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Introduction to Application PerformanceIntroduction to Application Performance
CSC Training, 2021-05
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Course outlineCourse outline

Analyzing and understanding performance issues
Awareness of modern CPUs

Improving performance through vectorization
Improving performance through memory optimization
Improving performance though advanced threading techniques
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Why worry about application performance?Why worry about application performance?

Obvious benefits
Better throughput => more science
Cheaper than new hardware
Save energy, compute quota, money etc.

...and some non-obvious ones
Potential cross-disciplinary research with computer science
Deeper understanding of application
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Factors affecting performance in HPCFactors affecting performance in HPC

Single node performance
single core performance
threading (and MPI within a node)

Communication between nodes
Input/output to disk
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Choose good algorithm
e.g.  vs. 
remember prefactor!

Use high performance libraries
linear algebra (BLAS/LAPACK), FFTs, ...

Experiment with compilers and
compiler options

There is no single best compiler and set
of options for all use cases

Experiment with threading options
Thread pinning, loop scheduling, ...

Optimize the program code

./fibonacci 20 
With loop, Fibonacci number i=20 is 6765 
Time elapsed 79 ums 
With recursion, Fibonacci number i=20 is 6765 
Time elapsed 343773 ums
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How to improve single node performance?How to improve single node performance?
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Doesn't the compiler do everything?Doesn't the compiler do everything?

You can make a big difference to code performance with how you express things
Helping the compiler spot optimisation opportunities
Using the insight of your application

language semantics might limit compiler

Removing obscure (and obsolescent) “optimizations” in older code
Simple code is the best, until otherwise proven

This is a dark art, mostly: optimize on case-by-case basis
First, check what the compiler is already doing
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Compilers have vast amount of
heuristics for optimizing common
programming patters
Most compilers can provide a report
about optimizations performed, with
various amount of detail

See compiler manuals for all options

Look into assembly code with  
-S -fverbose-asm

Compiler Opt. report

GNU -fopt-info

Intel -qopt-report

Clang -Rpass=.*

 
... 
  vfmadd213pd %ymm0, %ymm2, %ymm10 
  vfmadd213pd %ymm0, %ymm2, %ymm9  
  vfmadd213pd %ymm0, %ymm2, %ymm8  
...

What the compiler is doing?What the compiler is doing?
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Measuring performanceMeasuring performance
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CSC customer  
I’m performing simulations with my Fortran code. It seems

to perform much worse with MKL library in the new system

than with IMSL library in the old system.  

No

CSC specialist  
 
 
 
Have you profiled your code? 

A day in life at CSCA day in life at CSC
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A day in life at CSCA day in life at CSC

Profiled the code: 99.9% of the execution time was being spent on these lines:
do i=1,n          ! Removing these unnecessary loop iterations reduced the  
 do j=1,m         ! wall-time of one simulation run from 17 hours to 3 seconds… 
    do k=1,fact(x)

      do o=1,nchoosek(x)

         where (ranktypes(:,:)==k)

            ranked(:,:,o)=rankednau(o,k)

         end where

      end do

    end do

  end do

end do
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Measuring performanceMeasuring performance

First step should always be measuring the performance and finding performance
critical parts

Application can contain hundreds of thousands of lines of code, but typically a small

part of the code (~10 %) consumes most (~90%) of the execution time
“Premature code optimization is the root of all evil”

Choose test case which represents a real production run
Measurements should be carried out on the target platform

"Toy" run on laptop may provide only limited information
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Applications own timing information
Can be useful for big picture

Performance analysis tools
Provide detailed information about the
application
Find hot-spots (functions and loops)
Identify causes of less-than-ideal
performance
Information about low-level hardware
Intel VTune, AMD uProf, perf, Tau,
Scalasca, PAPI, ...

 Orthonormalize:                    54.219     0.003   0.0% | 

  calc_s_matrix:                    11.150    11.150   2.8% || 

  inverse-cholesky:                  5.786     5.786   1.5% || 

  projections:                      18.136    18.136   4.6% |-| 

  rotate_psi_s:                     19.144    19.144   4.8% |-| 

 RMM-DIIS:                         229.947    29.370   7.4% |--| 

  Apply hamiltonian:                 9.861     9.861   2.5% ||

Profiling applicationProfiling application

http://www.vi-hps.org/tools/tools.html
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Profiling applicationProfiling application

Collecting all possible performance metrics with single run is not practical
Simply too much information
Profiling overhead can alter application behavior

Start with an overview!
Call tree information, what routines are most expensive?
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Sampling vs. tracingSampling vs. tracing

When application is profiled using sampling, the execution is stopped at
predetermined intervals and the state of the application is examined

Lightweight, but may give skewed results

Tracing records every event, e.g. function call
Usually requires modification to the executable

These modifications are called instrumentation
More accurate, but may affect program behavior
Generates lots of data
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Hardware performance countersHardware performance counters

Hardware performance counters are special registers on CPU that count hardware
events
They enable more accurate statistics and low overhead

In some cases they can be used for tracing without any extra instrumentation

Number of counters is much smaller than the number of events that can be
recorded
Different CPUs have different counters
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Optimizing programOptimizing program
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Code optimization cycleCode optimization cycle

(Instrument) Run
Select test

case

Validate / debug

Optimize

Identify single-node issu
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Two fundamental limits
CPUs peak floating point performance

clock frequency
number of instructions per clock cycle
number of FLOPS per instruction
number of cores
no real application achieves peak in
sustained operation

Main memory bandwidth
How fast data can be fed to the CPU

CPU: FLOPS

Memory

Bandwidth

How to assess application's performance?How to assess application's performance?
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How to assess application's performance?How to assess application's performance?

Example: maximum performance of axpy x[i] = a x[i] + y[j]
Two FLOPS (multiply and add) per i

Three memory references per i
With double precision numbers arithmetic intensity  

 FLOPS/byte

In Puhti, memory bandwidth is ~200 GB/s, so maximum performance is ~16
GFLOPS/s
Theoretical peak performance of Puhti node is ~2600 GFLOPS/s
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How to assess application's performance?How to assess application's performance?

Example: matrix-matrix multiplication C[i,j] = C[i,j] + A[i,k] * B[k,j]
 FLOPS
 memory references

With double precision numbers arithmetic intensity  FLOPS/byte
With large enough  limited by peak performance
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Simple visual concept for maximum
achievable performance

can be derived in terms of arithmetic
intensity , peak performance  and
peak memory bandwidth 

Machine balance = arithmetic intensity
needed for peak performance

Typical values 5-15 FLOPS/byte

Additional ceilings can be included
(caches, vectorization, threading)

Bound based on bandwidth
Bound based on peak performance
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Roofline modelRoofline model
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Model does not tell if code can be
optimized or not

Application 1 may not be fundamentally
memory bound, but only implemented
badly (not using caches efficiently)
Application 2 may not have
fundamentally prospects for higher
performance (performs only additions
and not fused multiply adds)

However, can be useful for guiding the
optimization work

Bound based on bandwidth
Bound based on peak performance
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Vector add

Scalar add

Roofline modelRoofline model
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Roofline modelRoofline model

How to obtain the machine parameters?
CPU specs
own microbenchmarks
special tools (Intel tools, Empirical Roofline Tool)

How to obtain application GFLOPS/s and arithmetic intensity?
Pen and paper and timing measurements
Performance analysis tools and hardware counters
True number of memory references can be difficult to obtain
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Take-home messagesTake-home messages

Mind the application performance: it is for the benefit of you, other users and the
service provider
Profile the code and identify the performance issues first, before optimizing
anything

“Premature code optimization is the root of all evil”

Optimizing the code should be the last step in performance tuning
Serial optimization is mostly about helping the compiler to optimize for the target
CPU
Roofline model can work as a guide in optimization
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Web resourcesWeb resources

Roofline performance model and Empiral Roofline Tool

Web service for looking assembly output from multitude of compilers
https://crd.lbl.gov/departments/computer-science/par/research/roofline/

https://gcc.godbolt.org
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A look into modern CPU architectureA look into modern CPU architecture
CSC Training, 2021-05
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Modern CPU coreModern CPU core

27



A CPU core is still largely based on the
von Neumann model

sequency of operations (instructions)
performed on given data
instructions and data are fetched from
memory into registers in CPU
ALU performs operations on data in
registers
Result is stored back to memory

From an external point of view,
operations are executed sequentially

von Neumann architecturevon Neumann architecture
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Internally, each core is highly complex
Superscalar out-of-order instruction
execution
SIMD instructions
Multiple levels of hierarchical cache
memory Front End

FP

EX

LS

Schedulers

ALQ3ALQ0
16 entries

ALQ1 ALQ2 AGQ
28 entries

RCU
Rename/Allocate

ALU0 ALU1 ALU2 ALU3 AGU0
Ld/St

AGU1
Ld/St

AGU2
St

Store Queue
48 entries

Load Queue
44 entries

DAT0 TLB1TLB0 DAT1

LD0 Pick LD1 Pick
Prefetch

ST Pick

STP

MAB

L1 Data Cache
32 KB, 8-way, 64 B/line

Store
Commit

WCB

L1/L2 DTLB,
DC Tags

Rename/Allocate

Scheduling Queue
36 entries

FADD
Pipe 2

FMA
Pipe 1

FADD
Pipe 3

FMA
Pipe 0

LDCVT

Retire Queue
224 entries

Non-Scheduling Queue
64 entries

Dispatch
≤ 6 mops/cycle

Pick

4-way Decoder

Micro-OP Queue

Microcode Sequencer
Microcode ROM

Stack Engine
Memfile

Instruction Byte Queue
20 × 16 B

Instruction Cache
 32 KB, 8-way, 64 B/line

Next Address Logic

L1/L2 BTB, Return Stack, ITA
L1 BTB: 512, L2 BTB: 7168, RAS: 32, ITA: 1024 entries

L0/L1/L2 ITLB
L1: 64, L2: 512 entries

L1 Hashed Perceptron
L2 TAGE

Prediction
Queue

Micro-Tags

32 B/cycle
from L2

Op Cache
 4 K mops, 8-way, 8 mops/line

≤ 8 mops (≤ 8 x86 instr)

≤ ? mops (≤ 4 x86 instr)

Physical Register File
180 entries

PRFPhysical Register File
160 entries

Forwarding MuxesForwarding Muxes

≤ 6 mops ≤ 4 mops≤ 8 mops

32 B to/from L2 To L2

Competitively shared between threads

Watermarked

Statically partitioned

OC/IC mode

32 B

32 B

32 B

32 B

To/from L2

32 B

Modern CPU coreModern CPU core
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How CPU core operates?How CPU core operates?

Clock frequency determines the pace at which CPU works
Zero to N instructions start at each clock cycle
Instruction latency = number of clock cycles that are required for completing the
execution
Instruction throughput = number of clock cycles to wait before starting same kind
of instruction again

Throughput can be much smaller than the latency
Sometimes given as cycles per instruction (CPI) or its inverse, instructions per cycle
(IPC)
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Instructions are executed in stages
Fetch (F): control unit fetches
instruction from memory
Decode (D): decode the instruction and
determine operands

Instructions are broken into uops

Execute (E): perform the instruction
Utilize ALU or access memory

Enables simpler logic and pipelining
the operations

Fetch-decode-execute cycleFetch-decode-execute cycle
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PipeliningPipelining

Instruction execution and arithmetic units can be pipelined
Instruction execution: work on multiple instructions simultaneously
Arithmetic units: execute different stages of a an instruction at the same time in an
assembly line fashion
Together: one result per cycle after the pipeline is full

Within the pipeline, hardware can execute instructions in different order than they
were issued (out-of-order scheduling)
Requires complicated software (compiler) and hardware to keep the pipeline full
Conditional branches can cause the pipeline to stall

32

Wind-up and wind-down phases: no
instructions retired
First result available after 5 cycles, total
time 7 cycles compared to 15 cycles
without a pipeline
Real pipeline in modern CPU cores can
be much more complex

Pipelining: examplePipelining: example
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Hardware Instruction Level Parallelism
(ILP)
Multiple instructions per cycle issued to
the multiple execution units
Hardware data dependency resolution
preserve sequential execution
semantics

Actual execution may be out-of-order

Pipelining and superscalar execution
allow instruction throughputs less than
one

Memory

Fetch
unit

Decode andDecode and
issue unitissue unit

ExecutionExecution
unitunit

ExecutionExecution
unitunit

RegistersRegisters

ExecutionExecution
unitunit

Superscalar executionSuperscalar execution
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VectorizationVectorization

Modern CPUs have SIMD (Single Instruction, Multiple Data) units and instructions
Operate on multiple elements of data with single instructions

AVX2 256 bits = 4 double precision numbers
AVX512 512 bits = 8 double precision numbers

single AVX512 fused multiply add instruction can perform 16 FLOPS

+

+
+

=

=
=

Scalar

AVX

AVX512
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In order to alleviate the memory
bandwidth bottleneck, CPUs have
multiple levels of cache memory

when data is accessed, it will be first
fetched into cache
when data is reused, subsequent access
is much faster

L1 cache is closest to the CPU core and
is fastest but has smallest capacity
Each successive level has higher
capacity but slower access

Registers

L1 CacheL1 Cache

L2 CacheL2 Cache

L3 CacheL3 Cache

Physical memoryPhysical main memory

Remote memory (over interconnect)Remote memory (over interconnect)

File system disksFile system disks

<= 1

~4

~10

~25

O(105..6)

O(100 B)

O(100 kB)

O(1 MB)

O(10 MB)

GB’s

PB’s

TB’sO(103)

O(102)

Capacity

CP
U c

ycl
es 

pe
r a

cce
ss

Cache memoryCache memory
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It is difficult to fill-in all the available
hardware resources in a CPU core

Pipeline stalls due to main memory
latency, I/O, etc.

To maximize hardware utilization,
several hardware threads can be
executed on a single core

Seen as logical cores by OS

Benefits depend on the application,
and SMT can also worsen the
performance

Memory

Fetch
unit

Decode andDecode and
issue unitissue unit

ExecutionExecution
unitunit

ExecutionExecution
unitunit

RegistersRegisters

ExecutionExecution
unitunit

T2
T1

T1
T2

T2
T2

T2
T1

T1
T1

Symmetric Multithreading (SMT)Symmetric Multithreading (SMT)
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Introduction to modern multicore CPUsIntroduction to modern multicore CPUs
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The multicore CPU is packeted in a
socket
Typically, L1 and L2 caches are private
per core, and L3 cache is shared
between set of cores
All cores have shared access to the
main memory

T1T1 T2T2

P1P1

L1L1
L2L2

L3L3

MemoryMemory

T1T1 T2T2

P2P2

L1L1
L2L2

T1T1 T2T2

P3P3

L1L1
L2L2

T1T1 T2T2

P4P4

L1L1
L2L2

Multicore CPU schematicMulticore CPU schematic
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With private caches per core, hardware
needs to ensure that the data is
consistent between the cores
When a core writes to a cache, CPU
may need to update the caches of other
cores

Possibly expensive operation

Cache coherencyCache coherency
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A node can have multiple sockets with
memory attached to each socket
Non Uniform Memory Access (NUMA)

All memory within a node is accessible,
but latencies and bandwidths vary

Hardware needs to maintain cahce
coherency also between different
NUMA nodes (ccNUMA)

NUMA architecturesNUMA architectures
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SummarySummary

Modern multicore CPUs are complex beasts
In order to maximally utilize the CPU, application needs to:

use multiple threads (or processes)
utilize caches for feeding data to CPU at fastest possible pace
keep the pipeline full and utilize instruction level parallelism
use vector instructions for maximizing FLOPS per instruction
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Web resourcesWeb resources

Detailed information about processor microarchitectures:

Agner's optimization resources 

https://en.wikichip.org/wiki/WikiChip
https://uops.info/

https://www.agner.org/optimize/
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[ONLINE] Node Level Performance Optimization @ CSC, 18-20.5.2021

Performance optimization for 
Intel® Xeon® Processor architecture
Dr. Mikko Byckling, IAGS DEE XCSS
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Contents

▪ Intel® microarchitectures

• Intel® Xeon® Processors 
(codename “Broadwell”, BDW)

• 2nd generation Intel® Xeon® Scalable Processors
(codename “Cascade Lake-SP”, CLX)

▪ Introduction to SIMD ISA for Intel® processors

• Intel® AVX and Intel® AVX2

• Intel® AVX-512 and AVX-512 VNNI
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Intel® Xeon® Processor Architecture**

**Only applies to Intel® Xeon® Processor E5 v3 and E5 v4 Families 
For all available options, see 
https://ark.intel.com/products/family/91287/Intel-Xeon-Processor-E5-v4-Family

Instruction set architecture
64-bit x86 with Intel® AVX2

Platform Memory
Up to 1.54TB (4ch DDR4 2400)

Features
Up to 3.7GHz Frequency, Ring Architecture, 
Out-of-Order cores, up to 2.5MB Shared L3 
cache per core

Core:

(up to 22)

LLCCore

LLCCore

LLCCore

LLCCore

LLCCore

LLCCore

LLCCore

LLCCore

LLCCore

LLCCore

LLCCore

LLCCore

LLCCore

LLCCore

LLCCore

LLCCore

Memory controller

Home agent

Memory controller

Home agent

PCIe agent 
& DMI

QPI agent

2 QPI lanes 
9.6 GT/s

40 PCI* lanes 
PCIe 3.0 (10 GT/s)
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d

S
h
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S
h
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d

4 channels DDR4 2400

Core

32KB
L1D

32KB
L1I 256KB

L2
(8-way)

*Other names and brands may be claimed as the property of others.
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Intel® Xeon® Scalable Processor Architecture**

Instruction set architecture
64-bit x86 with Intel® AVX512 and AVX-512 VNNI

Platform Memory
Up to 1.54TB (6ch DDR4 2933)

Features
Up to 3.6GHz Frequency, Mesh Architecture, 
Out-of-Order cores, up to 1.375MB Shared L3 
cache per core

Core:

(up to 28)

Core

32KB
L1D

32KB
L1I 1MB

L2
(16-way)

*Other names and brands may be claimed as the property of others.

DDR4

CHA/LLC

Core

CHA/LLC

Core

CHA/LLC

Core

CHA/LLC

Core

CHA/LLC

Core

CHA/LLC

Core

CHA/LLC

Core

CHA/LLC

Core

CHA/LLC

Core

CHA/LLC

Core

CHA/LLC

Core

CHA/LLC

Core

CHA/LLC

Core

CHA/LLC

Core

CHA/LLC

Core

CHA/LLC

Core

CHA/LLC

Core

CHA/LLC

Core

CHA/LLC

Core

CHA/LLC

Core

CHA/LLC

Core

CHA/LLC

Core

CHA/LLC

Core

CHA/LLC

Core

CHA/LLC

Core

CHA/LLC

Core

CHA/LLC

Core

CHA/LLC

Core

PCIe
2x 
UPI

1x 
UPI

PCIe PCIe
integ.

PCIe

MC MC

DDR4

3 UPI lanes 
10.4 GT/s

48 PCI* lanes 
PCIe 3.0 (10 GT/s)

**Only applies to 2nd Generation Intel® Xeon® Scalable Processor Gold and Platinum 
families. For all available options, see 
https://ark.intel.com/content/www/us/en/ark/products/series/192283/2nd-generation-
intel-xeon-scalable-processors.html
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Microarchitecture Enhancements

▪ Larger and improved branch predictor, higher throughput decoder, larger window to extract ILP

▪ Improved scheduler and execution engine, improved throughput and latency of divide/sqrt

▪ More load/store bandwidth, deeper load/store buffers, improved prefetcher

▪ Intel® AVX-512 with 2 FMAs per core, larger 1MB MLC

Broadwell 
uArch

Cascade 
Lake uArch

Out-of-order 
Window

192 224

In-flight Loads + 
Stores

72 + 42 72 + 56

Scheduler 
Entries

60 97

Registers –
Integer + FP

168 + 168 180 + 168

Allocation Queue 56 64/thread

L1D BW (B/Cyc) 
– Load + Store

64 + 32 128 + 64

L2 Unified TLB
4K+2M: 

1024
4K+2M: 

1536 1G: 16

Load 
Buffer

Store 
Buffer

Reorder 
Buffer
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Scheduler

Allocate/Rename/Retire
In order

OOO

IN
T

V
E

C

Port 0 Port 1

MUL

ALU

FMA

Shift
ALU

LEA

Port 5

ALU

Shuffle
ALU

LEA

Port 6

JMP 1

ALU
Shift

JMP 2

ALU

ALU

DIV
Shift

Shift

FMA

Port 4

32KB L1 D$

Port 2

Load/STAStore Data

Port 3

Load/STA

Port 7

STA

Load Data 2

Load Data 3 Memory Control

Fill Buffers

Fill Buffers

μop Cache

32KB L1 I$ Pre decode Inst Q
DecodersDecodersDecodersDecoders

Branch Prediction Unit

μop

Queue

Memory

Front End

1MB L2$

FMA
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Mesh Interconnect Architecture
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*2x UPI x20 PCIe* x16 PCIe x16

DMI x 4

CBDMA

On Pkg

PCIe x16

1x UPI x20 PCIe x16

CHA/SF/LLC

CLX Core

CHA/SF/LLC

CLX Core

CHA/SF/LLC

CLX Core

CHA/SF/LLC

CLX Core

CHA/SF/LLC

CLX Core

CHA/SF/LLC

CLX Core

CHA/SF/LLC

CLX Core

CHA/SF/LLC

CLX Core

CHA/SF/LLC

CLX Core

CHA/SF/LLC

CLX Core

CHA/SF/LLC

CLX Core

CHA/SF/LLC

CLX Core

CHA/SF/LLC

CLX Core

CHA/SF/LLC

CLX Core

CHA/SF/LLC

CLX Core

CHA/SF/LLC

CLX Core

CHA/SF/LLC

CLX Core

CHA/SF/LLC

CLX Core

CHA/SF/LLC

CLX Core

CHA/SF/LLC

CLX Core

CHA/SF/LLC

CLX Core

CHA/SF/LLC

CLX Core

CHA/SF/LLC

CLX Core

CHA/SF/LLC

CLX Core

CHA/SF/LLC

CLX Core

CHA/SF/LLC

CLX Core

CHA/SF/LLC

CLX Core

CHA/SF/LLC

CLX Core

MCDDR4

DDR4

DDR4

MC DDR4

DDR4

DDR4

CHA – Caching and Home Agent ; SF – Snoop Filter ; LLC – Last Level Cache ; 

CLX Core – Cascade Lake Server Core; UPI – Intel® UltraPath Interconnect
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Cache Hierarchy Architecture

▪ On-chip cache balance shifted from shared-distributed to private-local

• Shared-distributed ➔ shared-distributed L3 is primary cache

• Private-local ➔ private L2 becomes primary cache with shared L3 used as overflow cache

▪ Shared L3 changed from inclusive to non-inclusive

• Inclusive ➔ L3 has copies of all lines in L2

• Non-inclusive ➔ lines in L2 may not exist in L3

Shared L3
2.5MB/core
(inclusive)

Core

L2
(256KB private)

Core

L2
(256KB private)

Core

L2
(256KB private)

Shared L3
1.375MB/core
(non-inclusive)

Core

L2
(1MB private)

Core

L2
(1MB private)

Core

L2
(1MB private)

Broadwell Architecture Cascade Lake-SP Architecture
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Inclusive vs Non-Inclusive L3 Cache

1.375 MB

L3

L2
1MB

1

2

3

Non-Inclusive L3
(Cascade Lake-SP architecture)

Memory

L2
256kB

2.5 MB L3

1

2

3

Inclusive L3
(Broadwell architecture)

Memory

1. Memory reads fill directly to the L2, no 
longer to both the L2 and L3

2. When a L2 line needs to be removed, both 
modified and unmodified lines are written 
back

3. Data shared across cores are copied into the 
L3 for servicing future L2 misses

Cache hierarchy architected and optimized for 
data center use cases:

• Virtualized use cases get larger private L2 
cache free from interference 

• Multithreaded workloads can operate on 
larger data per thread (due to increased L2 
size) and reduce uncore activity
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Introduction to SIMD ISA for Intel®

processors
History, features of Intel® AVX, Intel® AVX2 and Intel® AVX-512
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History of SIMD ISA extensions*

MMX™ (1997)

Intel® Streaming SIMD Extensions (Intel® SSE in 1999 to Intel® SSE4.2 in 2008)

Intel® Advanced Vector Extensions (Intel® AVX in 2011 and Intel® AVX2 in 2013)

Intel® AVX-512 in 2016 

Intel® Pentium® processor (1993)

* Illustrated with the number of 32-bit data elements that are processed by one “packed” instruction.
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Intel® AVX and Intel® AVX2

▪ Intel® AVX is a 256 bit vector extension to SSE

• SSE uses dedicated 128 bit registers called XMM (16 for Intel® 64)

• Extends all XMM registers to 256 bit called YMM

• Lower 128 bit of YMM register are mapped/shared with XMM

• AVX works on either

• The whole 256 bit

• The lower 128 bit; zeros the higher 128 bit

▪ Intel® AVX2

• Doubles width of integer vector instructions to 256 bits

• Floating point fused multiply add (FMA) 

• Bit Manipulation Instructions (BMI)

• Gather instructions 

• Any-to-any permutes

• Vector-vector shifts

256 bits (2010)

YMM      

XMM

128 bits (1999)
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Intel® AVX and Intel® AVX2 vector types

Intel® AVX

Intel® AVX2

8x single precision FP

32x 8 bit integer

16x 16 bit integer

8x 32 bit integer

4x 64 bit integer

plain 256 bit

4x double precision FP
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Intel® AVX-512

• 512-bit wide vectors

• 32 operand registers

• 8 64b mask registers

• Embedded broadcast

• Embedded rounding

Microarchitecture Instruction Set
SP FLOPs / 

cycle
DP FLOPs / 

cycle

Intel® Xeon® Processor 
family

SSE (128b) 8 4

Intel® Xeon® E5 and 
E5v2 Processor 
families

Intel AVX (256b) 16 8

Intel® Xeon® E5v3 and 
E5v4 Processors 
families

Intel AVX2 & FMA 
(256b)

32 16

1st and 2nd generation 
Intel® Xeon® Scalable 
Processor Gold and 
Platinum families

AVX-512 & FMA (512b) 64 32

56

14
Copyright © 2021 Intel Corporation. All rights reserved.

Intel® AVX-512 vector types

 Includes AVX and AVX2

Intel® AVX-512

16x single precision FP

32x 16 bit integer

16x 32 bit integer

8x 64 bit integer

8x double precision FP

64x 8 bit integer

plain 512 bit

64 bit masks
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Intel® AVX-512 registers

▪ Extended VEX encoding (EVEX) to introduce another prefix

▪ Extends previous AVX and SSE registers to 512 bit:
• 32 bit: 8 ZMM registers (same as YMM/XMM)

• 64 bit: 32 ZMM registers (2x of YMM/XMM)

▪ 8 mask registers (K0 is special)

▪  No penalty when switching between XMM, YMM and ZMM!

