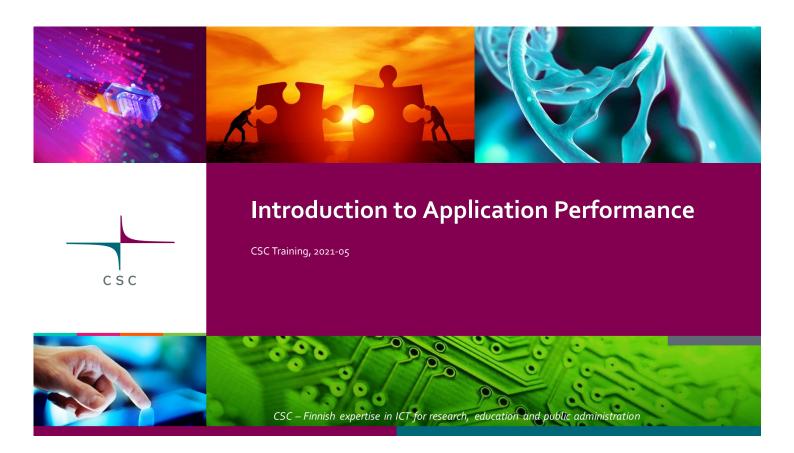


Node level performance optimization

May 18 – 20, 2021 CSC – IT Center for Science Ltd., Espoo


Jussi Enkovaara, CSC Mikko Byckling, Intel Michael Klemm, AMD

Unless otherwise noted, material (C) 2011–2021 by CSC – IT Center for Science Ltd, and licensed under a **Creative Commons Attribution-ShareAlike** 4.0, http://creativecommons.org/licenses/by-sa/4.0

Course outline

- Analyzing and understanding performance issues
 - Awareness of modern CPUs
- Improving performance through vectorization
- Improving performance through memory optimization
- Improving performance though advanced threading techniques

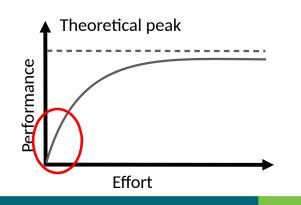
1

Why worry about application performance?

- Obvious benefits
 - Better throughput => more science
 - Cheaper than new hardware
 - Save energy, compute quota, money etc.
- ...and some non-obvious ones
 - Potential cross-disciplinary research with computer science
 - Deeper understanding of application

Factors affecting performance in HPC

- Single node performance
 - single core performance
 - threading (and MPI within a node)
- Communication between nodes
- Input/output to disk


....

3

How to improve single node performance?

- Choose good algorithm
 - \circ e.g. $O(N {
 m log} N)$ vs. $O(N^2)$
 - remember prefactor!
- Use high performance libraries
 - $\circ\,$ linear algebra (BLAS/LAPACK), FFTs, ...
- Experiment with compilers and compiler options
 - There is no single best compiler and set of options for all use cases
- Experiment with threading options • Thread pinning, loop scheduling, ...
- Optimize the program code

./fibonacci 20
With loop, Fibonacci number i=20 is 6765
Time elapsed 79 ums
With recursion, Fibonacci number i=20 is 6765
Time elapsed 343773 ums

5

Doesn't the compiler do everything?

- You can make a big difference to code performance with how you express things
- Helping the compiler spot optimisation opportunities
- Using the insight of your application
 - language semantics might limit compiler
- Removing obscure (and obsolescent) "optimizations" in older code
 - $\circ\,$ Simple code is the best, until otherwise proven
- This is a dark art, mostly: optimize on case-by-case basis
 - $\,\circ\,$ First, check what the compiler is already doing

What the compiler is doing?

- Compilers have vast amount of heuristics for optimizing common programming patters
- Most compilers can provide a report about optimizations performed, with various amount of detail
 - See compiler manuals for all options
- Look into assembly code with
 - -S -fverbose-asm

Compiler	Opt. report
GNU	-fopt-info
Intel	-qopt-report
Clang	-Rpass=.*

vfmadd213pd %ymm0, %ymm2, %ymm10 vfmadd213pd %ymm0, %ymm2, %ymm9 vfmadd213pd %ymm0, %ymm2, %ymm8

Measuring performance

A day in life at CSC

CSC customer

I'm performing simulations with my Fortran code. It seems to perform much worse with MKL library in the new system than with IMSL library in the old system.

No

CSC specialist

Have you profiled your code?

A day in life at CSC

• Profiled the code: 99.9% of the execution time was being spent on these lines:

Measuring performance

- First step should always be measuring the performance and finding performance critical parts
 - Application can contain hundreds of thousands of lines of code, but typically a small part of the code (~10 %) consumes most (~90%) of the execution time
 - "Premature code optimization is the root of all evil"
- Choose test case which represents a real production run
- Measurements should be carried out on the target platform
 - "Toy" run on laptop may provide only limited information

Profiling application

- Applications own timing information
 - Can be useful for big picture
- Performance analysis tools
 - Provide detailed information about the application
 - Find hot-spots (functions and loops)
 - Identify causes of less-than-ideal performance
 - Information about low-level hardware
 - Intel VTune, AMD uProf, perf, Tau, Scalasca, PAPI, ...
 - http://www.vi-hps.org/tools/tools.html

Orthonormalize:	54.219	0.003	0.0%
calc_s_matrix:	11.150	11.150	2.8%
inverse-cholesky:	5.786	5.786	1.5%
projections:	18.136	18.136	4.6% -
rotate_psi_s:	19.144	19.144	4.8% -
RMM-DIIS:	229.947	29.370	7.4%
Apply hamiltonian:	9.861	9.861	2.5%

○ Effective Physical Core Utilization[®]: 88.3% (3.532 out of 4) Effective Logical Core Utilization [®]: 88.3% (7.064 out of S Effective CPU Utilization Histogram

- ⊙ Memory Bound[®]: 5.7% of Pipeline Slots Cache Bound[®]: 31.3% ▶ of Clockticks ③ DRAM Bound[®]: 3.8% of Clockticks ③ Bandwidth Utilization Histogram

Sectorization[®]: 0.0% ▶ of Packed FP Operations №

1112	a action mix.		
0	SP FLOPs [®] :	0.0%	of uOps
\odot	DP FLOPs	33.9%	of uOps
	Packed [®] :	0.0%	from DP FP
	Scalar [®] :	100.0% 🎙	from DP FP
	x87 FLOPs [°] :	0.0%	of uOps

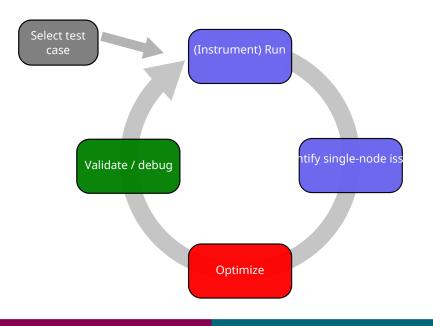
Profiling application

- Collecting all possible performance metrics with single run is not practical
 - Simply too much information
 - Profiling overhead can alter application behavior
- Start with an overview!
 - Call tree information, what routines are most expensive?

