 100000

+ Add Event

- Remove Event

] L2_CACHE_ACCESS.FROM_L1_IC_MISS

Assess Performance (Extended)
Cache Analysis

Custom Profile

AMD pProf Profiler Introduction - v3.4 2021

HPC Analysis

4 When the threads execute the parallel
region code, maximize CPU utilization.

4 Due to several reasons the threads wait
without doing useful work

+ Idle: A thread finishes it task within the parallel
region and waits at the barrier for the other

threads to complete.

+ Sync: If locks are used inside the parallel
region, threads can wait on synchronization
locks to acquire the shared resource.

* Overhead: Thread management overhead.

AMD pProf Profiler Introduction - v3.4 2021

Advanced Options

Previous - Start Profile

149

4 Analysis

+ Parallel Regions: List of all the parallel regions
executed with associated metrics.

Region Detailed Analysis: thread timeline view
— activity of all the threads in a parallel region.

- Thread spending too much time on non work activity ?

- Change scheduling, loop chunk size

150

HPC Analysis — Example

Data Collection

PROFILE ANALYZE

start Profiling Advanced Options

Saved Configurations

SETTINGS

Remote Profile » OpenMP Tracing option

You can enable the openMP tra yption ta collect apenMP

Enable OpenMP Tracing

Collection run using CLI

$ AMDuProfCLI collect --omp --config tbp -o /tmp/myapp perf <openmp-app>

Report Generation
$ AMDuProfCLI report -i /tmp/myapp perf.

AMD pProf Profiler Introduction - v3.4 2021

HPC Analysis — Ex) Hotspots

'ROFILE SUMMARY ANALYZE

» Filters and Options

View All Data Group By Process

Process CYCLES_NOT_IN_HALT
MarDyn (PID 34199) (Rank 0) 1439263
MarDyn (PID 34200) (Rank 1) 1432633
MarDyn (PID 34198) (Rank 2) 1432277

MarDyn (PID 34201) (Rank 3) 1430964

¥ Load Modules
libomp.so 845992
MarDyn 576792

libopen-pal.50.40.20.0 5498
Search

CYCLES_NOT_IN_HAI
426845

Functions (for MarDyn (PID 34199) (Rank 0))
kmp_hardware_timestamp
366641
320623
86562

kmp_hyper_barrier_release(barrier_type, kmp_ini

void VectorizedCellProcessor::_calculatePairs<CellP

void VectorizedCellProcessor::_calculatePairs<CellP

void VectorizedCellProcessor::_calculatePairs<Singl 65328

__kmp_hyper_barrier_gather(barrier_type, kmp_inf 53910

MaskingChooser::load(double const*, unsigned lor

MaskingChooser::storeCalcDistLookup(unsigned lo

AMD pProf Profiler Introduction - v3.4 2021

caperf

151

Show Values By Sample Count ad

RETIRED_INST RETIRED_BR_INST

1070981 333564 250
1061791 331001 227
331014 237
1061144 331925 238
508884 296813
543699 31491

6001 2433

RETIRED BR_INST | RETIRED_BR_INST M

150921

RETIRED_INST
257815
221168
300418

System Modules:

1038384
1029711
1030275
1031625

‘Mmm

RETIRED_BR_INST_M MISALIGNED_LOAD{ L1 DC ACCESSESALI L1_DEMAND [~

779030 157
15!

152

309503
456975
3650

MISALIGNED_LOAD! L1_DC_ ACCESSES.ALL

156671

22325

19436

152

HPC Analysis — Ex) Thread State Timeline

SUMMARY ANALYZE

MarDyn_aocc_mpi_omp_rel[16374] x

Parallel Region PrintThreadPinningToCPUSomp$parallel:64@°PrintThreadPinningToCPU.cpp:25

Time(in seconds)

Idle Time (s) Sync Time (s)

AMD pProf Profiler Introduction - v3.4 2021

HPC Analysis

4 Env variables
« uProf MAX_PR_INSTANCES - Set the

max number of unique parallel regions to
be traced. The default value is set to 512

« uProf MAX_PR_INSTANCE_COUNT -

Set the max number of times one unique
parallel region to be traced

4 Notes

+ Data processing and loading of HPC page
can be slower — depending on number of
parallel regions and their instances
traced.

AMD pProf Profiler Introduction - v3.4 2021

Overhead Time (s)

Work Time (s)

0.000115

0.000070

153

4 Limitations not supported

OpenMP® profiling with system-wide
profiling scope.

Loop chunk size and schedule type when
these parameters are specified using
schedule clause. It shows the default
values (i.e., ‘1’ & ‘Static’) in this case.

Nested parallel regions.
GPU offloading and related constructs.

Call stack for individual OpenMP threads.

OpenMP profiling on Windows® and
FreeBSD platforms.

Applications with static linkage of
OpenMP libraries.

154

MPI Code Profiling

4 Support matrix Usage Model:

Collect performance data
$ mpirun -np <n> AMDuProfCLI collect
Component Supported Version --config tbp --mpi --output-dir /tmp/mpi-prof-data ./my-

app
MPI Spec MPI 3.1

Collect performance data in multiple node
Open MPIv4.1.0 $ mpirun -np 16 -H hostl,host2 AMDuProfCLI collect --
MPICH 3.4.1 config tbp --mpi --output-dir /tmp/myapp-perf myapp.exe

ParaStation® MPI 5.4.8 | ©“rofiling specific rank
$ export AMDuProfCLI_CMD='AMDuProfCLI collect --config
Intel® MPI 2019 tbp --mpi --output-dir /tmp/myapp-perf’

Ubuntu® 18.04 LTS $ mpirun -np 4 -host hostl myapp.exe : -host host2 -np 2
Ubuntu® 20.04 LTS "$AMDuProfCLI_CMD" myapp.exe

Red Hat® Enterprise
Linux® 8.x Translate profile data. .

CentOS™ 8 x EO:IZIDE(?Z(;fCLI translate --input-dir /tmp/myapp-perf/ --

MPI Libraries

AMD pProf Profiler Introduction - v3.4 2021

Application analysis — Command Line Interface

4 List supported predefined profile configs are recorded by the hardware
* $./AMDuProfCLI info --list collect-configs

4 Collect profile data for “assess” predefined configuration, launching NAMD application
* $./AMDuProfCLI collect --config assess —o /tmp/amd/namd-assess /home/amd/apps/NAMD/runme.sh
* Profile completed ...
» Generated raw file : /tmp/amd/namd-assess.caperf

4 Generate profile report from the raw profile data collected using “assess” configuration

* $./AMDuProfCLI report -i /tmp/amd/namd-assess.caperf --src-path
/home/amd/apps/NAMD/NAMD 2.12_Source/

* Translation started ...

Generating report file...
* Report generation completed...
Generated report file : /tmp/amd/namd-assess/namd-assess.csv

AMD pProf Profiler Introduction - v3.4 2021

Application analysis — Linux® perf kernel module constraints

4 Profiling as non-root user requires /proc/sys/kernel/perf_event_paranoid to be set to -1

4 Open file descriptors should be increased to (using “ulimit -n” command)
» ~100 * number of logical cores

4 For Gen2 and Gen3 EPYC™ processors, following distributions are supported:
Red Hat Enterprise Linux (RHEL) 8.0.2 with kernel version 4.18.0-80.7.1.el8 or later
CentOS® 8.0.1905 with kernel version 4.18.0-80.7.1.el8 or later
Ubuntu® 18.04.3 LTS or 19.10 or later
SUSE® Linux Enterprise Server (SUSE) 15 SP1 with kernel version 4.12.14-197.26 or later

4 On Gen2 and Gen3 EPYC, older Linux® kernels may lead to following error messages:
* kernel: “Uhhuh. NMI received for unknown reason 3d on CPU 1.”
* kernel: “Do you have a strange power saving mode enabled?”
 kernel: “Dazed and confused, but trying to continue”

AMD pProf Profiler Introduction - v3.4 2021

DISCLAIMER AND TRADEMARKS

DISCLAIMER The information contained herein is for informational purposes only, and is subject to change without notice. While every precaution has been taken in
the preparation of this document, it may contain technical inaccuracies, omissions and typographical errors, and AMD is under no obligation to update or otherwise
correct this information. Advanced Micro Devices, Inc. makes no representations or warranties with respect to the accuracy or completeness of the contents of this
document, and assumes no liability of any kind, including the implied warranties of noninfringement, merchantability or fitness for particular purposes, with respect
to the operation or use of AMD hardware, software or other products described herein. No license, including implied or arising by estoppel, to any intellectual
property rights is granted by this document. Terms and limitations applicable to the purchase or use of AMD’s products are as set forth in a signed agreement
between the parties or in AMD's Standard Terms and Conditions of Sale.

© 2021 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo, EPYC, and combinations thereof are trademarks of Advanced Micro Devices,
Inc. Other product names used in this publication are for identification purposes only and may be trademarks of their respective companies. The CentOS Marks are
trademarks of Red Hat, Inc. Intel is a registered mark of Intel Corporation. Java is a registered mark of Oracle and/or its affiliates. LLVM is a trademark

of LLVM Foundation. Linux is the registered trademark of Linus Torvalds in the U.S. and other countries. The OpenMP name and the OpenMP logo are registered
trademarks of the OpenMP Architecture Review Board. Oracle is a registered mark of Oracle and/or its affiliates. ParTec and ParaStation are registered trademarks
of ParTec Cluster Competence Center GmbH. Red Hat and the Shadowman logo are registered trademarks of Red Hat, Inc. www.redhat.com in the U.S. and other
countries. SUSE is a registered trademark of SUSE LLC or its subsidiaries or affiliates. Windows is a registered trademark of Microsoft Corporation in the US
and/or other countries. Ubuntu and the Ubuntu logo are registered trademarks of Canonical Ltd. VMware ESXi is a trademark of VMware. Windows and Windows
Server are registered trademarks of Microsoft Corporation in the US and/or other countries.

AMD pProf Profiler Introduction - v3.4 2021

Vectorization with Intel® Compilers and
OpenMP* SIMD

Dr. Mikko Byckling, IAGS DEE XCSS

I n tel ® Acknowledgements: Martyn Corden, Intel; Steve "“Dr. Fortran” Lionel, ex-Intel

*Other names and brands may be claimed as the property of others.

160

Contents

= \/ectorization overview

* Terminology, vectorization code types, data layout and alignment
» SIMD instruction set switches (for Intel® compilers)
* OpenMP* SIMD

* OpenMP* SIMD construct
* OpenMP* DECLARE SIMD construct

= SIMD programming patterns
* Reduction, outer loop vectorization, compress, search and histogram loops

= Summary

*Other names and brands may be claimed as the property of others. intel 2

161

Vectorization of code

» Transform sequential code to exploit SIMD processing capabilities of
Intel® processors

* Calling a vectorized library
» Automatically by tools like a compiler

* Manually by explicit syntax

a[i+7] a[i+6] a[i+5] [alSHal a[i+3] Fafas2]

_ ‘ CH B R b[i+4] b[i+3] b[i+2]

c[i+7] c[i+6] c[i+5] [C[ata] c[i+3] fe[i%2]

a[i]

b[i]

clil]

|“| ll |“| | |“‘

intel.

162

Vectorization terminology

» Single Instruction Multiple Data (SIMD)
* Processing vector with a single operation
» Provides data level parallelism (DLP)
* More efficient than scalar processing due to DLP
= Vector
» Consists of more than one element

» Elements are of same scalar data types (e.g. floats, integers, ...)

= Vector length (VL), i.e,, number of elements in the vector

-?-

intel.

163

3

4

Peel, main and remainder loops

= A vectorized loop consists of

* Peel loop (optional)
+ Used for the unaligned references in the loop. Uses scalar or slower vector.

. .
Main loop bOdy This is where we want our loops to
+ Typically, the fastest part be executing!

* Loop remainder (optional)
+ Used when the number of iterations (trip count) is not divisible by the vector length. Uses Scalar or slower vector.

» Larger vector registers mean more iterations in peel/remainder
» To avoid overhead from peel/remainder loops

+ Avoid loops with a very small trip count

* Align the data

* If possible, let the number of iterations be divisible by the vector length

intel.
164
Vectorization software architecture
Vector Options Ease of use
s
—— e
| s i)
— e
e ——
Fine control
intel.

165

Overview of vector code types

= Auto vectorization
for (int i = 0; i < N; ++i) {
A[i] = B[i] + C[i];
}

= Array notation
A(:) = B(:) + C(:)

» OpenMP SIMD construct
#pragma omp simd
for (int i = 0; i < N; ++i) {
A[i] = B[i] + C[i];

}

Automatic vectorization

» The compiler vectorizer works similarly for SSE, AVX, AVX2 and

AVX-512 (C/C++, Fortran)

= OpenMP SIMD function

#pragma omp declare simd

float ef(float a, float b) {
return a + b;

}

#pragma omp simd

for (int i = 0; i < N; ++i)
A[i] = ef(B[i], C[i]);

* Enabled by default at optimization level -02

intel.

166

» Some ISA features, such as vector masks, gather/scatter instructions and fused
multiply-add (FMA) enable better vectorization of code

= \Vectorized loops may be recognized by

» Compiler vectorization and optimization reports (Intel compilers)
-gqopt-report-phase=vec —-gopt-report=5

* Looking at the assembly code, -S
* Using Intel® VTune™ or Intel Advisor

intel.

167

7

8

Optimization report: Example

* Example novec. £90:

$ ifort —-c novec.f90 -gopt-report=5
ifort: remark #10397: optimization reports are generated in *.optrpt files in the output location

$ cat novec.optrpt

LOOP BEGIN at novec.f90(4,5)
remark #15344: loop was not vectorized: vector dependence prevents vectorization
remark #15346: vector dependence: assumed FLOW dependence between y line 5 and y line 5
remark #25436: completely unrolled by 9

LOOP END

intel. °

168

Reasons why automatic vectorization fails

» Compiler prioritizes code correctness
= Compiler heuristics to estimate vectorization efficiency
= \Vectorization could lead to incorrect or inefficient code due to

» Data dependencies

* Alignment

* Function calls in loop block

» Complex control flow / conditional branches
* Mixed data types

* Non-unit stride between elements

* Loop body too complex (register pressure)

intel.

169

Preparing code for SIMD

Identify Hotspots

Precision is
important:

impacts the
SIMD width.

—_

Integer
or FP?

Change to SP

Integer

Re-layout data for SIMD efficiency

Align data structures

Convert code to SIMD form

Follow SIMD coding guidelines

Optimize memory access patterns
and prefetch (if appropriate)

Further optimization

intel.

170

Data Layout —why it is important

= [nstruction-Level

* Hardware is optimized for contiguous loads/stores

» Support for non-contiguous accesses differs with hardware
(e.g., AVX2/AVX-512 gather)

» Memory-Level

« Contiguous memory accesses are cache-friendly

* Number of memory streams can place pressure on prefetchers

intel. =

171

Data layout — common layouts

Array-of-Structs (AoS) Struct-of-Arrays (SoA) Hybrid (AoSoA)

< |v I | v . . - [y e
BE BE - Haga
<[y I | v [v |/ .