ZMM0-31 

512 bit

K0-7

64 bit

XMM0-15 

128 bit

YMM0-15 

256 bit3
2

 b
it

6
4

 b
it
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Intel® AVX-512 for Intel® CPUs

▪ Intel® Xeon Phi™ and Intel® Xeon® processors 
share a large set of instructions

▪ Instruction sets are not identical 

▪ Subsets are represented by individual 
feature flags (CPUID)

AVX AVXAVX AVX

AVX2 AVX2AVX2

Intel® Xeon Phi™

Processor
1st and 2nd

generation Intel®

Xeon® Scalable 
processor
families

Intel® Xeon®

E5 and E5v2 
processor families

Intel® Xeon®

E5v3 and E5v4 
processor families

Intel® Xeon®

processor
family

SSE SSESSE SSESSE

AVX-512PR AVX-512BW

AVX-512ER AVX-512DQ

AVX-512VL

MPX,SHA, …

C
o

m
m

o
n

 I
n

st
ru

ct
io

n
 S

e
t 

AVX-512F AVX-512F

AVX-512CD AVX-512CD

AVX-512 VNNI
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Intel® AVX-512
https://software.intel.com/en-us/blogs/additional-avx-512-instructions

Available in all products supporting Intel® AVX-512

▪ Intel® AVX-512 Foundation (AVX-512F)

• Extension of AVX instruction sets including mask registers

▪ Intel® AVX-512 Conflict Detection (AVX-512CD)

• Check identical values inside a vector (for 32 or 64 bit integers) to finding colliding indexes (32 or 64 bit) 
before a gather-operation-scatter sequence

Available on Intel® Xeon® processors

▪ Intel® AVX-512 Vector Length Extension (AVX-512VL)

• Freely select the vector length (512 bit, 256 bit and 128 bit)

▪ Intel® AVX-512 Byte/Word (AVX-512BW) and Doubleword/Quadword (AVX-512DQ)

• Two groups (8 and 16 bit integers and 32 and 64 bit integers/FP)

Available on Intel® Xeon Phi™ processors

▪ Intel® AVX-512 Exponential & Reciprocal Instructions (AVX-512ER) and Intel® AVX-512 Prefetch 
Instructions (AVX-512PF)
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Sign Mantissa

INT8 07 06 05 04 03 02 01 00

Intel® AVX-512 VNNI

Available in selected 2nd Generation Intel® Xeon® Scalable Processors

▪ Intel® AVX-512 Vector Neural Network Instructions (AVX-512 VNNI)

• Adds vpdpbusd/vpdpbusds instructions for 8-bit inputs and 
vpdpwssd/vpdpwssds instructions for 16-bit inputs to accelerate DL convolutions

vpdpbusd OUTPUT
INT32

CONSTANT
INT32

INPUT
INT8

INPUT
INT8

INT8 convolution with AVX-512 VNNI: vpdpbusd

INPUT
INT8

INPUT
INT8

vpmaddubsw

vpmaddwd
vpaddd

OUTPUT
INT16 OUTPUT

INT32
CONSTANT

INT16 CONSTANT
INT32

OUTPUT
INT32

INT8 convolution with AVX-512: vpmaddubsw, vpmaddwd, vpaddd
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Intel® AVX* and core turbo frequency

▪ Cores running non-AVX, Intel® AVX2 light/heavy, and 
Intel® AVX-512 light/heavy code have different turbo 
frequency limits

▪ Frequency of each core is determined independently
based on type of workload, number of active cores, 
estimated current and power consumption, and 
processor temperature

*AVX refers to Intel® AVX, Intel® AVX2 or Intel® AVX-512

Code Type All Core Frequency Limit

SSE
AVX2-Light (without FP & int-mul)

Non-AVX All Core Turbo

AVX2-Heavy (FP & int-mul)
AVX512-Light (without FP & int-mul)

AVX2 All Core Turbo

AVX512-Heavy (FP & int-mul) AVX512 All Core Turbo

AVX2

Non-AVX

Cores using AVX-512

Cores using AVX2

Cores not using AVX

Non-AVX_Turbo

AVX2_Turbo

F
re

q
u

e
n

cy

Cores

Non-AVX_Base

AVX2_Base

AVX512_Turbo

AVX512_Base

AVX512

Mixed Workloads 

N
o

n
-A

V
X

A
V

X
5

1
2 N
o

n
-A

V
X

…

A
V

X
2

A
V

X
2
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Notices & Disclaimers

Performance varies by use, configuration, and other factors. Learn more at www.Intel.com/PerformanceIndex.  

Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available 
updates. See configuration disclosure for details.

Your costs and results may vary.

Intel technologies may require enabled hardware, software or service activation.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. 
Other names and brands may be claimed as the property of others.
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[AMD Public Use]

AMD EPYC™ Processor Generations

“Rome” “Milan”“Naples”
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[AMD Public Use]

AMD EPYC™ SoC Architecture

Memory sub-system:

▪ 8 memory channels per socket (2 DPC)

▪ DDR4 @ 3200 GT/sec

Hierarchical SoC composition:

▪ Up to four cores per CCX

▪ Two CCXs form a CCD

Cache sizes:

▪ L1D: 32K, 8-way

▪ L1I: 32K, 8-way

▪ L2: 512K, 8-way

▪ L3: 16M per CCX

32M per CCD

Acronym decoder:

▪ CCX: Core Complex

▪ CCD: Core Complex Die

▪ DPC: DIMM(s) per Channel

▪ DIMM: Dual In-line Memory Module

C
C

D

I/O Die

D
D

R

D
D

R

D
D

R

D
D

R

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

C
C

D

C
C

D

C
C

D

C
C

D

C
C

D

C
C

D

C
C

D

4 channels

(2 DPC)

4 channels

(2 DPC)
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[AMD Public Use]

AMD EPYC™ 7002 Series NUMA Configurations

System can be configured to have 1, 2, and 4 NUMA domains per socket (NPS)

NPS=1:

Die 0

IO DieIO Die

NUMA 0 NUMA 1

$ numactl -H
[...]
node   0   1

0:  10  32
1:  32  10
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[AMD Public Use]

AMD EPYC™ 7002 Series NUMA Configurations

System can be configured to have 1, 2, and 4 NUMA domains per socket (NPS)

NPS=2:

Die 0

IO DieIO Die

NUMA 1 NUMA 0 NUMA 3 NUMA 2

$ numactl -H
[...]
node   0   1   2   3

0:  10  12  32  32
1:  12  10  32  32
2:  32  32  10  12
3:  32  32  12  10
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[AMD Public Use]

AMD EPYC™ 7002 Series NUMA Configurations

System can be configured to have 1, 2, and 4 NUMA domains per socket (NPS)

NPS=4:

Die 0

IO DieIO Die

NUMA 3 NUMA 2

NUMA 1 NUMA 0

NUMA 7 NUMA 6

NUMA 5 NUMA 4

$ nmumactl -H
[...]
node   0   1   2   3   4   5   6   7
0:  10  12  12  12  32  32  32  32
1:  12  10  12  12  32  32  32  32
2:  12  12  10  12  32  32  32  32
3:  12  12  12  10  32  32  32  32
4:  32  32  32  32  10  12  12  12
5:  32  32  32  32  12  10  12  12
6:  32  32  32  32  12  12  10  12
7:  32  32  32  32  12  12  12  10
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[AMD Public Use]

Cache Hierarchy and Core Complex (CCX)

Structure of the CCX consists of

• Four cores with two-way SMT and 

• L1D and L1I cache in the core (32K each, 8-way associative, 64 sets)

• Core-local L2 cache (512KB, 8-way associative, 1,024 sets)

• Four L3 slides of 4MB that form the 16MB L3 cache

• 16-way associative, 16,384 sets

• Used as a victim cache to receive data evicted from the L2 cache

CORE 1CORE 0
L3 slice

4MB
L2

512KB
L2

512KB
L3 slice

4MB

CORE 3CORE 2
L2

512KB
L3 slice

4MB
L3 slice

4MB
L2

512KB

71

8 |   The AMD “Zen 2” and “Zen 3” Architectures

[AMD Public Use]

CORE 1CORE 0
L3 slice

4MB
L2

512KB
L2

512KB
L3 slice

4MB

CORE 3CORE 2
L2

512KB
L3 slice

4MB
L3 slice

4MB
L2

512KB

Cache Hierarchy and Core  Complex

32B/cycle

32B fetch 32B/cycle

2*32B load

1*32B store

512K L2

I+D Cache 

8-way32K L1D Cache 

8-way

32K L1I Cache 

8-way

CORE 0
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[AMD Public Use]

512K

L2 Cache 

8 Way

4 instructions

FADD
FMA

FMUL
FADD

FMA

FMUL

2 loads + 1 store per cycle

6 dispatch ops

INTEGER FLOATING POINT

ALU ALU
AGU

Ld/St

AGU

Ld/St

Integer Physical Register File

Decode Op Cache

Micro-Op Queue

32K L1I Cache (8 way) Branch Prediction

Load/Store

Queues

32K L1D Cache

8 Way

FP Register File

8 fused instructions

AGU

St

Sched Sched Sched SchedulerScheduler

Integer Rename Floating Point Rename

“Zen 2” Core Micro-architecture

ALU

CORE 2
L2

512KB
L3 slice

4MB

ALU

Sched
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[AMD Public Use]

Floating-point/Vector execute

“Zen 2”

AVX 256-bit instruction support ✓

width data path 256b

width vector register file 256b

width loads (2 per cycle) 256b

width stores (1 per cycle) 256b

4 Micro-Op Dispatch

256b 

Loads

Int to FP

FP to Int, Store

8 Micro-Op Retire

224-Entry Reorder Buffer64-Entry NSQ

32-Entry Scheduler

FMA FADD FMA FADD

LDCVT

Forwarding MUXes

160-Entry Vector Register File
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[AMD Public Use]

AMD EPYC™ Processor Generations

“Rome” “Milan”“Naples”
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[AMD Public Use]

AMD EPYC™ 7003 Series – Soc Architecture
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[AMD Public Use]

AMD EPYC™ 7003 Series – Micro-architectural Improvements
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[AMD Public Use]

(Not Compatible With “Naples” MB)

AMD EPYC™ Processors – Summary
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[AMD Public Use]

Disclaimer

The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions, and 

typographical errors. The information contained herein is subject to change and may be rendered inaccurate for many reasons, including but 

not limited to product and roadmap changes, component and motherboard version changes, new model and/or product releases, product 

differences between differing manufacturers, software changes, BIOS flashes, firmware upgrades, or the like. Any computer system has 

risks of security vulnerabilities that cannot be completely prevented or mitigated. AMD assumes no obligation to update or otherwise correct 

or revise this information. However, AMD reserves the right to revise this information and to make changes from time to time to the content 

hereof without obligation of AMD to notify any person of such revisions or changes.

THIS INFORMATION IS PROVIDED ‘AS IS.” AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE 

CONTENTS HEREOF AND ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS, OR OMISSIONS THAT MAY 

APPEAR IN THIS INFORMATION. AMD SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, 

MERCHANTABILITY, OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT WILL AMD BE LIABLE TO ANY PERSON FOR 

ANY RELIANCE, DIRECT, INDIRECT, SPECIAL, OR OTHER CONSEQUENTIAL DAMAGES ARISING FROM THE USE OF ANY 

INFORMATION CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

© 2021 Advanced Micro Devices, Inc. All rights reserved.

AMD, the AMD Arrow logo, EPYC, and combinations thereof are trademarks of Advanced Micro Devices, Inc. PCIe is a registered 

trademark of PCI-SIG Corporation. Other product names used in this publication are for identification purposes only and may be trademarks 

of their respective companies.
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Performance analysis with Intel® tools

Dr. Mikko Byckling, IAGS DEE XCSS
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Contents

▪ Intel® oneAPI performance analysis tools overview

▪Application Performance Snapshot

▪ Introduction to Intel® VTune™ Profiler

• Features and analysis types

• Graphical User Interface (GUI)

• Command Line Interface (CLI)

▪ Intel® VTune™ Profiler HPC workflow

▪ Summary
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Intel® oneAPI performance analysis tools 
overview
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Introducing oneAPI

▪ Cross-architecture programming that 
delivers freedom to choose the best 
hardware 

▪ Based on industry standards and open 
specifications

▪ Exposes cutting-edge performance features 
of latest hardware

▪ Compatible with existing high-performance 
languages and programming models 
including C++, OpenMP, Fortran, and MPI

Learn More: intel.com/oneAPI
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oneAPI Industry Initiative

▪ A cross-architecture language based on C++ 
and SYCL standards

▪ Powerful libraries designed for acceleration 
of domain-specific functions

▪ Low-level hardware abstraction layer 

▪ Open to promote community and industry 
collaboration

▪ Enables code reuse across architectures and 
vendors

oneAPI Industry Specification

The productive, smart path to freedom for 
accelerated computing from the economic 
and technical burdens of proprietary 
programming models

...

Learn More: intel.com/oneAPI
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Intel® oneAPI 
Base & HPC Toolkit 

▪ Intel® oneAPI Tools for HPC:  Deliver Fast 
Applications that Scale

▪ A toolkit that adds to the Intel® oneAPI Base 
Toolkit for building high-performance, 
scalable parallel code on C++, Fortran, 
OpenMP & MPI from enterprise to cloud, and 
HPC to AI applications.

▪ Targeted for C++, Fortran, OpenMP, MPI 
Developers

▪ Accelerate performance on Intel® Xeon® & 
Core™ Processors and Accelerators

▪ Deliver fast, scalable, reliable parallel code 
with less effort; built on industry standards

Learn More: intel.com/oneAPI-HPCKit
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Intel® VTune™ Profiler

▪ Get the Right Data to Find Bottlenecks

• Profiling for CPU, GPU, FPGA, threading, 
memory, cache, storage, offload, power…

• DPC++, C, C++, Fortran, Python*, Go*, Java*, or a mix

• Linux, Windows, FreeBSD, Android, Yocto and more

▪ Analyze Data Faster

• See data on your source, in architecture diagrams, 
as a histogram, on a timeline…

• Filter and organize data to find answers

▪ Work Your Way

• Graphical user interface or command line

• Profile locally and remotely

• Install as an application

• Install as a server accessible with a web browser

Part of the Intel® oneAPI Base Toolkit
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Intel® Advisor

▪ Offload Modelling

• Efficiently offload your code to GPUs even before 
you have the hardware

▪ Automated Roofline Analysis

• Optimize your GPU/CPU code for memory and compute

▪ Vectorization Optimization

• Enable more vector parallelism and improve its efficiency

▪ Thread Prototyping

• Add effective threading to unthreaded applications

▪ Flow Graph Analyzer

• Create, visualize and analyze task and dependency 
computation graphs

Part of the Intel® oneAPI Base Toolkit
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Performance Analysis Types
Get the big picture first with a Snapshot or Platform Profiler

Snapshot
Quickly size 

potential performance gain.
Run a test “during a coffee break”.

In-Depth
Advanced collection & analysis.

Insight for effective optimization.

Application Focus
• HPC App developer 

focus
• 1 app running during 

test

VTune Profiler’s

Application Performance 
Snapshot

VTune Profiler  Many profiles

Intel Advisor  Vectorization

ITAC  MPI Optimization

System Focus
• Deployed system focus
• Full system load test

VTune Profiler
- System-wide sampling
- Platform Profiler:

Maximum collection times:  L=long (hours)   M=medium (minutes)   S=short (seconds-few minutes)

S-M

L
S

S-L

L
S-M
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Application Performance Snapshot
A part of Intel® Intel® VTune™ Profiler
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A Fast Way to Discover Untapped Performance
Intel® VTune™ Profiler - Application Performance Snapshot

Quick & easy performance overview
▪ Install & run a test case during a coffee break 

All the data in one place
▪ MPI + OpenMP + Memory + Floating Point

Popular MPI implementations
▪ Intel® MPI, MPICH, OpenMPI and Cray MPI

New for 2020: 
▪ Communication pattern diagnosis
▪ See time in high bandwidth, not just average
▪ Profile large MPI applications >64K ranks

Linux* only.
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Better Snapshots – More Ranks
Intel® VTune Profiler – Application Performance Snapshot

Find MPI communication patterns 
that cause poor MPI scaling

▪ See rank-to-rank communication
by both time and volume

▪ See time in high bandwidth, 
not just average

Profile larger MPI applications

▪ Scales to >64K ranks

Learn More: https://software.intel.com/content/www/us/en/develop/documentation/get-started-with-application-performance-snapshot/top.html
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# Source Application Performance Snapshot environment

> source /opt/intel/oneapi/vtune/latest/apsvars.sh

# Collect data

> mpirun -np 4 -env OMP_NUM_THREADS=2 aps ./testc

# Generate report

> aps --report aps_result_20210512/ -s

Loading 100.00%

| Summary information

|--------------------------------------------------------------------

Application                   : testc

Report creation date          : 2021-05-12 14:02:57

Number of ranks               : 4

Ranks per node                : 4

OpenMP threads number per rank: 2

HW Platform                   : Intel(R) Xeon(R) Processor code named Broadwell

Frequency                     : 2.19 GHz

Logical core count per node   : 88

Collector type                : Driverless Perf system-wide counting

...

Intel® Application Performance Snapshot
Example
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Introduction to Intel® VTune™ Profiler
Features and analysis types, Graphical User Interface (GUI), 
Command Line Interface (CLI)
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Intel® VTune™ Profiler analysis

▪Analysis separated into two (three) steps

• Collect: collection of analysis data

• Finalize*: resolve symbol information for the data

• Report: compilation of reports from the data

• The use of GUI and/or CLI is supported in both steps

▪Nonintrusive sampling -based collection

• No special (re)compiles needed

• Works on optimized builds, to view source code, compile with debugging symbols (i.e., -g)

• Statistical analysis to determine approximate behaviour
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Data Collection

Software Collector Hardware Collector

Uses OS interrupts Uses the on-chip Performance Monitoring Unit (PMU)

Collects from a single process tree Collect system wide or from a single process tree.

~10ms default resolution
~1ms default resolution (finer granularity - finds small 

functions)

Either an Intel® or a compatible 

processor
Requires a genuine Intel® processor for collection

Call stacks show calling sequence Optionally collect call stacks

Works in virtual environments
Works in a VM only when supported by the VM

(e.g., vSphere*, KVM)

No driver required Uses Intel driver or perf if driver not installed

No special recompiles - C, C++, DPC++, C#, Fortran, Java, Python, Assembly
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VTune Graphical User Interface (GUI)

▪Graphical tool vtune-gui
• Default location (Linux): 
/opt/intel/oneapi/vtune/2021.2.0/bin64/vtune-gui

▪ Pure GUI workflow

• Set up a project

• Choose analysis type

• View analysis results 

97

18
Copyright © 2021 Intel Corporation. All rights reserved.

VTune GUI
Intel® VTune™ Profiler

▪Welcome page
• Quick access to documentation and 

training

▪ Built-in sample code, pre-collected 
results
• Easy to explore tutorials

▪Help tour overlay
• Quickly learn essential user interface

controls
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VTune GUI: Profile Python & Go!
And Mixed Python / C++ / Fortran

Low Overhead Sampling 

▪ Accurate performance data without high 
overhead instrumentation 

▪ Launch application or attach to a 
running process

Precise Line Level Details
▪ No guessing, see source line level detail

Mixed Python / native C, C++, Fortran…
▪ Optimize native code driven by Python
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VTune GUI: Hotspots
Double Click from Grid or Timeline

Right click for instruction reference manualView Source / Asm or both CPU Time

Click jump to scroll Asm

Quick Asm navigation: 
Select source to highlight Asm

Scroll Bar “Heat Map” is an overview of hot spots
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CPU Time

Hovers:

Transitions
Basic Hotspots Advanced HotspotsLocks & Waits

VTune GUI: Threading

▪ Optional: Use API to mark frames and user tasks

▪ Optional: Add a mark during collection
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VTune GUI: HPC Performance Characterization
Threading, Memory Access, Vectorization

▪ Threading:  CPU Utilization
• Serial vs. Parallel time

• Top OpenMP regions by potential gain

• Tip:  Use hotspot OpenMP region analysis for more
detail 

▪ Memory Access Efficiency
• Stalls by memory hierarchy

• Bandwidth utilization

• Tip: Use Memory Access analysis

▪ Vectorization:  FPU Utilization
• FLOPS † estimates from sampling

• Tip: Use Intel Advisor for precise metrics and 

vectorization optimization
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VTune GUI: Microarchitecture Exploration

Front
End

Bound

Memory
Bound

Core
Bound

Memory
Bound
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VTune GUI: Memory Access Analysis

▪ Tune data structures for performance

• Attribute cache misses to data structures
(not just the code causing the miss) 

• Support for custom memory allocators

▪ Optimize NUMA latency & scalability
• True & false sharing optimization 

• Auto detect max system bandwidth 

• Easier tuning of inter-socket bandwidth

▪ Easier install, Latest processors
• No special drivers required on Linux*

• Intel® Xeon Phi™ processor MCDRAM 
(high bandwidth memory) analysis
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VTune GUI: Memory Consumption Analysis

See What Is Allocating Memory
• Lists top memory consuming functions and 

objects

• View source to understand cause

• Filter by time using the memory consumption 
timeline

▪ Standard & Custom Allocators
• Recognizes libc malloc/free, memkind and 

jemalloc libraries

• Use custom allocators after 
markup with ITT Notify API

Languages
• Python*

• Linux*:  Native C, C++, Fortran
Native language support is not currently available for Windows*
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VTune GUI: Results comparison

▪Quickly identify cause of regressions.