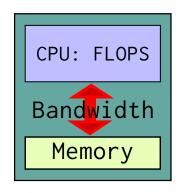
13

Sampling vs. tracing

- When application is profiled using sampling, the execution is stopped at predetermined intervals and the state of the application is examined
 - Lightweight, but may give skewed results
- Tracing records every event, e.g. function call
 - Usually requires modification to the executable
 - $\circ\,$ These modifications are called instrumentation
 - $\circ\,$ More accurate, but may affect program behavior
 - Generates lots of data


Hardware performance counters

- Hardware performance counters are special registers on CPU that count hardware events
- They enable more accurate statistics and low overhead
 In some cases they can be used for tracing without any extra instrumentation
- Number of counters is much smaller than the number of events that can be recorded
- Different CPUs have different counters


Optimizing program

Code optimization cycle

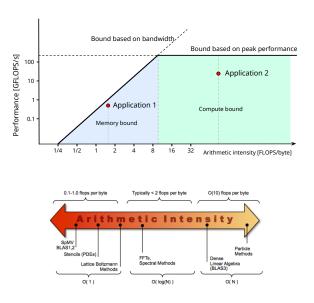
How to assess application's performance?

- Two fundamental limits
- CPUs peak floating point performance
 - clock frequency
 - number of instructions per clock cycle
 - number of FLOPS per instruction
 - number of cores
 - no real application achieves peak in sustained operation
- Main memory bandwidth
 - $\circ\,$ How fast data can be fed to the CPU

How to assess application's performance?

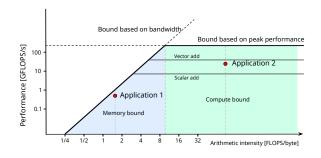
- Example: maximum performance of **axpy** x[i] = a x[i] + y[j]
 - Two FLOPS (multiply and add) per i
 - Three memory references per i
 - With double precision numbers arithmetic intensity
 - $I = rac{ ext{FLOPS}}{ ext{memorytraffic}} = rac{2}{3*8} = 0.08$ FLOPS/byte
 - In Puhti, memory bandwidth is ~200 GB/s, so maximum performance is ~16 GFLOPS/s
 - Theoretical peak performance of Puhti node is ~2600 GFLOPS/s

How to assess application's performance?


- Example: matrix-matrix multiplication C[i,j] = C[i,j] + A[i,k] * B[k,j]
 - $\circ~2N^3$ FLOPS
 - $\circ~3N^2$ memory references
 - $_{\circ}\,$ With double precision numbers arithmetic intensity $I=rac{2N}{3}$ FLOPS/byte
 - $_{\circ}\,$ With large enough N limited by peak performance

Roofline model

- Simple visual concept for maximum achievable performance
 - \circ can be derived in terms of arithmetic intensity I, peak performance π and peak memory bandwidth β


$$P = min \left\{ egin{array}{c} \pi \ eta imes I \end{array}
ight.$$

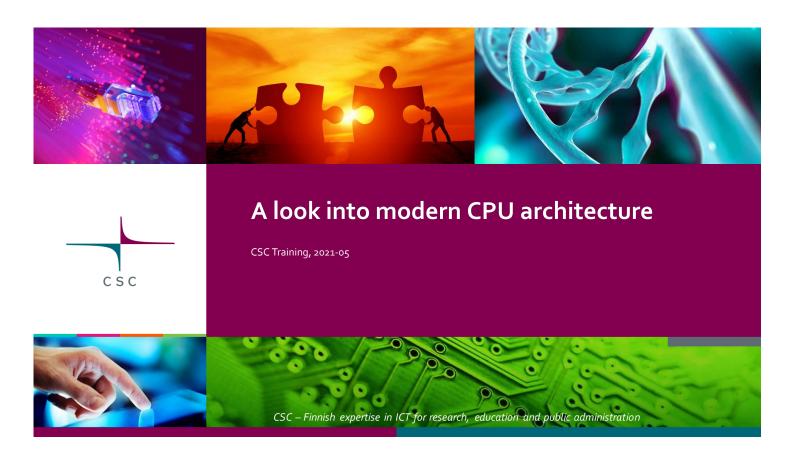
- Machine balance = arithmetic intensity needed for peak performance
 - Typical values 5-15 FLOPS/byte
- Additional ceilings can be included (caches, vectorization, threading)

Roofline model

- Model does not tell if code can be optimized or not
 - Application 1 may not be *fundamentally* memory bound, but only implemented badly (not using caches efficiently)
 - Application 2 may not have *fundamentally* prospects for higher performance (performs only additions and not fused multiply adds)
- However, can be useful for guiding the optimization work

Roofline model

- How to obtain the machine parameters?
 - CPU specs
 - own microbenchmarks
 - special tools (Intel tools, Empirical Roofline Tool)
- How to obtain application GFLOPS/s and arithmetic intensity?
 - Pen and paper and timing measurements
 - Performance analysis tools and hardware counters
 - True number of memory references can be difficult to obtain

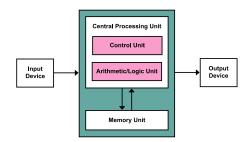

Take-home messages

- Mind the application performance: it is for the benefit of you, other users and the service provider
- Profile the code and identify the performance issues first, before optimizing anything
 - $\circ\,$ "Premature code optimization is the root of all evil"
- Optimizing the code should be the last step in performance tuning
- Serial optimization is mostly about helping the compiler to optimize for the target CPU
- Roofline model can work as a guide in optimization