* Pros: = Pros: . = Pros:
Good locality of Contiguous load/store Contiguous load/store,
v, z} ’ 1 memory stream
1 memory stream = Cons: 5
i Poor locality of . = Cons:
= Cons: Xy, 2, . Nota“normal” layout
Potential for gather/scatter {3 memory streams i

intel
172
Data alignment — why it is important
Cache Line O Cache Line 1
o 122l -]c[7 Q8o -]-]-]- [~ -
L] \ o\
OEEE SHER
Aligned Load Unaligned Load
= Address is aligned = Address is not aligned
= One cache line = Potentially multiple cache lines
= One instruction = Potentially multiple instructions
intel

173

Data alignment — sample applications

= 1) Align Memory

_mm malloc (bytes, 64) / 'dir$ attributes align:64

= 2) Access Memory in an Aligned Way

for (i = 0; i < N; i++) { array[i] .. }

= 3) Tell the Compiler (C\C++ / Fortran)

#pragma omp simd aligned(p) / '$Somp simd aligned (p)
__assume_aligned(p, 16) / 'dir$ assume_aligned (p, 16)
__assume(i % 16 == 0) / 'dir$ assume (mod(i,16) .eq. 0)

itel Corporation. All rights reserved intel ”

174

Alignment impact: example

= Aligned access

= Unaligned access:

LOOP BEGIN at mult.c(5,3) LOOP BEGIN at mult.c(5,3)
<Peeled loop for vectorization> remark #15388: vectorization support: reference c[i] has aligned access [mult.c(6,5)]
remark #25015: Estimate of max trip count of loop=3 remark #15388: vectorization support: reference a[i] has aligned access [mult.c(6,12)]
LOOP END remark #15388: vectorization support: reference b[i] has aligned access [mult.c(6,19)]
LOOP BEGIN at mult.c(5,3) remark #15448: unmasked aligned unit stride loads: 2
remark #15388: vectorization support: reference c[i] has aligned access [mult.c(6,5)] remark #15449: unmasked aligned unit stride stores: 1
remark #15389: vectorization support: reference a[i] has unaligned access [mult.c(6,12)] remark #15475: --- begin vector cost summary ---
remark #15389: vectorization support: reference b[i] has unaligned access [mult.c(6,19)] remark #15476: scalar cost: 8
remark #15381: vectorization support: unaligned access used inside loop body remark #15477: vector cost: 1.250
remark #15478: d d 5.260
remark #15449: unmasked aligned unit stride stores: 1 remark #15488: --- end vector cost summary ---
remark #15450: unmasked unaligned unit stride loads: 2 LOOP END
remark #15475: --- begin vector cost summary --- .
remark #15476: scalar cost: 8
remark #15477: vector cost: 1.750
remark #15478: i i 3.890
remark #15488: --- end vector cost summary ---
LOOP END
Both cases compiled as: icc -qopenmp -xCORE-AVX2 -qopt-report=5 -c mult.c -o mult.o
021 Intel Corooration! Allriahts reserver intel. s

175

SIMD instruction set switches (for Intel®
compilers)

Instruction set architecture switches, instruction set defaults

intel. 7

176

SIMD instruction set switches (1/3)

For Intel” compilers

= Linux* OS X*: -x<feature> Windows*: /Qx<feature>
» Might enable Intel processor specific optimizations

* Processor-check added to “main” routine:
Application errors in case SIMD feature missing or non-Intel processor with appropriate/informative
message

= Linux*, OS X*: —ax<features>, Windows*: /Qax<features>
* Multiple code paths: baseline and optimized/processor-specific

* Optimized code paths for Intel processors defined by <features>

Multiple SIMD features/paths possible, e.g.: —axSSE2, CORE-AVX2
» Baseline code path defaults to -msse2 (/arch:sse2)

* The baseline code path can be modified by -m<feature> or -x<feature> (/arch:<feature> or
/Qx<feature>)

intel. ¢

177

SIMD instruction set switches (2/3)

For Intel” compilers

= Linux*, OS X*: -m<feature> Windows*: /arch:<feature>

* Neither check nor specific optimizations for Intel processors:
Application optimized for both Intel and non-Intel processors for selected SIMD feature

» Missing check can cause application to fail in case extension not available
= Default for Linux*: -msse2, Windows*: /arch:sse2

» Activated implicitly

* Implies the need for a target processor with at least Intel® SSE2

= Default for OS X*: -xsse3 (IA-32), -xssse3 (Intel® 64)

intel.

178

SIMD instruction set switches (3/3)

For Intel” compilers

= Special switch for Linux*, OS X*: -xHost, Windows*: /QxHost

» Compiler checks SIMD features of current host processor (where built on) and makes use of latest SIMD
feature available

» Code only executes on processors with same SIMD feature or later as on build host

* As for -x<feature> or /Qx<feature>, if “main” routine is built with
—xHost or /QxHost the final executable only runs on Intel processors

= Disabling vectorization Linux*, OS X*: -no-vec, Windows*: /Qvec-
» Disables vectorization for the compile unit

» The compiler can still use some SIMD features

intel.

179

SIMD feature set names (1/2)

For Intel” compilers

CORE-AVX512

MIC-AVX512

COMMON-AVX512

CORE-AVX2

CORE-AVX-I

May generate Intel® Advanced Vector Extensions 512 (Intel® AVX-512) Foundation instructions, Intel® AVX-512 Conflict
Detection instructions, and other AVX-512 subsets which will be available on future Intel® XEON™ architecture
Optimizes for Intel® processors that support Intel® AVX-512 instructions. Sets —qopt-zmm-usage=low by default.

May generate Intel® Advanced Vector Extensions 512 (Intel® AVX-512) Foundation instructions, Intel® AVX-512 Conflict
Detection instructions, Intel® AVX-512 Exponential and Reciprocal instructions, Intel® AVX-512 Prefetch instructions for
Intel® processors, and the instructions enabled with CORE-AVX2. Optimizes for Intel® processors that support Intel®
AVX-512 instructions.

May generate Intel® Advanced Vector Extensions 512 (Intel® AVX-512) Foundation instructions and Intel® AVX-512
Conflict Detection instructions. Optimizes for Intel® processors that support Intel® AVX-512 instructions. Sets —qopt-
zmm-usage=high by default.

May generate Intel® Advanced Vector Extensions 2 (Intel® AVX2), Intel® AVX, SSE4.2, SSE4.1, SSE3, SSE2, SSE and Intel
SSSE3 instructions.

May generate Intel® Advanced Vector Extensions (Intel® AVX), including instructions in 3rd generation Intel® Core™
processors, Intel® SSE4.2, SSE4.1, SSE3, SSE2, SSE and Intel SSSE3.

intel. =

180

SIMD feature set names (2/2)

For Intel” compilers

AVX

ATOM_SSE4.2

SSE4.2
SSE4.1
ATOM_SSSE3

deprecated:
SSE3_ATOM & SSSE3_ATOM

SSSE3
SSE3

SSE2

May generate Intel” Advanced Vector Extensions (Intel” AVX), SSE4.2, SSE4.1, SSE3, SSE2, SSE and Intel SSSE3.

May generate MOVBE instructions for Intel processors (depending on setting of -minstruction or /Qinstruction). May
also generate Intel” SSE4.2, SSE3, SSE2 and SSE instructions for Intel processors. Optimizes for Intel” Atom™
processors that support Intel” SSE4.2 and MOVBE instructions.

May generate Intel” SSE4.2, SSE4.1, SSE3, SSE2, SSE and Intel SSSE3.
May generate Intel” SSE4.1, SSE3, SSE2, SSE and Intel SSSE3.
May generate MOVBE instructions for Intel processors (depending on setting of -minstruction or /Qinstruction). May

also generate Intel® SSE3, SSE2, SSE and Intel® SSSE3 instructions for Intel processors. Optimizes for Intel® Atom™
processors that support Intel” SSE3 and MOVBE instructions.

May generate Intel” SSE3, SSE2, SSE and Intel SSSE3.
May generate Intel” SSE3, SSE2 and SSE.

May generate Intel” SSE2 and SSE.

intel. 22

181

OpenMP* SIMD

OpenMP* SIMD construct, OpenMP* DECLARE SIMD construct

*Other names and brands may be claimed as the property of others. intel. 23

182

OpenMP* AP

» De-facto standard, OpenMP* 5.1 out since November 2020

= AP| for C/C++ and Fortran for shared-memory parallel programming
» Based on directives

» Portable across vendors and platforms

» Supports various types of parallelism

*Other names and brands may be claimed as the property of others. intel.

183

Levels of parallelism in OpenMP 5.1

Explicit vectorization

» Compiler Responsibilities

. OpenMP 5.1 for Devices
communicatin

Special compute devices
attached to the local node through special interconnect

OpenMP 5.1 Threading
communicating throus= «mermory

.oup of cores
communicat’ _thr nshared cache

Gro’' ., of functional units
communic7 .ng through registers

Group of thread contexts sharing functional units
Group of instructions sharing functional units
Sequence of instructions sharir OpenMP 5.1 SIMD

Single instruction using multiple functional units

* Allow programmer to declare that code can and should be run in SIMD

» Generate the code the programmer asked for

» Programmer Responsibilities

 Correctness (e.g.,, no dependencies, no invalid memory accesses)

« Efficiency (e.g., alignment, loop order, masking)

intel.

184

intel.

185

25

26

Explicit vectorization: example

= The two += operators have different meaning from each other

= The programmer should be able to express those differently
= The compiler has to generate different code

= The variables i, p and step have different “meaning” from each other
Copyright ® 2021 Intel Corporation. All rights reserved. intel. =

186

Explicit vectorization: example

* mandel () function is called from a loop over X/Y points

= We would like to vectorize that outer loop

= Compiler creates a vectorized function that acts on a vector of N values of ¢

Copyright © 2021 Intel Corporation. All rights reserved. |nte|- 2

187

Before OpenMP 5.1 SIMD

= Programmers had to rely on auto-vectorization...

= .. or to use vendor-specific extensions
* Programming models (e.g., Intel” Cilk™ Plus)
» Compiler pragmas (e.g., #pragma vector)
* Low-level constructs (e.g,,_mm add pd())

#pragma omp parallel for

#pragma vector always

#pragma ivdep

for (int i = 0; i < N; i++) {
a[i] = b[i] + ...,

You need to trust the compiler

to do the “right” thing.

}

OpenMP SIMD Loop Construct

» \Vector parallelism is decribed with simd construct
* Cut loop into chunks that fit a SIMD vector register
* No thread parallelization of the loop body

» Syntax (C/C++)

#pragma omp simd [clause[[,] clause],..]
for-loop

» Syntax (Fortran)
'Somp simd [clause[[,] clause],..]
do-loop

intel. =

188

intel. =

189

OpenMP SIMD: example

0 8 16 24

ark] [T I I T T I I T I I I T T I I I I T I T T T T I 11]
+
pik] [T I I I T I T T T T T T I T T T T T I T 1T]

ekl MMTTTTT T T I I T I T T I I I I I T T I T T T TTT]

intel.

Copyright © 2021 Intel Corporation. All rights reserved

190

OpenMP SIMD loop clauses

=" private (var-list):
Uninitialized vectors for variables in var-list

= reduction (op:var-list):
Create private variables for var-list and apply reduction operator op at the end of the construct

I I I
2,5 ,8,17 — X 1| 42

i 32
Copyright © 2021 Intel Corporation. All rights reserved “'\telx

191

OpenMP SIMD loop clauses

safelen (length)
* Maximum number of iterations that can run concurrently without breaking a dependence
* in practice, maximum vector length

linear (list[:1linear-step])
* The variable’s value is in relationship with the iteration number
X.

_ e
| = Xorig + 1% linear-step

aligned(list[:alignment])

* Specifies that the list items have a given alignment
* Default is alignment for the architecture

collapse (n)
* Combine the iteration space of the next n loops

intel. =
192
OpenMP SIMD worksharing construct
» Parallelize and vectorize a loop nest
* Distribute a loop’s iteration space across a thread team
 Subdivide loop chunks to fit a SIMD vector register
» Syntax (C/C++)
#pragma omp for simd [clause[[,] clause],..]
for-loop
» Syntax (Fortran)
'Somp do simd [clause[[,] clause],..]
do-loop
intel. =

193

OpenMP SIMD workshare: example

0 8 L 6 24
agﬂ IS EEEEEEEEEEEEEEEEEEEEEEEEEE
blk] [TITITITTTTTTTTTTTIITTTITTTITTITTIT1]
CEL] NSNS EEEEEEEEEEEEEEEEEEEEEEEEE
Thread 0 Thread 1
1t © 2021 Intel Corporation. Al rights reserved intel.

194
SIMD function vectorization
» Declare one or more functions to be compiled for calls from a SIMD-
parallel loop
» Syntax (C/C++):
#pragma omp declare simd [clause[[,] clause],..]
[#pragma omp declare simd [clause[[,] clause],..]]
[..]
function-definition-or-declaration
» Syntax (Fortran):
!Somp declare simd ! Within function body
!Somp declare simd(proc-name-list) ! At call site
1t © 2021 Intel Corporation. All rights reserved intel.

195

35

OpenMP DECLARE SIMD: example

= Generate a SIMD-enabled (vector) version of a scalar function that can be called
from a vectorized loop

remark #15347: FUNCTION WAS VECTORIZED with. .. |

xp is constant, x can be a vector

These clauses are required for correctness, just
like with OpenMP threading

remark #15301: OpenMP SIMD LOOP WAS VECTORIZED

remark #15484: vector function calls: 1

SIMD function must have an explicit interface

intel. ¥

Copyright © 2021 Intel Corporation. All rights reserved.

196

OpenMP DECLARE SIMD: example

= Generate a SIMD-enabled (vector) version of a scalar subroutine that can be
called from a vectorized loop:

remark #15347: FUNCTION WAS VECTORIZED with...

Important because arguments are passed by
reference in Fortran

remark #15301: OpenMP SIMD LOOP WAS VECTORIZED

remark #15484: vector function calls: 1

SIMD function must have an explicit interface

intel. =

Copyright © 2021 Intel Corporation. All rights reserved

197

SIMD function vectorization clauses

simdlen (length)
» Generate function to support a given vector length

uniform (argument-list)

» Argument has a constant value between the iterations of a given loop
= inbranch

» Function always called from inside an if statement

notinbranch
e Function never called from inside an if statement

®* linear (argument-list[:linear-step])
i -1i rali
aligned (argument-list[:a J.gnment])
reduction (operator:1list)

intel. =

198

SIMD function arguments and LINEAR (REF)

» Whenever SIMD function arguments are passed by reference:

* The compiler places consecutive addresses in a vector register, resulting in a
gather from the addresses when the values are needed (=slow)

* LINEAR (REF (...)) tells the compiler that the addresses are consecutive,
resulting to a single dereference and then copy of the consecutive values to a
vector register (=fast)

» Recall that Fortran passes all arguments by reference

* LINEAR (REF (..)) is very important for efficient SIMD vectorization of Fortran
functions and subroutines

intel. «

199

Targeting SIMD functions for CPU ISA

» The default binary ABI requires passing arguments in 128 bit xmm registers

» ABIlis selected irrespective of —xCORE-AVX2 or -xCORE-AVX512 feature flags
* Results in inefficient 128 bit code instead of 256 or 512 bit
» Compiler optimization report:

remark #15347:

* SIMD register width chosen according to the —x<feature>
» Compiler optimization report:

remark #15347:

Example: OpenMP 4.0 SIMD in Elmer

2S Intel” Xeon® Gold 6148

3D element basis function evaluation, 100 repetitions, p=1 3D element basis function evaluation, 100 repetitior

2,50€-04

2,00€-04
1,506-04
1,00€-04
5,00€-05 |
0,00€400

SSE2 AVX2 AVX512

rrrrr

mTetrahedral = Prismatic

Performance varies by use, configuration, and other factors. Learn more at www.Intel.com/Performancelndex. Performance results are based on testing as of dates shown in

FUNCTION WAS VECTORIZED with xmm, simdlen=4,..
= Intel” compiler flag[-vecabi=cmdtarget

FUNCTION WAS VECTORIZED with zmm, simdlen=16,

intel.

200

Results from paper: Byckling, M., Kataja, J., Klemm, M. and Zwinger, T., 2017, September. OpenMP* SIMD Vectorization and

Threading of the Elmer Finite Element Software. In International Workshop on OpenMP (pp. 123-137). Springer, Cham.

2,50€-01
2,00€-01

1,50€-01

SSE2 AvVX2 AVX512 SSE2 AVX2 AVX512

..........

= Hexahedral mTetrahedral = Prismatic

configurations and may not reflect all publicly available updates. See configuration disclosure for details. For configuration info, see System Setup.

SSE2

= Hexahedral

ns, p=5

AVX2

‘‘‘‘‘

£
100601
5,006:02 I
0008400 I I I . I

AVX512

intel.

201

41

42

SIMD programming patterns

Reduction, outer loop vectorization, compress, search and histogram loops

intel. =

202

SIMD programming patterns

» Dependencies can make vectorization unsafe

» Some special patterns can still be handled by the compiler
* The compiler may recognize a pattern (auto-vectorization)

» Often works only for simple, ‘clean’ examples
* The compiler is enforced (explicit vector programming)
* May work for more complex cases

» Examples: reduction, compress/expand, search, etc.