• Run a command line analysis daily

• Identify the function responsible so you know who to alert

▪Compare 2 optimizations – What improved?

▪Compare 2 systems – What didn’t speed up as much?
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VTune CLI: syntax

▪VTune command line application vtune
vtune <-action> [-action-option] [-global-option] [[--] 

<target> [target-options]]

• -action: collect, finalize or report

• -action-option: modifies the behaviour of an action

• -global-option: adjusts global settings

• <target>: denotes the target application to profile

> vtune –collect hotspots –r result_dir -- ./app
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VTune CLI: collect

▪ Syntax:
-c[ollect] <analysis type> [-analysis-option]

• The type of analysis defined with analysis type

• Analysis type defines the set of available analysis-option modifiers or 
”knob”s

▪Command line help with -help on each analysis type and available 
knobs

> vtune -help collect # List analysis types available

> vtune –help collect hotspots # List knobs for “hotspots”
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VTune CLI: collect - analysis types

▪ For HPC, the analysis types of interest are

• hotspots: Identify hotspots, collect stacks and call trees

• hpc-performance: Analyze CPU and FPU utilization and memory access efficiency

• threading: Analyze threading efficiency

• memory-access: Identify memory access related issues and estimate memory bandwidth

• memory-consumption: Identify memory consumption

• io: Analyze processor and disk input and output

• uarch-exploration: Identify low-level hardware issues
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VTune CLI: collect - global modifiers

▪A large number of global modifiers available

• -finalization-mode: whether to finalize the result after the collection 
stops

• -data-limit: limit the amount of data collected. The default is 1GB, set to 0 
for unlimited 

• -quiet: limit the amount of information displayed

• -search-dir: path where the binary and symbol files are stored

• -result-dir: path where the result will be stored
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VTune CLI: finalize

▪ To free compute resources, it may be beneficial to finalize the 
collected results separately

• Examples: proling runs on a cluster with multiple nodes, profiling runs on a 
KNL, re-resolving symbols

▪ Syntax:
-finalize –result-dir <result_directory> 

[-search-dir <symbols_directory>]

▪ Finalization can be performed on a different platform than what the 
results were collected on
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VTune CLI: report

▪ Syntax:
-r[eport] <report type> [-report-option]

• The type of report defined with report type

• Report type defines the set of available report-option modifiers

▪Command line help with –help

▪NOTE: using a GUI to view results is preferrable

> vtune -help report # List report types available

> vtune –help report hotspots # Usage of “hotspots” report
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VTune CLI: report - report types

▪ For HPC, the report types of interest are

• summary: Report overall application performance 

• hotspots: Report CPU time for application

• hw-events: Display the total number of hardware events 

▪A report is automatically based on the type of data collected!
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VTune CLI: report - global modifiers

▪A large number of global modifiers available

• -column: Specify which columns to include or exclude

• -filter: Specify which data to include or exclude

• -group-by: Specify grouping in a report

• -time-filter: Specify which time range to include

• -source-search-dir: path where the source code is stored

• -result-dir: path where the result will be stored

114



35
Copyright © 2021 Intel Corporation. All rights reserved.

VTune CLI: example

▪Collect hotspots of application nbody, store results to directory 
nbody_hs

▪View available columns in the result and then compile a hotspots
report from specific columns

> vtune -collect hotspots -r nbody_hs -- ./nbody 262144

> vtune -report hotspots -r nbody_hs column=?

> vtune -report hotspots -r nbody_hs -column="CPU 

Time:Self","Source File"
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Intel® VTune™ Profiler HPC workflow
Use of Intel® VTune™ Profiler in a cluster environment
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Profiling HPC applications

▪VTune can profile hybrid MPI+OpenMP applications on a cluster

• For profiling MPI, use Intel® Trace Analyzer and Collector or Intel® MPI 
Performance Snapshot

▪ Recommended workflow:

• Run collect (and finalize) with CLI on a cluster

• Run report with GUI on a local workstation or a cluster login node

• Finalized collection results can be transferred if needed

117

38
Copyright © 2021 Intel Corporation. All rights reserved.

VTune with MPI applications (1/3)

▪ Single node application launch:
<vtune_command> [--] <mpi_command> <application>

▪ Encapsulates all the ranks to result directory

• Example: ranks 0-47 in result_dir

▪Works whenever VTune is able to track the processes created

• Limited to profiling over a single node

> vtune –collect advanced-hotspots –r result_dir -- mpirun –np 48 

./mpi_app
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VTune with MPI applications (2/3)

▪Multiple node application launch:
<mpi_command> <vtune_command> [--] <application>

• Results encapsulated to per-node directories suffixed with 
hostname

• Example: ranks 0-15 in result_dir.hostname1, ranks 16-31 in 
result_dir.hostname2, ranks 32-47 in result_dir.hostname3

> aprun –n 48 -ppn 16 vtune –collect hotspots –r result_dir

./mpi_app
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VTune with MPI applications (3/3)

▪ Selective rank profiling by modifying the MPI process launch:

▪ Intel MPI supports –gtool “<command>:<rank-set>[=mode]”

option:

> mpirun -n 1 ./mpi_app : -n 1 vtune –collect hotspots –r 

result_dir ./mpi_app : -n 14 ./mpi_app

> mpirun -n 16 –gtool “vtune –collect hotspots –r result_dir :1” 

./mpi_app
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Notices & Disclaimers

Performance varies by use, configuration, and other factors. Learn more at www.Intel.com/PerformanceIndex.  

Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available 
updates. See configuration disclosure for details.

Your costs and results may vary.

Intel technologies may require enabled hardware, software or service activation.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. 
Other names and brands may be claimed as the property of others.
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◢ [AMD Public Use]

AMD offers software development tools 

optimized for HPC applications on EPYC™ CPUs

while supporting developer choice with tools and methods

◢ AMD Optimizing CPU Compiler (AOCC)

◢ AMD Optimized CPU Libraries (AOCL)

◢ AMD µProf profiler

◢ Spack package support of HPC applications

◢ Support of open-source tools

developer.amd.com

AMD µProf Profiler Introduction - v3.4 2021
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◢ [AMD Public Use]

µ u

◢ ronounced as “MICROprof”

◢ “uprof” is used for computer-readable form

• Directory path names

• Command lines

• Scripts

• URLs

AMD µProf Profiler Introduction - v3.4 2021
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◢ [AMD Public Use]

AGENDA

◢ AMD µProf – Overview

◢ Profiling Overview

◢ System Analysis 

◢ Application Analysis

AMD µProf Profiler Introduction - v3.4 2021
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Overview of AMD µProf
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◢ [AMD Public Use]

AMD Profiler Strategy

◢ perf kernel – common profiler utility used to build custom profiler applications on Linux®

• Enabled to reflect counters and events supported by latest AMD  processors

• PAPI is automatically supported given PERF kernel support

• Tools built on PERF kernel driver or PAPI have the necessary support to work well on latest AMD 

processors 

‒ PERF tool (application)

‒ PAPI-based tools like HPCTool kit etc

◢ AMD µProf offers a richer experience with AMD support

• Intuitive graphical user interface and command line interface

• Supporting Linux®, Windows® and FreeBSD

• Supports performance monitoring recipes – data from set of events and associated calculation around 

them 

Offer developer choices – the profiler that best suites the need and development environment

AMD µProf Profiler Introduction - v3.4 2021
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◢ [AMD Public Use]

AMD µProf Profiler Overview

◢ System Analysis

• Monitors basic core, level 3 cache 

and data fabric performance metrics

◢ Application Analysis

• CPU Profiling to identify runtime 

performance bottlenecks of an 

application or the entire system

◢ Power Profiling

• Monitors thermal & power 

characteristics of system

◢ Energy Analysis

• Identifies energy hotspots in the 

application

Measure and analyze the performance of an application or the entire system 

running Linux® or Windows®

AMD µProf Profiler Introduction - v3.4 2021
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◢ [AMD Public Use]

Broad AMD µProf 3.4 support of 

Operating Systems & and Compilers

AMD µProf Profiler Introduction - v3.4 2021

Component Supported Version Languages

OpenMP® Spec • OpenMP® v5.0

Compiler

• LLVM™ 8 - 12 • C, C++

• AOCC 2.x, 3.0 • C, C++, Fortran

• Intel® Compiler Collection (ICC) 19.1 • C, C++, Fortran

OS

• Ubuntu® 18.04 LTS

• Ubuntu® 20.04 LTS

• Red Hat® Enterprise Linux® 8.x

• CentOS™ 8.x

• Windows® 10 thru 20H2

• Windows Server® 2019
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◢ [AMD Public Use]

µProf – Feature support matrix
Feature Linux® Windows® FreeBSD

System Analysis*

AMD uProfPcm Yes Yes Yes

Application Analysis (CPU Performance Profiling)

Micro-Architecture Analysis (EBP) Yes Yes Yes

Instruction Based Sampling (IBS) Yes Yes

OS Timer based profiling (TBP) Yes Yes

Callstack sampling – Native (C, C++, Fortran) Yes Yes Yes

Callstack sampling – Java Yes

Callstack sampling – System-wide Yes Yes

HPC - OpenMP Tracing Yes

HPC - MPI Code Analysis (single & multi node) Yes

Cache Analysis Yes Yes

Thread Concurrency Chart Yes

* Only on EPYC server platforms

AMD µProf Profiler Introduction - v3.4 2021
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◢ [AMD Public Use]

µProf – Feature support matrix
Feature Linux Windows FreeBSD

Power Profiling

Live Power Profiling Yes Yes

Power Application Analysis# Yes

Usability 

Graphical Interface Yes Yes

Command Line Interface Yes Yes Yes

Virtualization – TBP and EBP support

VMware ESXi™ Yes Yes

KVM Yes Yes

#  Experimental feature

AMD µProf Profiler Introduction - v3.4 2021
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◢ [AMD Public Use]

Support

◢ Releases

• Public release : https://developer.amd.com/amd-uProf/

◢ Documentation

• User guide: <installation-path>/Help/User_Guide.pdf

• Online user guide: https://developer.amd.com/amd-uProf/ 

◢ Installation path:

• Linux® : /opt/AMDuProf_<version>/

• Windows® : C:\Program Files\AMD\AMDuProf

AMD µProf Profiler Introduction - v3.4 2021
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Profiling - Overview
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◢ [AMD Public Use]

What is profiling?

◢ Profiling measures how a program interacts with the hardware it is running on

◢ Used to evaluate performance and solve problems

• What part of my code is the most critical (most utilized or accessed)?

• Why is my critical loop too slow?

• Am I hitting or missing cache?

• Is the hardware configured optimally for this code?

• Is the code optimal for this hardware?

◢ Profiling can also be used in comparative evaluation of architectures

• How does this code run on machine A vs. machine B?

◢ Profiling can solve power problems (which can lead to performance problems)

• What part of my code causes the CPU to consume the most power?

• Power and heat may be a cause of performance problems
AMD µProf Profiler Introduction - v3.4 2021
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◢ [AMD Public Use]

Types of Profilers

◢ Counter-based profiling

• Periodically collect PMC event counts while 

the application is running

• Distinguish what happened in hardware or 

software

• Accurate with minimal overhead

◢ Statistical sampling profiling

• Based on certain triggers, collect profile data 

(IP, PID, TID, Callstack)

‒ Processor triggers - Performance Monitor Counter (PMC) 

threshold interrupts

‒ Software triggers – Timer, Context Switches, Page faults

• Identify where an event happens and how 

frequently

• Overhead is a function of sampling frequency

◢ Trace profiling

• Capture interesting events while running the 

code – ETW, OMPT, PMPI etc.,

• Identify what happened in the software

• Some overhead but accurate

◢ Call Graph profiling

• Call sequence

◢ Code Instrumentation profling

• May require changing the code – manual or 

automatic process

• Some tools can do this to the compiled binary 

(dynamic instrumentation)

AMD µProf Profiler Introduction - v3.4 2021
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◢ [AMD Public Use]

Processor Performance Monitoring Counters (PMCs)

◢ PMCs are AMD processor registers (MSRs)

• Covering Core, L3 cache, and Data Fabric functions

• Hundreds of processor events available

‒ Ex: CPU Cycles not in Halt, Retired Instructions

• PMCs can be programmed to monitor processor 

events

◢ Processor in socket hierarchy

• Chiplets in processor connected by Data Fabric

‒ Core Complexes (CCXs) in Chiplets

◢ Cores in CCX

◢ L3 cache in CCX

AMD µProf Profiler Introduction - v3.4 2021

◢ L3 Cache PMCs

• Operate at the core complex (CCX) level for each 

CCX in the processor

• 6 MSRs; Count mode only

◢ Data Fabric PMCs

• Apply at the chiplet die level

• 4 MSRs; Count mode only

◢ Processor Core PMCs

• 6 MSRs per core thread

• Core PMC events can be monitored 

in Sampling & Count mode

‒ Count mode – running count value of processor events

‒ Sampling mode

◢ Based on certain triggers, collect profile data (IP, PID, TID, call 

stack)

◢ HW Triggers - Performance Monitor Counter (PMC) threshold 

interrupts

◢ Software triggers – Timer, Context Switches, Page faults
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◢ [AMD Public Use]

Processor PMC Domains

AMD µProf Profiler Introduction - v3.4 2021

FP: floating point

LS: load/store

IC/BP: instruction cache and branch 

prediction

EX: integer ALU 

execution and 

scheduling

L2

DE: instruction decode, dispatch, microcode 

sequencer, & micro-op cache

L3
DF: Data 

Fabric

UMC: 

Unified 

Memory 

Controller
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Application Analysis
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◢ [AMD Public Use]

Application Analysis – Overview

◢ CPU Profile - to identify runtime 

performance bottlenecks of an application 

or the entire system

• Where the application spends its time 

(hotspots)

• Bottlenecks due to core micro-architectural 

constraints (IPC, cache misses, etc.)

• Parallelism issues - Thread concurrency

◢ Data Collection

• Statistical sampling – Timer, Core PMC, IBS

• Callstack

• Tracing – ETW, JVMTI (Java), OMPT

◢ Data Visualization

• Data attribution at various program units -

Process / Module / Thread / Function / Source 

/ Instruction

• Flame graph, Callgraph

◢ Ease of use

• No special recompile – C, C++, C#, Fortran, 

Java, Assembly

• Debug info required for function & source

• Graphical interface (AMDuProf)

• Command Line interface (AMDuProfCLI)

AMD µProf Profiler Introduction - v3.4 2021
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◢ [AMD Public Use]

Application Analysis – Performance Data

Primary data

◢ Basic hotspots - Timer based profiling 

(TBP)

• Which functions consume most of time?

◢ Micro-architectural exploration - Core PMC 

Event based profiling (EBP)

• Which functions consume most of the cycles?

• Why - cache misses?, branch mispredictions?

◢ Memory access - Instruction Based 

Sampling (IBS)

• Memory access

• Potential false cache sharing

◢ HPC using OMPT

• OpenMP® parallel region analysis

Secondary data

◢ Call graph

• Call sequence

◢ Thread concurrency

• Windows® only

AMD µProf Profiler Introduction - v3.4 2021
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◢ [AMD Public Use]

Application Analysis – data collection

Select profile target –

application, process, 

system

Feed in profile application 

details

AMD µProf Profiler Introduction - v3.4 2021
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◢ [AMD Public Use]

Application analysis – data collection

AMD µProf Profiler Introduction - v3.4 2021

Predefined analysis types –

group of interesting Core PMC 

events to monitor

Core PMC events that are 

monitored to generate 

interrupts

Profile types – CPU or Live Power

Advanced Options to enable 

callstack, profile schedule

Custom profile – add/delete events, 

change unit-masks, sampling period
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◢ [AMD Public Use]

Application Analysis – data collection (CLI)

Collect assess performance data

$ AMDuProfCLI collect --config assess –o /tmp/namd-assess /tmp/run-namd.sh

Profile completed ...

Generated raw file : /tmp/namd-assess.caperf 

Generate Report – this will create /tmp/namd-assess/namd-assess.db & /tmp/namd-

assess/namd-assess.csv

$ AMDuProfCLI report –i /tmp/namd-assess.caperf

Translation started ...

...

Generated report file : /tmp/namd-assess/namd-assess.csv

To only translate – this will create /tmp/namd-assess/namd-assess.db (import in GUI)

$ AMDuProfCLI translate –i /tmp/namd-assess.caperf

Translation started ...

...

Generated db file : /tmp/namd-assess/namd-assess.db

Importing

The rawfile collected or the processed db file can also be imported in GUI for further analysis

AMD µProf Profiler Introduction - v3.4 2021
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◢ [AMD Public Use]

Application analysis – Function hotspots

AMD µProf Profiler Introduction - v3.4 2021

Double click on a function to 

view Source

Filters & Options

View: Select what metric to report;

Show data by: count or %;

Include or exclude system modules;

Low confidence level due to 

low number of samples 

collected – values will be 

grayed

Issue threshold – CPI > 1.0 will 

be highlighted
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◢ [AMD Public Use]

Application analysis – Analyze

AMD µProf Profiler Introduction - v3.4 2021

Program units – load modules 

and threads

Hot functions for the selected 

program unit;

Double click function to view 

Source
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◢ [AMD Public Use]

Application analysis – Source view

AMD µProf Profiler Introduction - v3.4 2021

Select source line to highlight 

corresponding assembly

Heatmap – overview of 

hotspots 

Filter by Process and Thread
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◢ [AMD Public Use]

Callstack – Combined User & Kernel Callstack (Linux®)

AMD µProf Profiler Introduction - v3.4 2021

Visualization of sampled stack-

traces to identify hot code-paths

Sampling event and Process 

filtering

Tooltip reporting exclusive & 

inclusive samples

Function search

User space frames

Kernel frames
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◢ [AMD Public Use]

Predefined Events

AMD µProf Profiler Introduction - v3.4 2021
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◢ [AMD Public Use]

HPC Analysis

◢ When the threads execute the parallel 

region code, maximize CPU utilization.

◢ Due to several reasons the threads wait 

without doing useful work

• Idle: A thread finishes it task within the parallel 

region and waits at the barrier for the other 

threads to complete.

• Sync: If locks are used inside the parallel 

region, threads can wait on synchronization 

locks to acquire the shared resource.

• Overhead: Thread management overhead.

◢ Analysis

• Parallel Regions: List of all the parallel regions 

executed with associated metrics.

• Region Detailed Analysis: thread timeline view 

– activity of all the threads in a parallel region.

‒ Thread spending too much time on non work activity ?

‒ Change scheduling, loop chunk size

AMD µProf Profiler Introduction - v3.4 2021
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◢ [AMD Public Use]

HPC Analysis – Example

AMD µProf Profiler Introduction - v3.4 2021

Collection run using CLI

$ AMDuProfCLI collect --omp --config tbp -o /tmp/myapp_perf <openmp-app>

Report Generation

$ AMDuProfCLI report -i /tmp/myapp_perf.caperf

Data Collection
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◢ [AMD Public Use]

HPC Analysis – Ex) Hotspots

AMD µProf Profiler Introduction - v3.4 2021
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◢ [AMD Public Use]

HPC Analysis – Ex) Thread State Timeline

AMD µProf Profiler Introduction - v3.4 2021
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◢ [AMD Public Use]

HPC Analysis

◢ Env variables

• uProf_MAX_PR_INSTANCES - Set the 

max number of unique parallel regions to 

be traced. The default value is set to 512

• uProf_MAX_PR_INSTANCE_COUNT -

Set the max number of times one unique 

parallel region to be traced

◢ Notes

• Data processing and loading of HPC page 

can be slower – depending on number of 

parallel regions and their instances 

traced.

◢ Limitations not supported

• OpenMP® profiling with system-wide 

profiling scope.

• Loop chunk size and schedule type when 

these parameters are specified using 

schedule clause. It shows the default 

values (i.e., ‘1’ & ‘Static’) in this case.

• Nested parallel regions.

• GPU offloading and related constructs.

• Call stack for individual OpenMP threads.

• OpenMP profiling on Windows® and 

FreeBSD platforms.

• Applications with static linkage of 

OpenMP libraries.

AMD µProf Profiler Introduction - v3.4 2021
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◢ [AMD Public Use]

MPI Code Profiling

Component Supported Version

MPI Spec • MPI 3.1

MPI Libraries

• Open MPI v4.1.0

• MPICH 3.4.1

• ParaStation® MPI 5.4.8

• Intel® MPI 2019

OS

• Ubuntu® 18.04 LTS

• Ubuntu® 20.04 LTS

• Red Hat® Enterprise 

Linux® 8.x

• CentOS™ 8.x

◢ Support matrix Usage Model:

Collect performance data

$ mpirun -np <n> AMDuProfCLI collect 

--config tbp --mpi --output-dir /tmp/mpi-prof-data ./my-

app

Collect performance data in multiple node

$ mpirun -np 16 -H host1,host2 AMDuProfCLI collect --

config tbp --mpi --output-dir /tmp/myapp-perf myapp.exe

Profiling specific rank

$ export AMDuProfCLI_CMD='AMDuProfCLI collect --config 

tbp --mpi --output-dir /tmp/myapp-perf'

$ mpirun -np 4 -host host1 myapp.exe : -host host2 -np 2

"$AMDuProfCLI_CMD" myapp.exe

Translate profile data

$ AMDuProfCLI translate --input-dir /tmp/myapp-perf/ --

host host1 

Import the DB for further analysis

AMD µProf Profiler Introduction - v3.4 2021
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◢ [AMD Public Use]

Application analysis – Command Line Interface

◢ List supported predefined profile configs are recorded by the hardware

• $ ./AMDuProfCLI info --list collect-configs

◢ Collect profile data for “assess” predefined configuration, launching NAMD application

• $ ./AMDuProfCLI collect --config assess –o /tmp/amd/namd-assess /home/amd/apps/NAMD/runme.sh

• Profile completed ...

• Generated raw file : /tmp/amd/namd-assess.caperf

◢ Generate profile report from the raw profile data collected using “assess” configuration

• $ ./AMDuProfCLI report -i /tmp/amd/namd-assess.caperf --src-path 

/home/amd/apps/NAMD/NAMD_2.12_Source/

• Translation started ...

• …

• Generating report file...

• Report generation completed...

• Generated report file : /tmp/amd/namd-assess/namd-assess.csv
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◢ [AMD Public Use]

Application analysis – Linux® perf kernel module constraints

◢ Profiling as non-root user requires /proc/sys/kernel/perf_event_paranoid to be set to -1

◢ Open file descriptors should be increased to (using “ulimit -n” command)

• ~100 * number of logical cores

◢ For Gen2 and Gen3 EPYC™ processors, following distributions are supported:

• Red Hat Enterprise Linux (RHEL) 8.0.2 with kernel version 4.18.0-80.7.1.el8 or later

• CentOS® 8.0.1905 with kernel version 4.18.0-80.7.1.el8 or later

• Ubuntu® 18.04.3 LTS or 19.10 or later

• SUSE® Linux Enterprise Server (SUSE) 15 SP1 with kernel version 4.12.14-197.26 or later

◢ On Gen2 and Gen3 EPYC, older Linux® kernels may lead to following error messages:

• kernel: “Uhhuh. NMI received for unknown reason 3d on CPU 1.” 

• kernel: “Do you have a strange power saving mode enabled?”