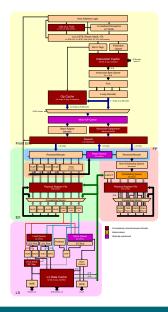
Web resources

- Roofline performance model and Empiral Roofline Tool
 - https://crd.lbl.gov/departments/computer-science/par/research/roofline/
- Web service for looking assembly output from multitude of compilers
 - o https://gcc.godbolt.org

0.50

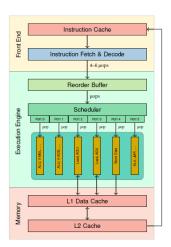


Modern CPU core


von Neumann architecture

- A CPU core is still largely based on the von Neumann model
 - sequency of operations (instructions)
 performed on given data
 - instructions and data are fetched from memory into registers in CPU
 - ALU performs operations on data in registers
 - Result is stored back to memory
- From an external point of view, operations are executed sequentially

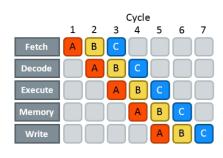
Modern CPU core


- Internally, each core is highly complex
- Superscalar out-of-order instruction execution
- SIMD instructions
- Multiple levels of hierarchical cache memory

How CPU core operates?

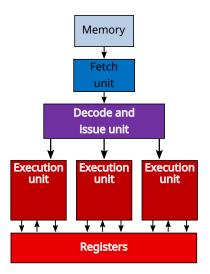
- Clock frequency determines the pace at which CPU works
- Zero to N instructions start at each clock cycle
- Instruction latency = number of clock cycles that are required for completing the execution
- Instruction throughput = number of clock cycles to wait before starting same kind of instruction again
 - Throughput can be much smaller than the latency
 - Sometimes given as cycles per instruction (CPI) or its inverse, instructions per cycle (IPC)

- Instructions are executed in stages
- Fetch (F): control unit fetches instruction from memory
- Decode (D): decode the instruction and determine operands
 - $\,\circ\,$ Instructions are broken into uops
- Execute (E): perform the instruction • Utilize ALU or access memory
- Enables simpler logic and **pipelining** the operations



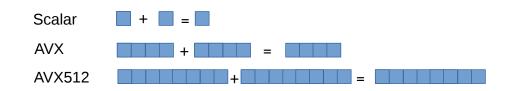
Pipelining

- Instruction execution and arithmetic units can be *pipelined*
 - Instruction execution: work on multiple instructions simultaneously
 - Arithmetic units: execute different stages of a an instruction at the same time in an assembly line fashion
 - $\,\circ\,$ Together: one result per cycle after the pipeline is full
- Within the pipeline, hardware can execute instructions in different order than they were issued (**out-of-order** scheduling)
- Requires complicated software (compiler) and hardware to keep the pipeline full
- Conditional branches can cause the pipeline to stall

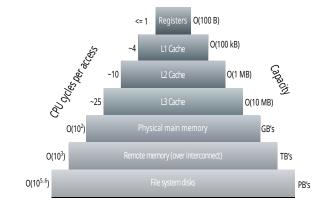

Pipelining: example

- Wind-up and wind-down phases: no instructions retired
- First result available after 5 cycles, total time 7 cycles compared to 15 cycles without a pipeline
- Real pipeline in modern CPU cores can be much more complex

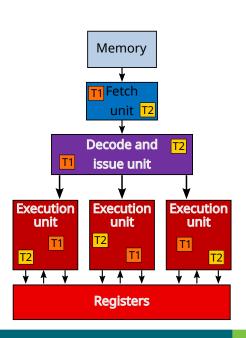
Superscalar execution


- Hardware Instruction Level Parallelism (ILP)
- Multiple instructions per cycle issued to the multiple execution units
- Hardware data dependency resolution preserve sequential execution semantics
 - Actual execution may be out-of-order
- Pipelining and superscalar execution allow instruction throughputs less than one

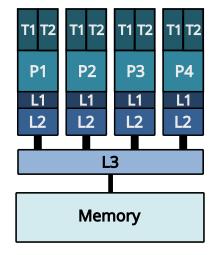
34


Vectorization

- Modern CPUs have SIMD (Single Instruction, Multiple Data) units and instructions
 - $\,\circ\,$ Operate on multiple elements of data with single instructions
- AVX2 256 bits = 4 double precision numbers
- AVX512 512 bits = 8 double precision numbers
 - single AVX512 fused multiply add instruction can perform 16 FLOPS

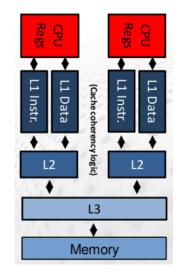

Cache memory

- In order to alleviate the memory bandwidth bottleneck, CPUs have multiple levels of cache memory
 - when data is accessed, it will be first fetched into cache
 - when data is reused, subsequent access is much faster
- L1 cache is closest to the CPU core and is fastest but has smallest capacity
- Each successive level has higher capacity but slower access


Symmetric Multithreading (SMT)

- It is difficult to fill-in all the available hardware resources in a CPU core
 - Pipeline stalls due to main memory latency, I/O, etc.
- To maximize hardware utilization, several hardware threads can be executed on a single core
 - $\circ\,$ Seen as logical cores by OS
- Benefits depend on the application, and SMT can also worsen the performance

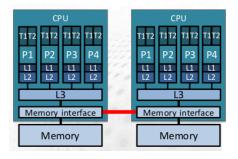
Introduction to modern multicore CPUs


- The multicore CPU is packeted in a socket
- Typically, L1 and L2 caches are private per core, and L3 cache is shared between set of cores
- All cores have shared access to the main memory

38

Cache coherency

- With private caches per core, hardware needs to ensure that the data is consistent between the cores
- When a core writes to a cache, CPU may need to update the caches of other cores
 - Possibly expensive operation



40

NUMA architectures

- A node can have multiple sockets with memory attached to each socket
- Non Uniform Memory Access (NUMA)

 All memory within a node is accessible, but latencies and bandwidths vary
- Hardware needs to maintain cahce coherency also between different NUMA nodes (ccNUMA)