» Speed-up can come from vectorizing the rest of a large loop more
than from vectorization of the pattern itself

intel. «

203

Reduction

> ifort -xCORE-AVX512 -gopt-report=5 -qopt-report-file=stdout \
-c reduce.F90 -o reduce

LOOP BEGIN at reduce.F90(6,3)

remark #15300: LOOP WAS VECTORIZED

» Reduction operations commonly auto-vectorize with any instruction set

45

Copyright © 2021 Intel Corporation. All rights reserved. |nte|s

204

Reduction and floating point models

> ifort -xCORE-AVX512 -gopt-report=5 -qopt-report-file=stdout \
-fp-model=precise -c reduce.F90 -o reduce

LOOP BEGIN at reduce.F90(6,3)

remark #15331: loop was not vectorized: precise FP model implied by
the command line or a directive prevents vectorization. Consider using
fast FP model [reduce.F90(7,20)]

» VVectorization would change order of operations and hence the compiler is
unable to vectorize

Copyright © 2021 Intel Corporation. All rights reserved. |nte|- 4

205

OpenMP reductions

> ifort -xCORE-AVX512 -gopt-report=5 -qopt-report-file=stdout \
-fp-model=precise —gopenmp -c reduce.F90 -o reduce

LOOP BEGIN at reduce.F90(7,3)

remark #15301: OpenMP SIMD LOOP WAS VECTORIZED

» Floating point model can be overridden with explicit vector reduction (OpenMP
SIMD reduction)

Copyright © 2021 Intel Corporation. All rights reserved. |nte|s 47

206

OpenMP SIMD outer loop vectorization

Outer loop with a large trip count n
Inner loop with a small trip count nd

LOOP BEGIN at dist.F90(7,3)

;emark #15301: OpenMP SIMD LOOP WAS VECTORIZED

LOOP BEGIN at dist.F90(9,6)
remark #25460: No loop optimizations reported
LOOP END

» When nd is small (typically <8), outer loop vectorization may be profitable.
Private copies of 3 and d needed for correctness

48

Copyright © 2021 Intel Corporation. All rights reserved. |nte|,

207

OpenMP SIMD outer loop vectorization

KNOWN_TRIP_COUNT (for example 3)

LOOP BEGIN at dist.F90(7,3)
;emark #15301: OpenMP SIMD LOOP WAS VECTORIZED
LOOP BEGIN at dist.F90(10,6)

remark #25436: completely unrolled by 3 (pre-vector)
LOOP END

= |[f the inner loop trip count is fixed and the compiler knows it, the inner loop can
be completely unrolled

Outer loop with a large trip count n

Inner loop with a compile time constant small trip count

Copyright © 2021 Intel Corporation. All rights reserved. |nte|s

Compress pattern

> ifort -qopenmp -xCORE-AVX2 \
-gopt-report=5 -qopt-report-file=stdout \
-c compress.F90 -o compress.o

LOOP BEGIN at compress.F90(9,3)
remark #25084: Preprocess Loopnests: \
Moving Out Store [compress.F90(11,9)]
remark #15344: loop was not vectorized: \
vector dependence prevents vectorization

= Compress pattern does not auto-vectorize with Intel” AVX2

208

Copyright © 2021 Intel Corporation. All rights reserved. |nte|,

209

49

50

Compress pattern

> ifort -qgopenmp -xCORE-AVX512 \
-gopt-report=5 -qopt-report-file=stdout \
-c compress.F90 -o compress.o

EOOP BEGIN at compress.F90(9,3)

remark #25084: Preprocess Loopnests: \
Moving Out Store [compress.F90(11,9)]

remark #15300: LOOP WAS VECTORIZED

remark #15497: vector compress: 1

» Auto-vectorizes with Intel” AVX512 (vcompressps instruction)

Copyright © 2021 Intel Corporation. All rights reserved. |nte|s o1

210

Compress pattern (OpenMP SIMD)

> ifort -gopenmp -xCORE-AVX512 \
-gopt-report=5 -qopt-report-file=stdout \
-c compress.F90 -o compress.o

LOOP BEGIN at compress.F90(7,3)
remark #15301: OpenMP SIMD LOOP WAS VECTORIZED

remark #15497: vector compress: 1

An extension supported by the Intel compiler, not in OpenMP
standard yet. Needed to express dependency on ib, code not correct
otherwise as !$omp simd ignores dependencies.

Copyright © 2021 Intel Corporation. All rights reserved. intel. 52

211

Search loops

= A vectorizable loop must have a single exit and the iteration count
must be known at the start of execution

* Else a later iteration may have started before an earlier iteration decides the
loop should be terminated

» Simple “search” loops are an exception which the compiler
recognizes

* executes special code if an exit occurs during a SIMD iteration

 only works if no stores back to memory

Copyright © 2021 Intel Corporation. All rights reserved. |nte|s 53

212

Search pattern (simple)

LOOP BEGIN at search.F90(6,3)

remark #15300: LOOP WAS VECTORIZED

» Search pattern auto-vectorizes if it contains no stores back to memory

Copyright © 2021 Intel Corporation. All rights reserved. |nte|- o4

213

Search pattern (with stores)

LOOP BEGIN at search_store.F90(6,3)
remark #15520: loop was not vectorized: loop with multiple \
exits cannot be vectorized unless it meets search loop \

idiom criteria [search_store.F90(9,3)]
LOOP END

» Search pattern with stores does not auto-vectorize

Copyright © 2021 Intel Corporation. All rights reserved. |nte|s 55

214

Search pattern (with stores, vectorized)

LOOP BEGIN at search_split.F90(6,3)

;emark #15300: LOOP WAS VECTORIZED

LOOP BEGIN at search_split.F90(11,3)

remark #15300: LOOP WAS VECTORIZED

= Splitting the loop enables vectorization with the cost of reloading a

Copyright © 2021 Intel Corporation. All rights reserved. |nte|- 56

215

Search pattern (with stores, OpenMP SIMD)

LOOP BEGIN at search_simd.F90(7,3)

;emark #15301: OpenMP SIMD LOOP WAS VECTORIZED..

An extension supported by the Intel compiler, not in OpenMP
standard yet. Needed to express a loop with multiple exits.

* OpenMP SIMD enables vectorization without the cost of reloading a
Copyright © 2021 Intel Corporation. All rights reserved. intels 57

216

Histogram pattern

> ifort -qopenmp -xCORE-AVX2 \
-gopt-report=5 -qopt-report-file=stdout \
-c histogram.F90 -o histogram.o

i;OOP BEGIN at histogram.F90(7,3)
remark #15344: loop was not vectorized: vector dependence \

prevents vectorization

» Histogram pattern does not auto-vectorize with Intel® AVX2

* Store to a is a scatter (indirect addressing) and ia can have the same value for
different values of i

* Vectorization with '$omp simd may cause incorrect results

intel. s

Copyright © 2021 Intel Corporation. All rights reserved.

217

Histogram pattern

> ifort -qopenmp -xCORE-AVX512 \
-gopt-report=5 -qopt-report-file=stdout \
-c histogram.F90 -o histogram.o

i;OOP BEGIN at histogram.F90(7,3)

remark #15300: LOOP WAS VECTORIZED

;emark #15499: histogram: 1

= Histogram pattern auto-vectorizes with Intel® AVX512

* The VPCONFLICT instruction detects elements with conflicting indexes, allowing the
generationg of a mask for the conflict free subset of elements

* Then re-execute the computation for remaining elements recursively

intel. =

Copyright © 2021 Intel Corporation. All rights reserved.

218

Histogram pattern (OpenMP SIMD)

> ifort -qopenmp -xCORE-AVX512 \
-gopt-report=5 -qopt-report-file=stdout \
-c histogram.F90 -o histogram.o

LOOP BEGIN at histogram.F90(8,3)

remark #15301: OpenMP SIMD LOOP WAS VECTORIZED

An extension supported by the Intel compiler, not in OpenMP
standard yet. Needed to express potential dependency with ia, code
not correct otherwise as !$omp simd ignores dependencies.

intel.

Copyright © 2021 Intel Corporation. All rights reserved.

219

Histogram speed-up

» Speed-up depends on the problem details

« Comes mostly from vectorization of other heavy computation in the loop, not
from the scatter itself

* Speed-up may be (much) less if there are many conflicts, for instance for
histograms with a singularity or a narrow spike

* Speed-up due to vectorization would be considerably higher on Intel® Xeon
Phi™ x200 processors because scalar processor is slower.

* Many problems map to histograms

* For instance: energy deposition in cells in particle transport Monte Carlo
simulation, etc.

intel. =

220

Summary

= With Intel” Xeon processors, vectorization (and multithreading) are the
keys to good floating point performance

= Application may have to be modified to improve vectorization (and
threading) properties

* OpenMP is a standardized way to program vectorized and
multithreaded programs

intel. &

221

Intel.

222

Configuration details

Benchmarks computed on Intel internal system with Intel OPA.
Intel® Xeon® processor Gold 6148: Dual Intel® Xeon® processor Gold 6148 2.4Ghz, 20 cores/socket, 40 cores, 40 threads (HT and Turbo ON), DDR4 192 GB,

2666 MHz, RHEL 7.3, 1.0 TB SATA drive WD1003FZEX-00MK2AO, /proc/sys/vm/nr_hugepages=8000, Intel® Parallel Studio XE 2017 Update 4, tbbmalloc_proxy
Intel® Xeon® settings: Environment variables: KMP_AFFINITY=scatter,granularity=fine, |_MPI_FABRICS=shm,
I_MPI_PIN_PROCESSOR_LIST=allcores:map=bunch

*Other names and brands may be claimed as the property of others. intel 64

223

Notices & Disclaimers

Performance varies by use, configuration, and other factors. Learn more at www.Intel.com/Performancelndex.

Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available
updates. See configuration disclosure for details.

Your costs and results may vary.
Intel technologies may require enabled hardware, software or service activation.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries.
Other names and brands may be claimed as the property of others.

intel. &

224

Memory optimization

CSC Training, 2021-05

CSC — Finnish expertise in ICT for research, education-and public administration

225

Outline

 Deeper view into data caches

» Basic considerations for cache efficiency
o Loop traversal and interchange
o Data structures

« Cache optimization techniques
o Cache blocking

226

PRACE +
csc

Deeper view into data caches

227

Data caches

« Modern CPUs use multilevel caches to access data
« Utilize spatial and temporal locality of data: if data is already in the cache, latency
and bandwidth are improved
« Forinstance, on Intel Cascade lake
o L1 cache: latency 4-6 cycles, sustained bandwidth 133 B/cycle/core
o L2 cache: latency 14 cycles, sustained bandwidth 52 B/cycle/core
o L3 cache: latency 5o0-70 cycles, sustained bandwidth 16 B/cycle/core
o Main memory: latency 120-150 ns, bandwidth 128 GB/s per socket

228

Data caches

« Sizes of the data caches are small compared to the main memory
o L1~32KiB
o L2 512-1024 KiB
o L3 1-4 MiB [core
« Terminology
o Cache hit: the requested data is in the cache
o Cache miss: the requested data is not in the cache
« Optimizing the use of caches is extremely important to leverage the full power of
modern CPUs

229

Cache organization

« Cache is read and written in units of cache lines
o 64 bytes in current x86 CPUs
« Upon miss, a line is evicted from the cache and replaced by the new line
o Cache replacement policy determines which line is evicted
« Inclusive cache: all the lines in the upper-level cache are also in the lower level
« Exclusive cache: lines in the upper-level cache are not in the lower level
« Cache can be also non-inclusive non-exclusive, i.e. line may or may not be presentin
lower-level cache

230

Cache organization

Memory
E---I [[ey
algne t cache e
. || || |
| | |

231

Write policies

» Most modern CPUs employ a write-back cache write policy
o a changed cache line is updated in the lower level hierarchy only when it is evicted
« Upon write miss, the cache line is typically first read from the main memory (write-
allocate policy)
« In multicore CPUs with private caches, writes may require updates also in the
caches of the other cores

232

Cache associativity

« A cache with the size of 32 KiB can fit 32 KiB / 64 B = 512 cache lines

« In fully associate cache, each of the 512 entries can contain any memory location
o Each entry needs to be checked for a hit which can be expensive for large caches

« In direct mapped cache, each memory location maps into exactly one cache line

o Part of the cache is not fully utilized if memory addresses are not evenly distributed:
some cache lines are evicted repeteadly while others remain empty

« Set associative caches can achieve best of the both worlds: efficient search and
good utilization

233

Set associative cache

« A N-way set associative cache is divided into sets with N cache lines in each
o 8-way set associative 32 KiB cache has 64 sets with 8 cache line entries per set
« A memory address is mapped into any entry within a set
o need to search only over N entries for a hit
o better utilization than in a direct mapped cache, but conflict misses still possible
« Fully associative and direct mapped as limiting cases N=co and N=1

234

Example: 2-way set associative cache

Memory

Set 3

Set 4

Total cache size = 8 cache lines

235

Types of cache misses

« Compulsory misses: happens the first time a memory address is accessed
o Prefetching may prevent compulsory misses
« Capacity misses: happens when data the data is evicted due to cache becoming full
o Can be caused by bad spatial and temporal locality of data in the application
(inherent or bad implementation)
« Conflict misses: happens when a set becomes full even when other sets have space
o Can be caused by particular memory access patterns

236

PRACE +
csc

Optimizing data access

237

Accessing multidimensional arrays

« Accessing multidimensional arrays in Logical layout _ Layout in memory
incorrect order can generate poor
] C/C++
cache behaviour .)
« Loops should written such that the
i i 'Logical layout Layout in memory
innermost loop index matches the
contiguous array index Fortran
o C/C++ uses row major layout, i.e. last
index is contiguous « Compiler optimizations may permute
o Fortran uses column major layout, i.e. - . .
_ _ _ Joriayout, the loop indices automatically if
first index is contiguous _
possible

238

Loop interchage example: Fortran

239

for (int i=0; i < M; i++)
for (int j=0; j < N; j++)
sum = sum + al[jl[i];

for (int j=0; j < N; j++)
for (int i=0; i < M; i++)
sum = sum + al[jI[i];

Original loop Interchanged
real :: a(N,M) real :: a(N,M)
real :: sum real :: sum
do i=1,N do j=1,M
do j=1,M do i=1,N
sum = sum + a(i,j) sum = sum + a(i,j)
end do end do
end do end do
.
Loop interchage example: C/C++
Original loop Interchanged
float **a; float **a;
float sum; float sum;

240

Data structures

« Data structure choice has an effect on the memory layout
o Structure of arrays (So0A) vs. Array of Structures (AoS)

« Data should be stored based on its usage pattern
o Avoid scattered memory access

« Occasionally, use of nonconventional ordering or traversal of data is beneficial
o Colorings, space filling curves, etc.

Data structures: memory layout

241

Array of Structures Structure of Arrays
type point type point
real :: x, y, z real, allocatable

end type point

allocate(points(N))

type(point), allocatable ::

points

oox(:)
real, allocatable :: y(:)

real, allocatable :: z(:)
end type point

type(point) :: points
allocate(points%x(N), &

points%y(N), &
points%z(N))

242

Data structures: memory layout

Array of Structures Structure of Arrays
integer :: i, j integer :: i, j
real :: dist(4,4) real :: dist(4,4)
doi=1, 4 doi=1, 4
do j=1i, 4 do j =1, 4
dist(i,j) = sqrt(& dist(i,j) = sqrt(&
(points(i)%x-points(j)%x)**2 + & (points%x(i)-points%x(j))**2 + &
(points(i)%y-points(jI%y)**2 + & (points%y(i)-pointsky(j))**2 + &
(points(i)%z-points(j)%z)**2) (points%z(i)-points%z(j))**2)
end do end do
end do end do
Memory layout Memory layout
g Sy by
\\\ll
v
points(i)%x points(i)%y points(i)%z points%x(:) points%y(:) points%z(:)
243
Cache blocking

 Multilevel loops can be iterated in blocks in order improve data locality
o Perform more computations with the data that is already in the cache

« Complicated optimization: optimal block size is hardware dependent (cache sizes,
SIMD width, etc.)

« Cache oblivious algorithms use recursion to improve performance portability

244

Cache blocking example

« Consider a 2D Laplacian

do j=1, 8
do i=1, 16
a(i,j) = u@i-1, j) + u@i+1, j) &
- 4%u(i,j) &
+ u(i,j-1) + u(i,j+1)
end do
end do

« (Fictitious) cache structure
o Each line holds 4 elemets

o Cache can hold 12 lines of data

 No cache reuse between outer loop

iterations

Cache blocking example

+ Blocking the inner loop

do IBLOCK = 1, 16, 4
do j=1, 8
do i=1, IBLOCK, IBLOCK + 3

a(i,j) = u(i-1, i) + u(i+1, j) &

- 4%u(i,j)
+ u(i,j-1) + u(i,j+1)
end do
end do
end do

« Better reuse for the j+1 data

245

246

Cache blocking example

« Iterate over 4x4 blocks

do JBLOCK = 1, 8, 4

do IBLOCK = 1, 16, 4

do j=JBLOCK, JBLOCK + 3

do i=1, IBLOCK, IBLOCK + 3

a(i,j) = u@-1, j) + uCi+1, j) &
- 4%u(i,j) &

+ u(i,j-1) + u(i,j+1)

end do

end do

end do

end do

Cache blocking with OpenMP

« OpenMP 5.1 standard has tile construct for blocking
o Compiler support not necessarily ready yet

247

I$omp tile sizes(4, 4)

do j=1, 8
do i=1, 16
a(i,j) = u(i-1, j) + u@+1, j) &
- 4%u(i,j) &
+ u(i,j-1) + u(i,j+1)
end do
end do

!$omp end tile

248

Array padding

« When data is accessed in strides which are multiple of the cache set size, conflict
misses may occur
o In 8-way associative 32 KiB cache, there are 64 sets
o Memory address which are 64*64 = 4096 bytes apart map into a same set
o Example:in float a[1024][1024] each column maps into a same set
« Array padding, i.e. allocating extra data can in some cases reduce conflict misses
o float a[1024 + 161[1024]
o Padding should preferably preserve alignment of data

249

+
Prefetching

« Modern CPUs try to predict data usage patterns and prefetch data to caches before
it is actually needed
o Can alleviate even compulsory misses
« Prefetching can be requested also by software
o Compiler
o Programmer via software directives and intrinsinc functions
o Difficult optimization:

o Too early: cache is filled with unnecessary data
o Too late: CPU has to wait for the data

250

Non-temporal stores

» With write-allocate policy, a write miss incurs a load from main memory
« If data is going to be just written and not reused, some CPUs contain instructions
for bypassing the cache by writing directly into the memory with non-temporal
stores
« Non-temporal stores can be used via pragmas, compiler options, or intrinsincs
o omp simd nontemporal(list) (OpenMP 5.0)
o Possible benefits depend a lot on application, and misuse can degragade
performance
o Hardware may also recognize access pattern and switch into non-temporal stores

251

Summary

« Efficient cache usage is on of the most important aspects for achieving good
performance
o Exploite spatial and temporal locality
« Progammer can improve the cache usage by optimizing data layouts and access
patterns