• kernel: “Dazed and confused, but trying to continue”

AMD µProf Profiler Introduction - v3.4 2021
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◢ [AMD Public Use]

DISCLAIMER AND TRADEMARKS
DISCLAIMER The information contained herein is for informational purposes only, and is subject to change without notice. While every precaution has been taken in 

the preparation of this document, it may contain technical inaccuracies, omissions and typographical errors, and AMD is under no obligation to update or otherwise 

correct this information. Advanced Micro Devices, Inc. makes no representations or warranties with respect to the accuracy or completeness of the contents of this 

document, and assumes no liability of any kind, including the implied warranties of noninfringement, merchantability or fitness for particular purposes, with respect 

to the operation or use of AMD hardware, software or other products described herein. No license, including implied or arising by estoppel, to any intellectual 

property rights is granted by this document. Terms and limitations applicable to the purchase or use of AMD’s products are as set forth in a signed agreement 

between the parties or in AMD's Standard Terms and Conditions of Sale.

© 2021 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo, EPYC, and combinations thereof are trademarks of Advanced Micro Devices, 

Inc. Other product names used in this publication are for identification purposes only and may be trademarks of their respective companies.  The CentOS Marks are 

trademarks of Red Hat, Inc. Intel is a registered mark of Intel Corporation. Java is a registered mark of Oracle and/or its affiliates. LLVM is a trademark 

of LLVM Foundation. Linux is the registered trademark of Linus Torvalds in the U.S. and other countries. The OpenMP name and the OpenMP logo are registered 

trademarks of the OpenMP Architecture Review Board. Oracle is a registered mark of Oracle and/or its affiliates. ParTec and ParaStation are registered trademarks 
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Contents

▪ Vectorization overview

• Terminology, vectorization code types, data layout and alignment

▪ SIMD instruction set switches (for Intel® compilers)

▪ OpenMP* SIMD

• OpenMP* SIMD construct

• OpenMP* DECLARE SIMD construct

▪ SIMD programming patterns

• Reduction, outer loop vectorization, compress, search and histogram loops

▪ Summary

*Other names and brands may be claimed as the property of others.
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Vectorization of code

▪ Transform sequential code to exploit SIMD processing capabilities of 
Intel® processors

• Calling a vectorized library

• Automatically by tools like a compiler

• Manually by explicit syntax

for(i = 0; i <= MAX; i++)

c[i] = a[i] + b[i];

+

a[i+7] a[i+6] a[i+5] a[i+4] a[i+3] a[i+2] a[i+1] a[i]

b[i+7] b[i+6] b[i+5] b[i+4] b[i+3] b[i+2] b[i+1] b[i]

c[i+7] c[i+6] c[i+5] c[i+4] c[i+3] c[i+2] c[i+1] c[i]

=
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Vectorization terminology

▪ Single Instruction Multiple Data (SIMD)
• Processing vector with a single operation

• Provides data level parallelism (DLP)

• More efficient than scalar processing due to DLP

▪ Vector
• Consists of more than one element

• Elements are of same scalar data types (e.g. floats, integers, …)

▪ Vector length (VL), i.e., number of elements in the vector

Scalar 
Processing

A B

C

+ Vector 
Processing

BiBi

Ci

+

Ai

Ci

Ai

Ci

Ai

Ci

Ai

VL

BiBi
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Peel, main and remainder loops

▪ A vectorized loop consists of

• Peel loop (optional)

• Used for the unaligned references in the loop. Uses scalar or slower vector.

• Main loop body

• Typically, the fastest part

• Loop remainder (optional)

• Used when the number of iterations (trip count) is not divisible by the vector length. Uses Scalar or slower vector.

▪ Larger vector registers mean more iterations in peel/remainder 

▪ To avoid overhead from peel/remainder loops

• Avoid loops with a very small trip count

• Align the data

• If possible, let the number of iterations be divisible by the vector length

This is where we want our loops to 
be executing! 
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Vectorization software architecture

Intel® Math Kernel Library

Array Notation:  Fortran, 
Intel® Cilk™ Plus

Auto vectorization

Semi-auto vectorization:     
#pragma (vector, ivdep,  simd)

OpenCL*

C/C++ Vector Classes         
(F32vec16, F64vec8)

Intrinsics

Ease of use

Fine control

Vector Options
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Overview of vector code types

▪ Auto vectorization
for (int i = 0; i < N; ++i) {

A[i] = B[i] + C[i];

}

▪ Array notation
A(:) = B(:) + C(:)

▪ OpenMP SIMD construct
#pragma omp simd

for (int i = 0; i < N; ++i) {

A[i] = B[i] + C[i];

}

▪ OpenMP SIMD function
#pragma omp declare simd

float ef(float a, float b) {

return a + b;

}

#pragma omp simd

for (int i = 0; i < N; ++i)

A[i] = ef(B[i], C[i]);
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Automatic vectorization

▪ The compiler vectorizer works similarly for SSE, AVX, AVX2 and 
AVX-512 (C/C++, Fortran)

• Enabled by default at optimization level -O2

• Some ISA features, such as vector masks, gather/scatter instructions and fused 
multiply-add (FMA) enable better vectorization of code

▪ Vectorized loops may be recognized by

• Compiler vectorization and optimization reports (Intel compilers)
-qopt-report-phase=vec –qopt-report=5

• Looking at the assembly code, -S

• Using Intel® VTune™ or Intel Advisor
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Optimization report: Example

▪ Example novec.f90: 1: subroutine fd(y)

2:   integer :: i

3:   real, dimension(10), intent(inout) :: y

4:   do i=2,10

5:     y(i) = y(i-1) + 1

6:   end do

7: end subroutine fd

$ ifort –c novec.f90 –qopt-report=5

ifort: remark #10397: optimization reports are generated in *.optrpt files in the output location

$ cat novec.optrpt

…

LOOP BEGIN at novec.f90(4,5)

remark #15344: loop was not vectorized: vector dependence prevents vectorization

remark #15346: vector dependence: assumed FLOW dependence between y line 5 and y line 5

remark #25436: completely unrolled by 9

LOOP END

…
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Reasons why automatic vectorization fails

▪ Compiler prioritizes code correctness

▪ Compiler heuristics to estimate vectorization efficiency

▪ Vectorization could lead to incorrect or inefficient code due to

• Data dependencies 

• Alignment 

• Function calls in loop block

• Complex control flow / conditional branches

• Mixed data types

• Non-unit stride between elements 

• Loop body too complex (register pressure)

• ...
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Preparing code for SIMD
Identify Hotspots

Integer 
or FP?

Can 
convert 
to SP?

Change to SP

Re-layout data for SIMD efficiency

Align data structures

Convert code to SIMD form

Follow SIMD coding guidelines

Optimize memory access patterns
and prefetch (if appropriate)

Further optimization

IntegerFP

Yes

No

Precision is 
important: 
impacts the 
SIMD width.
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Data Layout – why it is important

▪ Instruction-Level

• Hardware is optimized for contiguous loads/stores

• Support for non-contiguous accesses differs with hardware
(e.g., AVX2/AVX-512 gather)

▪ Memory-Level

• Contiguous memory accesses are cache-friendly

• Number of memory streams can place pressure on prefetchers

171



13
Copyright © 2021 Intel Corporation. All rights reserved.

Data layout – common layouts

Array-of-Structs (AoS)

▪ Pros:
Good locality of 

{x, y, z},

1 memory stream

▪ Cons:
Potential for gather/scatter

Struct-of-Arrays (SoA)

▪ Pros:
Contiguous load/store

▪ Cons:
Poor locality of 

{x, y, z},

3 memory streams

Hybrid (AoSoA)

▪ Pros:
Contiguous load/store,

1 memory stream

▪ Cons:
Not a “normal” layout

x x xx x x

y y yy y y

z z zz z z

x x

x x

x x

y y

y y

y y

z z

z z

z z

x x

x x

x x

yy

yy

yy

z z

z z

z z
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Data alignment – why it is important

0 1 2 3 … … 6 7 8 9 … … … … … …

Cache Line 0 Cache Line 1

0 1 2 3 6 7 8 9

Aligned Load
▪ Address is aligned

▪ One cache line

▪ One instruction

Unaligned Load
▪ Address is not aligned

▪ Potentially multiple cache lines

▪ Potentially multiple instructions

173



15
Copyright © 2021 Intel Corporation. All rights reserved.

Data alignment – sample applications

▪ 1) Align Memory
_mm_malloc(bytes, 64) / !dir$ attributes align:64

▪ 2) Access Memory in an Aligned Way
for (i = 0; i < N; i++) { array[i] … }

▪ 3) Tell the Compiler    (C\C++ / Fortran)
#pragma omp simd aligned(p) / !$omp simd aligned(p)

__assume_aligned(p, 16) / !dir$ assume_aligned (p, 16)

__assume(i % 16 == 0) / !dir$ assume (mod(i,16) .eq. 0)
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Alignment impact: example

▪ Unaligned access: ▪ Aligned access
void mult(int N, double* a, double* b, double* c)

{

int i;

#pragma omp simd aligned(a,b,c)

for (i = 0; i < N; i++)

c[i] = a[i] * b[i];

}

LOOP BEGIN at mult.c(5,3)
remark #15388: vectorization support: reference c[i] has aligned access   [ mult.c(6,5) ]
remark #15388: vectorization support: reference a[i] has aligned access   [ mult.c(6,12) ]
remark #15388: vectorization support: reference b[i] has aligned access   [ mult.c(6,19) ]

...   
remark #15448: unmasked aligned unit stride loads: 2
remark #15449: unmasked aligned unit stride stores: 1
remark #15475: --- begin vector cost summary ---
remark #15476: scalar cost: 8
remark #15477: vector cost: 1.250
remark #15478: estimated potential speedup: 5.260
remark #15488: --- end vector cost summary ---

LOOP END
...

void mult(int N, double* a, double* b, double* c)

{

int i;

#pragma omp simd

for (i = 0; i < N; i++)

c[i] = a[i] * b[i];

}

LOOP BEGIN at mult.c(5,3)
<Peeled loop for vectorization>

remark #25015: Estimate of max trip count of loop=3
LOOP END

LOOP BEGIN at mult.c(5,3)
remark #15388: vectorization support: reference c[i] has aligned access   [ mult.c(6,5) ]
remark #15389: vectorization support: reference a[i] has unaligned access   [ mult.c(6,12) ]
remark #15389: vectorization support: reference b[i] has unaligned access   [ mult.c(6,19) ]
remark #15381: vectorization support: unaligned access used inside loop body

...
remark #15449: unmasked aligned unit stride stores: 1
remark #15450: unmasked unaligned unit stride loads: 2
remark #15475: --- begin vector cost summary ---
remark #15476: scalar cost: 8
remark #15477: vector cost: 1.750
remark #15478: estimated potential speedup: 3.890
remark #15488: --- end vector cost summary ---

LOOP END
...

Both cases compiled as: icc -qopenmp -xCORE-AVX2 -qopt-report=5 -c mult.c -o mult.o
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SIMD instruction set switches (for Intel® 
compilers)
Instruction set architecture switches, instruction set defaults
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SIMD instruction set switches (1/3)
For Intel® compilers

▪ Linux*, OS X*: -x<feature>, Windows*: /Qx<feature>

• Might enable Intel processor specific optimizations

• Processor-check added to “main” routine:
Application errors in case SIMD feature missing or non-Intel processor with appropriate/informative 
message

▪ Linux*, OS X*: -ax<features>, Windows*: /Qax<features>

• Multiple code paths: baseline and optimized/processor-specific

• Optimized code paths for Intel processors defined by <features>

• Multiple SIMD features/paths possible, e.g.: -axSSE2, CORE-AVX2

• Baseline code path defaults to –msse2 (/arch:sse2)

• The baseline code path can be modified by –m<feature> or –x<feature> (/arch:<feature> or 
/Qx<feature>)
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SIMD instruction set switches (2/3)
For Intel® compilers

▪ Linux*, OS X*: -m<feature>, Windows*: /arch:<feature>

• Neither check nor specific optimizations for Intel processors:
Application optimized for both Intel and non-Intel processors for selected SIMD feature

• Missing check can cause application to fail in case extension not available

▪ Default for Linux*: -msse2, Windows*: /arch:sse2

• Activated implicitly

• Implies the need for a target processor with at least Intel® SSE2

▪ Default for OS X*: -xsse3 (IA-32), -xssse3 (Intel® 64)
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SIMD instruction set switches (3/3)
For Intel® compilers

▪ Special switch for Linux*, OS X*: -xHost, Windows*: /QxHost

• Compiler checks SIMD features of current host processor (where built on) and makes use of latest SIMD 
feature available

• Code only executes on processors with same SIMD feature or later as on build host

• As for -x<feature> or /Qx<feature>, if “main” routine is built with
–xHost or /QxHost the final executable only runs on Intel processors

▪ Disabling vectorization Linux*, OS X*: -no-vec, Windows*: /Qvec-

• Disables vectorization for the compile unit

• The compiler can still use some SIMD features
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SIMD feature set names (1/2)
For Intel® compilers

SIMD Feature Description

CORE-AVX512 May generate Intel® Advanced Vector Extensions 512 (Intel® AVX-512) Foundation instructions, Intel® AVX-512 Conflict 
Detection instructions, and other AVX-512  subsets which will be available on future Intel® XEON™ architecture 
Optimizes for Intel® processors that support Intel® AVX-512 instructions. Sets –qopt-zmm-usage=low by default.

MIC-AVX512 May generate Intel® Advanced Vector Extensions 512 (Intel® AVX-512) Foundation instructions, Intel® AVX-512 Conflict 
Detection instructions, Intel® AVX-512 Exponential and Reciprocal instructions, Intel® AVX-512 Prefetch instructions for 
Intel® processors, and the instructions enabled with CORE-AVX2. Optimizes for Intel® processors that support Intel® 
AVX-512 instructions.

COMMON-AVX512 May generate Intel® Advanced Vector Extensions 512 (Intel® AVX-512) Foundation instructions and  Intel® AVX-512 
Conflict Detection instructions. Optimizes for Intel® processors that support Intel® AVX-512 instructions. Sets –qopt-
zmm-usage=high by default.

CORE-AVX2 May generate Intel® Advanced Vector Extensions 2 (Intel® AVX2), Intel® AVX, SSE4.2, SSE4.1, SSE3, SSE2, SSE and Intel 
SSSE3 instructions.

CORE-AVX-I May generate Intel® Advanced Vector Extensions (Intel® AVX), including instructions in 3rd generation Intel® Core™ 
processors, Intel® SSE4.2, SSE4.1, SSE3, SSE2, SSE and Intel SSSE3. 
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SIMD feature set names (2/2)
For Intel® compilers

SIMD Feature Description

AVX May generate Intel® Advanced Vector Extensions (Intel® AVX), SSE4.2, SSE4.1, SSE3, SSE2, SSE and Intel SSSE3. 

ATOM_SSE4.2 May generate MOVBE instructions for Intel processors (depending on setting of -minstruction or /Qinstruction). May 
also generate Intel® SSE4.2, SSE3, SSE2 and SSE instructions for Intel processors. Optimizes for Intel® Atom™ 
processors that support Intel® SSE4.2 and MOVBE instructions. 

SSE4.2 May generate Intel® SSE4.2, SSE4.1, SSE3, SSE2, SSE and Intel SSSE3.

SSE4.1 May generate Intel® SSE4.1, SSE3, SSE2, SSE and Intel SSSE3.

ATOM_SSSE3
deprecated:

SSE3_ATOM & SSSE3_ATOM

May generate MOVBE instructions for Intel processors (depending on setting of -minstruction or /Qinstruction). May 
also generate Intel® SSE3, SSE2, SSE and Intel® SSSE3 instructions for Intel processors. Optimizes for Intel® Atom™

processors that support Intel® SSE3 and MOVBE instructions. 

SSSE3 May generate Intel® SSE3, SSE2, SSE and Intel SSSE3.

SSE3 May generate Intel® SSE3, SSE2 and SSE.

SSE2 May generate Intel® SSE2 and SSE.
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OpenMP* SIMD
OpenMP* SIMD construct, OpenMP* DECLARE SIMD construct

*Other names and brands may be claimed as the property of others.
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OpenMP* API

▪ De-facto standard, OpenMP* 5.1 out since November 2020

▪ API for C/C++ and Fortran for shared-memory parallel programming

▪ Based on directives 

▪ Portable across vendors and platforms 

▪ Supports various types of parallelism

*Other names and brands may be claimed as the property of others.

183



25
Copyright © 2021 Intel Corporation. All rights reserved.

Cluster Group of computers
communicating through fast interconnect

Coprocessors/Accelerators Special compute devices
attached to the local node through special interconnect

Node Group of processors
communicating through shared memory

Socket Group of cores
communicating through shared cache

Core Group of functional units
communicating through registers

Hyper-Threads Group of thread contexts sharing functional units

Superscalar Group of instructions sharing functional units

Pipeline Sequence of instructions sharing functional units

Vector Single instruction using multiple functional units

Levels of parallelism in OpenMP 5.1

OpenMP 5.1 SIMD

OpenMP 5.1 for Devices

OpenMP 4.0 AffinityOpenMP 4.0 AffinityOpenMP 4.0 AffinityOpenMP 5.1 Threading
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Explicit vectorization 

▪ Compiler Responsibilities

• Allow programmer to declare that code can and should be run in SIMD

• Generate the code the programmer asked for

▪ Programmer Responsibilities

• Correctness (e.g., no dependencies, no invalid memory accesses)

• Efficiency (e.g., alignment, loop order, masking)
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Explicit vectorization: example

▪ The two += operators have different meaning from each other

▪ The programmer should be able to express those differently

▪ The compiler has to generate different code

▪ The variables i, p and step have different “meaning” from each other

float sum = 0.0f;

float *p = a;

int step = 4;

#pragma omp simd reduction(+:sum) linear(p:step) 

for (int i = 0; i < N; ++i) {

sum += *p;

p += step;

}
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Explicit vectorization: example

▪ mandel() function is called from a loop over X/Y points

▪ We would like to vectorize that outer loop

▪ Compiler creates a vectorized function that acts on a vector of N values of c

#pragma omp declare simd simdlen(16)

uint32_t mandel(fcomplex c)

{

uint32_t count = 1; fcomplex z = c;

for (int32_t i = 0; i < max_iter; i += 1) {

z = z * z + c; int t = cabsf(z) < 2.0f;

count += t; 

if (!t) { break; }

}

return count;

}
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Before OpenMP 5.1 SIMD

▪ Programmers had to rely on auto-vectorization…

▪ … or to use vendor-specific extensions
• Programming models (e.g., Intel® Cilk™ Plus)

• Compiler pragmas (e.g., #pragma vector)

• Low-level constructs (e.g., _mm_add_pd())

#pragma omp parallel for

#pragma vector always

#pragma ivdep

for (int i = 0; i < N; i++) {

a[i] = b[i] + ...;

}

You need to trust the compiler 
to do the “right” thing.
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OpenMP SIMD Loop Construct

▪ Vector parallelism is decribed with simd construct 

• Cut loop into chunks that fit a SIMD vector register

• No thread parallelization of the loop body

▪ Syntax (C/C++)
#pragma omp simd [clause[[,] clause],…] 

for-loop

▪ Syntax (Fortran)
!$omp simd [clause[[,] clause],…]

do-loop
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OpenMP SIMD: example

void ssum(int n, double *a, double *b, double *c) {

#pragma omp simd

for (int k=0; k<n; k++)   

c[k] = a[k] + b[k];

}

a[k]

+

b[k]

=

c[k]

0 8 16 24
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OpenMP SIMD loop clauses

▪ private(var-list):

Uninitialized vectors for variables in var-list

▪ reduction(op:var-list):

Create private variables for var-list and apply reduction operator op at the end of the construct

42x: ? ? ? ?

42x:12 5 8 17
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OpenMP SIMD loop clauses

▪ safelen(length)

• Maximum number of iterations that can run concurrently without breaking a dependence

• in practice, maximum vector length

▪ linear(list[:linear-step])

• The variable’s value is in relationship with the iteration number

xi = xorig + i * linear-step

▪ aligned(list[:alignment])

• Specifies that the list items have a given alignment

• Default is alignment for the architecture 

▪ collapse(n)

• Combine the iteration space of the next n loops
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OpenMP SIMD worksharing construct

▪ Parallelize and vectorize a loop nest

• Distribute a loop’s iteration space across a thread team

• Subdivide loop chunks to fit a SIMD vector register

▪ Syntax (C/C++)
#pragma omp for simd [clause[[,] clause],…] 

for-loop

▪ Syntax (Fortran)
!$omp do simd [clause[[,] clause],…] 

do-loop
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OpenMP SIMD workshare: example

void ssum(int n, double *a, double *b, double *c) {

#pragma omp for simd

for (int k=0; k<n; k++)   

c[k] = a[k] + b[k];

}

a[k]

+

b[k]

=

c[k]

0 8 16 24

Thread 0 Thread 1
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SIMD function vectorization

▪ Declare one or more functions to be compiled for calls from a SIMD-
parallel loop

▪ Syntax (C/C++):
#pragma omp declare simd [clause[[,] clause],…]

[#pragma omp declare simd [clause[[,] clause],…]]

[…]

function-definition-or-declaration

▪ Syntax (Fortran):
!$omp declare simd ! Within function body

!$omp declare simd(proc-name-list) ! At call site
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OpenMP DECLARE SIMD: example

▪ Generate a SIMD-enabled (vector) version of a scalar function that can be called 
from a vectorized loop

REAL FUNCTION func(x, xp)

!$omp declare simd(func) uniform( xp )

REAL :: x, xp, denom

denom = (x-xp)**2

func = 1./sqrt(denom)    

END FUNCTION

!$omp simd private(x) reduction(+:sumx)

DO i = 1, nx-1

x = x0 + i * h

sumx = sumx + func(x, xp)

END DO

SIMD function must have an explicit interface

remark #15301: OpenMP SIMD LOOP WAS VECTORIZED

…

remark #15484: vector function calls: 1

xp is constant, x can be a vector

These clauses are required for correctness, just 
like with OpenMP threading

remark #15347: FUNCTION WAS VECTORIZED with...
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OpenMP DECLARE SIMD: example

▪ Generate a SIMD-enabled (vector) version of a scalar subroutine that can be 
called from a vectorized loop:

SUBROUTINE compute(x, y)

!$omp declare simd(compute) linear(ref(x, y))

real, intent(in)  :: x

real, intent(out) :: y

y = 1. + sin(x)**3

END SUBROUTINE compute

…

!$omp simd

DO j = 1,n

CALL compute(a(j), b(j))

END DO

remark #15301: OpenMP SIMD LOOP WAS VECTORIZED

…

remark #15484: vector function calls: 1

Important because arguments are passed by 
reference in Fortran

remark #15347: FUNCTION WAS VECTORIZED with...

SIMD function must have an explicit interface
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SIMD function vectorization clauses

▪ simdlen (length)

• Generate function to support a given vector length

▪ uniform (argument-list)

• Argument has a constant value between the iterations of a given loop

▪ inbranch

• Function always called from inside an if statement

▪ notinbranch

• Function never called from inside an if statement

▪ linear(argument-list[:linear-step])

▪ aligned(argument-list[:alignment])

▪ reduction(operator:list)
Same as in SIMD
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SIMD function arguments and LINEAR(REF)

▪ Whenever SIMD function arguments are passed by reference: 

• The compiler places consecutive addresses in a vector register, resulting in a 
gather from the addresses when the values are needed (=slow)

• LINEAR(REF(…)) tells the compiler that the addresses are consecutive, 
resulting to a single dereference and then copy of the consecutive values to a 
vector register (=fast)

▪ Recall that Fortran passes all arguments by reference

• LINEAR(REF(…)) is very important for efficient SIMD vectorization of Fortran 
functions and subroutines
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Targeting SIMD functions for CPU ISA

▪ The default binary ABI requires passing arguments in 128 bit xmm registers

• ABI is selected irrespective of –xCORE-AVX2 or -xCORE-AVX512 feature flags

• Results in inefficient 128 bit code instead of 256 or 512 bit

• Compiler optimization report:
remark #15347: FUNCTION WAS VECTORIZED with xmm, simdlen=4,…

▪ Intel® compiler flag -vecabi=cmdtarget

• SIMD register width chosen according to the –x<feature>

• Compiler optimization report:
remark #15347: FUNCTION WAS VECTORIZED with zmm, simdlen=16, …
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Example: OpenMP 4.0 SIMD in Elmer
2S Intel® Xeon® Gold 6148
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Performance varies by use, configuration, and other factors. Learn more at www.Intel.com/PerformanceIndex.  Performance results are based on testing as of dates shown in 
configurations and may not reflect all publicly available updates. See configuration disclosure for details. For  configuration info, see System Setup.