Summary

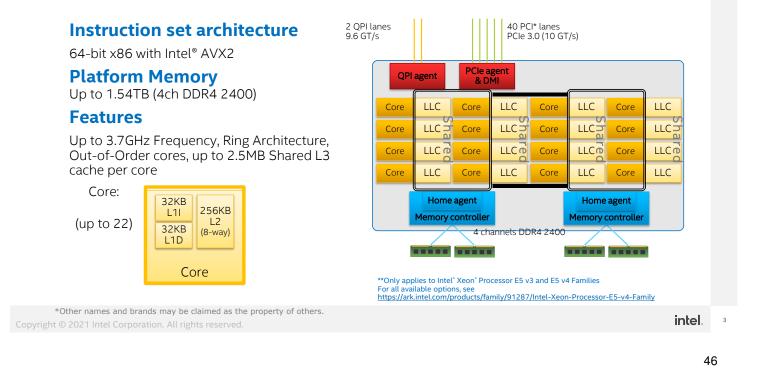
- Modern multicore CPUs are complex beasts
- In order to maximally utilize the CPU, application needs to:
 - use multiple threads (or processes)
 - $\circ\,$ utilize caches for feeding data to CPU at fastest possible pace
 - $\circ\,$ keep the pipeline full and utilize instruction level parallelism
 - $\circ\,$ use vector instructions for maximizing FLOPS per instruction

Web resources

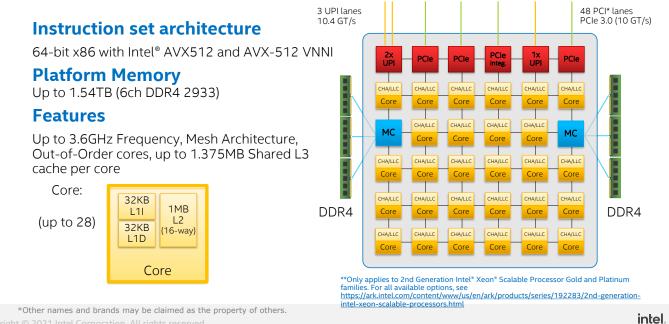
- Detailed information about processor microarchitectures:
 - https://en.wikichip.org/wiki/WikiChip
 - o https://uops.info/
- Agner's optimization resources https://www.agner.org/optimize/

42

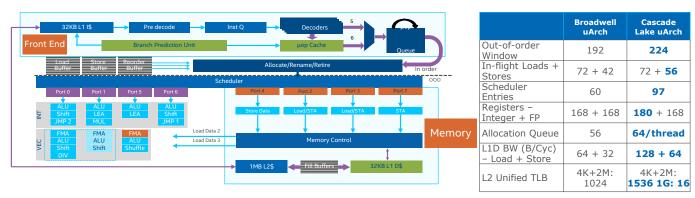
[ONLINE] Node Level Performance Optimization @ CSC, 18-20.5.2021


Performance optimization for Intel[®] Xeon[®] Processor architecture Dr. Mikko Byckling, IAGS DEE XCSS

Contents

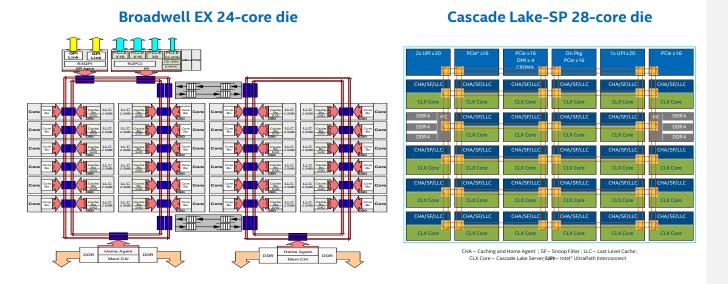

intel

- Intel[®] microarchitectures
 - Intel[®] Xeon[®] Processors (codename "Broadwell", BDW)
 - 2nd generation Intel[®] Xeon[®] Scalable Processors (codename "Cascade Lake-SP", CLX)
- Introduction to SIMD ISA for Intel[®] processors
 - Intel[®] AVX and Intel[®] AVX2
 - \bullet Intel $^{\circ}$ AVX-512 and AVX-512 VNNI

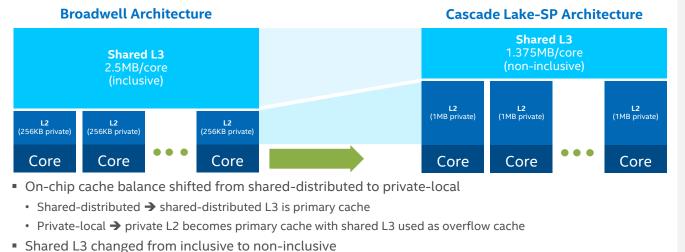

Intel[®] Xeon[®] Processor Architecture^{**}

Intel[®] Xeon[®] Scalable Processor Architecture^{**}

Microarchitecture Enhancements

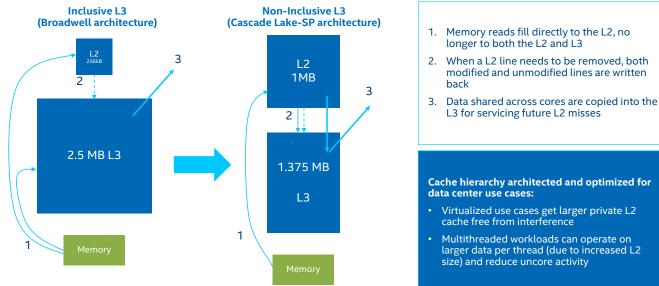

- Larger and improved branch predictor, higher throughput decoder, larger window to extract ILP
- Improved scheduler and execution engine, improved throughput and latency of divide/sqrt
- More load/store bandwidth, deeper load/store buffers, improved prefetcher
- Intel® AVX-512 with 2 FMAs per core, larger 1MB MLC

Copyright © 2021 Intel Corporation. All rights reserved.


intel. ⁵

48

Mesh Interconnect Architecture



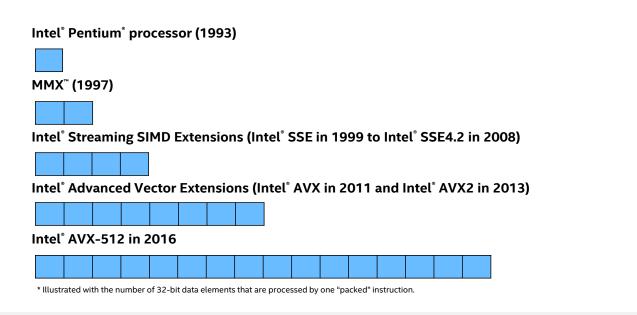
Cache Hierarchy Architecture

- Inclusive → L3 has copies of all lines in L2
- Non-inclusive → lines in L2 may not exist in L3

Inclusive vs Non-Inclusive L3 Cache

Cache hierarchy architected and optimized for data center use cases:

- Virtualized use cases get larger private L2 cache free from interference
- Multithreaded workloads can operate on larger data per thread (due to increased L2 size) and reduce uncore activity


intel.