252

Miscellaneous single core optimizations

CSC Training, 2021-05

CSC — Finnish expertise in ICT for research, education-and public administration

253

Outline

« Loop transformations
« Mathematical routines
« Branches

« Function inlining

« Intrincic functions

254

PRACE +
csc

Loop transformations
&
L
255

Loop transformations

» Loop transformations can provide better vectorization prospects, improve
instruction level parallelism, pipeline utilization and cache usage
« Common transformations: interchange, unrolling, fusion, fission, sectioning, unroll
and jam
« In many cases compiler can make loop transformations with high enough
optimization level
o Understanding the concepts is still be useful for the programmer
« In some cases manual programming can be useful
o When misused, transformation can be disadvantageous for performance
o Readability of code often suffers

256

Loop unrolling

o If the loop body is very small, overhead |do i=1,N
c[il = alil + bLi]

from incrementing the loop counter end do
and from the test for the end of the do 151 N.4 T unroll Four times
loop can be high clil = alil + b[il

c[i+1] = a[i+1] + b[i+1]
« When vectorizing, loop is implicitly c[i+2] = a[i+2] + b[i+2]

c[i+3] = a[i+3] + b[i+3]
end do

unrolled by the vector length

« May improve pipeline utilization and
instruction level parallelism

« Additional logic needed for remainder

« May increase register pressure

257

Loop fission

« Loop fission (or loop distribution) splits |do j=1,N
b(i) = a(i) * a(i)

one loop into sequence of loops d(i) = c(i) - d(i-1) ! flow dependency
« May improve cache usage and reduce ~ [#Md 9°

register pressure
« May allow vectorization by moving do j=1,N ! vectorization possible

dependencies b(1) = a(i) * a(i)

end do
« Some dependencies may prohibit do j=1,N
_ d(i) = c(i) - d(i-1)
fission end do

258

Loop fusion

« Loop fusion (or loop jamming) merges
multiple loops into one

« May improve cache usage

« May allow better pipeline utilization
and instruction level parallelism

« May cause dependencies which prevent
applying the transformation

Loop sectioning

« Loop sectioning (or strip mining)
transforms a loop into smaller chunks
by creating additional inner loops

« May improve cache usage

« May make the code easier for compiler

to vectorize

do j=1,N
b(i)
end do
do j=1,N
c(i) = c(i) * a(i)

end do

a(i) * a(i)

do j=1,N
b(i) = a(i) * a(i)
c(i) = c(i) * a(i)
end do

259

do i=1,N
process1(data(i))
process2(data(i))
end do

do i=1,N,S

do j=i, min(N, i + S)
processi(data(i))
end do
do j=i, min(N, i + S)
process2(data(i))

end do

end do

260

Loop unroll and jam

« Unroll and jam unrolls an outer loop
and fuses then the inner loop

« May allow better pipeline utilization
and instruction level parallelism

« May potentiate other optimizations

Other optimizations

do i=1,N
do j=1,M
b=2%a(i, j)
c(i,j) =b *b
end do
end do

do j=1,N,2
do i=1,M
b1 =2 * a(i, j)
b2 =2%a(i, j+1)
c(i, j) = bl*bl
c(i, j + 1) = b2*b2
end do
end do

261

262

Optimizing mathematical operations

« Due to finite precision of floating point numbers, compilers need to be carefull in
some optimizations
(@+b)+cza+(b+0
« Some mathematical routines (sqrt, pow, sin, cos, ...) can be calculated with

different algorithms with different performance and precision
o In some applications it is possible to compromise precision for speed

« Most compilers have an option for faster mathematics ('-ffast-math' for gcc/clang

and'-fp-model fast=2'for Intel)
o Important to check that results are valid !

263

Optimizing mathematical operations

« If fast math options cannot be use (i.e. [,

do j=1, m

part of the application requires higher 0,30 = GG, - 2.0G,3) 4 G,)/ dorez +
precision), programmer can make some | 4%
optimizations by hand vs.
« Examples: by e
o Move division out of the loop dOLJ(j§>m= (AGi=1,3) - 2.0%AC1,3) + AGi*1,3)) * idx2 + &

) (AGL,3-1) = 2.0%A(Q,3) + A(i,j+1)) * idx2
o Replace pow(x, n) where nissmall end do

end do

integer with multiplications (C/C++)

double x3 = x*x*x // instead of pow(x, 3)

264

Optimizing branches

« Branches have the possibility of stalling the CPU pipeline, and can thus be
expensive
« When possible, if statements should be outside loop bodies
o manual loop transformations can be helpful
« Hardware branch predictor works well when the branching follows regular pattern
o performing extra work for improving predictability may be worthwhile

265

Inline functions

« When inlining, compiler replaces a call to function by the function body
o Reduces function call overhead
o If function is called within a loop, may provide additional optimization prospects
« Compiler uses heuristics to decide if inlining is beneficial
o Might require "interprocedural optimization" options
o In C/C++ inline keyword is hint for the compiler to inline
« In Fortran, programmer can force inlining only via compiler directives, otherwise
compiler makes the decision whether to inline a function
« Overuse of inlining increases the executable size and may hurt performance

266

csc

Intrinsic functions

« Intrinsic functions are special functions that the compiler replaces with equivalent
CPU instruction
o "high level assembly"
o Often compiler specific
« Examples:
o Software prefetch: _mm_prefetch (C/C++), mm_prefetch (Fortran)
o Non-temporal stores: _mm_stream_xxx (C/C++ only)
o AVXinstructions
« Recommended only in special cases
o Can make the code non-portable
o Can also degragade performance - compiler might know better when to use

267

Summary

» Loops can be transformed in various ways in order to improve performance
o Often better leave the transformations for the compiler
« Many mathematical operations can be performed faster with some compromise on
precision
« Hard to predict branches may stall the CPU pipeline

268

csc

Web resources

« Intel Intrinsics guide: https://software.intel.com/sites/landingpage/IntrinsicsGuide/

269

OpenMP
Programming OpenMP

Parallel Region

Michael Klemm OpenMP

Credit for these slides go to the OpenMP tutorial gang:
Bronis R. de Supinski, Christian Terboven, Ruud van der Pas, Xavier Teruel

1 OpenMP Tutorial
Members of the OpenMP Language Committee

270

OpenMP

OpenMP‘s machine model

* OpenMP: Shared-Memory Parallel Programming Model.

All processors/cores access
a shared main memory.

Real architectures are

more complex, as we
will see later / as we

Parallelization in OpenMP
employs multiple threads.

2 OpenMP Tutorial
Members of the OpenMP Language Committee

271

The OpenMP Memory Model

+ All threads have access to private
the same, globally shared S
memory
+ Data in private memory is ‘e,
N L 4
only accessible by the thread I:‘. . ¥, accelerator
owning this memory S al'ed- WO memory
Memory
ivat
* No other thread sees the T r::elr‘:\aofy
change(s) in private memory memory

« Data transfer is through shared
memory and is 100% transparent private
to the application memory

3 OpenMP Tutorial
Members of the OpenMP Language Committee

272

OpenMP

The OpenMP Execution Model

* OpenMP programs start with

j Master Thread Serial Part
just one thread: The Master.

Parallel

* Worker threads are spawned Region
at Parallel Regions, together Worker LL
with the Master they form the Threads -
Team of threads. E E E

ue :Serial Part
* In between Parallel Regions the E E E
Worker threads are put to sleep. WE
The OpenMP Runtime takes care .

of all thread management work. H]E Parallel

= Region
* Concept: Fork-Join. v

* Allows for an incremental parallelization!

OpenMP Tutorial
Members of the OpenMP Language Committee

273

OpenMP

Parallel Region and Structured Blocks

* The parallelism has to be expressed explicitly.
C/C++ Fortran

#pragma omp parallel !'Somp parallel
{ ..
. structured block
structured block ..
!'Somp end parallel

}

» Structured Block Specification of number of threads:
— Exactly one entry point at the top — Environment variable: OMP_NUM THREADS=...
— Exactly one exit point at the bottom — Or:Vianum threads clause:
— Branching in or out is not allowed add num tﬁreads (num) to the
— Terminating the program is allowed parallel construct
(abort / exit)

5 OpenMP Tutorial
Members of the OpenMP Language Committee

274

OpenMP

Starting OpenMP Programs on Linux
* From within a shell, global setting of the number of threads:

export OMP NUM THREADS=4

./program

* From within a shell, one-time setting of the number of threads:
OMP NUM THREADS=4 ./program

OpenMP Tutorial
Members of the OpenMP Language Committee

275

OpenMP
Programming OpenMP

Tasking Introduction

7 OpenMP Tutorial
Members of the OpenMP Language Committee

276

Sudoko for Lazy Computer Scientists OpenMP

M Lets solve Sudoku puzzles with brute multi-core force

6 8[11 15[14 16
15[11 16[14 12 6 B (1) Search an empty field
13[| 9[12 3[16[14] [15[11[10
2| 6| [11] T[15][10] 1
15[11[10 16| 2[13[8[9[12 B (2) Try all numbers:
12[13 4 1] 5] 6| 2| 3 11[10 ® (2 a) Check Sudoku
5[|e[1|12 [9| [15[11]10] 7|16 3
2 10 |11 6] |5 13 | 9 M If invalid: skip
10] 7]15111)16 12|13 6 ® |f valid: Go to next field
9 1 2| [16[10 11
11 | 4] 6] 9[13 7| [11] | 316
16[14 7| T10[15] 4| 6| 1 13[8
11010 [15 16| 9[12[13 1] 5] 4 . .
2 11 a6l T 11170 B Wait for completion
s| | s[12[13] |10 1] 2 14
316 10 7 6 12

OpenMP Tutorial
Members of the OpenMP Language Committee

277

Parallel Brute-force Sudoku

OpenMP

B This parallel algorithm finds all valid solutions

6

8|11

15

14

16

15

11

16

14

12

6

13

14

15]11

2

16

11

15|10] 1

15

11

12

12

13

[8)]
[¢2]
N

11

5

-

9| |15

16

10

13

[{e}

10

~

15

12

(2]

9

16

1

13

11

3|16

16

11

15

16

13

—_

1

8

Q|0 PN

11

14

16

10

12

Performance Evaluation

Runtime [sec] for 16x16

OpenMP Tutorial

Members of the OpenMP Language Committee

OpenMP Tutorial

Members of the OpenMP Language Committee

Sudoku on 2x Intel Xeon E5-2650 @2.0 GHz

Intel C++ 13.1, scatter binding

7

8

#threads

9

B (1) Search an empty fie first call contained in a

H (2) Try all numbers:

B Wait for completion

10

#pragma omp parallel
#pragma omp single
such that one tasks starts the
execution of the algorithm

M (2 a) Check Sudoku

11

® If invalid: skip

® |f valid: Go to ne; #pragma omp task
needs to work on a new copy

of the Sudoku board

#pragma omp taskwait
wait for all child tasks

278

OpenMP

~@-speedup: Intel C++ 13.1, scatter binding

r 4.0

- 35

- 3.0

k25

- 20

Speedup

15
1.0
- 05

- 0.0
12 16 24 32

279

OpenMP

Tasking Overview

11 OpenMP Tutorial
Members of the OpenMP Language Committee

280

What is a task in OpenMP? OpenMP

B Tasks are work units whose execution

- may be deferred or...

- ... can be executed immediately
B Tasks are composed of

- code to execute, a data environment (initialized at creation time), internal control variables (ICVs)
B Tasks are created...

.. when reaching a parallel region - implicit tasks are created (per thread)
.. when encountering a task construct - explicit task is created
.. when encountering a taskloop construct - explicit tasks per chunk are created

.. when encountering a target construct - target task is created

12 OpenMP Tutorial
Members of the OpenMP Language Committee

281

Tasking execution model

B Supports unstructured parallelism

- unbounded loops

while (<expr>) {

}

-> recursive functions

void myfunc(<args>)

{

.; myfunc(<newargs>); ...;

}

B Several scenarios are possible:

- single creator, multiple creators, nested tasks (tasks & WS)
B All threads in the team are candidates to execute tasks

OpenMP Tutorial
Members of the OpenMP Language Committee

The task construct

OpenMP

B Example (unstructured parallelism)

#pragma omp parallel
#pragma omp master
while (elem != NULL) {
#pragma omp task
compute (elem) ;
elem = elem->next;

282

OpenMP

m Deferring (or not) a unit of work (executable for any member of the team)

#pragma omp task [clause[[,] clause]...]
{structured-block}

'$Somp task [clause[[,] clause]...]
..structured-block..

'$omp end task

B Where clause is one of:

- private(list)

- firstprivate(list)
- shared(list) Data Environment
- default(shared | none)

- in_reduction(r-id: list)

-> allocate([allocator] list)

Miscellaneous

- detach(event-handler)

14 OpenMP Tutorial
Members of the OpenMP Language Committee

- if(scalar-expression)
- mergeable Cutoff Strategies

- final(scalar-expression)

Synchronization

Task Scheduling

| - depend(dep-type: list)

- untied

-> priority(priority-value)

-> affinity(list)

283

Task scheduling: tied vs untied tasks OpenMP

B Tasks are tied by default (when no untied clause present)
- tied tasks are executed always by the same thread (not necessarily creator)

- tied tasks may run into performance problems
B Programmers may specify tasks to be untied (relax scheduling)

#pragma omp task untied
{structured-block}

—> can potentially switch to any thread (of the team)
- bad mix with thread based features: thread-id, threadprivate, critical regions...
—> gives the runtime more flexibility to schedule tasks

- but most of OpenMP implementations doesn’t “honor” untied ®

15 OpenMP Tutorial
Members of the OpenMP Language Committee

284

Task scheduling: taskyield directive OpenMP

B Task scheduling points (and the taskyield directive)
- tasks can be suspended/resumed at TSPs - some additional constraints to avoid deadlock problems
-> implicit scheduling points (creation, synchronization, ...)

- explicit scheduling point: the taskyield directive

#pragma omp taskyield

B Scheduling [tied/untied] tasks: example tied: i - (default)|

#pragma omp parallel
#pragma omp single
{

single

#pragma omp task untied
{
foo();
#pragma omp taskyield
bar ()

16 OpenMP Tutorial
Members of the OpenMP Language Committee

285

Task synchronization: taskwait directive OpenMP

B The taskwait directive (shallow task synchronization)

- It is a stand-alone directive

#pragma omp taskwait

- wait on the completion of child tasks of the current task; just direct children, not all descendant tasks;
includes an implicit task scheduling point (TSP)

#pragma omp parallel
#pragma omp single @

{

e
.

#pragma omp task A
{

#pragma omp task |:B - -
{ ..} > wait for... @ @
#pragma omp task |.c -
{ .. #c.1; #c.2; ..} s ‘g‘

#pragma omp taskwait -]
}

} // implicit barrier will wait for C.x

17 OpenMP Tutorial
Members of the OpenMP Language Committee

286

Task synchronization: barrier semantics OpenMP

B OpenMP barrier (implicit or explicit)

- All tasks created by any thread of the current team are guaranteed to be completed at barrier exit

#pragma omp barrier

- And all other implicit barriers at parallel, sections, for, single, etc...

18 OpenMP Tutorial
Members of the OpenMP Language Committee

287

Task synchronization: taskgroup construct OpenMP

B The taskgroup construct (deep task synchronization)

- attached to a structured block; completion of all descendants of the current task; TSP at the end

#pragma omp taskgroup [clause[[,] clause]...]
{structured-block}

- where clause (could only be): reduction(reduction-identifier: list-items)

#pragma omp parallel
#pragma omp single A
{

#pragma omp taskgroup A
{ ... '..'
#pragma omp task |:B
{ ..}
#pragma omp task | . .)
{ .. #c.1; #c.2; ..} /r? wait for... s

} // end of taskgroup"“

}

19 OpenMP Tutorial
Members of the OpenMP Language Committee

288

OpenMP

Data Environment

20 OpenMP Tutorial
Members of the OpenMP Language Committee

289

Explicit data-sharing clauses

OpenMP

B Explicit data-sharing clauses (shared, private and firstprivate)

#pragma omp task shared(a)
{
// Scope of a: shared

}

#pragma omp task private(b) #pragma omp task firstprivate (c)
{ {

// Scope of b: private // Scope of c: firstprivate
} }

B If default clause present, what the clause says

-> shared: data which is not explicitly included in any other data sharing clause will be shared

- none: compiler will issue an error if the attribute is not explicitly set by the programmer (very useful!!!)

#pragma omp task default(shared)
{

}

// Scope of all the references, not explicitly // Compiler will force to specify the scope for
// included in any other data sharing clause, // every single variable referenced in the context
// and with no pre-determined attribute: shared }

#pragma omp task default(none)
{

Hint: Use default(none) to be forced to think about every
variable if you do not see clearly.