Results from paper: Byckling, M., Kataja, J., Klemm, M. and Zwinger, T., 2017, September. OpenMP* SIMD Vectorization and 
Threading of the Elmer Finite Element Software. In International Workshop on OpenMP (pp. 123-137). Springer, Cham.
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SIMD programming patterns
Reduction, outer loop vectorization, compress, search and histogram loops
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SIMD programming patterns

▪ Dependencies can make vectorization unsafe

▪ Some special patterns can still be handled by the compiler

• The compiler may recognize a pattern  (auto-vectorization)

• Often works only for simple, ‘clean’ examples

• The compiler is enforced (explicit vector programming)

• May work for more complex cases

• Examples: reduction, compress/expand, search, etc.

▪ Speed-up can come from vectorizing the rest of a large loop more 
than from vectorization of the pattern itself
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Reduction

▪ Reduction operations commonly auto-vectorize with any instruction set

real function reduce(n, arr)

implicit none

integer :: n, i

real :: arr(n), sum

sum = 0.0

do i=1,n

if (arr(i)>0) sum=sum+arr(i) ! sum causes a dependency

end do

reduce = sum

end function reduce

> ifort -xCORE-AVX512 -qopt-report=5 -qopt-report-file=stdout \

-c reduce.F90 -o reduce

…

LOOP BEGIN at reduce.F90(6,3)

…

remark #15300: LOOP WAS VECTORIZED

…
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Reduction and floating point models

▪ Vectorization would change order of operations and hence the compiler is 
unable to vectorize

real function reduce(n, arr)

implicit none

integer :: n, i

real :: arr(n), sum

sum = 0.0

do i=1,n

if (arr(i)>0) sum=sum+arr(i) ! sum causes a dependency

end do

reduce = sum

end function reduce

> ifort -xCORE-AVX512 -qopt-report=5 -qopt-report-file=stdout \

-fp-model=precise -c reduce.F90 -o reduce

…

LOOP BEGIN at reduce.F90(6,3)

remark #15331: loop was not vectorized: precise FP model implied by 

the command line or a directive prevents vectorization. Consider using 

fast FP model [ reduce.F90(7,20) ]

…
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OpenMP reductions

▪ Floating point model can be overridden with explicit vector reduction (OpenMP
SIMD reduction)

real function reduce(n, arr)

implicit none

integer :: n, i

real :: arr(n), sum

sum = 0.0

!$omp simd reduction(+:sum)

do i=1,n

if (arr(i)>0) sum=sum+arr(i) ! sum causes a dependency

end do

reduce = sum

end function reduce

> ifort -xCORE-AVX512 -qopt-report=5 -qopt-report-file=stdout \

-fp-model=precise –qopenmp -c reduce.F90 -o reduce

…

LOOP BEGIN at reduce.F90(7,3)

…

remark #15301: OpenMP SIMD LOOP WAS VECTORIZED

…
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OpenMP SIMD outer loop vectorization

▪ When nd is small (typically <8), outer loop vectorization may be profitable. 
Private copies of j and d needed for correctness

subroutine dist(pt, dis, n, nd, ptref)

implicit none

integer :: n, nd, ipt, j

real    :: pt(nd,n), dis(n), ptref(nd), d

!$omp simd private(j,d) 

do ipt=1,n

d = 0.

do j=1,nd

d = d + (pt(j,ipt) - ptref(j))**2

end do

dis(ipt) = sqrt(d)

end do

end subroutine dist

LOOP BEGIN at dist.F90(7,3)

…

remark #15301: OpenMP SIMD LOOP WAS VECTORIZED

…

LOOP BEGIN at dist.F90(9,6)

remark #25460: No loop optimizations reported

LOOP END

Outer loop with a large trip count n

Inner loop with a small trip count nd
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OpenMP SIMD outer loop vectorization

▪ If the inner loop trip count is fixed and the compiler knows it, the inner loop can 
be completely unrolled

subroutine dist(pt, dis, n, nd, ptref)

implicit none

integer :: n, nd, ipt, j

real    :: pt(nd,n), dis(n), ptref(nd), d

!$omp simd private(j,d)

do ipt=1,n

d = 0.

do j=1,KNOWN_TRIP_COUNT

d = d + (pt(j,ipt) - ptref(j))**2

end do

dis(ipt) = sqrt(d)

end do

end subroutine dist

LOOP BEGIN at dist.F90(7,3)

…

remark #15301: OpenMP SIMD LOOP WAS VECTORIZED

…

LOOP BEGIN at dist.F90(10,6)

remark #25436: completely unrolled by 3   (pre-vector)

LOOP END

Outer loop with a large trip count n

Inner loop with a compile time constant small trip count 
KNOWN_TRIP_COUNT (for example 3)
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Compress pattern

▪ Compress pattern does not auto-vectorize with Intel® AVX2

subroutine compress(a, b, na, nb )

implicit none

real,    intent(in ) :: a(na)

real,    intent(out) :: b(*)

integer, intent(in)  :: na

integer, intent(out) :: nb

integer              :: ia

nb = 0

do ia=1, na

if(a(ia) > 0.) then

nb = nb + 1   ! dependency

b(nb) = a(ia) ! compress

end if

end do

end subroutine compress

> ifort -qopenmp -xCORE-AVX2 \

-qopt-report=5 -qopt-report-file=stdout \

-c compress.F90 -o compress.o

…

LOOP BEGIN at compress.F90(9,3)

remark #25084: Preprocess Loopnests:      \

Moving Out Store [ compress.F90(11,9) ]

remark #15344: loop was not vectorized:   \

vector dependence prevents vectorization

…
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Compress pattern

▪ Auto-vectorizes with Intel® AVX512 (vcompressps instruction)

subroutine compress(a, b, na, nb )

implicit none

real,    intent(in ) :: a(na)

real,    intent(out) :: b(*)

integer, intent(in)  :: na

integer, intent(out) :: nb

integer              :: ia

nb = 0

do ia=1, na

if(a(ia) > 0.) then

nb = nb + 1   ! dependency

b(nb) = a(ia) ! compress

end if

end do

end subroutine compress

> ifort -qopenmp -xCORE-AVX512 \

-qopt-report=5 -qopt-report-file=stdout \

-c compress.F90 -o compress.o

…

LOOP BEGIN at compress.F90(9,3)

remark #25084: Preprocess Loopnests: \

Moving Out Store [ compress.F90(11,9) ]

…

remark #15300: LOOP WAS VECTORIZED

…

remark #15497: vector compress: 1

…
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Compress pattern (OpenMP SIMD)

subroutine compress(a, b, na1, na2, nb )

real     :: a(na1,na2), b(*)

integer  :: na1, na2, nb, ia1, ia2, ib

real     :: sum

nb = 0; ib=0

!$omp simd private(ia1,sum) 

do ia2=1, na2

sum = 0.0

do ia1=1, na1

sum = sum + a(ia1,ia2)

end do

!$omp ordered simd monotonic(ib)

if (sum > 0.) then

ib = ib + 1

b(ib) = sum

end if

!$omp end ordered 

end do

nb = ib

end subroutine compress

> ifort -qopenmp -xCORE-AVX512 \

-qopt-report=5 -qopt-report-file=stdout \

-c compress.F90 -o compress.o

…

LOOP BEGIN at compress.F90(7,3)

...

remark #15301: OpenMP SIMD LOOP WAS VECTORIZED

...

remark #15497: vector compress: 1 

...

An extension supported by the Intel compiler, not in OpenMP
standard yet. Needed to express dependency on ib, code not correct 
otherwise as !$omp simd ignores dependencies.
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Search loops

▪ A vectorizable loop must have a single exit and the iteration count 
must be known at the start of execution

• Else a later iteration may have started before an earlier iteration decides the 
loop should be terminated

▪ Simple “search”  loops are an exception which the compiler 
recognizes 

• executes special code if an exit occurs during a SIMD iteration

• only works if no stores back to memory
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Search pattern (simple)

▪ Search pattern auto-vectorizes if it contains no stores back to memory

integer function search(na, target, array)

implicit none

integer, intent(in) :: na, target, array(na)

integer :: i

do i=1,na

if (array(i) == target) exit

end do

search = i

end function search

…

LOOP BEGIN at search.F90(6,3)

…

remark #15300: LOOP WAS VECTORIZED

…
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Search pattern (with stores)

▪ Search pattern with stores does not auto-vectorize

integer function search(a,b,c,n)

implicit none 

real, dimension(n) :: a, b, c 

integer            :: n, i 

do i=1,n 

if (a(i) < 0.) exit 

c(i) = sqrt(a(i)) * b(i) 

end do 

search = i-1

end function search

LOOP BEGIN at search_store.F90(6,3)

remark #15520: loop was not vectorized: loop with multiple \

exits cannot be vectorized unless it meets search loop   \

idiom criteria [ search_store.F90(9,3) ]

LOOP END

214

56
Copyright © 2021 Intel Corporation. All rights reserved.

Search pattern (with stores, vectorized)

▪ Splitting the loop enables vectorization with the cost of reloading a

integer function search(a,b,c,n) 

implicit none

real, dimension(n) :: a, b, c 

integer            :: n, i, j 

do i=1,n

if (a(i) < 0.) exit

end do

search = i-1

do j=1,search

c(j) = sqrt(a(j)) * b(j)

end do

end function search

LOOP BEGIN at search_split.F90(6,3)

…

remark #15300: LOOP WAS VECTORIZED

…

LOOP BEGIN at search_split.F90(11,3)

…

remark #15300: LOOP WAS VECTORIZED

…
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Search pattern (with stores, OpenMP SIMD)

▪ OpenMP SIMD enables vectorization without the cost of reloading a

integer function search(a,b,c,n) 

implicit none

real, dimension(n) :: a, b, c 

integer            :: n, i, j 

!$omp simd early_exit

do i=1,n

if (a(i) < 0.) exit

c(j) = sqrt(a(j)) * b(j)

end do

search = i-1

end function search

LOOP BEGIN at search_simd.F90(7,3)

…

remark #15301: OpenMP SIMD LOOP WAS VECTORIZED…

An extension supported by the Intel compiler, not in OpenMP
standard yet. Needed to express a loop with multiple exits.
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Histogram pattern

▪ Histogram pattern does not auto-vectorize with Intel® AVX2

• Store to a is a scatter (indirect addressing) and ia can have the same value for 
different values of i

• Vectorization with !$omp simd may cause incorrect results

subroutine histogram(n,a, b, ind)

implicit none

real :: a(n), b(n), ib

integer :: n, i, ia, ind(n)

! Accumulate inverse to a 

do i=1,n

ia=ind(i)

a(ia) = a(ia)+1/b(i)

end do

end subroutine histogram

> ifort -qopenmp -xCORE-AVX2 \

-qopt-report=5 -qopt-report-file=stdout \

-c histogram.F90 -o histogram.o

…

LOOP BEGIN at histogram.F90(7,3)

remark #15344: loop was not vectorized: vector dependence \

prevents vectorization

…
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Histogram pattern

▪ Histogram pattern auto-vectorizes with Intel® AVX512

• The VPCONFLICT instruction detects elements with conflicting indexes, allowing the 
generationg of a mask for the conflict free subset of elements

• Then re-execute the computation for remaining elements recursively

subroutine histogram(n,a, b, ind)

implicit none

real :: a(n), b(n), ib

integer :: n, i, ia, ind(n)

! Accumulate inverse to a 

do i=1,n

ia=ind(i)

a(ia) = a(ia)+1/b(i)

end do

end subroutine histogram

> ifort -qopenmp -xCORE-AVX512 \

-qopt-report=5 -qopt-report-file=stdout \

-c histogram.F90 -o histogram.o

…

LOOP BEGIN at histogram.F90(7,3)

…

remark #15300: LOOP WAS VECTORIZED

…

remark #15499: histogram: 1 

218

60
Copyright © 2021 Intel Corporation. All rights reserved.

Histogram pattern (OpenMP SIMD)

subroutine histogram(n,a, b, ind)

implicit none

real :: a(n), b(n), ib

integer :: n, i, ia, ind(n)

! Accumulate inverse to a 

!$omp simd  

do i=1,n

ia=ind(i)

!$omp ordered overlap(ia)

a(ia) = a(ia)+1/b(i)

!$omp end ordered  

end do

end subroutine histogram

> ifort -qopenmp -xCORE-AVX512 \

-qopt-report=5 -qopt-report-file=stdout \

-c histogram.F90 -o histogram.o

…

LOOP BEGIN at histogram.F90(8,3)

…

remark #15301: OpenMP SIMD LOOP WAS VECTORIZED

…

An extension supported by the Intel compiler, not in OpenMP
standard yet. Needed to express potential dependency with ia, code 
not correct otherwise as !$omp simd ignores dependencies.
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Histogram speed-up

▪ Speed-up depends on the problem details

• Comes mostly from vectorization of other heavy computation in the loop, not 
from the scatter itself

• Speed-up may be (much) less if there are many conflicts, for instance for 
histograms with a singularity or a narrow spike

• Speed-up due to vectorization would be considerably higher on Intel® Xeon 
Phi™ x200 processors because scalar processor is slower.

▪ Many problems map to histograms

• For instance: energy deposition in cells in particle transport Monte Carlo 
simulation, etc.
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Summary

▪ With Intel® Xeon processors, vectorization (and multithreading) are the 
keys to good floating point performance

▪ Application may have to be modified to improve vectorization (and 
threading) properties

▪ OpenMP is a standardized way to program vectorized and 
multithreaded programs
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Configuration details

Benchmarks computed on Intel internal system with Intel OPA. 
Intel® Xeon® processor Gold 6148: Dual Intel® Xeon® processor Gold 6148 2.4Ghz, 20 cores/socket, 40 cores, 40 threads (HT and Turbo ON), DDR4 192 GB, 
2666 MHz, RHEL 7.3, 1.0 TB SATA drive WD1003FZEX-00MK2A0, /proc/sys/vm/nr_hugepages=8000, Intel® Parallel Studio XE 2017 Update 4, tbbmalloc_proxy
Intel® Xeon® settings: Environment variables: KMP_AFFINITY=scatter,granularity=fine, I_MPI_FABRICS=shm, 
I_MPI_PIN_PROCESSOR_LIST=allcores:map=bunch

*Other names and brands may be claimed as the property of others.
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Notices & Disclaimers

Performance varies by use, configuration, and other factors. Learn more at www.Intel.com/PerformanceIndex.  

Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available 
updates. See configuration disclosure for details.

Your costs and results may vary.

Intel technologies may require enabled hardware, software or service activation.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. 
Other names and brands may be claimed as the property of others.
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Memory optimizationMemory optimization
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OutlineOutline

Deeper view into data caches
Basic considerations for cache efficiency

Loop traversal and interchange
Data structures

Cache optimization techniques
Cache blocking
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Deeper view into data cachesDeeper view into data caches
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Data cachesData caches

Modern CPUs use multilevel caches to access data
Utilize spatial and temporal locality of data: if data is already in the cache, latency
and bandwidth are improved
For instance, on Intel Cascade lake

L1 cache: latency 4-6 cycles, sustained bandwidth 133 B/cycle/core
L2 cache: latency 14 cycles, sustained bandwidth 52 B/cycle/core
L3 cache: latency 50-70 cycles, sustained bandwidth 16 B/cycle/core
Main memory: latency 120-150 ns, bandwidth 128 GB/s per socket
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Data cachesData caches

Sizes of the data caches are small compared to the main memory
L1 ~32 KiB
L2 512-1024 KiB
L3 1-4 MiB / core

Terminology
Cache hit: the requested data is in the cache
Cache miss: the requested data is not in the cache

Optimizing the use of caches is extremely important to leverage the full power of
modern CPUs
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Cache organizationCache organization

Cache is read and written in units of cache lines
64 bytes in current x86 CPUs

Upon miss, a line is evicted from the cache and replaced by the new line
Cache replacement policy determines which line is evicted

Inclusive cache: all the lines in the upper-level cache are also in the lower level
Exclusive cache: lines in the upper-level cache are not in the lower level
Cache can be also non-inclusive non-exclusive, i.e. line may or may not be present in
lower-level cache
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Cache organizationCache organization

Memory

Cache

...

Memory address 
aligned to cache line
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Write policiesWrite policies

Most modern CPUs employ a write-back cache write policy
a changed cache line is updated in the lower level hierarchy only when it is evicted

Upon write miss, the cache line is typically first read from the main memory (write-
allocate policy)
In multicore CPUs with private caches, writes may require updates also in the
caches of the other cores

232



Cache associativityCache associativity

A cache with the size of 32 KiB can fit 32 KiB / 64 B = 512 cache lines
In fully associate cache, each of the 512 entries can contain any memory location

Each entry needs to be checked for a hit which can be expensive for large caches

In direct mapped cache, each memory location maps into exactly one cache line
Part of the cache is not fully utilized if memory addresses are not evenly distributed:
some cache lines are evicted repeteadly while others remain empty

Set associative caches can achieve best of the both worlds: efficient search and
good utilization
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Set associative cacheSet associative cache

A N-way set associative cache is divided into sets with N cache lines in each
8-way set associative 32 KiB cache has 64 sets with 8 cache line entries per set

A memory address is mapped into any entry within a set
need to search only over N entries for a hit
better utilization than in a direct mapped cache, but conflict misses still possible

Fully associative and direct mapped as limiting cases N=∞ and N=1
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Example: 2-way set associative cacheExample: 2-way set associative cache

Memory

Set 1

Set 2

Set 3

Set 4

...

Total cache size = 8 cache lines
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Types of cache missesTypes of cache misses

Compulsory misses: happens the first time a memory address is accessed
Prefetching may prevent compulsory misses

Capacity misses: happens when data the data is evicted due to cache becoming full
Can be caused by bad spatial and temporal locality of data in the application
(inherent or bad implementation)

Conflict misses: happens when a set becomes full even when other sets have space
Can be caused by particular memory access patterns
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Optimizing data accessOptimizing data access
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Accessing multidimensional arrays in
incorrect order can generate poor
cache behaviour
Loops should written such that the
innermost loop index matches the
contiguous array index

C/C++ uses row major layout, i.e. last
index is contiguous
Fortran uses column major layout, i.e.
first index is contiguous

Logical layout
a
b

Layout in memory
a b c

c C/C++

 
Logical layout

a b c
Layout in memory

a b c

Fortran

 
Compiler optimizations may permute
the loop indices automatically if
possible

Accessing multidimensional arraysAccessing multidimensional arrays
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Original loop
real :: a(N,M)

real :: sum 

do i=1,N

  do j=1,M

     sum = sum + a(i,j) 

  end do

end do

Interchanged
real :: a(N,M) 

real :: sum 

 

do j=1,M 

  do i=1,N 

     sum = sum + a(i,j) 

  end do 

end do

Loop interchage example: FortranLoop interchage example: Fortran
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Original loop
float **a;

float sum;

for (int i=0; i < M; i++) 

  for (int j=0; j < N; j++) 

    sum = sum + a[j][i];

Interchanged
float **a; 

float sum; 

 

for (int j=0; j < N; j++) 

  for (int i=0; i < M; i++) 

    sum = sum + a[j][i];

Loop interchage example: C/C++Loop interchage example: C/C++

240



Data structuresData structures

Data structure choice has an effect on the memory layout
Structure of arrays (SoA) vs. Array of Structures (AoS)

Data should be stored based on its usage pattern
Avoid scattered memory access

Occasionally, use of nonconventional ordering or traversal of data is beneficial
Colorings, space filling curves, etc.
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Array of Structures
type point  

  real :: x, y, z 

end type point

type(point), allocatable :: points

allocate(points(N))

Structure of Arrays
type point  

  real, allocatable :: x(:)  

  real, allocatable :: y(:)  

  real, allocatable :: z(:) 

end type point 

 

type(point) :: points 

 

allocate(points%x(N), &  

         points%y(N), &  

         points%z(N))

Data structures: memory layoutData structures: memory layout
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Array of Structures
integer :: i, j 

real :: dist(4,4) 

do i = 1, 4 

  do j = i, 4 

    dist(i,j) = sqrt( & 

      (points(i)%x-points(j)%x)**2 + &

      (points(i)%y-points(j)%y)**2 + &

      (points(i)%z-points(j)%z)**2) 

  end do

end do

Structure of Arrays
integer :: i, j 

real :: dist(4,4) 

do i = 1, 4 

  do j = i, 4  

    dist(i,j) = sqrt( &  

      (points%x(i)-points%x(j))**2 + & 

      (points%y(i)-points%y(j))**2 + & 

      (points%z(i)-points%z(j))**2) 

  end do 

end do

Data structures: memory layoutData structures: memory layout
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Cache blockingCache blocking

Multilevel loops can be iterated in blocks in order improve data locality
Perform more computations with the data that is already in the cache

Complicated optimization: optimal block size is hardware dependent (cache sizes,
SIMD width, etc.)
Cache oblivious algorithms use recursion to improve performance portability
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Consider a 2D Laplacian
do j=1, 8 

  do i=1, 16

    a(i,j) = u(i-1, j) + u(i+1, j) &

           - 4*u(i,j)              &

           + u(i,j-1) + u(i,j+1)

  end do

end do

(Fictitious) cache structure
Each line holds 4 elemets
Cache can hold 12 lines of data

No cache reuse between outer loop
iterations

Cache blocking exampleCache blocking example

245

Blocking the inner loop
do IBLOCK = 1, 16, 4

  do j=1, 8 

    do i=1, IBLOCK, IBLOCK + 3

      a(i,j) = u(i-1, j) + u(i+1, j) &

             - 4*u(i,j)              &

             + u(i,j-1) + u(i,j+1)

    end do

  end do

end do

Better reuse for the j+1 data

Cache blocking exampleCache blocking example
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Iterate over 4x4 blocks
do JBLOCK = 1, 8, 4 

  do IBLOCK = 1, 16, 4

    do j=JBLOCK, JBLOCK + 3 

      do i=1, IBLOCK, IBLOCK + 3

        a(i,j) = u(i-1, j) + u(i+1, j) &

               - 4*u(i,j)              &

               + u(i,j-1) + u(i,j+1)

      end do

    end do

  end do

end do

Cache blocking exampleCache blocking example
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Cache blocking with OpenMPCache blocking with OpenMP

OpenMP 5.1 standard has tile construct for blocking
Compiler support not necessarily ready yet

!$omp tile sizes(4, 4)

do j=1, 8 

  do i=1, 16

    a(i,j) = u(i-1, j) + u(i+1, j) &

           - 4*u(i,j)              &

           + u(i,j-1) + u(i,j+1)

  end do

end do

!$omp end tile
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Array paddingArray padding

When data is accessed in strides which are multiple of the cache set size, conflict
misses may occur

In 8-way associative 32 KiB cache, there are 64 sets
Memory address which are 64*64 = 4096 bytes apart map into a same set

Example: in float a[1024][1024] each column maps into a same set

Array padding, i.e. allocating extra data can in some cases reduce conflict misses
float a[1024 + 16][1024]

Padding should preferably preserve alignment of data
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PrefetchingPrefetching

Modern CPUs try to predict data usage patterns and prefetch data to caches before
it is actually needed

Can alleviate even compulsory misses

Prefetching can be requested also by software
Compiler
Programmer via software directives and intrinsinc functions
Difficult optimization:

Too early: cache is filled with unnecessary data
Too late: CPU has to wait for the data
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Non-temporal storesNon-temporal stores

With write-allocate policy, a write miss incurs a load from main memory
If data is going to be just written and not reused, some CPUs contain instructions
for bypassing the cache by writing directly into the memory with non-temporal
stores
Non-temporal stores can be used via pragmas, compiler options, or intrinsincs

omp simd nontemporal(list) (OpenMP 5.0)
Possible benefits depend a lot on application, and misuse can degragade
performance
Hardware may also recognize access pattern and switch into non-temporal stores
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SummarySummary

Efficient cache usage is on of the most important aspects for achieving good
performance

Exploite spatial and temporal locality

Progammer can improve the cache usage by optimizing data layouts and access
patterns
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Miscellaneous single core optimizationsMiscellaneous single core optimizations
CSC Training, 2021-05
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OutlineOutline

Loop transformations
Mathematical routines
Branches
Function inlining
Intrincic functions
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Loop transformationsLoop transformations
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Loop transformationsLoop transformations

Loop transformations can provide better vectorization prospects, improve
instruction level parallelism, pipeline utilization and cache usage
Common transformations: interchange, unrolling, fusion, fission, sectioning, unroll
and jam
In many cases compiler can make loop transformations with high enough
optimization level

Understanding the concepts is still be useful for the programmer

In some cases manual programming can be useful
When misused, transformation can be disadvantageous for performance
Readability of code often suffers
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If the loop body is very small, overhead
from incrementing the loop counter
and from the test for the end of the
loop can be high
When vectorizing, loop is implicitly
unrolled by the vector length
May improve pipeline utilization and
instruction level parallelism
Additional logic needed for remainder
May increase register pressure

do i=1,N 

  c[i] = a[i] + b[i] 

end do

do i=1,N,4  ! unroll four times 

  c[i] = a[i] + b[i] 

  c[i+1] = a[i+1] + b[i+1] 

  c[i+2] = a[i+2] + b[i+2] 

  c[i+3] = a[i+3] + b[i+3] 

end do

Loop unrollingLoop unrolling
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Loop fission (or loop distribution) splits
one loop into sequence of loops
May improve cache usage and reduce
register pressure
May allow vectorization by moving
dependencies
Some dependencies may prohibit
fission

do j=1,N 

  b(i) = a(i) * a(i) 

  d(i) = c(i) - d(i-1)    ! flow dependency 

end do

 
do j=1,N  ! vectorization possible 

  b(i) = a(i) * a(i) 

end do 

do j=1,N 

  d(i) = c(i) - d(i-1) 

end do

Loop fissionLoop fission
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Loop fusion (or loop jamming) merges
multiple loops into one
May improve cache usage
May allow better pipeline utilization
and instruction level parallelism
May cause dependencies which prevent
applying the transformation

do j=1,N 

  b(i) = a(i) * a(i) 

end do 

do j=1,N 

  c(i) = c(i) * a(i)  

end do

 
do j=1,N 

  b(i) = a(i) * a(i) 

  c(i) = c(i) * a(i)  

end do

Loop fusionLoop fusion
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Loop sectioning (or strip mining)
transforms a loop into smaller chunks
by creating additional inner loops
May improve cache usage
May make the code easier for compiler
to vectorize

do i=1,N 

  process1(data(i)) 

  process2(data(i)) 

end do

 
do i=1,N,S 

  do j=i, min(N, i + S) 

     process1(data(i)) 

  end do 

  do j=i, min(N, i + S) 

    process2(data(i)) 

  end do 

end do

Loop sectioningLoop sectioning
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Unroll and jam unrolls an outer loop
and fuses then the inner loop
May allow better pipeline utilization
and instruction level parallelism
May potentiate other optimizations

do i=1,N   

  do j=1,M 

    b = 2 * a(i, j)  

    c(i,j) = b * b 

  end do 

end do

 
do j=1,N,2 

  do i=1,M 

    b1 = 2 * a(i, j) 

    b2 = 2 * a(i, j + 1) 

    c(i, j) = b1*b1 

    c(i, j + 1) = b2*b2 

  end do 

end do

Loop unroll and jamLoop unroll and jam
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Other optimizationsOther optimizations

262



Optimizing mathematical operationsOptimizing mathematical operations

Due to finite precision of floating point numbers, compilers need to be carefull in
some optimizations

(a + b) + c ≠ a + (b + c)
Some mathematical routines (sqrt, pow, sin, cos, ...) can be calculated with
different algorithms with different performance and precision

In some applications it is possible to compromise precision for speed

Most compilers have an option for faster mathematics ('-ffast-math' for gcc/clang
and '-fp-model fast=2' for Intel)

Important to check that results are valid !
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If fast math options cannot be use (i.e.
part of the application requires higher
precision), programmer can make some
optimizations by hand
Examples:

Move division out of the loop

Replace pow(x, n) where n is small
integer with multiplications (C/C++)

do i=1, n 

  do j=1, m 

    L(i,j) = (A(i-1,j) - 2.0*A(i,j) + A(i+1,j)) / dx**2 + & 

             (A(i,j-1) - 2.0*A(i,j) + A(i,j+1)) / dx**2 

  end do 

end do

vs.
idx2 = 1.0 / dx**2 

do i=1, n 

  do j=1, m 

    L(i,j) = (A(i-1,j) - 2.0*A(i,j) + A(i+1,j)) * idx2 + & 

             (A(i,j-1) - 2.0*A(i,j) + A(i,j+1)) * idx2 

  end do 

end do

 
double x3 = x*x*x  // instead of pow(x, 3)

Optimizing mathematical operationsOptimizing mathematical operations
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Optimizing branchesOptimizing branches

Branches have the possibility of stalling the CPU pipeline, and can thus be
expensive
When possible, if statements should be outside loop bodies

manual loop transformations can be helpful

Hardware branch predictor works well when the branching follows regular pattern
performing extra work for improving predictability may be worthwhile
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Inline functionsInline functions

When inlining, compiler replaces a call to function by the function body
Reduces function call overhead
If function is called within a loop, may provide additional optimization prospects

Compiler uses heuristics to decide if inlining is beneficial
Might require "interprocedural optimization" options

In C/C++ inline keyword is hint for the compiler to inline
In Fortran, programmer can force inlining only via compiler directives, otherwise
compiler makes the decision whether to inline a function
Overuse of inlining increases the executable size and may hurt performance
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Intrinsic functionsIntrinsic functions

Intrinsic functions are special functions that the compiler replaces with equivalent
CPU instruction

"high level assembly"
Often compiler specific

Examples:
Software prefetch: _mm_prefetch (C/C++), mm_prefetch (Fortran)

Non-temporal stores: _mm_stream_xxx (C/C++ only)
AVX instructions

Recommended only in special cases
Can make the code non-portable
Can also degragade performance - compiler might know better when to use
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SummarySummary

Loops can be transformed in various ways in order to improve performance
Often better leave the transformations for the compiler

Many mathematical operations can be performed faster with some compromise on
precision
Hard to predict branches may stall the CPU pipeline
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Web resourcesWeb resources

Intel Intrinsics guide: https://software.intel.com/sites/landingpage/IntrinsicsGuide/
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Programming OpenMP

Michael Klemm

Parallel Region

Credit for these slides go to the OpenMP tutorial gang:
Bronis R. de Supinski, Christian Terboven, Ruud van der Pas, Xavier Teruel
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• OpenMP: Shared-Memory Parallel Programming Model.

All processors/cores access
a shared main memory.

Real architectures are
more complex, as we
will see later / as we

have seen.

Parallelization in OpenMP
employs multiple threads.

OpenMP‘s machine model

Memory

Cache Cache Cache Cache

Proc Proc Proc Proc

Crossbar / Bus
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• All threads have access to
the same, globally shared
memory

• Data in private memory is
only accessible by the thread
owning this memory

• No other thread sees the
change(s) in private memory

• Data transfer is through shared
memory and is 100% transparent
to the application

The OpenMP Memory Model

T

private
memory

T

private
memory

T T
private

memory

private
memory

T

private
memory

Shared
Memory

accelerator
memory

PU

PU

PU

PU
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• OpenMP programs start with
just one thread: The Master.

• Worker threads are spawned
at Parallel Regions, together
with the Master they form the
Team of threads.

• In between Parallel Regions the
Worker threads are put to sleep.
The OpenMP Runtime takes care
of all thread management work.

• Concept: Fork-Join.

• Allows for an incremental parallelization!

The OpenMP Execution Model

Master Thread Serial Part

Parallel
RegionSlave 

ThreadsSlave 
ThreadsWorker
Threads

Parallel
Region

Serial Part
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◼ Specification of number of threads:

– Environment variable: OMP_NUM_THREADS=…

– Or: Via num_threads clause:

add num_threads(num) to the

parallel construct

• The parallelism has to be expressed explicitly.

• Structured Block

– Exactly one entry point at the top

– Exactly one exit point at the bottom

– Branching in or out is not allowed

– Terminating the program is allowed
(abort / exit)

Parallel Region and Structured Blocks

C/C++

#pragma omp parallel

{

...

structured block

...

}

Fortran

!$omp parallel

...

structured block

...

!$omp end parallel
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• From within a shell, global setting of the number of threads:

export OMP_NUM_THREADS=4

./program

• From within a shell, one-time setting of the number of threads:

OMP_NUM_THREADS=4   ./program

Starting OpenMP Programs on Linux
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Programming OpenMP

Tasking Introduction
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◼ Lets solve Sudoku puzzles with brute multi-core force

Sudoko for Lazy Computer Scientists

◼ (1) Search an empty field

◼ (2) Try all numbers:

◼ (2 a) Check Sudoku

◼ If invalid: skip

◼ If valid: Go to next field

◼ Wait for completion
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◼ This parallel algorithm finds all valid solutions

Parallel Brute-force Sudoku

◼ (1) Search an empty field

◼ (2) Try all numbers:

◼ (2 a) Check Sudoku

◼ If invalid: skip

◼ If valid: Go to next field

◼ Wait for completion

first call contained in a
#pragma omp parallel

#pragma omp single

such that one tasks starts the
execution of the algorithm

#pragma omp task

needs to work on a new copy
of the Sudoku board

#pragma omp taskwait

wait for all child tasks
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Performance Evaluation
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#threads

Sudoku on 2x Intel Xeon E5-2650 @2.0 GHz

Intel C++ 13.1, scatter binding speedup: Intel C++ 13.1, scatter binding

Is this the best
we can can do?
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Tasking Overview
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◼ Tasks are work units whose execution

→ may be deferred or…

→ … can be executed immediately

◼ Tasks are composed of

→ code to execute, a data environment (initialized at creation time), internal control variables (ICVs)

◼ Tasks are created…

… when reaching a parallel region → implicit tasks are created (per thread)

… when encountering a task construct → explicit task is created

… when encountering a taskloop construct → explicit tasks per chunk are created

… when encountering a target construct → target task is created

What is a task in OpenMP?
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◼ Supports unstructured parallelism

→ unbounded loops

→ recursive functions

◼ Several scenarios are possible:

→ single creator, multiple creators, nested tasks (tasks & WS)

◼ All threads in the team are candidates to execute tasks

Tasking execution model

while ( <expr> ) {

...

}

void myfunc( <args> )

{

...; myfunc( <newargs> ); ...;

}

Task pool

Parallel Team

#pragma omp parallel

#pragma omp master

while (elem != NULL) {

#pragma omp task

compute(elem);

elem = elem->next;

}

◼ Example (unstructured parallelism)
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!$omp task [clause[[,] clause]...]

…structured-block…

!$omp end task

Synchronization

Cutoff Strategies

Data Environment

◼ Deferring (or not) a unit of work (executable for any member of the team)

◼ Where clause is one of:

The task construct

→ if(scalar-expression)

→ mergeable

→ final(scalar-expression)

→ depend(dep-type: list)

→ untied

→ priority(priority-value)

→ affinity(list)

→ private(list)

→ firstprivate(list)

→ shared(list)

→ default(shared | none)

→ in_reduction(r-id: list)

→ allocate([allocator:] list)

→ detach(event-handler)

#pragma omp task [clause[[,] clause]...]

{structured-block}

Task Scheduling
Miscellaneous
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◼ Tasks are tied by default (when no untied clause present)

→ tied tasks are executed always by the same thread (not necessarily creator)

→ tied tasks may run into performance problems

◼ Programmers may specify tasks to be untied (relax scheduling)

→ can potentially switch to any thread (of the team)

→ bad mix with thread based features: thread-id, threadprivate, critical regions...

→ gives the runtime more flexibility to schedule tasks

→ but most of OpenMP implementations doesn’t “honor” untied  

Task scheduling: tied vs untied tasks

#pragma omp task untied

{structured-block}
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◼ Task scheduling points (and the taskyield directive)

→ tasks can be suspended/resumed at TSPs → some additional constraints to avoid deadlock problems

→ implicit scheduling points (creation, synchronization, ... )

→ explicit scheduling point: the taskyield directive

◼ Scheduling [tied/untied] tasks: example

Task scheduling: taskyield directive

#pragma omp taskyield

#pragma omp parallel

#pragma omp single

{

#pragma omp task

{

foo();

#pragma omp taskyield

bar()

}

}

single

foo()

bar()

untied:

single

foo() bar()tied:

untied

(default)
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◼ The taskwait directive (shallow task synchronization)

→ It is a stand-alone directive

→ wait on the completion of child tasks of the current task; just direct children, not all descendant tasks; 

includes an implicit task scheduling point (TSP)

Task synchronization: taskwait directive

#pragma omp taskwait

#pragma omp parallel

#pragma omp single

{

#pragma omp task

{

#pragma omp task

{ … }

#pragma omp task

{ … …}

#pragma omp taskwait

}

} // implicit barrier will wait for C.x

C.1 C.2

wait for…

A

: A

{ … #C.1; #C.2; …}

B C
: B

: C
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◼ OpenMP barrier (implicit or explicit)

→ All tasks created by any thread of the current team are guaranteed to be completed at barrier exit

→ And all other implicit barriers at parallel, sections, for, single, etc…

Task synchronization: barrier semantics

#pragma omp barrier
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◼ The taskgroup construct (deep task synchronization)

→ attached to a structured block; completion of all descendants of the current task; TSP at the end

→ where clause (could only be): reduction(reduction-identifier: list-items)

Task synchronization: taskgroup construct

#pragma omp taskgroup [clause[[,] clause]...]

{structured-block}

#pragma omp parallel

#pragma omp single

{

#pragma omp taskgroup

{

#pragma omp task

{ … }

#pragma omp task

{ … #C.1; #C.2; …}

} // end of taskgroup

}

wait for…

B C

C.1 C.2

A

:B

:C

: A
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Data Environment
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◼ Explicit data-sharing clauses (shared, private and firstprivate)

◼ If default clause present, what the clause says

→ shared: data which is not explicitly included in any other data sharing clause will be shared

→ none: compiler will issue an error if the attribute is not explicitly set by the programmer (very useful!!!)

Explicit data-sharing clauses

#pragma omp task shared(a)

{

// Scope of a: shared

}

#pragma omp task private(b)

{

// Scope of b: private

}

#pragma omp task firstprivate(c)

{

// Scope of c: firstprivate

}

#pragma omp task default(shared)

{

// Scope of all the references, not explicitly

// included in any other data sharing clause,

// and with no pre-determined attribute: shared

}

#pragma omp task default(none)

{

// Compiler will force to specify the scope for

// every single variable referenced in the context

}

Hint: Use default(none) to be forced to think about every 
variable if you do not see clearly.
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◼ threadprivate variables are threadprivate (1)

◼ dynamic storage duration objects are shared (malloc, new,… ) (2)

◼ static data members are shared (3)

◼ variables declared inside the construct

→static storage duration variables are shared (4)

→automatic storage duration variables are private (5)

◼ the loop iteration variable(s)…

Pre-determined data-sharing attributes

void foo(void){

static int s = MN;

}

#pragma omp task

{

foo(); // s@foo(): shared

}

int A[SIZE];

#pragma omp threadprivate(A)

// ...

#pragma omp task

{

// A: threadprivate

}

int *p;

p = malloc(sizeof(float)*SIZE);

#pragma omp task

{

// *p: shared

}

#pragma omp task

{

int x = MN;

// Scope of x: private

}

#pragma omp task

{

static int y;

// Scope of y: shared

}

1 2 3

4

5
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Implicit data-sharing attributes (in-practice)

int a = 1;

void foo() {

int b = 2, c = 3;

#pragma omp parallel private(b)

{

int d = 4;

#pragma omp task

{

int e = 5;

// Scope of a: shared

// Scope of b: firstprivate

// Scope of c: shared

// Scope of d: firstprivate

// Scope of e: private

}

}

}

◼ (in-practice) variable values within the task:

→ value of a: 1

→ value of b: x // undefined (undefined in parallel)

→ value of c: 3

→ value of d: 4

→ value of e: 5

◼ Implicit data-sharing rules for the task region

→ the shared attribute is lexically inherited

→ in any other case the variable is firstprivate

→ Pre-determined rules (could not change)

→ Explicit data-sharing clauses (+ default)

→ Implicit data-sharing rules
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Task reductions (using taskgroup)
int res = 0;
node_t* node = NULL;
...
#pragma omp parallel
{

#pragma omp single
{

#pragma omp taskgroup task_reduction(+: res)
{ // [1]

while (node) {
#pragma omp task in_reduction(+: res) \

firstprivate(node)
{ // [2]

res += node->value;
}
node = node->next;

}
} // [3]

}
}

◼ Reduction operation

→ perform some forms of recurrence calculations

→ associative and commutative operators

◼ The (taskgroup) scoping reduction clause

→ Register a new reduction at [1]

→ Computes the final result after [3]

◼ The (task) in_reduction clause [participating]

→ Task participates in a reduction operation [2]

#pragma omp task in_reduction(op: list)

{structured-block}

#pragma omp taskgroup task_reduction(op: list)

{structured-block}
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Task reductions (+ modifiers)
int res = 0;
node_t* node = NULL;
...
#pragma omp parallel reduction(task,+: res)
{ // [1][2]

#pragma omp single
{

#pragma omp taskgroup
{

while (node) {
#pragma omp task in_reduction(+: res) \

firstprivate(node)
{ // [3]

res += node->value;
}
node = node->next;

}
}

}
} // [4]

◼ Reduction modifiers

→ Former reductions clauses have been extended

→ task modifier allows to express task reductions

→ Registering a new task reduction [1]

→ Implicit tasks participate in the reduction [2]

→ Compute final result after [4]

◼ The (task) in_reduction clause [participating]

→ Task participates in a reduction operation [3]

#pragma omp task in_reduction(op: list)

{structured-block}
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Tasking illustrated
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◼Only one Task / Thread enters fib() from main(), it is responsible for 

creating the two initial work tasks

◼ Taskwait is required, as otherwise x and y would get lost

Fibonacci illustrated
14 int fib(int n)   {

15 if (n < 2) return n;

16 int x, y;

17 #pragma omp task shared(x)

18 {

19 x = fib(n - 1);

20 }

21 #pragma omp task shared(y)

22 {

23 y = fib(n - 2);

24 }

25 #pragma omp taskwait

26 return x+y;

27 }

1 int main(int argc,

2 char* argv[])

3 {

4 [...]

5 #pragma omp parallel

6 {

7 #pragma omp single

8 {

9 fib(input);

10 }

11 }

12 [...]

13 }
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◼ T1 enters fib(4)

fib(4)
◼ T1 creates tasks for 

fib(3) and fib(2)

Task Queue

fib(3) fib(2)

◼ T1 and T2 execute tasks 

from the queue

fib(3) fib(2)◼ T1 and T2 create 4 new 

tasks

fib(2) fib(1) fib(1) fib(0)

◼ T1 - T4 execute tasks

fib(2) fib(1) fib(1) fib(0)
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◼ T1 enters fib(4)

fib(4)
◼ T1 creates tasks for 

fib(3) and fib(2)

◼ T1 and T2 execute tasks 

from the queue

fib(3) fib(2)◼ T1 and T2 create 4 new 

tasks

◼ T1 - T4 execute tasks

fib(2) fib(1) fib(1) fib(0)◼ …

fib(1) fib(0)
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The taskloop Construct
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Tasking use case: saxpy (taskloop)

#pragma omp parallel

#pragma omp single

for ( i = 0; i<SIZE; i+=TS) {

UB = SIZE < (i+TS)?SIZE:i+TS;

#pragma omp task private(ii) \

firstprivate(i,UB) shared(S,A,B)

for ( ii=i; ii<UB; ii++) {

A[ii]=A[ii]*B[ii]*S;

}

}

◼ Difficult to determine grain

→ 1 single iteration → to fine

→ whole loop → no parallelism

◼ Manually transform the code

→ blocking techniques

◼ Improving programmability

→ OpenMP taskloop

→ Hiding the internal details

→ Grain size ~ Tile size (TS) → but implementation 

decides exact grain size

for ( i = 0; i<SIZE; i+=1) {

A[i]=A[i]*B[i]*S;

}

for ( i = 0; i<SIZE; i+=TS) {

UB = SIZE < (i+TS)?SIZE:i+TS;

for ( ii=i; ii<UB; ii++) {

A[ii]=A[ii]*B[ii]*S;

}

}

#pragma omp taskloop grainsize(TS)

for ( i = 0; i<SIZE; i+=1) {

A[i]=A[i]*B[i]*S;

}
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◼ Task generating construct: decompose a loop into chunks, create a task for each loop chunk

◼ Where clause is one of:

!$omp taskloop [clause[[,] clause]…]

…structured-do-loops…

!$omp end taskloop

Scheduler (R/H)

Cutoff Strategies

Data Environment

The taskloop Construct

→ if(scalar-expression)

→ final(scalar-expression)

→ mergeable

→ untied

→ priority(priority-value)

→ collapse(n)

→ nogroup

→ allocate([allocator:] list)

→ shared(list)

→ private(list)

→ firstprivate(list)

→ lastprivate(list)

→ default(sh | pr | fp | none)

→ reduction(r-id: list)

→ in_reduction(r-id: list)

→ grainsize(grain-size)

→ num_tasks(num-tasks)

#pragma omp taskloop [clause[[,] clause]…]

{structured-for-loops}

Chunks/Grain

Miscellaneous
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Worksharing vs. taskloop constructs (1/2)
subroutine worksharing

integer :: x

integer :: i

integer, parameter :: T = 16

integer, parameter :: N = 1024

x = 0

!$omp parallel shared(x) num_threads(T)

!$omp do

do i = 1,N

!$omp atomic

x = x + 1

!$omp end atomic

end do

!$omp end do

!$omp end parallel

write (*,'(A,I0)') 'x = ', x

end subroutine

subroutine taskloop

integer :: x

integer :: i

integer, parameter :: T = 16

integer, parameter :: N = 1024

x = 0

!$omp parallel shared(x) num_threads(T)

!$omp taskloop

do i = 1,N

!$omp atomic

x = x + 1

!$omp end atomic

end do

!$omp end taskloop

!$omp end parallel

write (*,'(A,I0)') 'x = ', x

end subroutine
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Worksharing vs. taskloop constructs (2/2)
subroutine worksharing

integer :: x

integer :: i

integer, parameter :: T = 16

integer, parameter :: N = 1024

x = 0

!$omp parallel shared(x) num_threads(T)

!$omp do

do i = 1,N

!$omp atomic

x = x + 1

!$omp end atomic

end do

!$omp end do

!$omp end parallel

write (*,'(A,I0)') 'x = ', x

end subroutine

subroutine taskloop

integer :: x

integer :: i

integer, parameter :: T = 16

integer, parameter :: N = 1024

x = 0

!$omp parallel shared(x) num_threads(T)

!$omp single

!$omp taskloop

do i = 1,N

!$omp atomic

x = x + 1

!$omp end atomic

end do

!$omp end taskloop

!$omp end single

!$omp end parallel

write (*,'(A,I0)') 'x = ', x

end subroutine
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◼ Clause: grainsize(grain-size)