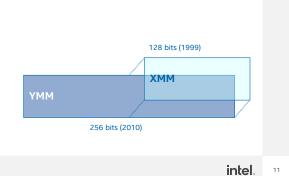
Introduction to SIMD ISA for Intel[®] processors

History, features of Intel[®] AVX, Intel[®] AVX2 and Intel[®] AVX-512

Copyright © 2021 Intel Corporation. All rights reserved

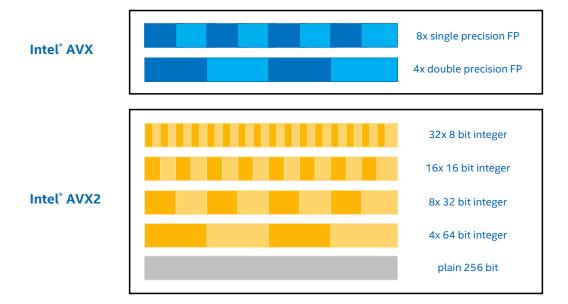
History of SIMD ISA extensions*

53


intel

52

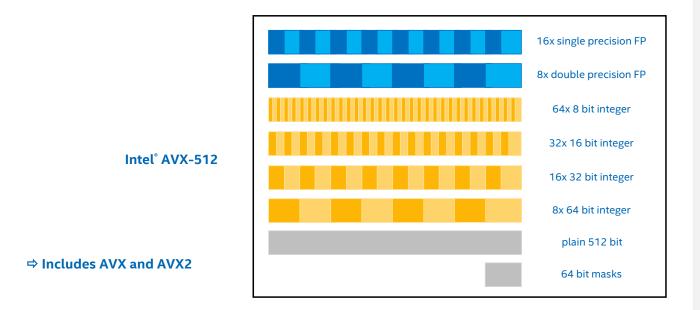
Intel[®] AVX and Intel[®] AVX2


- Intel[®] AVX is a 256 bit vector extension to SSE
 - SSE uses dedicated 128 bit registers called XMM (16 for Intel® 64)
 - Extends all XMM registers to 256 bit called YMM
 - Lower 128 bit of YMM register are mapped/shared with XMM
 - AVX works on either
 - The whole 256 bit
 - The lower 128 bit; zeros the higher 128 bit
- Intel[®] AVX2
 - Doubles width of integer vector instructions to 256 bits
 - Floating point fused multiply add (FMA)
 - Bit Manipulation Instructions (BMI)
 - Gather instructions
 - Any-to-any permutes
 - Vector-vector shifts

Copyright © 2021 Intel Corporation. All rights reserved.

54

Intel® AVX and Intel® AVX2 vector types

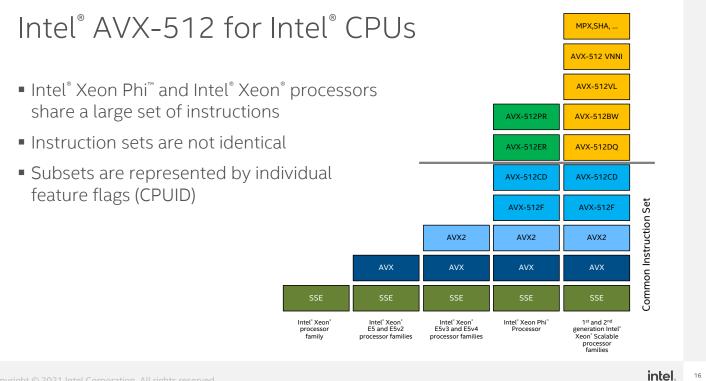

Intel[®] AVX-512

- 512-bit wide vectors
- 32 operand registers
- 8 64b mask registers
- Embedded broadcast
- Embedded rounding

Microarchitecture	Instruction Set	SP FLOPs / cycle	DP FLOPs / cycle
Intel [®] Xeon [®] Processor family	SSE (128b)	8	4
Intel [®] Xeon [®] E5 and E5v2 Processor families	Intel AVX (256b)	16	8
Intel [*] Xeon [*] E5v3 and E5v4 Processors families	Intel AVX2 & FMA (256b)	32	16
1 st and 2 nd generation Intel [®] Xeon [®] Scalable Processor Gold and Platinum families	AVX-512 & FMA (512b)	64	32

13

Intel[®] AVX-512 vector types


intel.

Intel[®] AVX-512 registers

- Extended VEX encoding (EVEX) to introduce another prefix
- Extends previous AVX and SSE registers to 512 bit:
- 32 bit: 8 ZMM registers (same as YMM/XMM) • 64 bit: 32 ZMM registers (2x of YMM/XMM) XMM0-15 8 mask registers (K0 is special) 128 bit 32 bit <----> YMM0-15 256 bit 64 bit K0-7 64 bit ZMM0-31 512 bit
- ⇒ No penalty when switching between XMM, YMM and ZMM!

58

intel.