21 OpenMP Tutorial
Members of the OpenMP Language Committee

Pre-determined data-sharing attributes

B threadprivate variables are threadprivate (1) #pragma omp task e
. . . {
B dynamic storage duration objects are shared (malloc, new,...) (2) int x = MN;
B static data members are shared (3) } // Scope of x: private
B variables declared inside the construct
- static storage duration variables are shared (4) #pragma omp task (4
{
- automatic storage duration variables are private (5) static int y;

B the loop iteration variable(s)

290

OpenMP

// Scope of y: shared

int A[SIZE]; o

#pragma omp threadprivate (A)

// ...
#pragma omp task
{
// A: threadprivate
}

int *p; e void foo (void) { e

static int s = MN;

p = malloc(sizeof (float) *SIZE) ; }
#pragma omp task #pragma omp task
{ {
// *p: shared foo(); // s@foo(): shared

} }

22 OpenMP Tutorial
Members of the OpenMP Language Committee

291

Implicit data-sharing attributes (in-practice)

B Implicit data-sharing rules for the task region

- the shared attribute is lexically inherited

- in any other case the variable is firstprivate

int a = 1;
void foo() {
int b=2, ¢ = 3;
#pragma omp parallel private(b)
{
int d = 4;
#pragma omp task
{
int e = 5;
// Scope of
// Scope of
// Scope of
// Scope of
// Scope of

(L o Po I o i]

OpenMP Tutorial
Members of the OpenMP Language Committee

Task reductions (using taskgroup)

B Reduction operation

- perform some forms of recurrence calculations

-> associative and commutative operators
B The (taskgroup) scoping reduction clause

#pragma omp taskgroup task_reduction(op: list)
{structured-block}

- Register a new reduction at [1]

- Computes the final result after [3]
B The (task) in_reduction clause [participating]

#pragma omp task in_reduction(op: list)
{structured-block}

- Task participates in a reduction operation [2]

OpenMP Tutorial
Members of the OpenMP Language Committee

OpenMP

- Pre-determined rules (could not change)
- Explicit data-sharing clauses (+ default)

- Implicit data-sharing rules

B (in-practice) variable values within the task:

- value ofa: 1
- value of b: x // undefined (undefined in parallel)
- value of c: 3
- value of d: 4

- value of e: 5

292

OpenMP

intres=0;
node_t* node = NULL;

#pragma omp parallel
{
#pragma omp single
{
#pragma omp taskgroup task_reduction(+: res)
{//11]
while (node) {
#pragma omp task in_reduction(+: res) \
firstprivate(node)
{//12]
res += node->value;
}
node = node->next;
}
/131
}
}

293

Task reductions (+ modifiers) OpenMP

intres=0;

B Reduction modifiers node t* node = NULL:

- Former reductions clauses have been extended
#pragma omp parallel reduction(task,+: res)

- task modifier allows to express task reductions {//1112]
#pragma omp single
- Registering a new task reduction [1] {

#pragma omp taskgroup

- Implicit tasks participate in the reduction [2] {

while (node) {

- Compute final result after [4] #pragma omp task in_reduction(+: res) \

B The (task) in_reduction clause [participating] firstprivate(node)

{//13]
#pragma omp task in_reduction(op: list) res += node->value;
{structured-block} }
node = node->next;
- Task participates in a reduction operation [3] } !
}
/141

25 OpenMP Tutorial
Members of the OpenMP Language Committee

294

OpenMP

Tasking illustrated

26 OpenMP Tutorial
Members of the OpenMP Language Committee

295

Fibonacci illustrated

1
2
2
4
5
6
7
8

9
10
11
12
13 }

int main(int argc,

{

[..
#pragma omp parallel

{

}

[..

char* argv[])

-]

#pragma omp single

{
fib(input);

}
-]

14
15
16
17
18
19
20
21
22
23
24
25
26
27 }

int fib(int n) {

if (n < 2) return n;
int x, y;
#pragma omp task shared(x)
{
x = fib(n - 1);
}
#tpragma omp task shared(y)
{
y = fib(n - 2);
}
#pragma omp taskwait
return x+y;

OpenMP

B Only one Task / Thread enters fib() from main(), it is responsible for
creating the two initial work tasks

OpenMP Tutorial

dTaskwait IS required, as otherwise x and y would get lost

Members of the OpenMP Language Committee

T1 enters fib(4)

T1 creates tasks for
fib(3) and fib(2)

T1 and T2 execute tasks
from the queue

T1 and T2 create 4 new
tasks

T1 - T4 execute tasks

Task Queue

296

OpenMP

OpenMP Tutorial
Members of the OpenMP Language Committee

297

OpenMP

T1 enters fib(4)

T1 creates tasks for
fib(3) and fib(2) @

T1 and T2 execute tasks

from the queue

T1 and T2 create 4 new @ @
tasks

T1 - T4 execute tasks

29 OpenMP Tutorial
Members of the OpenMP Language Committee

298

OpenMP

The taskloop Construct

30 OpenMP Tutorial
Members of the OpenMP Language Committee

299

Tasking use case: saxpy (taskloop)

for (i = 0; i<SIZE; i+=1) {
A[i]=A[i]*B[i]1*S;
}

for (i = 0; i<SIZE; i+=TS) {
UB = SIZE < (i+TS)?SIZE:i+TS;
for (ii=i; ii<UB; ii++) {
A[ii]=A[ii]*B[ii]*S;
}

#pragma omp parallel

#pragma omp single

for (i = 0; i<SIZE; i+=TS) {
UB = SIZE < (i+TS)?SIZE:i+TS;
#pragma omp task private(ii) \
firstprivate (i,UB) shared(S,A,B)
for (ii=i; ii<UB; ii++) {

A[ii]=A[ii]*B[ii]*S;

}

OpenMP

m Difficult to determine grain
- 1 single iteration > to fine
- whole loop = no parallelism

B Manually transform the code
- blocking techniques

B Improving programmability
- OpenMP taskloop

#pragma omp taskloop grainsize (TS)

for (i = 0; i<SIZE; i+=1) {
A[i]=A[i]1*B[i]*S;

}

OpenMP Tutorial
Members of the OpenMP Language Committee

The taskloop Construct

- Hiding the internal details

- Grain size ~ Tile size (TS) - but implementation

decides exact grain size

300

OpenMP

B Task generating construct: decompose a loop into chunks, create a task for each loop chunk

#pragma omp taskloop [clause[[,] clause]..]
{structured-for-loops}

!'Somp taskloop [clause[[,] clause]..]
..structured-do-loops..
!$Somp end taskloop

Where clause is one of:

- shared(list)

- private(list)

- firstprivate(list)
- lastprivate(list) Data Environment
- default(sh | pr | fp | none)
-> reduction(r-id: list)

- in_reduction(r-id: list)

-> grainsize(grain-size)
Chunks/Grain
- num_tasks(num-tasks)

OpenMP Tutorial
Members of the OpenMP Language Committee

-> if(scalar-expression)
- final(scalar-expression) Cutoff Strategies

- mergeable

- untied

Scheduler (R/H)

-> priority(priority-value)

- collapse(n)

- nogroup Miscellaneous

-> allocate([allocator] list)

301

Worksharing vs. taskloop constructs (1/2)

OpenMP

subroutine worksharing

integer :: x

integer :: i

integer, parameter :: T = 16
integer, parameter :: N = 1024
x = 0

!Somp parallel shared(x) num_threads(T)

do i = 1,N
!'Somp atomic
x =x + 1
!'Somp end atomic
end do
!$Somp end do

!'Somp end parallel
write (*,'(A,10)") 'x =", x
end subroutine

subroutine taskloop
integer :: x
integer :: i
integer, parameter
integer, parameter

x =0

!'Somp parallel shared(x)

!Somp taskloop
do i = 1,N
!'Somp atomic

x =x + 1
!'Somp end atomic
end do

!'Somp end taskloop

!'Somp end parallel

T =16
0

num_threads (T)

write (*,'(A,10)"'") 'x =", X

end subroutine

OpenMP Tutorial
Members of the OpenMP Language Committee

Worksharing vs. taskloop constructs (2/2)

302

OpenMP

subroutine worksharing

integer :: x

integer :: i

integer, parameter :: T = 16
integer, parameter :: N = 1024
x =0

!Somp parallel shared(x) num_ threads (T)

do i = 1,N
!'Somp atomic
X =x +
!'Somp end atomic
end do
!Somp end do

!'Somp end parallel
write (*,'(A,10)") 'x ="', x
end subroutine

subroutine taskloop
integer :: x
integer :: i
integer, parameter
integer, parameter

x =0
!'Somp parallel shared (x)
!Somp single
!$Somp taskloop
do i = 1,N
!'Somp atomic

x =x + !
!'Somp end atomic
end do

!Somp end taskloop

!'$Somp end single

!Somp end parallel
write (*,' (A, 10)") '

end subroutine

T =16

num_threads (T)

OpenMP Tutorial
Members of the OpenMP Language Committee

303

Taskloop decomposition approaches OpenMP

B Clause: grainsize(grain-size) B Clause: num_tasks(num-tasks)
- Chunks have at least grain-size iterations - Create num-tasks chunks
- Chunks have maximum 2x grain-size iterations - Each chunk must have at least one iteration
int TS = 4 * 1024; int NT = 4 * omp get num_ threads() ;
#pragma omp taskloop grainsize (TS) #pragma omp taskloop num_tasks (NT)
for (i = 0; i<SIZE; i+=1) { for (i = 0; i<SIZE; i+=1) {

A[i]=A[1i]*B[i]1*S; A[i]=A[i]*B[i]1*S;

} }

B If none of previous clauses is present, the number of chunks and the number of iterations per chunk
is implementation defined

B Additional considerations:

- The order of the creation of the loop tasks is unspecified

- Taskloop creates an implicit taskgroup region; nogroup > no implicit taskgroup region is created

35 OpenMP Tutorial
Members of the OpenMP Language Committee

304

Collapsing iteration spaces with taskloop OpenMP

B The collapse clause in the taskloop construct #pragma omp taskloop collapse (2)
for (i = 0; i<SX; i+=1) {
#pragma omp taskloop collapse(n) for (Jj= 0; i<SY; j+=1) {
{structured-for-loops} for (k = 0; i<Sz; k+=1) {
A[f(i,]J,k)]=<expression>;

- Number of loops associated with the taskloop construct (n) } '

- Loops are collapsed into one larger iteration space

- Then divided according to the grainsize and num_tasks | |
B Intervening code between any two associated loops

> at least once per iteration of the enclosing loop ﬁiia‘fm?j”:"l’ el el
for (k = 0; i<SZ; k+=1) {

-> at most once per iteration of the innermost loop

index for_ i(ij);
index_for_ j(ij);

i =
j =
A[f(i,], k)]=<expression>;

36 OpenMP Tutorial
Members of the OpenMP Language Committee

305

Task reductions (using taskloop) OpenMP

B Clause: reduction (r-id: list) double dotprod(int n, double *x, double *y) {
double r = 0.0;
#pragma omp taskloop reduction(+: r)
for (i = 0; i < n; i++)
r += x[i] * y[i];

- It defines the scope of a new reduction
- All created tasks participate in the reduction

- It cannot be used with the nogroup clause
return r;

}

B Clause: in_reduction(r-id: list) double dotprod(int n, double *x, double *y) {

double r = 0.0;
#pragma omp taskgroup task reduction(+: r)

- All created tasks participate in the reduction {

- Reuse an already defined reduction scope

#pragma omp taskloop in_reduction(+: r)*
- It can be used with the nogroup* clause, but it for (i = 0; i < n; i+4)

r += x[i] * y[i];

is user responsibility to guarantee result }

return r;

37 OpenMP Tutorial
Members of the OpenMP Language Committee

306

Composite construct: taskloop simd OpenMP

B Task generating construct: decompose a loop into chunks, create a task for each loop chunk
B Each generated task will apply (internally) SIMD to each loop chunk

- C/C++ syntax:

#pragma omp taskloop simd [clause[[,] clause]..]
{structured-for-loops}

- Fortran syntax:

!Somp taskloop simd [clause[[,] clause]..]
..structured-do-loops..
!Somp end taskloop

B Where clause is any of the clauses accepted by taskloop or simd directives

38 OpenMP Tutorial
Members of the OpenMP Language Committee

307

OpenMP

Improving Tasking Performance:
Task dependences

39 OpenMP Tutorial
Members of the OpenMP Language Committee

308

Motivation OpenMP

M Task dependences as a way to define task-execution constraints

int x = 0; OpenMP 3.1 i = 0 OpenMP 4.0
#pragma omp parallel
#pragma omp single
{ {
@ #pragma omp task @ #pragma omp task depend(in: x)
std::cout << x << std::endl; std::cout << x << std::endl;

#pragma omp parallel
#pragma omp single

#pragma omp taskwait

@ fpragma omp task depend(inout: x)
>

}

OpenMP 3.1 ° t - = I
. t2

OpenMP 4.0 0
o — I

@ #pragma omp task
>

}

Task’s creation time

. Task’s execution time

40 OpenMP Tutorial
Members of the OpenMP Language Committee

309

Motivation

OpenMP

M Task dependences as a way to define task-execution constraints

Motivation: Cholesky factorization

void cholesky(int ts, int nt, double* a[nt] [nt]) ({
for (int k = 0; k < nt; k++) {)
// Diagonal Block factorization
potrf (a[k] [k], ts, ts); 000
000000
// Triangular systems o000
for (int i = k + 1; i < nt; i++) _—
#pragma omp task 000
@ trsm(alk] [k], alk][i], ts, ts) 000000
#pragma omp taskwait (CN)
o . X X
// Update trailing matrix
for (int i = k + 1; i < nt; i++) (0]
for (int j = k + 1; j < i; j++ P
#pragma omp task
@ dgemm (a[k] [i], alk]l[j], alj] .
}
#pragma omp task
.S}'rk(alk] [1], a[i][i], ts, s);
#pragma omp taskwait
}
}
OpenMP 3.1

int x = 0;

#pragma omp parallel

#pragma omp single

{

@ #pragma omp task
std::cout << x << stc

#pragma omp taskwait
@ #pragma omp task

Yarar g

}

OpenMP 3.1

OpenMP 3.1

OpenMP 4.0

OpenMP Tutorial
Members of the OpenMP Language Committee

OpenMP Tutorial
Members of the OpenMP Language Committee

int x = 0;

#pragma omp parallel

#pragma omp single

{

@ #pragma omp task depend(in: x)
d::endl;

Task dependences can help us to remove
“strong” synchronizations, increasing the look
ahead and, frequently, the parallelism!!!!

and (inout: x)
et

1

2

Task’s creation time

tl %% v
- —

. Task’s execution time

void cholesky(int ts, int nt, double* a[nt] [nt])
for (int k = 0; k < nt; k++) {
// Diagonal Block factorization
#pragma omp task depend(inout: al[k] [k]) .
©potrf (alkl [k], ts, ts); .09 :
o0 ®-000
// Triangular systems . ." : ©
for (int i = k + 1; i < nt; i++) { “‘\‘ @
#pragma omp task depend(in: al[k] [k]) Ve
depend (inout: al[k][i]) =‘%
@ trsm(a[k] [k], al[k][i], ts, ts); =
’ ®
// Update trailing matrix ‘
for (int 1 = k + 1; i < nt; i++) -
for (int j = k + 1; j < i; j++) {
#pragma omp task depend(inout: a[j][i])
depend (in: al[k] [i], alk]l[3j])
.dqorrm(a’kf’i], alk]l[jl, aljl[i]l, ts, ts);
#pragma omp task depend(inout: af[i] [i])
depend (in: al[k] [i])
.S'I'rk(c‘fk]fij, ali] [i], ts, ts):
}
}
} OpenMP 4.0

OpenMP 4.0

310

311

Motivation: Cholesky factorization

void cholesky(int ts, int n

for (int k = 0; k < nt; k
// Diagonal Block facto
potrf (a[k] [k], ts, ts);

// Triangular systems

for (int i = k + 1; i <
#pragma omp task

@ trsm(alk][k], alk][i]

}

#pragma omp taskwait

// Update trailing matr
for (int i = k + 1; i <
for (int j = k + 1; j
#pragma omp task
@ dgemm (a[k] [i], alk]

}

#pragma omp task
@syrk(alk] [i], a[i][i]
}

#pragma omp taskwait

OpenMP Tutorial

OpenMP Tutorial

L 2 oy) 2

OpenMP

GFLOPS

1400

1000

800

600

200

Cholesky - Scalability (2 NUMA Nodes x 24 Cores, N=8192, TS=256)

T
depend_tasks
tas|

ks —a—

——

Threads

45

50

pble* a[nt] [nt]) {

i on '\).
E: alk] [k]) /
o ®

oo
® @

@

JS

®/

alkl][k]) ‘e
b [k] [1]) 2
ts); ;‘

XITLL)
® @
i++) ('U!‘ '

i++) |
Jj++) |
inout: a([j][i])

(k1 [i], alk][j])
h[j][i], ts, ts);

but: a[i] [1])

k1[1]1)
ts);

OpenMP 4.0

Members of the OpenMP Language Committee

Members of the OpenMP Language Committee

Using 2017 Intel compiler

What’s in the spec

312

OpenMP

313

What’s in the spec: a bit of history OpenMP

OpenMP 4.0 OpenMP 4.5

* The depend clause was added

* The depend clause was added to the
to the task construct

target constructs
» Support to doacross loops

OpenMP 5.0

* lvalue expressions in the depend clause

New dependency type: mutexinoutset

Iterators were added to the depend clause

The depend clause was added to the taskwait construct
Dependable objects

45 OpenMP Tutorial
Members of the OpenMP Language Committee

314

What'’s in the spec: syntax depend clause OpenMP

depend ([depend-modifier,] dependency-type: list-items)

where:

- depend-modifier is used to define iterators

- dependency-type maybe: in, out, inout, mutexinoutset and depobj
- A list-item may be:

* C/C++: A lvalue expror an array section depend(in: x, v[i], *p, w[10:10])

 Fortran: A variable or an array section depend (in: x, v (i), w(10:20))

46 OpenMP Tutorial
Members of the OpenMP Language Committee

315

What'’s in the spec: sema depend clause (1) OpenMP

B Atask cannot be executed until all its predecessor tasks are completed

B |f a task defines an in dependence over a list-item

—> the task will depend on all previously generated sibling tasks that reference that list-item in an out or
inout dependence

B |f a task defines an out/inout dependence over list-item

- the task will depend on all previously generated sibling tasks that reference that list-item in an in, out or
inout dependence

47 OpenMP Tutorial
Members of the OpenMP Language Committee

316

What'’s in the spec: depend clause (1) OpenMP

B Atask cannot be executed until all its predecessor tasks are completed

m If a task defir, .

gma omp parallel
. #pragma omp single .)
- the task will ¢ ne of the list items in

. #pragma omp task depend(inout: x) //T1
an out Or 1n { ...}

#pragma omp task depend(in: x) //T2

® If atask defir ' '

. #pragma omp task depend(in: x) //T3 L X
2> thetaskwillc ¢ ... ine of the list items in

an in, out(#pragma omp task depend(inout: x) //T4
I coo J

48 OpenMP Tutorial
Members of the OpenMP Language Committee

317

What'’s in the spec: depend clause (2)

OpenMP

B New dependency type: mutexinoutset

int x = 0, y = 0, res = 0;
#pragma omp parallel
#pragma omp single
{
#pragma omp task depend(out: res) //TO
res = 0;
#pragma omp task depend(out: x) //T1

long computation (x);

#pragma omp task depend(out: y) //T2

short computation (y):;

#pragma omp task depend(in: x) depend (mnbterinvesyef{TBes) //T3

res += x;

1. inoutset property: tasks with a mutexinoutset
dependence create a cloud of tasks (an inout set) that

#pragma omp task depend(in: y) depend (mnbekinoespef{T#es) //T4 Synchronizes with previous & posterior tasks that

res += y;

#pragma omp task depend(in: res) //T5
std::cout << res << std::endl;

49 OpenMP Tutorial
Members of the OpenMP Language Committee

What’s in the spec: depend clause (3)

M Task dependences are

dependent on the same list item

2. mutex property: Tasks inside the inout set can be
executed in any order but with mutual exclusion

318

OpenMP

M List items used in the depend

defined among sibling tasks clauses [...] must indicate identical

//testl.cc
#pra;m; ;;p parallel
#pragma omp single
(
1 #pragma omp task depend(inout: x) //T1
1 #pragma omp task depend(inout: x) //T1l.1

X++;

#pragma omp taskwait
}
#pragma omp task depend(in: x) //T2

std::cout << x << std::endl;

50 OpenMP Tutorial
Members of the OpenMP Language Committee

or disjoint storage

//test2.cc
af[l100] = {0};

#pragma omp parallel

#pragma omp single

(

1
#pragma omp task depend(inout: a[50:99]) //T1
compute (/* from */ &a[50], /*elems*/ 50);
#pragma omp task depend(in: a) //T2
print (/* from */ a, /* elem */ 100); 299

} - -

319

What'’s in the spec: depend clause (4) OpenMP

M |terators + deps: a way to define a dynamic number of dependences

std::list<int> list = ...; It seems innocent but it's not:

int n = list.size(): depend (out: list.operator[] (i))

#pragma omp parallel
#pragma omp single
{
for (int i = 0; i1 < n; ++1i)
#pragma omp task depend(out: list[i]) //Px
compute elem(list[i]);

#pragma omp task depend (ihera®dy (j=0:n), in : list[j]) //C
print elems (list);

}

Equivalent to:
depend (in: 1list[0], list[1], .., list[n-1])

51 OpenMP Tutorial
Members of the OpenMP Language Committee

320

OpenMP

Philosophy

52 OpenMP Tutorial
Members of the OpenMP Language Committee

321

Philosophy: data-flow model OpenMP

B Task dependences are orthogonal to data-sharings

- Dependences as a way to define a task-execution constraints

— Data-sharings as how the data is captured to be used inside the task

// testl.cc // test2.cc
#pragma omp parallel #pragma omp parallel
#pragma omp single #pragma omp single

#pragma omp task depend(inout: x) \ #pragma omp task depend(inout: x) //T1
firstprivate (x) //T1 X++;

#pragma omp task depend(in: x) \
#pragma omp task depend(in: x) //T2 irstprivate (x) //T2

OK, but it always prints ‘0" :(We h a data-race!!

53 OpenMP Tutorial
Members of the OpenMP Language Committee

322

Philosophy: data-flow model (2) OpenMP

B Properly combining dependences and data-sharings allow us to define
a task data-flow model

—>Data that is read in the task - input dependence

—>Data that is written in the task - output dependence

H A task data-flow model

—~>Enhances the composability

—~>Eases the parallelization of new regions of your code

54 OpenMP Tutorial
Members of the OpenMP Language Committee

323

Philosophy: data-flow model (3)

//testl_vl.cc

x =0, y=0;
#pragma omp parallel
#pragma omp single

{

#pragma omp task depend(inout:

y++; // '

#pragma omp task depend(in: x)
std::cout << x << std::endl;

#pragma omp taskwait
std::cout << y << std::endl;

55 OpenMP Tutorial
Members of the OpenMP Language Committee

56 OpenMP Tutorial
Members of the OpenMP Language Committee

//testl v2.cc

OpenMP

#
#
{
x) //T1

//T2

//testl v3.cc
//testl_vé4.cc

= e

x =0, y=0;

#pragma omp parallel
#pragma omp single

{

#pragma omp task depend(inout: x, y) //T1

#pragma omp task depend(in: x)
std::cout << x << std::endl;

#pragma omp task depend(in: y)
std::cout << y << std::endl;

//T2

//T3

If all tasks are properly annotated,
we only have to worry about the
dependendences & data-sharings of the new task!!!

Use case

324

OpenMP

325

Use case: intro to Gauss-seidel

Members of the OpenMP Language Committee

Use case: Gauss-seidel (2)

serial gauss_seidel (
; £t < tsteps; ++

OpenMP

Access pattern analysis

For a specifict, i and j
HREN
N

Each cell depends on:

- two cells (north & west) that are
computed in the current time step, and
- two cells (south & east) that were
computed in the previous time step

326

OpenMP

1st parallelization strategy

For an specific t

We can exploit the wavefront to

obtain parallelism!!

Members of the OpenMP Language Committee

327

Use case : Gauss-seidel (3)

gauss_seidel (tsteps, size, TS, (*p) [size])
NB = size / TS;
#pragma omp parallel
for (t = 0; t < tsteps; ++t)
// First NB diagonals
for (diag = 0; diag < NB; ++diag) {
#pragma omp for
for (d = 0; d <= diag; ++d) {
ii = d;
jj = diag - d;
for (i = 1+ii*TS; i < ((ii+1)*TS); ++i
for (j = 1+33*TS; 1 < ((33+1)*TS); ++3j)
plil[3] = 0.25 * (p[i]l[j-1] * p[i][j+1] *
pli-11[3j] * p[i+1]1([]]);

// Lasts NB diagonals

for (diag = NB-1; diag >= 0; --diag) {
// Similar code to the previous loop

}

OpenMP Tutorial
Members of the OpenMP Language Committee

Use case : Gauss-seidel (4)

serial gauss seidel (tsteps, size, (*p) [size])
for ()
for | -)
for (5 —1;)
X (¥ - * // left
f * // right
= * // top
); // bottom

OpenMP

328

OpenMP

2"d parallelization strategy

multiple time iterations

. tn+1
- tn+2

tn+3

We can exploit the wavefront
of multiple time steps to obtain MORE

parallelism!!

OpenMP Tutorial
Members of the OpenMP Language Committee

329

Use case : Gauss-seidel (5)

gauss_seidel (
NB = size /

#pragma omp parall
#pragma omp single
for (t = 0; t
for (ii=1; i
for (jj=1;
#pragma omp

tsteps, size, TS, (*p) [size]) {
el
< tsteps; ++t)
i < size-1; ii+=TS)
jj < size-1; jj+=TS) {
task depend (inout: p[ii:TS][jj:TS])
depend(in: p[ii-TS:TS][jj:TS], p[ii+TS:TS]1[jj:TS],

TS;

OpenMP

inner matrix region

p[ii:TS][§j-TS:TS], p[ii:TS]1[jj:TS])

Q: Why do the input dependences

for (i=ii; i<(1l+ii)*TS; ++1i)
for (j=33; J<(1+33)*TS; ++3j)
plil[3] = 0.25 * (p[i]l[j-1] * p[i][j+1] *
pli-1]1[3] * p[i+1][]]);

OpenMP Tutorial

Members of the OpenMP Language Committee

Use case : Gauss-seidel (5)

#pragma omp paral
#pragma omp singl|
for (t =0; t

for (ii=1;
for (jj=1
#pragma omp
depend (

Speedup Gauss-Seidel (2 NUMA nodes x 24 cores, baseline serial version, ICC 18.1)

T T T T
omp_for —g—

omp_depend —g—

Threads

depend on the whole block rather
than just a column/row?

VS

330

OpenMP

matrix region

e input dependences
e whole block rather
a column/row?

VS

OpenMP Tutorial

Members of the OpenMP Language Committee

331

OpenMP

Improving Tasking Performance:
Cutoff clauses and strategies

63 OpenMP Tutorial
Members of the OpenMP Language Committee

332

OpenMP

OpenMP: Memory Access

OpenMP Tutorial
Members of the OpenMP Language Committee

333

Example: Loop Parallelization OpenMP

B Assume the following: you have learned that load imbalances can
severely impact performance and a dynamic loop schedule may
prevent this:

—~>What is the issue with the following code:

double* A;
A = (double*) malloc(N * sizeof (double))
/* assume some initialization of A */

#fpragma omp parallel for schedule (dynamic, 1)
for (int i = 0; i < N; i++) {
A[i] += 1.0;
}
—>How is A accessed? Does that affect performance?

65 OpenMP Tutorial
Members of the OpenMP Language Committee

334

False Sharing C_)penMP

" False Sharing: Parallel accesses to the same cache line may have a significant performance
impact!

Caches are organized in lines of typically

64 bytes: integer array a[0-4] fits into

Core Core Core Core one cache line.

| on-chip cache ' on-chip cache

Whenever one element of a cache line
is updated, the whole cache line is
Invalidated.

Local copies of a cache line have to be
re-loaded from the main memory and
the computation may have to be

repeated.

OpenMP Tutorial
Members of the OpenMP Language Committee

335

Non-uniform Memory OpenMP

double* A;
A = (double¥*) Core Core Core Core
malloc (N * sizeof (double));

on-chip on-chip on-chip on-chip
cache cache cache cache

interconnect
for (int i = 0; i < N; i++) {

A[i] = 0.0;

memory memory

67 OpenMP Tutorial
Members of the OpenMP Language Committee

336

Non-uniform Memory OpenMP

W Serial code: all array elements are allocated in the memory of the NUMA node closest to the
core executing the initializer thread (first touch)

double* A;
A = (double¥*)
) Core Core

malloc (N * sizeof (double)) ;

on-chip on-chip
cache cache

for (int i = 0; i < N; i++) {
A[i] = 0.0;

interconnect

memory memory

OpenMP Tutorial
Members of the OpenMP Language Committee

337

About Data Distribution OpenMP

B I[mportant aspect on cc-NUMA systems

—1f not optimal, longer memory access times and hotspots

M Placement comes from the Operating System
—>This is therefore Operating System dependent

B Windows, Linux and Solaris all use the “First Touch” placement policy
by default

—~>May be possible to override default (check the docs)

OpenMP Tutorial
Members of the OpenMP Language Committee

338

Non-uniform Memory OpenMP

“ Serial code: all array elements are allocated in the memory of the NUMA node closest to the
core executing the initializer thread (first touch)

double* A;
A = (double*)

malloc (N * sizeof (double)); ore Core Core Core

on-chip | on-chip on-chip | on-chip
cache cache cache cache

interconnect

for (int i = 0; i < N; i++) {
A[i] = 0.0;
}

memory memory

70 OpenMP Tutorial
Members of the OpenMP Language Committee

339

First Touch Memory Placement OpenMIP

W First Touch w/ parallel code: all array elements are allocated in the memory of the NUMA
node that contains the core that executes the
thread that initializes the partition

core Core core Core

double* A;
A = (double¥*)
malloc (N * sizeof (double)) ;

on-chip | on-chip on-chip | on-chip
cache cache cache cache
omp_set num threads(2);

#pragma omp parallel for interconnect

for (int i = 0; i < N; i++) {
A[i] = 0.0;

}

memory memory

71 OpenMP Tutorial
Members of the OpenMP Language Committee

340

Serial vs. Parallel Initialization OpenMP

B Stream example on 2 socket sytem with Xeon X5675 processors, 12
OpenMP threads:

| ooy [scale Jadd _tiad |

ser_init 18.8GB/s 18.5GB/s 18.1GB/s 18.2 GB/s
par_init 413GB/s 39.3GB/s 40.3GB/s 40.4GB/s

ser_init: a[O,N-1] T1 T2 T3 T7 T8 T9
b[O,N-1] CPU O CPU 1 MEM
c[O,N-1]

T4 TS5 T6 T10 Ti1 T12

LTI 5[0,(N/2)-1] TL T2 T3 T7 T8 T9 a[N/2,N-1]
b[0,(N/2)-1] CPUO CPU1 b[N/2,N-1]
S ow — oun

c[N/2,N-1]
72 OpenMP Tutorial
Members of the OpenMP Language Committee

T4 T5 T6 TI0 T11 T12

341

Get Info on the System Topology OpenMP

M Before you design a strategy for thread binding, you should have a basic
understanding of the system topology. Please use one of the following
options on a target machine:

- Intel MPl's cpuinfo tool

- cpuinfo
—>Delivers information about the number of sockets (= packages) and the mapping of processor

ids to cpu cores that the OS uses.

- hwlocs’ hwioc-1s tool

- hwloc-1s

—>Displays a graphical representation of the system topology, separated into NUMA nodes, along

with the mapping of processor ids to cpu cores that the OS uses and additional info on caches.

73 OpenMP Tutorial
Members of the OpenMP Language Committee

342

Decide for Binding Strategy OpenMP

M Selecting the ,right” binding strategy depends not only on the topology,
but also on application characteristics.

—>Putting threads far apart, i.e., on different sockets
->May improve aggregated memory bandwidth available to application
—~>May improve the combined cache size available to your application
—>May decrease performance of synchronization constructs
—>Putting threads close together, i.e., on two adjacent cores that possibly share
some caches
—>May improve performance of synchronization constructs

—~>May decrease the available memory bandwidth and cache size
OpenMP Tutorial
Members of the OpenMP Language Committee

343

Places + Binding Policies (1/2) OpenMP

B Define OpenMP Places
- set of OpenMP threads running on one or more processors

—> can be defined by the user, i.e. ovp pracES=cores

B Define a set of OpenMP Thread Affinity Policies

- SPREAD: spread OpenMP threads evenly among the places,
partition the place list

- CLOSE: pack OpenMP threads near master thread
- MASTER: collocate OpenMP thread with master thread

B Goals
—> user has a way to specify where to execute OpenMP threads

- locality between OpenMP threads / less false sharing / memory bandwidth

75 OpenMP Tutorial
Members of the OpenMP Language Committee

344

Places OpenMP

B Assume the following machine:

po f ot Bp2 §p3|ip4 §ps | pe | o7

- 2 sockets, 4 cores per socket, 4 hyper-threads per core
B Abstract names for OMP_PLACES:

- threads: Each place corresponds to a single hardware thread on the target machine.

- cores: Each place corresponds to a single core (having one or more hardware threads) on the target
machine.

- sockets: Each place corresponds to a single socket (consisting of one or more cores) on the target
machine.

- |l_caches: Each place corresponds to a set of cores that share the last level cache.

- numa_domains: Each place corresponds to a set of cores for which their closest memory is: the
same memory; and at a similar distance from the cores.