→ Chunks have at least grain-size iterations

→ Chunks have maximum 2x grain-size iterations

Taskloop decomposition approaches

int TS = 4 * 1024;

#pragma omp taskloop grainsize(TS)

for ( i = 0; i<SIZE; i+=1) {

A[i]=A[i]*B[i]*S;

}

◼ Clause: num_tasks(num-tasks)

→ Create num-tasks chunks

→ Each chunk must have at least one iteration

int NT = 4 * omp_get_num_threads();

#pragma omp taskloop num_tasks(NT)

for ( i = 0; i<SIZE; i+=1) {

A[i]=A[i]*B[i]*S;

}

◼ If none of previous clauses is present, the number of chunks and the number of iterations per chunk 

is implementation defined

◼ Additional considerations:

→ The order of the creation of the loop tasks is unspecified

→ Taskloop creates an implicit taskgroup region; nogroup → no implicit taskgroup region is created
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◼ The collapse clause in the taskloop construct

→ Number of loops associated with the taskloop construct (n)

→ Loops are collapsed into one larger iteration space

→ Then divided according to the grainsize and num_tasks

◼ Intervening code between any two associated loops

→ at least once per iteration of the enclosing loop

→ at most once per iteration of the innermost loop

Collapsing iteration spaces with taskloop

#pragma omp taskloop collapse(n)

{structured-for-loops}

#pragma omp taskloop collapse(2)

for ( i = 0; i<SX; i+=1) {

for ( j= 0; i<SY; j+=1) {

for ( k = 0; i<SZ; k+=1) {

A[f(i,j,k)]=<expression>;

}

}

}

#pragma omp taskloop

for ( ij = 0; i<SX*SY; ij+=1) {

for ( k = 0; i<SZ; k+=1) {

i = index_for_i(ij);

j = index_for_j(ij);

A[f(i,j,k)]=<expression>;

}

}
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◼ Clause: reduction(r-id: list)

→ It defines the scope of a new reduction

→ All created tasks participate in the reduction

→ It cannot be used with the nogroup clause

◼ Clause: in_reduction(r-id: list)

→ Reuse an already defined reduction scope

→ All created tasks participate in the reduction

→ It can be used with the nogroup* clause, but it 

is user responsibility to guarantee result

Task reductions (using taskloop)

double dotprod(int n, double *x, double *y) {

double r = 0.0;

#pragma omp taskloop reduction(+: r)

for (i = 0; i < n; i++)

r += x[i] * y[i];

return r;

}

double dotprod(int n, double *x, double *y) {

double r = 0.0;

#pragma omp taskgroup task_reduction(+: r)

{

#pragma omp taskloop in_reduction(+: r)*

for (i = 0; i < n; i++)

r += x[i] * y[i];

}

return r;

}
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◼ Task generating construct: decompose a loop into chunks, create a task for each loop chunk

◼ Each generated task will apply (internally) SIMD to each loop chunk

→ C/C++ syntax:

→ Fortran syntax:

◼ Where clause is any of the clauses accepted by taskloop or simd directives

Composite construct: taskloop simd

!$omp taskloop simd [clause[[,] clause]…]

…structured-do-loops…

!$omp end taskloop

#pragma omp taskloop simd [clause[[,] clause]…]

{structured-for-loops}
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Improving Tasking Performance:

Task dependences
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◼ Task dependences as a way to define task-execution constraints

Motivation

int x = 0;

#pragma omp parallel

#pragma omp single

{

#pragma omp task depend(in: x)

std::cout << x << std::endl;

#pragma omp task depend(inout: x)

x++;

}

OpenMP 4.0int x = 0;

#pragma omp parallel

#pragma omp single

{

#pragma omp task

std::cout << x << std::endl;

#pragma omp task

x++;

}

OpenMP 3.1

OpenMP 3.1

OpenMP 4.0

#pragma omp taskwait

t1

t2

t1

t2

Task’s creation time

Task’s execution time
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◼ Task dependences as a way to define task-execution constraints

Motivation

int x = 0;

#pragma omp parallel

#pragma omp single

{

#pragma omp task depend(in: x)

std::cout << x << std::endl;

#pragma omp task depend(inout: x)

x++;

}

OpenMP 4.0int x = 0;

#pragma omp parallel

#pragma omp single

{

#pragma omp task

std::cout << x << std::endl;

#pragma omp taskwait

#pragma omp task

x++;

}

OpenMP 3.1

t1

t2

t1

t2

Task’s creation time

Task’s execution time

OpenMP 3.1

OpenMP 4.0

Task dependences can help us to remove 

“strong” synchronizations, increasing the look 

ahead and, frequently, the parallelism!!!!
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Motivation: Cholesky factorization
void cholesky(int ts, int nt, double* a[nt][nt]) {

for (int k = 0; k < nt; k++) {

// Diagonal Block factorization

#pragma omp task depend(inout: a[k][k])

potrf(a[k][k], ts, ts);

// Triangular systems

for (int i = k + 1; i < nt; i++) {

#pragma omp task depend(in: a[k][k]) 

depend(inout: a[k][i])

trsm(a[k][k], a[k][i], ts, ts);

}   

// Update trailing matrix

for (int i = k + 1; i < nt; i++) {

for (int j = k + 1; j < i; j++) {

#pragma omp task depend(inout: a[j][i])

depend(in: a[k][i], a[k][j])

dgemm(a[k][i], a[k][j], a[j][i], ts, ts);

}

#pragma omp task depend(inout: a[i][i])

depend(in: a[k][i])

syrk(a[k][i], a[i][i], ts, ts);

}   

}   

}  OpenMP 4.0

void cholesky(int ts, int nt, double* a[nt][nt]) {

for (int k = 0; k < nt; k++) {

// Diagonal Block factorization

potrf(a[k][k], ts, ts);

// Triangular systems

for (int i = k + 1; i < nt; i++) {

#pragma omp task

trsm(a[k][k], a[k][i], ts, ts);

}

#pragma omp taskwait

// Update trailing matrix

for (int i = k + 1; i < nt; i++) {

for (int j = k + 1; j < i; j++) {

#pragma omp task

dgemm(a[k][i], a[k][j], a[j][i], ts, ts);

}

#pragma omp task

syrk(a[k][i], a[i][i], ts, ts);

}

#pragma omp taskwait

}

}

OpenMP 3.1

nt

nt

ts

ts

ts

ts
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Motivation: Cholesky factorization
void cholesky(int ts, int nt, double* a[nt][nt]) {

for (int k = 0; k < nt; k++) {

// Diagonal Block factorization

#pragma omp task depend(inout: a[k][k])

potrf(a[k][k], ts, ts);

// Triangular systems

for (int i = k + 1; i < nt; i++) {

#pragma omp task depend(in: a[k][k]) 

depend(inout: a[k][i])

trsm(a[k][k], a[k][i], ts, ts);

}   

// Update trailing matrix

for (int i = k + 1; i < nt; i++) {

for (int j = k + 1; j < i; j++) {

#pragma omp task depend(inout: a[j][i])

depend(in: a[k][i], a[k][j])

dgemm(a[k][i], a[k][j], a[j][i], ts, ts);

}

#pragma omp task depend(inout: a[i][i])

depend(in: a[k][i])

syrk(a[k][i], a[i][i], ts, ts);

}   

}   

}  OpenMP 4.0

void cholesky(int ts, int nt, double* a[nt][nt]) {

for (int k = 0; k < nt; k++) {

// Diagonal Block factorization

potrf(a[k][k], ts, ts);

// Triangular systems

for (int i = k + 1; i < nt; i++) {

#pragma omp task

trsm(a[k][k], a[k][i], ts, ts);

}

#pragma omp taskwait

// Update trailing matrix

for (int i = k + 1; i < nt; i++) {

for (int j = k + 1; j < i; j++) {

#pragma omp task

dgemm(a[k][i], a[k][j], a[j][i], ts, ts);

}

#pragma omp task

syrk(a[k][i], a[i][i], ts, ts);

}

#pragma omp taskwait

}

}

OpenMP 3.1

nt

nt

ts

ts

ts

ts

Using 2017  Intel compiler
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What’s in the spec
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What’s in the spec: a bit of history

• The depend clause  was added to the 

target constructs

• Support to doacross loops

OpenMP 4.5

• The depend clause was added 

to the task construct

OpenMP 4.0

• lvalue expressions in the depend clause

• New dependency type: mutexinoutset

• Iterators were added to the depend clause

• The depend clause  was added to the taskwait construct

• Dependable objects

OpenMP 5.0
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depend([depend-modifier,] dependency-type: list-items)

where:

→ depend-modifier is used to define iterators 

→ dependency-type may be: in, out, inout, mutexinoutset and depobj

→ A list-item may be:

• C/C++: A lvalue expr or an array section     depend(in: x, v[i], *p, w[10:10])

• Fortran: A variable or an array section        depend(in: x, v(i), w(10:20))

What’s in the spec: syntax depend clause
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◼ A task cannot be executed until all its predecessor tasks are completed

◼ If a task defines an in dependence over a list-item

→ the task will depend on all previously generated sibling tasks that reference that list-item in an out or 

inout dependence

◼ If a task defines an out/inout dependence over list-item

→ the task will depend on all previously generated sibling tasks that reference that list-item in an in, out or 

inout dependence

What’s in the spec: sema depend clause (1)

316

OpenMP Tutorial

Members of the OpenMP Language Committee
48

◼ A task cannot be executed until all its predecessor tasks are completed

◼ If a task defines an in dependence over a variable

→ the task will depend on all previously generated sibling tasks that reference at least one of the list items in 

an out or inout dependence

◼ If a task defines an out/inout dependence over a variable

→ the task will depend on all previously generated sibling tasks that reference at least one of the list items in 

an in, out or inout dependence

What’s in the spec: depend clause (1)

int x = 0;

#pragma omp parallel

#pragma omp single

{

#pragma omp task depend(inout: x) //T1

{ ... }

#pragma omp task depend(in: x)    //T2

{ ... }

#pragma omp task depend(in: x)    //T3

{ ... }

#pragma omp task depend(inout: x) //T4

{ ... }

}

T1

T2 T3

T4
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◼ New dependency type: mutexinoutset

What’s in the spec: depend clause (2)

int x = 0, y = 0, res = 0;

#pragma omp parallel

#pragma omp single

{

#pragma omp task depend(out: res)  //T0

res = 0;

#pragma omp task depend(out: x)  //T1

long_computation(x);

#pragma omp task depend(out: y)  //T2

short_computation(y);

#pragma omp task depend(in: x)

res += x;

#pragma omp task depend(in: y)

res += y;

#pragma omp task depend(in: res)  //T5

std::cout << res << std::endl;

}

T3

T4

T5

T1 T2T0

depend(mutexinoutset: res) //T3depend(inout: res) //T3

depend(inout: res) //T4depend(mutexinoutset: res) //T4

T3

T4

1. inoutset property: tasks with a mutexinoutset

dependence create a cloud of tasks (an inout set) that 

synchronizes with previous & posterior tasks that 

dependent on the same list item

2. mutex property: Tasks inside the inout set can be 

executed in any order but with mutual exclusion
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What’s in the spec: depend clause (3)

◼ Task dependences are 

defined among sibling tasks

//test1.cc

int x = 0;

#pragma omp parallel

#pragma omp single

{

#pragma omp task //T1

{

#pragma omp task depend(inout: x) //T1.1

x++;

#pragma omp taskwait

}

#pragma omp task depend(in: x) //T2

std::cout << x << std::endl;

}

depend(inout: x)

//test2.cc

int a[100] = {0};

#pragma omp parallel

#pragma omp single

{

#pragma omp task depend(inout: a[50:99]) //T1

compute(/* from */ &a[50], /*elems*/ 50);

#pragma omp task depend(in: a)   //T2

print(/* from */ a, /* elem */ 100);

}

◼ List items used in the depend 

clauses […] must indicate identical 

or disjoint storage

T1

T2

???
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What’s in the spec: depend clause (4)

◼ Iterators + deps: a way to define a dynamic number of dependences

std::list<int> list = ...;

int n = list.size();

#pragma omp parallel

#pragma omp single

{

for (int i = 0; i < n; ++i) 

#pragma omp task depend(out: list[i])     //Px

compute_elem(list[i]);

#pragma omp task

print_elems(list);

}

depend(in: ???)                       //C 

P1 PnP2 ...

C

???

depend(iterator(j=0:n), in : list[j]) //C 

It seems innocent but it’s not:
depend(out: list.operator[](i))

Equivalent to: 
depend(in: list[0], list[1], …, list[n-1])
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Philosophy
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◼ Task dependences are orthogonal to data-sharings

→ Dependences as a way to define a task-execution constraints

→ Data-sharings as how the data is captured to be used inside the task

Philosophy: data-flow model

// test1.cc

int x = 0;

#pragma omp parallel

#pragma omp single

{

#pragma omp task depend(inout: x) \

firstprivate(x) //T1

x++;

#pragma omp task depend(in: x)  //T2

std::cout << x << std::endl;

}

// test2.cc

int x = 0;

#pragma omp parallel

#pragma omp single

{

#pragma omp task depend(inout: x) //T1

x++;

#pragma omp task depend(in: x) \

firstprivate(x) //T2

std::cout << x << std::endl;

}

OK, but it always prints ‘0’  :( We have a data-race!!
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◼ Properly combining dependences and data-sharings allow us to define 

a task data-flow model

→Data that is read in the task → input dependence

→Data that is written in the task → output dependence

◼ A task data-flow model

→Enhances the composability

→Eases the parallelization of new regions of your code

Philosophy: data-flow model (2)
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//test1_v2.cc

int x = 0, y = 0;

#pragma omp parallel

#pragma omp single

{

#pragma omp task depend(inout: x) //T1

{

x++;

y++;

}

#pragma omp task depend(in: x)    //T2

std::cout << x << std::endl;

#pragma omp task depend(in: y)    //T3

std::cout << y << std::endl;

}

//test1_v1.cc

int x = 0, y = 0;

#pragma omp parallel

#pragma omp single

{

#pragma omp task depend(inout: x) //T1

{

x++;

y++;    // !!!

}

#pragma omp task depend(in: x)   //T2

std::cout << x << std::endl;

#pragma omp taskwait

std::cout << y << std::endl;

}

//test1_v3.cc

int x = 0, y = 0;

#pragma omp parallel

#pragma omp single

{

#pragma omp task depend(inout: x) //T1

{

x++;

y++;

}

#pragma omp task depend(in: x)    //T2

std::cout << x << std::endl;

#pragma omp task depend(in: x)    //T3

std::cout << y << std::endl;

}

//test1_v4.cc

int x = 0, y = 0;

#pragma omp parallel

#pragma omp single

{

#pragma omp task depend(inout: x, y) //T1

{

x++;

y++;

}

#pragma omp task depend(in: x)       //T2

std::cout << x << std::endl;

#pragma omp task depend(in: y)       //T3

std::cout << y << std::endl;

}

If all tasks are properly annotated,

we only have to worry about the 

dependendences & data-sharings of the new task!!!

Philosophy: data-flow model (3)
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Use case
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Use case: intro to Gauss-seidel

void serial_gauss_seidel(int tsteps, int size, int (*p)[size]) {

for (int t = 0; t < tsteps; ++t) {

for (int i = 1; i < size-1; ++i) {

for (int j = 1; j < size-1; ++j) {

p[i][j] = 0.25 * (p[i][j-1] * // left

p[i][j+1] * // right

p[i-1][j] * // top

p[i+1][j]); // bottom

}

}

}

}

For a specific t, i and j

Access pattern analysis

tn

Each cell depends on:

- two cells (north & west) that are 

computed in the current time step, and

- two cells (south & east) that were 

computed in the previous time step
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Use case: Gauss-seidel (2)

void serial_gauss_seidel(int tsteps, int size, int (*p)[size]) {

for (int t = 0; t < tsteps; ++t) {

for (int i = 1; i < size-1; ++i) {

for (int j = 1; j < size-1; ++j) {

p[i][j] = 0.25 * (p[i][j-1] * // left

p[i][j+1] * // right

p[i-1][j] * // top

p[i+1][j]); // bottom

}

}

}

}

For an specific t

We can exploit the wavefront to 

obtain parallelism!!

1st parallelization strategy

tn
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Use case : Gauss-seidel (3)
void gauss_seidel(int tsteps, int size, int TS, int (*p)[size]) {

int NB = size / TS;

#pragma omp parallel

for (int t = 0; t < tsteps; ++t) {

// First NB diagonals

for (int diag = 0; diag < NB; ++diag) {

#pragma omp for

for (int d = 0; d <= diag; ++d) {

int ii = d;

int jj = diag – d; 

for (int i = 1+ii*TS; i < ((ii+1)*TS); ++i)

for (int j = 1+jj*TS; i < ((jj+1)*TS); ++j)

p[i][j] = 0.25 * (p[i][j-1] * p[i][j+1] *

p[i-1][j] * p[i+1][j]);

}

}

// Lasts NB diagonals

for (int diag = NB-1; diag >= 0; --diag) {

// Similar code to the previous loop

}

}

}
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Use case : Gauss-seidel (4)

void serial_gauss_seidel(int tsteps, int size, int (*p)[size]) {

for (int t = 0; t < tsteps; ++t) {

for (int i = 1; i < size-1; ++i) {

for (int j = 1; j < size-1; ++j) {

p[i][j] = 0.25 * (p[i][j-1] * // left

p[i][j+1] * // right

p[i-1][j] * // top

p[i+1][j]); // bottom

}

}

}

}

2nd parallelization strategy

multiple time iterations

We can exploit the wavefront

of multiple time steps to obtain MORE 

parallelism!!

tn

tn+1

tn+2

tn+3
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void gauss_seidel(int tsteps, int size, int TS, int (*p)[size]) {

int NB = size / TS;

#pragma omp parallel

#pragma omp single

for (int t = 0; t < tsteps; ++t)

for (int ii=1; ii < size-1; ii+=TS)

for (int jj=1; jj < size-1; jj+=TS) {

#pragma omp task depend(inout: p[ii:TS][jj:TS])

depend(in: p[ii-TS:TS][jj:TS], p[ii+TS:TS][jj:TS],

p[ii:TS][jj-TS:TS], p[ii:TS][jj:TS])

{

for (int i=ii; i<(1+ii)*TS; ++i)

for (int j=jj; j<(1+jj)*TS; ++j)

p[i][j] = 0.25 * (p[i][j-1] * p[i][j+1] *

p[i-1][j] * p[i+1][j]);        

}

}

}

Use case : Gauss-seidel (5)
inner matrix region

Q: Why do the input dependences 
depend on the whole block rather 

than just a column/row?

vs
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void gauss_seidel(int tsteps, int size, int TS, int (*p)[size]) {

int NB = size / TS;

#pragma omp parallel

#pragma omp single

for (int t = 0; t < tsteps; ++t)

for (int ii=1; ii < size-1; ii+=TS)

for (int jj=1; jj < size-1; jj+=TS) {

#pragma omp task depend(inout: p[ii:TS][jj:TS])

depend(in: p[ii-TS:TS][jj:TS], p[ii+TS:TS][jj:TS],

p[ii:TS][jj-TS:TS], p[ii:TS][jj:TS])

{

for (int i=ii; i<(1+ii)*TS; ++i)

for (int j=jj; j<(1+jj)*TS; ++j)

p[i][j] = 0.25 * (p[i][j-1] * p[i][j+1] *

p[i-1][j] * p[i+1][j]);        

}

}

}

Use case : Gauss-seidel (5)
inner matrix region

Q: Why do the input dependences 
depend on the whole block rather 

than just a column/row?

vs
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Improving Tasking Performance:

Cutoff clauses and strategies
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OpenMP: Memory Access
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◼ Assume the following: you have learned that load imbalances can

severely impact performance and a dynamic loop schedule may

prevent this:

→What is the issue with the following code:

→How is A accessed? Does that affect performance?

Example: Loop Parallelization

double* A;

A = (double*) malloc(N * sizeof(double));

/* assume some initialization of A */

#pragma omp parallel for schedule(dynamic, 1)

for (int i = 0; i < N; i++) {

A[i] += 1.0;

}
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◼ False Sharing: Parallel accesses to the same cache line may have a significant performance

impact!

False Sharing

Caches are organized in lines of typically

64 bytes: integer array a[0-4] fits into

one cache line.

Whenever one element of a cache line

is updated, the whole cache line is

Invalidated.

Local copies of a cache line have to be

re-loaded from the main memory and

the computation may have to be

repeated.

Core

memory

Core

on-chip cache

Core Core

on-chip cacheon-chip cache

bus

1: A[0]+=1;2: A[1]+=1;
3: A[2]+=1;4: A[3]+=1;

A[0-7]
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double* A;

A = (double*)

malloc(N * sizeof(double));

for (int i = 0; i < N; i++) {

A[i] = 0.0;

}

Non-uniform Memory

Core

memory

Core

on-chip
cache

Core Core

memory

interconnect

on-chip
cache

on-chip
cache

on-chip
cache

How To Distribute The Data ?
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◼ Serial code: all array elements are allocated in the memory of the NUMA node closest to the

core executing the initializer thread (first touch)

double* A;

A = (double*)

malloc(N * sizeof(double));

for (int i = 0; i < N; i++) {

A[i] = 0.0;

}

Non-uniform Memory

Core

memory

Core

on-chip
cache

Core Core

memory

interconnect

on-chip
cache

on-chip
cache

on-chip
cache

A[0] … A[N]
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◼ Important aspect on cc-NUMA systems

→If not optimal, longer memory access times and hotspots

◼ Placement comes from the Operating System

→This is therefore Operating System dependent

◼Windows, Linux and Solaris all use the “First Touch” placement policy 

by default

→May be possible to override default (check the docs)

About Data Distribution
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◼ Serial code: all array elements are allocated in the memory of the NUMA node closest to the

core executing the initializer thread (first touch)

double* A;

A = (double*)

malloc(N * sizeof(double));

for (int i = 0; i < N; i++) {

A[i] = 0.0;

}

Non-uniform Memory

Core

memory

Core

on-chip
cache

Core Core

memory

interconnect

on-chip
cache

on-chip
cache

on-chip
cache

A[0] … A[N]
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◼ First Touch w/ parallel code: all array elements are allocated in the memory of the NUMA 

node that contains the core that executes the

thread that initializes the partition

double* A;

A = (double*)

malloc(N * sizeof(double));

omp_set_num_threads(2);

#pragma omp parallel for

for (int i = 0; i < N; i++) {

A[i] = 0.0;

}

First Touch Memory Placement

Core

memory

Core

on-chip
cache

Core Core

memory

interconnect

on-chip
cache

on-chip
cache

on-chip
cache

A[0] … A[N/2] A[N/2] … A[N]
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◼ Stream example on 2 socket sytem with Xeon X5675 processors, 12 

OpenMP threads:

Serial vs. Parallel Initialization

copy scale add triad

ser_init 18.8 GB/s 18.5 GB/s 18.1 GB/s 18.2 GB/s

par_init 41.3 GB/s 39.3 GB/s 40.3 GB/s 40.4 GB/s

CPU 0

T1 T2 T3

T4 T5 T6

CPU 1

T7 T8 T9

T10 T11 T12

MEM

a[0,N-1]

b[0,N-1]

c[0,N-1]

CPU 0

T1 T2 T3

T4 T5 T6

CPU 1

T7 T8 T9

T10 T11 T12

MEM

a[0,(N/2)-1]

b[0,(N/2)-1]

c[0,(N/2)-1]

ser_init:

par_init:

MEM

MEM

a[N/2,N-1]

b[N/2,N-1]

c[N/2,N-1]
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◼ Before you design a strategy for thread binding, you should have a basic

understanding of the system topology. Please use one of the following

options on a target machine:

→Intel MPI‘s cpuinfo tool

→ cpuinfo

→Delivers information about the number of sockets (= packages) and the mapping of processor

ids to cpu cores that the OS uses.