Intel[®] AVX-512

https://software.intel.com/en-us/blogs/additional-avx-512-instructions

Available in all products supporting Intel® AVX-512

- Intel[®] AVX-512 Foundation (AVX-512F)
 - Extension of AVX instruction sets including mask registers
- Intel[®] AVX-512 Conflict Detection (AVX-512CD)
 - Check identical values inside a vector (for 32 or 64 bit integers) to finding colliding indexes (32 or 64 bit) before a gather-operation-scatter sequence

Available on Intel[®] Xeon[®] processors

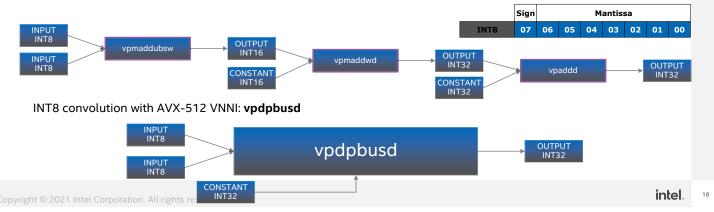
- Intel[®] AVX-512 Vector Length Extension (AVX-512VL)
 - Freely select the vector length (512 bit, 256 bit and 128 bit)
- Intel[®] AVX-512 Byte/Word (AVX-512BW) and Doubleword/Quadword (AVX-512DQ)
 - Two groups (8 and 16 bit integers and 32 and 64 bit integers/FP)

Available on Intel[®] Xeon Phi[™] processors

 Intel[®] AVX-512 Exponential & Reciprocal Instructions (AVX-512ER) and Intel[®] AVX-512 Prefetch Instructions (AVX-512PF)

Copyright © 2021 Intel Corporation. All rights reserved.

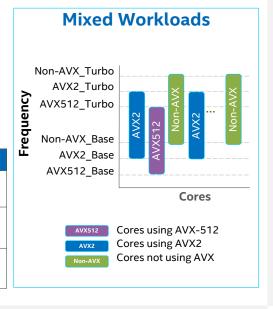
intel.


60

Intel[®] AVX-512 VNNI

Available in selected 2nd Generation Intel® Xeon® Scalable Processors

- Intel® AVX-512 Vector Neural Network Instructions (AVX-512 VNNI)
 - Adds vpdpbusd/vpdpbusds instructions for 8-bit inputs and vpdpwssd/vpdpwssds instructions for 16-bit inputs to accelerate DL convolutions


INT8 convolution with AVX-512: vpmaddubsw, vpmaddwd, vpaddd

Intel[®] AVX* and core turbo frequency

- Cores running non-AVX, Intel® AVX2 light/heavy, and Intel® AVX-512 light/heavy code have different turbo frequency limits
- Frequency of each core is determined independently based on type of workload, number of active cores, estimated current and power consumption, and processor temperature

Code Type	All Core Frequency Limit	
SSE AVX2-Light (without FP & int-mul)	Non-AVX All Core Turbo	
AVX2-Heavy (FP & int-mul) AVX512-Light (without FP & int-mul)	AVX2 All Core Turbo	
AVX512-Heavy (FP & int-mul)	AVX512 All Core Turbo	

*AVX refers to Intel® AVX, Intel® AVX2 or Intel® AVX-512

Intel®

20

Notices & Disclaimers

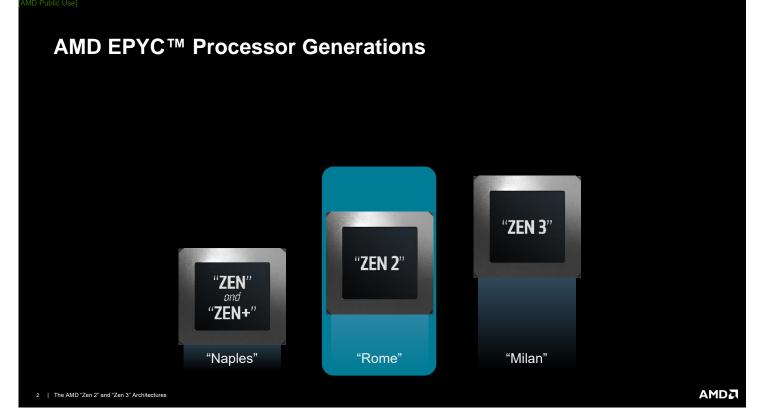
Performance varies by use, configuration, and other factors. Learn more at <u>www.Intel.com/PerformanceIndex</u>.

Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available updates. See configuration disclosure for details.

Your costs and results may vary.

Intel technologies may require enabled hardware, software or service activation.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands may be claimed as the property of others.


Copyright © 2021 Intel Corporation. All rights reserved

intel. 21

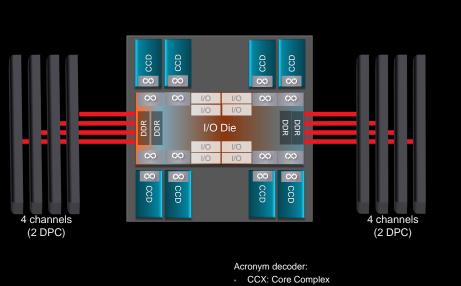
The AMD "Zen 2" and "Zen 3" Architectures

Dr.-Ing. Michael Klemm Senior FAE, Principal Member of Technical Staff HPC Center of Excellence

65

AMD EPYC[™] SoC Architecture

Memory sub-system:

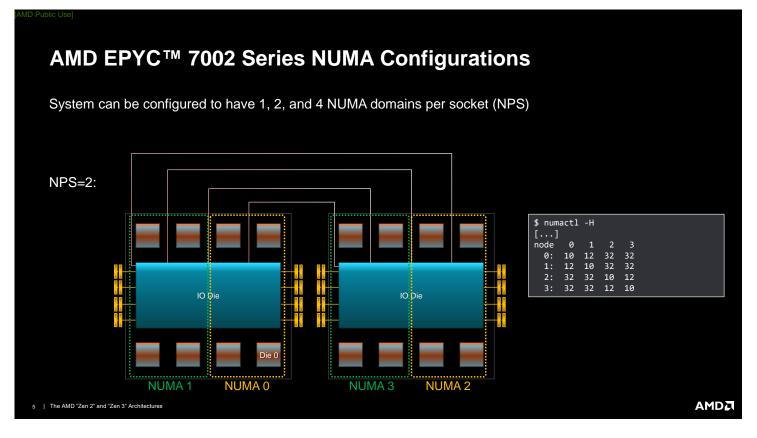

- 8 memory channels per socket (2 DPC)
- DDR4 @ 3200 GT/sec

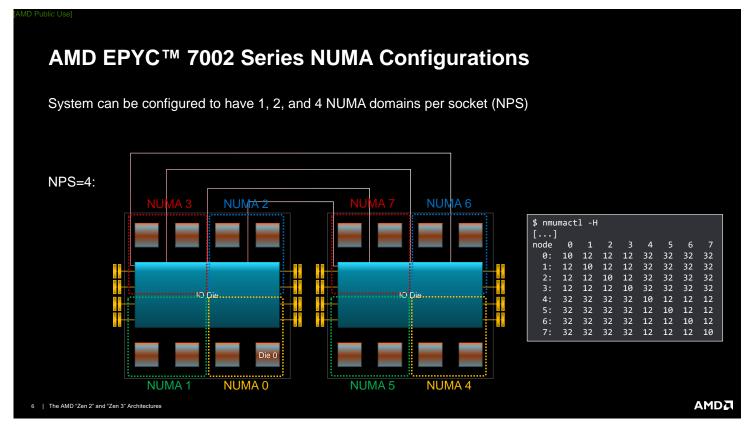
Hierarchical SoC composition:

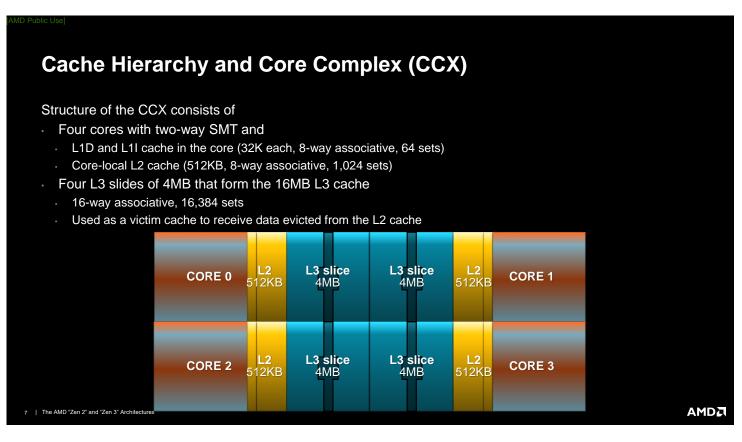
- Up to four cores per CCX
- Two CCXs form a CCD

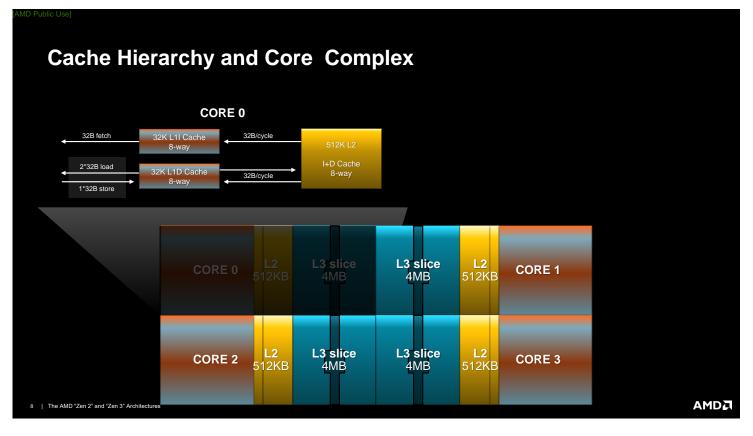
Cache sizes:

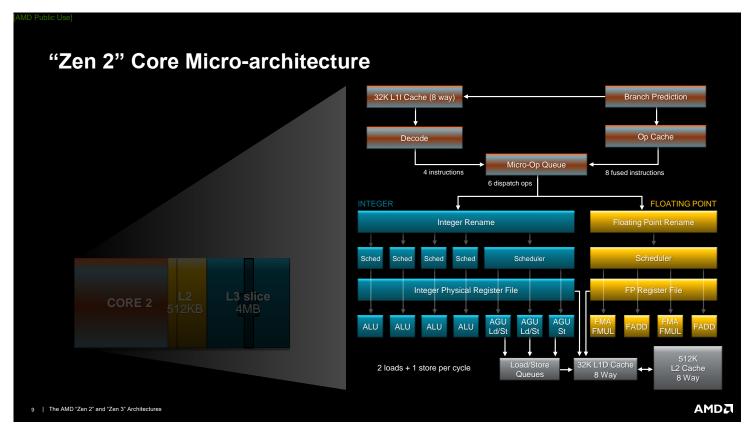
- L1D: 32K, 8-way
- L1I: 32K, 8-way
- L2: 512K, 8-way
- L3: 16M per CCX 32M per CCD

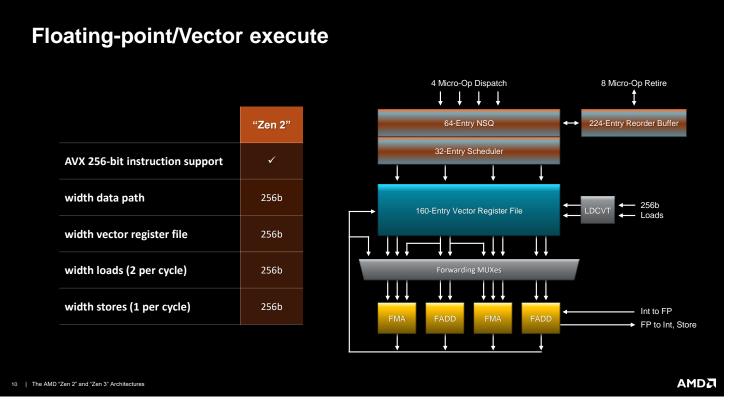


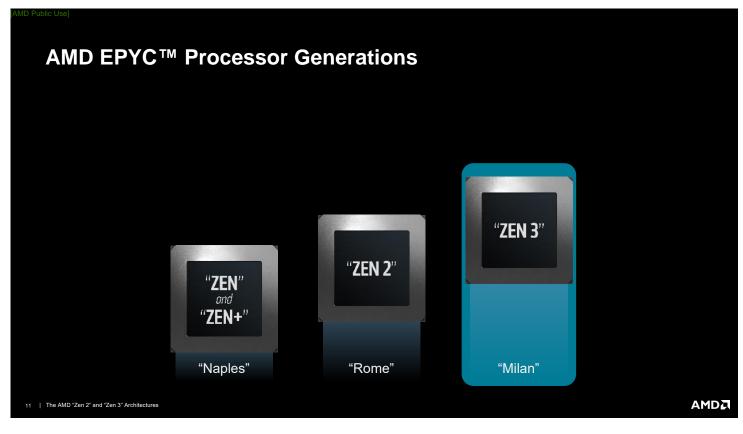

- CCD: Core Complex Die
- DPC: DIMM(s) per Channel
- DIMM: Dual In-line Memory Module AMD