76 OpenMP Tutorial
Members of the OpenMP Language Committee

345

Places + Binding Policies (2/2) OpenMP

B Example‘s Objective:

—>separate cores for outer loop and near cores for inner loop

B Outer Parallel Region: proc_bind(spread) num_threads(4)
Inner Parallel Region: proc_bind(close) num_threads(4)

—>spread creates partition, compact binds threads within respective partition

OMP_PLACES=(0,1,2,3), (4,5,6,7), ... = (0-3):8:4 = cores
#pragma omp parallel proc_bind(spread) num_threads (4)
#pragma omp parallel proc_bind(close) num_threads (4)

B Example

IR N 2 S I I I

—~>spread 4

—>close 4

77 OpenMP Tutorial
Members of the OpenMP Language Committee

346

More Examples (1/3) OpenMP

B Assume the following machine:

2o fpi §p2 Y o3|l pd §lps |l p6 o7

—2 sockets, 4 cores per socket, 4 hyper-threads per core

B Parallel Region with two threads, one per socket

—-OMP_ PLACES=sockets

2 #pragma omp parallel num threads(2) proc bind(spread)

78 OpenMP Tutorial
Members of the OpenMP Language Committee

347

More Examples (2/3) OpenMP

B Assume the following machine:

oo § o1 fp2 fps | pa §ops | o6 § p7 |

M Parallel Region with four threads, one per core, but only on the first
socket

—-OMP_ PLACES=cores

~#pragma omp parallel num threads (4) proc bind(close)

79 OpenMP Tutorial
Members of the OpenMP Language Committee

348

More Examples (3/3) OpenMP

M Spread a nested loop first across two sockets, then among the cores
within each socket, only one thread per core

—->OMP_ PLACES=cores

2 #pragma omp parallel num threads(2) proc bind(spread)

2 #pragma omp parallel num threads(4) proc bind(close)

OpenMP Tutorial
Members of the OpenMP Language Committee

349

Places API (1/2) OpenMP

B 1: Query information about binding and a single place of
all places with ids O ... omp get num places():

B omp proc bind t omp get proc bind():returns the thread affinity policy
(omp_proc_bind_false, true, master, ...)

B int omp get num places ():returns the number of places

B int omp get place num procs(int place num):returns the number of
processors in the given place

B void omp get place proc ids(int place num, int* ids):returns the
ids of the processors in the given place

81 OpenMP Tutorial
Members of the OpenMP Language Committee

350

Places API (2/2) OpenMP

B 2: Query information about the place partition:

B int omp get place num():returns the place number of the place to which the
current thread is bound

B int omp get partition num places ():returns the number of places in the
current partition

B void omp get partition place nums (int* pns): returns the list of place
numbers corresponding to the places in the current partition

82 OpenMP Tutorial
Members of the OpenMP Language Committee

351

Places API: Example OpenMP

B Simple routine printing the processor ids of the place the calling thread
IS bound to:

void print binding info () {
int my place = omp get place num();
int place num procs = omp get place num procs (my place);

printf ("Place consists of %d processors: ", place num procs);

int *place processors = malloc(sizeof (int) * place num procs);
omp get place proc ids (my place, place processors)

for (int i = 0; i1 < place num procs - 1; i++) {
printf ("%d ", place processors[i]);

}

printf ("\n") ;

free (place processors);

83 OpenMP Tutorial
Members of the OpenMP Language Committee

352

OpenMP 5.0 way to do this OpenMP

B Set OMP_ DISPLAY AFFINITY=TRUE
—Instructs the runtime to display formatted affinity information

- Example output for two threads on two physical cores:

nesting level= i, thread num= 0, thread affinity= 0,1
nesting level= i, thread num= i, thread affinity= 2,3

- Output can be formatted with OMP_AFFINITY FORMAT env var or

corresponding routine

—~>Formatted affinity information can be printed with

omp display affinity(const char* format)

OpenMP Tutorial
Members of the OpenMP Language Committee

353

Affinity format specification OpenMP

t omp_get_team_num() a omp_get_ancestor_thread_num() at level-1
T omp_get_num_teams() H hostname
L omp_get_level() P process identifier
n omp_get_thread_num() i native thread identifier
N omp_get_num_threads() A thread affinity: list of processors (cores)
B Example:

OMP_ AFFINITY FORMAT=“Affinity: %0.3L %.8n %.15{A} %.12H"

—~>Possible output:

Affinity: 001 0 OISR, N6 =7 host003
Affinity: 001 1 2-3,18-19 host003

85 OpenMP Tutorial
Members of the OpenMP Language Committee

354

A first summary OpenMP

B Everything under control?
M |n principle Yes, but only if

—threads can be bound explicitly,
—>data can be placed well by first-touch, or can be migrated,

—>you focus on a specific platform (= OS + arch) — no portability

B What if the data access pattern changes over time?

B What if you use more than one level of parallelism?

OpenMP Tutorial
Members of the OpenMP Language Committee

355

NUMA Strategies: Overview OpenMIP

M First Touch: Modern operating systems (i.e., Linux >= 2.4) decide for a
physical location of a memory page during the first page fault, when
the page is first ,touched®, and put it close to the CPU causing the
page fault.

B Explicit Migration: Selected regions of memory (pages) are moved
from one NUMA node to another via explicit OS syscall.

B Next Touch: Binding of pages to NUMA nodes is removed and pages
are migrated to the location of the next ,touch®. Well-supported in
Solaris, expensive to implement in Linux.

B Automatic Migration: No support for this in current operating systems.

87 OpenMP Tutorial
Members of the OpenMP Language Committee

356

User Control of Memory Affinity OpenMP

m Explicit NUMA-aware memory allocation:
- By carefully touching data by the thread which later uses it

- By changing the default memory allocation strategy
—>Linux: numactl command

—>Windows: VirtualAllocExNuma () (limited functionality)

- By explicit migration of memory pages
—~Linux: move pages ()

—>Windows: no option

B Example: using numactl to distribute pages round-robin:

- numactl —-interleave=all ./a.out

88 OpenMP Tutorial
Members of the OpenMP Language Committee

357

OpenMP

Improving Tasking Performance:
Task Affinity

OpenMP Tutorial
Members of the OpenMP Language Committee

358

Motivation OpenMP

B Techniques for process binding & thread pinning available

- OpenMP thread level: oMP PLACES & OMP PROC BIND

—>0S functionality: taskset -c

OpenMP Tasking:
M In general: Tasks may be executed by any thread in the team

—>Missing task-to-data affinity may have detrimental effect on performance

OpenMP 5.0:
W affinity clause to express affinity to data

OpenMP Tutorial
Members of the OpenMP Language Committee

359

affinity clause OpenMP

B New clause: #pragma omp task affinity (list)
—>Hint to the runtime to execute task closely to physical data location

—>Clear separation between dependencies and affinity

B Expectations:

—>Improve data locality / reduce remote memory accesses

—>Decrease runtime variability

M Still expect task stealing

—>In particular, if a thread is under-utilized

91 OpenMP Tutorial
Members of the OpenMP Language Committee

360

Code Example OpenMP

B Excerpt from task-parallel STREAM

#pragma omp task \

shared(a, b, c, scalar) \
firstprivate(tmp_idx_start, tmp _idx _end) \
affinity(a[tmp_idx_start])

int i;
for(i = tmp_idx_start; i <= tmp_idx_end; i++)
a[i] = b[i] + scalar * c[i];

WoONOUTD WNR
-~

}

—>Loops have been blocked manually (see tmp idx start/end)

—>Assumption: initialization and computation have same blocking and same affinity

92 OpenMP Tutorial
Members of the OpenMP Language Committee

361

Selected LLVM implementation details

Task with
data
affinity?

Encounter task
region ...

Yes

Location
for data
reference in
map?

Identify NUMA
domain where
data is stored

!

Yes

OpenMP

Push to local
queue

A map is introduced to
store location information
of data that was previously
used

Jannis Klinkenberg, Philipp Samfass,
Christian Terboven, Alejandro Duran,
Michael Klemm, Xavier Teruel, Sergi
Mateo, Stephen L. Olivier, and Matthias
S. Miller. Assessing Task-to-Data Affinity
in the LLVM OpenMP Runtime.
Proceedings of the 14th International

Workshop on OpenMP, IWOMP 2018.
Select thread Save Push task into T~ September 26-28, 2018, Barcelona,
pinned to {reference, other threads end Spain.
NUMA domain location} in map queue
OpenMP Tutorial
Members of the OpenMP Language Committee
362
Program runtime Distribution of single
Median of 10 runs task execution times
a0l 180 | ' '
170 -
3757 160 e
351 150 f :
325 140 + |
30+ 7130 |
T 275¢ =120} ! I
2 st Speedup 110t i !
E = 100+ ! |
"; 225 Of 4-3 X § 90 F : |
S 20 3 !
= e 80 :
g 175 S 70t i
uxJ 15 é 60 F :
1251 | ol 50+ i
10f 40} i
75 301 , !
5 20 | i
L |
18 | L o —
lvm livm + task affinity lvm livm + task affinity

LIKWID: reduction of remote data volume from 69% to 13%

OpenMP Tutorial
Members of the OpenMP Language Committee

363

Summary OpenMP

B Requirement for this feature: thread affinity enabled

B The affinity clause helps, if

—tasks access data heavily

—>single task creator scenario, or task not created with data affinity

—>high load imbalance among the tasks

M Different from thread binding: task stealing is absolutely allowed

95 OpenMP Tutorial
Members of the OpenMP Language Committee

364

OpenMP

Managing Memory Spaces

OpenMP Tutorial
Members of the OpenMP Language Committee

365

Different kinds of memory OpenMP

M Traditional DDR-based memory
B High-bandwidth memory
M Non-volatile memory
..

DDR4
RAM

(on-platform
memory)

97 OpenMP Tutorial
Members of the OpenMP Language Committee

366

Memory Management OpenMP

B Allocator := an OpenMP object that fulfills requests to allocate and
deallocate storage for program variables

B OpenMP allocators are of type omp allocator handle t

W Default allocator for Host

—>Vvia OMP_ALLOCATOR env. var. or corresponding API

B OpenMP 5.0 supports a set of memory allocators

OpenMP Tutorial
Members of the OpenMP Language Committee

367

OpenMP Allocators OpenMP

M Selection of a certain kind of memory

omp_default_mem_alloc use default storage

omp_large_cap_mem_alloc use storage with large capacity

omp_const_mem_alloc use storage optimized for read-only variables
omp_high_bw_mem_alloc use storage with high bandwidth
omp_low_lat_mem_alloc use storage with low latency

omp_cgroup_mem_alloc use storage close to all threads in the contention group

of the thread requesting the allocation

omp_pteam_mem_alloc use storage that is close to all threads in the same
parallel region of the thread requesting the allocation

omp_thread_local_mem_alloc use storage that is close to the thread requesting the
allocation

OpenMP Tutorial
Members of the OpenMP Language Committee

368

Using OpenMP Allocators OpenMP

B New clause on all constructs with data sharing clauses:

- allocate([allocator:] list)
B Allocation:

> omp alloc(size t size, omp allocator handle t allocator)
B Deallocation:

- omp free(void *ptr, const omp allocator handle t allocator)
- allocator argument is optional

B a1locate directive: standalone directive for allocation, or declaration of allocation
stmt.

100 OpenMP Tutorial
Members of the OpenMP Language Committee

369

OpenMP Allocator Traits / 1 OpenMP

B Allocator traits control the behavior of the allocator

sync_hint contended, uncontended, serialized, private
default: contended

alignment positive integer value that is a power of two
default: 1 byte

access all, cgroup, pteam, thread
default: all

pool_size positive integer value

fallback default_mem_fb, null_fb, abort_fb, allocator_fb
default: default_mem_fb

fb_data an allocator handle

pinned true, false

default: false

partition environment, nearest, blocked, interleaved

default: environment
101 OpenMP Tutorial
Members of the OpenMP Language Committee

370

OpenMP Allocator Traits / 2 OpenMP

B fallback: describes the behavior if the allocation cannot be fulfilled
—~default mem fb: return system’s default memory

- Other options: null, abort, or use different allocator

M pinned: request pinned memory, i.e. for GPUs

102 OpenMP Tutorial
Members of the OpenMP Language Committee

371

OpenMP Allocator Traits / 3 OpenMP

M partition: partitioning of allocated memory of physical storage
resources (think of NUMA)

—~environment: use system’s default behavior
—~nearest: most closest memory

—~blocked: partitioning into approx. same size with at most one block per

storage resource

—~interleaved: partitioning in a round-robin fashion across the storage

resources

103 OpenMP Tutorial
Members of the OpenMP Language Committee

372

OpenMP Allocator Traits / 4 OpenMP

B Construction of allocators with traits via
—~omp allocator handle t omp init allocator (
omp memspace handle t memspace,

int ntraits, const omp alloctrait t traits([]);
—> Selection of memory space mandatory

- Empty traits set: use defaults

M Allocators have to be destroyed with * destroy *

B Custom allocator can be made default with
omp_ set default allocator (omp allocator handle t allocator)

104 OpenMP Tutorial
Members of the OpenMP Language Committee

373

OpenMP Memory Spaces OpenMP

M Storage resources with explicit support in OpenMP:

omp_default_mem_space System’s default memory resource
omp_large_cap_mem_space Storage with larg(er) capacity
omp_const_mem_space Storage optimized for variables with constant value
omp_high_bw_mem_space Storage with high bandwidth

omp_low_lat_mem_space Storage with low latency

- Exact selection of memory space is implementation-def.

- Pre-defined allocators available to work with these

105 OpenMP Tutorial
Members of the OpenMP Language Committee

374

Threading optimization

Dr. Mikko Byckling, IAGS DEE XCSS

intel.

375

Contents

» Common performance issues in thread parallel applications
» Analyzing multi-threaded performance with Intel® VTune™ Profiler
= Common NUMA Issues and Optimizations
» Thread affinity and pinning
* OpenMP Applications
* Hybrid MPI+OpenMP Applications

intel

376

Common performance issues in thread
parallel applications

Common issues, terminology

Issues in (Thread) Parallel Applications

» Load imbalance
* Work distribution is not optimal
* Some threads are heavily loaded, while others idle
* Slowest thread determines total speed-up
= Locking issues
* Locks prohibit threads to concurrently enter code regions
* Effectively serialize execution
= Parallelization overhead
» With large no. of threads, data partition get smaller
» Overhead might get significant (e.g. OpenMP startup time)

intel.

377

intel.

378

3

4

Threading Analysis Terminology

I [Thread2 Waiting Thread2
| I | |
1 | ! .
I Thread3 Waiting Thread3
]
1 1 1 1 1 1 - Thread running
L
1

|
1 1] 1 1
Thread waitin;
I 1sec 1T 1sec I 1sec I 1sec I &

g1 2 1 1 2 3
= Elapsed Time: 6 seconds
<@
= CPU Time: T1 (4s) + T2 (3s) + T3 (3s) = 10 seconds
Concurrency < <@
= Wait Time: T1(2s) + T2(2s) + T3 (2s) = 6 seconds Summary @ @ <@
01 2 3 4
intel.
379

Analyzing multi-threaded performance
with Intel® VTune™ Profiler

Overview, treading analysis, thread timeline, MPI+OpenMP analysis

intel.

380

VTune GUI: OpenMP analysis

» Tracing of OpenMP constructs to provide region/work sharing context

and imbalance on barriers
» Advanced hotspots w/o stacks is recommended to make sampling

representative for small regions
= \/Tune is provided with information by Intel OpenMP RTL

* Fork-Join points of parallel regions with number of working threads (Intel

Compilers version 14 and later)
* OpenMP construct barrier points with imbalance info and OpenMP loop

metadata

compiler option

VTune GUI: Thread Concurrency Histogram

T

» Embed source file name to an OpenMP region with -parallel-source-info=2

T

intel.

Global view of OpenMP concurrency
(») OpenMP Region CPU Usage Histogram

2.9s
@ 1
E .
F2s :
ki I
81,55 o
1s |
0.5s X
Ds — - :
1 2 3 4 5
BTN (deal Over

381

7

intel.

382

8

VTune GUI: OpenMP region view

Definition of Region Potential Gain (elapsed time metric)
Fork Actual Parallel Region Elapsed Time Join
A

r N\

Effective time (sampling)
Imbalance (tracing)

Lock spinning (sampling)
Scheduling (sampling)
Work creation (sampling)

Atomics (sampling)

ACECH R

Reduction (sampling)

Potential Gain as a sum of inefficiencies normalized by
number of threads

Y
Estimated Ideal Time = (

Effective time / Number of Threads

(~) OpenMP Analysis. Collection Time : 11.400
Ul g (>) Serial Time (outside any parallel region) : 0.017s (0.1%)
) Parallel Region Time : 11.384s (99.9%)
Estimated Ideal Time : 7.351s (64.5%)
OpenMP Potential Gain - 4.033s (35 4%) &
EQ > Top OpenMP Regions by Potential Gain [
This section lists OpenMP regions with the highest potential for performance improvement. The Potential Gain metric shows the elapsed time
that could be saved if the region was optimized to have no load imbalance assuming no runtime overhead.
OpenMP Region OpenMP Potential Gain (%) OpenMP Region Time ~
TS conj_grad_ompparallel:24@/NPB/NPB3.3.1/NPB3.3-OMP/CG/cg.f-514:695 3946s k& 346%K 11.095s
MAIN__Somp3parallel:24@/NPB/NPB3.3.1/NPB3.3-OMP/CG/cg.f:185:231 0.086s 0.8% 0.286s
Summary view:
1) Is the serial time of my application significant enough to prevent scaling?
2) How much performance can be gained by tuning OpenMP?
3) Which OpenMP regions / loops / barriers will benefit most from tuning?
4) What are the inefficiencies with each region? (click the link to see details)

intel.

383

intel.