→hwlocs‘ hwloc-ls tool

→ hwloc-ls

→Displays a graphical representation of the system topology, separated into NUMA nodes, along

with the mapping of processor ids to cpu cores that the OS uses and additional info on caches.

Get Info on the System Topology
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◼ Selecting the „right“ binding strategy depends not only on the topology, 

but also on application characteristics.

→Putting threads far apart, i.e., on different sockets

→May improve aggregated memory bandwidth available to application

→May improve the combined cache size available to your application

→May decrease performance of synchronization constructs

→Putting threads close together, i.e., on two adjacent cores that possibly share

some caches

→May improve performance of synchronization constructs

→May decrease the available memory bandwidth and cache size

Decide for Binding Strategy
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◼ Define OpenMP Places

→set of OpenMP threads running on one or more processors

→can be defined by the user, i.e. OMP_PLACES=cores

◼ Define a set of OpenMP Thread Affinity Policies

→SPREAD: spread OpenMP threads evenly among the places,

partition the place list

→CLOSE: pack OpenMP threads near master thread

→MASTER: collocate OpenMP thread with master thread

◼ Goals

→user has a way to specify where to execute OpenMP threads

→ locality between OpenMP threads / less false sharing / memory bandwidth

Places + Binding Policies (1/2)
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◼ Assume the following machine:

→ 2 sockets, 4 cores per socket, 4 hyper-threads per core

◼ Abstract names for OMP_PLACES:

→ threads: Each place corresponds to a single hardware thread on the target machine.

→ cores: Each place corresponds to a single core (having one or more hardware threads) on the target 

machine.

→ sockets: Each place corresponds to a single socket (consisting of one or more cores) on the target 

machine.

→ ll_caches: Each place corresponds to a set of cores that share the last level cache.

→ numa_domains: Each place corresponds to a set of cores for which their closest memory is: the 

same memory; and at a similar distance from the cores.

Places

p0 p1 p2 p3 p4 p5 p6 p7
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◼ Example‘s Objective:

→separate cores for outer loop and near cores for inner loop

◼ Outer Parallel Region: proc_bind(spread) num_threads(4)
Inner Parallel Region: proc_bind(close) num_threads(4)

→spread creates partition, compact binds threads within respective partition
OMP_PLACES=(0,1,2,3), (4,5,6,7), ... = (0-3):8:4   = cores

#pragma omp parallel proc_bind(spread) num_threads(4)
#pragma omp parallel proc_bind(close) num_threads(4)

◼ Example

→initial

→spread 4

→close 4

Places + Binding Policies (2/2)

p0 p1 p2 p3 p4 p5 p6 p7

p0 p1 p2 p3 p4 p5 p6 p7

p0 p1 p2 p3 p4 p5 p6 p7
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◼ Assume the following machine:

→2 sockets, 4 cores per socket, 4 hyper-threads per core

◼ Parallel Region with two threads, one per socket

→OMP_PLACES=sockets

→#pragma omp parallel num_threads(2) proc_bind(spread)

More Examples (1/3)

p0 p1 p2 p3 p4 p5 p6 p7
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◼ Assume the following machine:

◼ Parallel Region with four threads, one per core, but only on the first

socket

→OMP_PLACES=cores

→#pragma omp parallel num_threads(4) proc_bind(close)

More Examples (2/3)

p0 p1 p2 p3 p4 p5 p6 p7
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◼ Spread a nested loop first across two sockets, then among the cores

within each socket, only one thread per core

→OMP_PLACES=cores

→#pragma omp parallel num_threads(2) proc_bind(spread)

→#pragma omp parallel num_threads(4) proc_bind(close)

More Examples (3/3)
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◼ 1: Query information about binding and a single place of
all places with ids 0 … omp_get_num_places():

◼ omp_proc_bind_t omp_get_proc_bind(): returns the thread affinity policy

(omp_proc_bind_false, true, master, …)

◼ int omp_get_num_places(): returns the number of places

◼ int omp_get_place_num_procs(int place_num): returns the number of

processors in the given place

◼ void omp_get_place_proc_ids(int place_num, int* ids): returns the

ids of the processors in the given place

Places API (1/2)
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◼ 2: Query information about the place partition:

◼ int omp_get_place_num(): returns the place number of the place to which the

current thread is bound

◼ int omp_get_partition_num_places(): returns the number of places in the

current partition

◼ void omp_get_partition_place_nums(int* pns): returns the list of place

numbers corresponding to the places in the current partition

Places API (2/2)
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◼ Simple routine printing the processor ids of the place the calling thread

is bound to:

Places API: Example

void print_binding_info() {

int my_place = omp_get_place_num();

int place_num_procs = omp_get_place_num_procs(my_place);

printf("Place consists of %d processors: ", place_num_procs);

int *place_processors = malloc(sizeof(int) * place_num_procs);

omp_get_place_proc_ids(my_place, place_processors)

for (int i = 0; i < place_num_procs - 1; i++) {

printf("%d ", place_processors[i]);

}

printf("\n");

free(place_processors);

}
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◼ Set OMP_DISPLAY_AFFINITY=TRUE

→Instructs the runtime to display formatted affinity information

→Example output for two threads on two physical cores:

→Output can be formatted with OMP_AFFINITY_FORMAT env var or

corresponding routine

→Formatted affinity information can be printed with

omp_display_affinity(const char* format)

OpenMP 5.0 way to do this

nesting_level=   1,   thread_num=   0,   thread_affinity=   0,1

nesting_level=   1,   thread_num=   1,   thread_affinity=   2,3
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◼ Example:

→Possible output:

Affinity format specification

t omp_get_team_num()

T omp_get_num_teams()

L omp_get_level()

n omp_get_thread_num()

N omp_get_num_threads()

a omp_get_ancestor_thread_num() at level-1

H hostname

P process identifier

i native thread identifier

A thread affinity: list of processors (cores)

OMP_AFFINITY_FORMAT=“Affinity: %0.3L %.8n %.15{A} %.12H“

Affinity: 001        0      0-1,16-17      host003

Affinity: 001        1      2-3,18-19      host003
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◼ Everything under control?

◼ In principle Yes, but only if

→threads can be bound explicitly,

→data can be placed well by first-touch, or can be migrated,

→you focus on a specific platform (= OS + arch) → no portability

◼What if the data access pattern changes over time?

◼What if you use more than one level of parallelism?

A first summary
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◼ First Touch: Modern operating systems (i.e., Linux >= 2.4) decide for a 
physical location of a memory page during the first page fault, when
the page is first „touched“, and put it close to the CPU causing the
page fault.

◼ Explicit Migration: Selected regions of memory (pages) are moved
from one NUMA node to another via explicit OS syscall.

◼ Next Touch: Binding of pages to NUMA nodes is removed and pages
are migrated to the location of the next „touch“. Well-supported in 
Solaris, expensive to implement in Linux.

◼ Automatic Migration: No support for this in current operating systems.

NUMA Strategies: Overview
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◼ Explicit NUMA-aware memory allocation:

→By carefully touching data by the thread which later uses it

→By changing the default memory allocation strategy

→Linux: numactl command

→Windows: VirtualAllocExNuma() (limited functionality)

→By explicit migration of memory pages

→Linux: move_pages()

→Windows: no option

◼ Example: using numactl to distribute pages round-robin:

→ numactl –interleave=all ./a.out

User Control of Memory Affinity
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Improving Tasking Performance:

Task Affinity

358
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◼ Techniques for process binding & thread pinning available

→OpenMP thread level: OMP_PLACES & OMP_PROC_BIND

→OS functionality: taskset -c

OpenMP Tasking:

◼ In general: Tasks may be executed by any thread in the team

→Missing task-to-data affinity may have detrimental effect on performance

OpenMP 5.0:

◼ affinity clause to express affinity to data

Motivation
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◼ New clause: #pragma omp task affinity (list)

→Hint to the runtime to execute task closely to physical data location

→Clear separation between dependencies and affinity

◼ Expectations:

→Improve data locality / reduce remote memory accesses

→Decrease runtime variability

◼ Still expect task stealing 

→In particular, if a thread is under-utilized 

affinity clause
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◼ Excerpt from task-parallel STREAM

→Loops have been blocked manually (see tmp_idx_start/end)

→Assumption: initialization and computation have same blocking and same affinity

Code Example

1   #pragma omp task \
2   shared(a, b, c, scalar) \
3 firstprivate(tmp_idx_start, tmp_idx_end) \
4 affinity( a[tmp_idx_start] )
5   {
6 int i;
7   for(i = tmp_idx_start; i <= tmp_idx_end; i++)
8           a[i] = b[i] + scalar * c[i];
9   }
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Selected LLVM implementation details

Encounter  task 
region …

Task with 
data 

affinity?

Push to local 
queue

Location 
for data 

reference in 
map?

Identify NUMA 
domain where 
data is stored

Select thread 
pinned to 

NUMA domain

Save 
{reference, 

location} in map

Push task into 
other threads 

queue
end

Yes

No

Yes

No

A map is introduced to
store location information
of data that was previously
used

Jannis Klinkenberg, Philipp Samfass, 
Christian Terboven, Alejandro Duran, 
Michael Klemm, Xavier Teruel, Sergi
Mateo, Stephen L. Olivier, and Matthias 
S. Müller. Assessing Task-to-Data Affinity 
in the LLVM OpenMP Runtime. 
Proceedings of the 14th International 
Workshop on OpenMP, IWOMP 2018. 
September 26-28, 2018, Barcelona, 

Spain.
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Evaluation
Program runtime
Median of 10 runs

Distribution of single 
task execution times

LIKWID: reduction of remote data volume from 69% to 13%

Speedup 
of 4.3 X
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◼ Requirement for this feature: thread affinity enabled

◼ The affinity clause helps, if

→tasks access data heavily

→single task creator scenario, or task not created with data affinity

→high load imbalance among the tasks

◼ Different from thread binding: task stealing is absolutely allowed

Summary
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Managing Memory Spaces
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◼ Traditional DDR-based memory

◼ High-bandwidth memory

◼ Non-volatile memory

◼…

Different kinds of memory
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◼ Allocator := an OpenMP object that fulfills requests to allocate and 

deallocate storage for program variables

◼OpenMP allocators are of type omp_allocator_handle_t

◼ Default allocator for Host

→via OMP_ALLOCATOR env. var. or corresponding API

◼OpenMP 5.0 supports a set of memory allocators

Memory Management

367



OpenMP Tutorial

Members of the OpenMP Language Committee
99

◼ Selection of a certain kind of memory

OpenMP Allocators

Allocator name Storage selection intent

omp_default_mem_alloc use default storage

omp_large_cap_mem_alloc use storage with large capacity

omp_const_mem_alloc use storage optimized for read-only variables

omp_high_bw_mem_alloc use storage with high bandwidth

omp_low_lat_mem_alloc use storage with low latency

omp_cgroup_mem_alloc use storage close to all threads in the contention group 
of the thread requesting the allocation

omp_pteam_mem_alloc use storage that is close to all threads in the same 
parallel region of the thread requesting the allocation

omp_thread_local_mem_alloc use storage that is close to the thread requesting the 
allocation
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◼ New clause on all constructs with data sharing clauses:

→ allocate( [allocator:] list )

◼ Allocation:

→ omp_alloc(size_t size, omp_allocator_handle_t allocator)

◼ Deallocation:

→ omp_free(void *ptr, const omp_allocator_handle_t allocator)

→ allocator argument is optional

◼ allocate directive: standalone directive for allocation, or declaration of allocation

stmt.

Using OpenMP Allocators
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◼ Allocator traits control the behavior of the allocator

OpenMP Allocator Traits / 1

sync_hint contended, uncontended, serialized, private
default: contended

alignment positive integer value that is a power of two
default: 1 byte

access all, cgroup, pteam, thread
default: all

pool_size positive integer value

fallback default_mem_fb, null_fb, abort_fb, allocator_fb
default: default_mem_fb

fb_data an allocator handle

pinned true, false
default: false

partition environment, nearest, blocked, interleaved
default: environment

370

OpenMP Tutorial

Members of the OpenMP Language Committee
102

◼ fallback: describes the behavior if the allocation cannot be fulfilled

→default_mem_fb: return system’s default memory

→Other options: null, abort, or use different allocator

◼ pinned: request pinned memory, i.e. for GPUs

OpenMP Allocator Traits / 2
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◼ partition: partitioning of allocated memory of physical storage 

resources (think of NUMA)

→environment: use system’s default behavior

→nearest: most closest memory

→blocked: partitioning into approx. same size with at most one block per 

storage resource

→interleaved: partitioning in a round-robin fashion across the storage 

resources

OpenMP Allocator Traits / 3
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◼ Construction of allocators with traits via

→omp_allocator_handle_t omp_init_allocator(

omp_memspace_handle_t memspace,

int ntraits, const omp_alloctrait_t traits[]);

→Selection of memory space mandatory

→Empty traits set: use defaults

◼ Allocators have to be destroyed with *_destroy_*

◼ Custom allocator can be made default with
omp_set_default_allocator(omp_allocator_handle_t allocator)

OpenMP Allocator Traits / 4
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◼ Storage resources with explicit support in OpenMP:

→Exact selection of memory space is implementation-def.

→Pre-defined allocators available to work with these

OpenMP Memory Spaces

omp_default_mem_space System’s default memory resource

omp_large_cap_mem_space Storage with larg(er) capacity

omp_const_mem_space Storage optimized for variables with constant value

omp_high_bw_mem_space Storage with high bandwidth

omp_low_lat_mem_space Storage with low latency
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Contents

▪ Common performance issues in thread parallel applications

▪ Analyzing multi-threaded performance with Intel® VTune™ Profiler 

▪ Common NUMA Issues and Optimizations

▪ Thread affinity and pinning

• OpenMP Applications

• Hybrid MPI+OpenMP Applications
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Common performance issues in thread 
parallel applications
Common issues, terminology
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Issues in (Thread) Parallel Applications

▪ Load imbalance

• Work distribution is not optimal

• Some threads are heavily loaded, while others idle

• Slowest thread determines total speed-up

▪ Locking issues

• Locks prohibit threads to concurrently enter code regions

• Effectively serialize execution

▪ Parallelization overhead

• With large no. of threads, data partition get smaller

• Overhead might get significant (e.g. OpenMP startup time)
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Threading Analysis Terminology

▪ Elapsed Time: 6 seconds

▪ CPU Time: T1 (4s) + T2 (3s) + T3 (3s) = 10 seconds

▪ Wait Time: T1(2s) + T2(2s) + T3 (2s) = 6 seconds

21 30

Concurrency 
Summary

4

Thread1

Thread2

Thread3

Waiting

Waiting

Thread3Waiting

Thread2

Thread1

1sec 1sec 1sec 1sec 1sec 1sec

Thread running

Thread waiting

1 2 1 1 2 3
Threads 
running
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Analyzing multi-threaded performance 
with Intel® VTune™ Profiler 
Overview, treading analysis, thread timeline, MPI+OpenMP analysis 
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VTune GUI: OpenMP analysis

▪ Tracing of OpenMP constructs to provide region/work sharing context 
and imbalance on barriers

• Advanced hotspots w/o stacks is recommended to make sampling 
representative for small regions

▪ VTune is provided with information by Intel OpenMP RTL

• Fork-Join points of parallel regions with number of working threads (Intel 
Compilers version 14 and later)

• OpenMP construct barrier points with imbalance info and OpenMP loop 
metadata 

• Embed source file name to an OpenMP region with -parallel-source-info=2

compiler option
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VTune GUI: Thread Concurrency Histogram
Global view of OpenMP concurrency
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Potential Gain as a sum of inefficiencies normalized by 
number of threads

VTune GUI: OpenMP region view

Definition of Region Potential Gain (elapsed time metric)

Lock spinning (sampling)

Effective time (sampling)

Imbalance (tracing)

Actual Parallel Region Elapsed Time

Estimated Ideal Time =

Effective time / Number of Threads

Fork Join

Scheduling (sampling)

Work creation (sampling)

Atomics (sampling)

Reduction (sampling)
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VTune GUI: Threading Analysis (1/5)

Summary view:

1) Is the serial time of my application significant enough to prevent scaling?

2) How much performance can be gained by tuning OpenMP?

3) Which OpenMP regions / loops / barriers will benefit most from tuning?

4) What are the inefficiencies with each region? (click the link to see details)

1) 

2) 

4) 

3) 
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VTune GUI: Threading Analysis (2/5)

Focus On What’s Important
▪ What region is inefficient?

▪ Is the potential gain worth it?

▪ Why is it inefficient?  
Imbalance? Scheduling?  Lock spinning?

Actual Elapsed Time

Ideal Time

Fork Join

Potential
Gain

Potential 

Gain

Imbalance Lock SchedulingFork
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VTune GUI: Threading Analysis (3/5)
Parallel Region Inefficiencies

Imbalance

Likely culprit:

Dynamic 
scheduling 
overhead
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VTune GUI: Threading Analysis (4/5)
Mapping regions to source code

▪ View data specific to the region at the source code level

▪ With ‘-parallel-source-info=2’ compiler option to embed source file name in 
region name

387
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VTune GUI: Threading Analysis (5/5) 
Understanding parallel inefficiency

Detailed Barrier to Barrier Analysis

▪ Tune each segment separately

▪ Easier to see tuning opportunities Parallel Region

Barrier-to-Barrier
Segment 1

Barrier-to-Barrier
Segment 2

Barrier-to-Barrier
Segment 3

Fork Join

User
Barrier

Omp 
Single

Single
Barrier

Omp
For

Omp
For Barrier

#pragma omp parallel

{

…

#pragma omp barrier

#pragma omp single

{

…

{

#pragma omp for

{
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CPU Time

Hovers:

Transitions
Basic Hotspots Advanced HotspotsLocks & Waits

VTune GUI: Thread timeline

▪ Optional: Use API to mark frames and user tasks

▪ Optional: Add a mark during collection

389
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VTune GUI: Threading analysis
Common patterns for root causing low concurrency

Coarse Grain
Locks

High Lock
Contention

Load
Imbalance

Low
Concurrency
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VTune GUI: MPI + OpenMP analysis

Tune OpenMP performance of high impact ranks in VTune Profiler

Process names link 
to OpenMP metrics

Ranks sorted by OpenMP 
tuning impact on overall 
performance

Per-rank OpenMP 
Potential Gain and 
Serial Time metrics

Detailed OpenMP
metrics

391
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Common NUMA Issues and 
Optimizations
First touch policy, common optimizations
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(Almost) all HPC systems are NUMA

▪ (Almost) all multi-socket compute servers are NUMA systems

• Different access latencies for different memory locations

• Different bandwidth observed for different memory locations

▪ Example: Intel® Xeon E5-2600v3 Series processor

Xeon® E5-2600v3 Xeon® E5-2600v3

393
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NUMA - Does it matter?  
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STREAM Triad, Intel® Xeon E5-2697v2 

compact, par scatter, par compact, seq scatter, seq
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First touch policy

▪ Modern operating systems all use virtual memory

▪ The OS typically optimizes memory allocations

• malloc() does not allocate the memory directly

• Only the memory management “knows” about the memory allocation, but no memory 
pages are made available

• At first memory access (write), the OS physically allocates the corresponding page (First 
touch policy)

▪ On NUMA systems this might lead to performance issues in threaded 
or multi-process applications
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NUMA Optimization with OpenMP

// Initialize data 

for (size_t i = 0; i < N; i++)

for (size_t j = 0; j < M; j++) {…}

// Perform work

#pragma omp parallel for private(j)

for (size_t i = 0; i < N; i++)

for (size_t j = 0; j < M; j++) {…}

Mem Mem

Mem Mem

CPU

CPU

CPU

CPU
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NUMA Optimization with OpenMP

Mem Mem

Mem Mem

CPU

CPU

CPU

CPU

// Initialize data 

#pragma omp parallel for private(j)

for (size_t i = 0; i < N; i++)

for (size_t j = 0; j < M; j++) {…}

// Perform work

#pragma omp parallel for private(j)

for (size_t i = 0; i < N; i++)

for (size_t j = 0; j < M; j++) {…}
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NUMA issues and MPI Applications

▪ MPI applications might also be affected by NUMA issues:

• A process allocates memory on one NUMA node…

• … and is then scheduled to run on another NUMA node.

▪ Intra-node communication might show different bandwidths and/or 
latencies to network fabric adapter

▪ The file system cache

• Might reserve memory on one NUMA node..

• ..and thus push out allocations to a remote NUMA node.
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Summary

▪ Use threading analysis to find bottlenecks in the application

▪ NUMA can be an issue, so make sure that the application is NUMA-
aware

▪ Use pinning to keep thread in their NUMA domain and in their cores 
(cache!)
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Notices & Disclaimers

Performance varies by use, configuration, and other factors. Learn more at www.Intel.com/PerformanceIndex.  

Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available 
updates. See configuration disclosure for details.

Your costs and results may vary.

Intel technologies may require enabled hardware, software or service activation.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. 
Other names and brands may be claimed as the property of others.
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Thread/process affinityThread/process affinity
CSC Training, 2021-05
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Thread and process affinityThread and process affinity

Normally, operating system can run threads and processes in any logical core
Operating system may even move running task from one core to another

Can be beneficial for load balancing
For HPC workloads often detrimental as private caches get invalidated and NUMA
locality is lost

User can control where tasks are run via affinity masks
Task can be pinned to a specific logical core or set of logical cores
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Controlling affinityControlling affinity

Affinity for a process can be set with a numactl command
Limit the process to logical cores 0,3,7:  

numactl --physcpubind=0,3,7 ./my_exe

Threads "inherit" the affinity of their parent process

Affinity of a thread can be set with OpenMP environment variables
OMP_PLACES=[threads,cores,sockets]

OMP_PROC_BIND=[true, close, spread, master]

OpenMP runtime prints the affinity with OMP_DISPLAY_AFFINITY=true
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Controlling affinityControlling affinity

export OMP_AFFINITY_FORMAT="Thread %0.3n affinity %A" 

export OMP_DISPLAY_AFFINITY=true

./test

Thread 000 affinity 0-7 

Thread 001 affinity 0-7 

Thread 002 affinity 0-7 

Thread 003 affinity 0-7

OMP_PLACES=cores ./test 

Thread 000 affinity 0,4 

Thread 001 affinity 1,5 

Thread 002 affinity 2,6 

Thread 003 affinity 3,7
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MPI library must be aware of the
underlying OpenMP for correct
allocation of resources

Oversubscription of CPU cores may
cause significant performance penalty

Additional complexity from batch job
schedulers
Heavily dependent on the platform
used!

00 01 02 03

04 05 06 07

cpu00

00 01 02 03

04 05 06 07

cpu01

Example (incorrect): oversubscription of resources

MPI task 0:
cpu00:00, cpu00:01,
cpu00:02, cpu00:03

MPI task 1:
cpu00:01, cpu00:02,
cpu00:03, cpu00:04

Example (correct): better use of resources

MPI task 0:
cpu00:00, cpu00:01,
cpu00:02, cpu00:03

MPI task 1:
cpu01:00, cpu01:01,
cpu01:02, cpu01:03

00 01 02 03

04 05 06 07

cpu00

00 01 02 03

04 05 06 07

cpu01

MPI+OpenMP thread affinityMPI+OpenMP thread affinity
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Slurm configuration at CSCSlurm configuration at CSC

Within a node, --tasks-per-node MPI tasks are spread --cpus-per-task apart

Threads within a MPI tasks have the affinity mask for the corresponging  
--cpus-per-task  cores

export OMP_AFFINITY_FORMAT="Process %P thread %0.3n affinity %A"

export OMP_DISPLAY_AFFINITY=true

srun ... --tasks-per-node=2 --cpus-per-task=4 ./test

Process 250545 thread 000 affinity 0-3

... 

Process 250546 thread 000 affinity 4-7

...

Slurm configurations in other HPC centers can be very different
Always experiment before production calculations!
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SummarySummary

Performance of HPC applications is often improved when processes and threads are
pinned to CPU cores
MPI and batch system configurations may affect the affinity

very system dependent, try to always investigate
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