384

9

10

VTune GUI: Threading Analysis (2/5

Focus On What's Important ActualElapsedTime
or ———
* What region is inefficient? et ine
ack spinning
* |s the potential gain worth it? L] imbalance

[Scheduling

= Why is it inefficient? - l- Workforking
Imbalance? Scheduling? Lock spinning? otentia

¢ Ideal Time < Gain
Potential
Imbalance Lock Fork Scheduling

™ Advanced Hotspots H

= 8 A

Grouping: | OpenP Region / Functor + =1 Stack

@| OpenMP Number CPU Time
OpenMP Region / Function / Potential | Elapsed | of | Instance : : =
Call Stack imbalance | - “°* | Creation | Scheduling| Reduction | Other | Gain (% | Time |OpenMP | Count e Rene by LR ation =
Conicntion of Colle . threads @1dle @Poor 0Ok B ldeal B Over
conj_grad_SompSparall

& MAIN_SompSparallel:24@/
#[Serial - outside any region]

#FMAIN_SompSparallel:24@/h 0.000s 0s Os 0s 0s 0s 00% 0.001s 24 75 0.004s| 0.016s
Selected 1 row(s): 110955 76 1729635 92.219 0.084s v
< >|< >
.
intel. »
. .
VTune GUI: Threading Analysis (3/5
.
Advanced Hotspots Hots|
B Collection Log| | @ Analysis Target sis Type y % Top
Grouping: | OpenMP Region / Function / Call Stack Imbalance
OpenMP Potential Gain [@| OpenMP Potential Gain (% of Collection Tirt® (@

OpenMP Region / Function / Call Stack

G 9 Imbalance é:;k Crea... Sch... | Red...| Other Imbalance (%) é:‘k c") 1y R;;i“ 0(‘;;‘
2 conj_grad_$ PP 3.1/NPB3.3-OMP/CG/cg.£:514:695 3944s| 0s 0.000s 00025 0.000s 0010s 346%) 00% 00% 00% 00% 01%
@MAIN_SompSp 4 fwork/apps/NPB/NPB3.3.1/NPB3.3-OMP/CG/cg £185:231 008: 0s 0s 0s 05 0000s 08% 00% 00% 00% 00% 00%
(@) [Serial - outside any region] 0s 00%
EMAIN_SompSp 4 fwork/apps/NPB/NPB3.3.1/NPB3.3-OMP/CG/cg £:339:345 0000s 0s 0s 0s 05 Os 00% 00% 00% 00% 00% 00%
©IMAIN_SompSparallel:24 work/app: NPB3.3.1/NPB3.3-OMP/CGfcg 0000s 0s 0s 0s 0s Os 00% 00% 00% 00% 00% 00%
IMAIN_SompSparallel:24 work/app: NPB3.3.1/NPB33-OMP/CGreg 0000s 0s 0s 0s _0s Os 00% 00% 00% 00% 00% 00%

) Advanced Hotspots Hotspots viewpoir

sis Target Analysis Type R % Caller/Callee | 2%

Likely culprit:
OpenMP Potential Gain (% of Collection Time)
OpenMP Region / Function / Call Stack

Imbalance | Lock |Crea...| Scheduling | Red
(%) (%)

| © Dynamic
11 conj_grad_SompSparallel:24 @/home/vtune/work/apps/NPB/NPB3.3.1/NPB3.3-OMP/CG/cq.£:514:695 17%| 00%| oo IMMEIETY 00%| 00%] N
TMAIN_ / 2 z /NPB/NPB3.3.1/NPB3 3-OMP/CG/cg £185:231 0.0755 0.000s. 0s 0s 0s 0.000s 06% 00% 00% 00% 00% 00% Schedul|ng
(#)[Serial - outside any region] 0s 00%
#MAIN_SompSparallel:24@/home/vtune/work/apps/NPB/NPE3.3.1/NPE3 3-OMP/CG/cg £:339:345 0000 0s 0s 0s 0s 0.000s 00% 00% 00% 00% 00% 00% OVerhead

intel. =

386

VTune GUI: Threading Analysis (4/5)

Mapping regions to source code

= View data specific to the region at the source code level

= With ‘-parallel-source-info=2' compiler option to embed source file name in
region name

Advanced Hotspots Hotspots |

ection Log @ Analysis Target Analysis Typ
Groupng: | (custom) OpenMP Region / OpenMP Barrier / Function
OpenMP Potential Gain ®
OpenMP Region / OpenMP Barrier / Function
penMP Region / Op Y Imbalance | (2% | Creation | Scheduling Reduc... Other 5 O:;;'
= conj_grad_SompSparallel:24@/home/vtune/work/apps/NPB/NPB3.3.1/NPB3 3-OMP/CG/cg.fis14695 | 0206s| 0s| 0.000<ENERE: 0.001s] 0.002s! 17%| 00%| oo0s INNEEXE I
& conj_grad_ _barri pp: .3.1/NPB3.3-OMP/C 0.008s. 0s 0s 31255 0s 0.000s 01%| 00% 0.0% 259% 00% 00%
% conj_grad ¢ _bartier®) pp: 3.1/NPB3.3-OMP/CG/cg £675683 01275 0s 0s 0s 0s 0.0005 11% 00% 00% 00%| 00% 00%
& conj_grad_§ PP .3.1/NPB3.3-0 grammnn P > 2] () (]| Assembly orovping: [Addass o 0% 00% 00%
& conj_grad_ pp: .3.1/NPB3.3-01 «® 0% 00% 00%
 conj_grad_¢ X pp: 3.1/NPB33-0l 5 cpu Instructions 0% 00% 00%
u.e Seurce Time Retired
& conj_grad_§ .3.1/NPB3.3-01 0% 00% 00%
i$omp parallel default(shared) private(),k,cgit,suml,alphabeta)] | |
515 1somp& shared(d, rho0, rho, sum)
s16
517 | Cooeersoceones eeeessstetteeeessssteseeccsesess
S18 ¢ Imtialize the CG algorithm:
s19 ¢ 5 =
520 1gomp do
521 do j=1,naasl 0.002s [}
522 aly) = 0.0d0 00345 8,100,000
523 2()) = 0.0d0 0.022s 10,800,000

intel.

387

VTune GUI: Threading Analysis (5/5)

Understanding parallel inefficiency

Detailed Barrier to Barrier Analysis
* Tune each segment separately
= Easier to see tuning opportunities Parallel Region

Fork 1 Join
#pragma omp parallel pmm
1 1 I
{ L Barrier-to-Barrier 1 Barrier-to-Barrier Barrier-to-Barrier
Segment 1 / \ Segment 2 / \ Segment 3 /
#pragma omp barrier N User Omp Single Omp Omp
- i i i For Barrier
#pragma omp s:.ngle - Barrier || Single Barrier For
Grouping: | OpenMP Region / OpenMP Barrier-to-Barrier Segment / Function / Call Stack
{ OpenMP Region / OpenMP ” OpenMP Potentizl Gain g&i’x; i3}
Barrier-to-Barrier Segment / Lock . . . Gain (% of
#pranga Omp for - Function / Call Stack Imbalance (B Creation | Scheduling | Reduction | Other Collection
{ | J33-0MP/CG/cq.£:514:695
I PE3.3.1/NPB3.3-OMP/CG/cg £:580
I PE3.3.1/NPB3.3-OMP/CG/cg £:683
I PB3.3.1/NPB3.3-OMP/CG/cq £:664 0.014s 0s 0s 0.000s 0s 0.000s o015 [N
intel.

388

VTune GUI: Thread timeline

¢ & Transitions s CPU Time

Locks & Waits Basic Hotspots Advanced Hotspots
T T T T T T T = T
arear g, : : A e SR
; = m e e e e [¥] = Frame
[WWinMainCRTStartu. . Theeod ST T T —
[hread (0x1364) B Running]
§ [thread (0x1369)) waits e ————
£ [thread (0x1374) =2 User Task P)
[thread (0x1370) [#] * 4 Transiton g ———
[Thread (0x1384) Thread Concurrency - — —— —]
Trvead G e i . il i 4
SEElo s Frames over Time L -
Frames over Trme N i
— - LSS
N \ = User Task
T Frame @ & Transition Uoer Tack
H « |Frame Transition Start: 29.958s Duration: 0.018s
OVErS: s 2085: durstion: 0017 WWinMainCRTStartup (0x124) to Thread (1:138¢) (29.899s to 29.8995) Task Type: Smoke::FrameWork: execute():: Other
Frame: 72 Sync Object: TBB Scheduler Task End Call Stack: Framework:Execute
Frame Domain: Smoke:Framework:execute()| | Object Creation File: taskmanagertbb.cpp
Frame Type: Good Object Creation Line: 318 CPU Time
Frame Rate: 598242179 04.233472%

» Optional: Use API to mark frames and user tasks ®=®Frame <~ User Task
= Optional: Add a mark during collection €@

intel. s

389

VTune GUI: Threading analysis

Common patterns for root causing low concurrency

e A A R R A N e T)

5 BEE

Coarse Grain --

 [OMP Worker Tiucad o2
©x2280)

Locks T | =

©a1a74)

[Z] Thread Concurrency
s
d
o N T _|
1) Theead

Thread Concurrency

QI QA= 286> 287> 288y 28% 29 291> 292y

e Low

e
3 W1 IO 15 wars
iah K| = o e Wiy’ BN s Concurrency
H [e] Lock |[: [omas™ | S A 2 T
v v R e
CO ntent | on %}j;;.wmm 1L s oI
j e

| R

e

Load
Imbalance

Thierd

intel. s

390

VTune GUI: MPI + OpenMP analysis

Tune OpenMP performance of high impact ranks in VTune Profiler

Ranks sorted by OpenMP

tuning impact on overall

of @ Top OpenMP Processes by MP| Communication Spin Time g Per-rank OpenMP
penormance This section ists process with the lowest M| communication spin time. Potential Gain and
Process PID MPI Communication Spinning (%) OpenMP Potential Gain (%) Serial Time (%) Serial Tlme metriCS
PI’OCGSS names l|nk bt-mz.B.4 125904 0.020s 0.2% 3.392s 31.2% 0.251s 23%
. bt-mz.B.4 125902 0.040s 0.4% 3.431s 31.6% 0.291s 2.7%
to OpenMP metrics bt-mz.B.4 125905 0.321s 3.0% 3.025s 27.9% 0.659s 6.1%
bt-mz.B.4 125903 0.441s 4.1% 3.147s 29.0% 0.608s 5.6%

| Advanced Hotspots Hotspot

Detailed OpenMP
metrics

B Collection Log | | @ Analysis Targe!

Groupng: | OpenMP Region /Functon f Cal Stadk v| 5 [@] [%]
B OpenMp Number

CPU Time *@ A

) | Openip ‘ : :
OpenMP Region / Function / : Potentisl | Elapsed | of | Instance — — - — = -
Call Stack Potental | Gain(%of | Time |OpenMP | Count | EffectiveTime by Utiation Spin Time Overhead Time =
2n Collection ... threads

£ conj_grad_SompSparallel:24<| I - I - L. 11095524 | 76| o 0 KT 05/ 0s| 2.160s|
#MAIN_SompSparallel:24@/F 0.088s. 08% 0.286s 24 1 47845 1.897s 0s. 0s 0.043s 0Os 3 Os. 3
® [Serial - outside any region] 3 00% 0012 0.0455] 0.083s 0s 0s 0.001s 0.001s 0s 0s 0.002s.
#MAIN_SompSparallet24@/+ 0.000s. 00% 0.001s 24 75 0.0045| 0.015s; 0s 0s 0s 0s 0s 0s 0.001s
Selected 1 rowls): 11,0955 76 171.014s 91.9485 0s 0s 2.160s 0.001s 0.0485 0.009s 0.085s v
< 2(< 2>
:
intel. v
391
Optimizati
First touch policy, common optimizations
intel.

392

(Almost) all HPC systems are NUMA

= (Almost) all multi-socket compute servers are NUMA systems
 Different access latencies for different memory locations
» Different bandwidth observed for different memory locations

= Example: Intel® Xeon E5-2600v3 Series processor

intel.
NUMA - D itm ?
oes It matter:
STREAM Triad, Intel® Xeon E5-2697v2

100,00

90,00

80,00
-
P
@ 70,00
b+
2
w 60,00
£
7}
£ 50,00
(-
=)
o 40,00
Q
2
@ 30,00
)

20,00

10,00

0,00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
of threads/cores
compact, par ~ =====scatter, par ===compact, seq =====scatter, seq
intel. 2

394

First touch policy

» Modern operating systems all use virtual memory

» The OS typically optimizes memory allocations
* malloc () does not allocate the memory directly

* Only the memory management “knows” about the memory allocation, but no memory
pages are made available

* At first memory access (write), the OS physically allocates the corresponding page (First
touch policy)
»* On NUMA systems this might lead to performance issues in threaded
or multi-process applications

Copyright ® 2021 Intel Corporation. All rights reserved. intel. =

395

NUMA Optimization with OpenMP

// Initialize data

for (size_t i = 0; i < N; i++)

for (size_t j = 0; j < M; j++) {..}
// Perform work
#pragma omp parallel for private(j)
for (size_t i = 0; i < N; i++4)

for (size_t j = 0; j < M; j++) {..}

Copyright © 2021 Intel Corporation. All rights reserved. |nte|- 22

396

NUMA Optimization with OpenMP
// Initialize data H

#pragma omp parallel for private(j)
for (size_t i = 0; i < N; i++)

for (size_t j = 0; j < M; j++) {..}
// Perform work
#pragma omp parallel for private(j)
for (size_t i = 0; i < N; i++4)

for (size_t j = 0; j < M; j++) {..}

Copyright © 2021 Intel Corporation. All rights reserved. |nte|e 23

397

NUMA issues and MPI Applications

» MPI applications might also be affected by NUMA issues:
* A process allocates memory on one NUMA node...
* ...and is then scheduled to run on another NUMA node.
" Intra-node communication might show different bandwidths and/or
latencies to network fabric adapter
» The file system cache
» Might reserve memory on one NUMA node..

+ .and thus push out allocations to a remote NUMA node.

intel. 2

Copyright © 2021 Intel Corporation. All rights reserved.

398

Summary

» Use threading analysis to find bottlenecks in the application

* NUMA can be an issue, so make sure that the application is NUMA-
aware

= Use pinning to keep thread in their NUMA domain and in their cores
(cachel!)

intel

399

400

Notices & Disclaimers

Performance varies by use, configuration, and other factors. Learn more at www.Intel.com/Performancelndex.

Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available
updates. See configuration disclosure for details.

Your costs and results may vary.
Intel technologies may require enabled hardware, software or service activation.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries.
Other names and brands may be claimed as the property of others.

intel.

401

Thread/process affinity

CSC Training, 2021-05

CSC — Finnish expertise in ICT for research, education-and public administration

402

Thread and process affinity

« Normally, operating system can run threads and processes in any logical core
« Operating system may even move running task from one core to another
o Can be beneficial for load balancing
o For HPC workloads often detrimental as private caches get invalidated and NUMA
locality is lost
« User can control where tasks are run via affinity masks
o Task can be pinned to a specific logical core or set of logical cores

403

Controlling affinity

« Affinity for a process can be set with a numactl command
o Limit the process to logical cores 0,3,7:
numactl --physcpubind=0,3,7 ./my_exe
o Threads "inherit" the affinity of their parent process
« Affinity of a thread can be set with OpenMP environment variables
o OMP_PLACES=[threads, cores, sockets]
o OMP_PROC_BIND=[true, close, spread, master]
« OpenMP runtime prints the affinity with OMP_DISPLAY_AFFINITY=true

404

Controlling affinity

export OMP_AFFINITY_FORMAT="Thread %0.3n affinity %A"

export OMP_DISPLAY_AFFINITY=true

./test

Thread 000 affinity 0-

Thread 001 affinity 0-

Thread 002 affinity 0-
Q_

7
7
7
Thread 003 affinity 0-7

OMP_PLACES=cores ./test
Thread 000 affinity 0,4
Thread 001 affinity 1,5
Thread 002 affinity 2,6
Thread 003 affinity 3,7

405

MPI+OpenMP thread affinity

o MPI “brary mUSt be aware ofthe Example (incorrect): oversubscription of resources
underlying OpenMP for correct
allocation of resources

cpu0o cpu01
o> Oversubscription of CPU cores may cwo“g;‘;iﬂ:g&m' cpu0h3:|:)111,:a::splf.|;:():02,
cause Signiﬁcant performance pena|ty €pu00:02, cpu00:03 cpu00:03, cpu00:04
- Additional complexity from batch job pmpelconed: bettoge o resoces
schedulers
« Heavily dependent on the platform <pu00 cpuoT
USEd! MPI task 0: MPI task 1:

cpu00:00, cpu00:01, cpu01:00, cpu01:01,
cpu00:02, cpu00:03 cpu01:02, cpu01:03

406

Slurm configuration at CSC

« Within a node, --tasks-per-node MPI tasks are spread --cpus-per-task apart

« Threads within a MPI tasks have the affinity mask for the corresponging
--cpus-per-task cores

export OMP_AFFINITY_FORMAT="Process %P thread %0.3n affinity %A"
export OMP_DISPLAY_AFFINITY=true

srun ... --tasks-per-node=2 --cpus-per-task=4 ./test

Process 250545 thread 000 affinity 0-3

Process 250546 thread 000 affinity 4-7

« Slurm configurations in other HPC centers can be very different
o Always experiment before production calculations!

407

csc

Summary

« Performance of HPC applications is often improved when processes and threads are
pinned to CPU cores

« MPIl and batch system configurations may affect the affinity
o very system dependent, try to always investigate

408