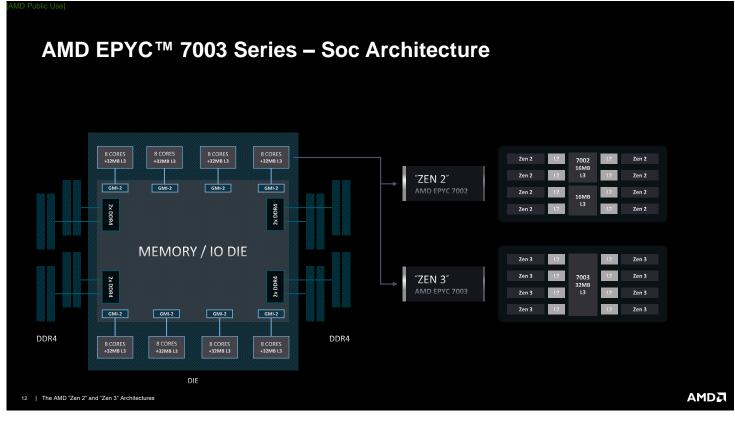

3 | The AMD "Zen 2" and "Zen 3" Architectures

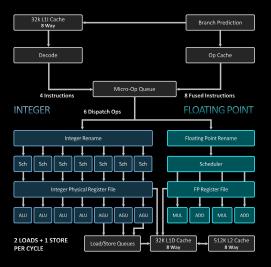

<text>


4 | The AMD "Zen 2" and "Zen 3" Architectures







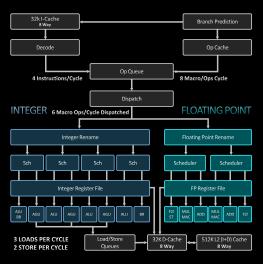


MD Public Use]

AMD EPYC[™] 7003 Series – Micro-architectural Improvements

"ZEN 2"

13 | The AMD "Zen 2" and "Zen 3" Architectures


FRONT-END ENHANCEMENTS 2X Larger L1 BTB (1024) Improved branch predictor bandwidth "No-bubble" branch prediction Faster recovery from mispredict Faster sequencing of Op-cache fetches Finer-grained switching of Op-cache pipes

EXECUTION

Int: Dedicated Branch and St-data pickers Int: Larger windows (+32) FP/Int: Reduced latency for select ops FP: 6-wide dispatch and issue (+2) FP: Faster FMAC (-1 cycle) FP: Two INT8 IMAC pipes (+1) FP: Two INT8 ALU pipes (+1)

LOAD / STORE Higher load bandwidth (+1) Higher store bandwidth (+1) More flexibility in load/store ops Improved memory dependence detection TLB: 6 table walkers (+4)

"ZEN 3"

77

AMD EPYC[™] Processors – Summary

CATEGORY	EPYC 7002	EPYC 7003
Socket	SP3	SP3 (Not Compatible With "Naples" MB)
Core/Process	"Zen2" / 7nm	"Zen3" / 7nm
Max Core Count/Threads	64/128	64/128
L3 Cache Size	256MB	256MB
CCX Arch	4 Cores + 16MB	8 Cores + 32MB
Memory	8 Ch DDR4-3200, NVDIMM-N	8 Ch DDR4-3200, NVDIMM-N
PCle [®] Tech & Lane Count	PCIe Gen4, 128L/Socket	PCIe Gen4, 128L/Socket
Security Features	SME, SEV	SME, SEV, SNP
Chipset	NA	NA
Power	120W - 280W	120W - 280W

14 | The AMD "Zen 2" and "Zen 3" Architectures

Disclaimer

The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions, and typographical errors. The information contained herein is subject to change and may be rendered inaccurate for many reasons, including but not limited to product and roadmap changes, component and motherboard version changes, new model and/or product releases, product differences between differing manufacturers, software changes, BIOS flashes, firmware upgrades, or the like. Any computer system has risks of security vulnerabilities that cannot be completely prevented or mitigated. AMD assumes no obligation to update or otherwise correct or revise this information. However, AMD reserves the right to revise this information and to make changes from time to time to the content hereof without obligation of AMD to notify any person of such revisions or changes.

THIS INFORMATION IS PROVIDED 'AS IS." AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE CONTENTS HEREOF AND ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS, OR OMISSIONS THAT MAY APPEAR IN THIS INFORMATION. AMD SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT WILL AMD BE LIABLE TO ANY PERSON FOR ANY RELIANCE, DIRECT, INDIRECT, SPECIAL, OR OTHER CONSEQUENTIAL DAMAGES ARISING FROM THE USE OF ANY INFORMATION CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

© 2021 Advanced Micro Devices, Inc. All rights reserved.

AMD, the AMD Arrow logo, EPYC, and combinations thereof are trademarks of Advanced Micro Devices, Inc. PCIe is a registered trademark of PCI-SIG Corporation. Other product names used in this publication are for identification purposes only and may be trademarks of their respective companies.

15 | The AMD "Zen 2" and "Zen 3" Architectures

79

AMDA

[ONLINE] Node Level Performance Optimization @ CSC, 18-20.5.2021

Performance analysis with Intel[®] tools

Dr. Mikko Byckling, IAGS DEE XCSS

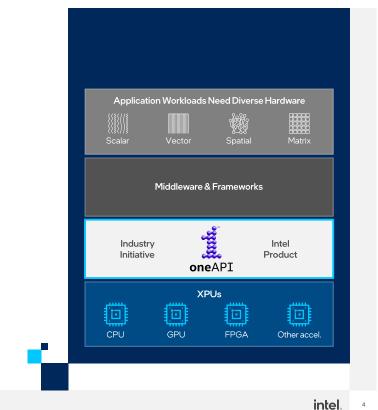
Contents

intel

- Intel[®] oneAPI performance analysis tools overview
- Application Performance Snapshot
- Introduction to Intel[®] VTune[™] Profiler
 - Features and analysis types
 - Graphical User Interface (GUI)
 - Command Line Interface (CLI)
- Intel[®] VTune[™] Profiler HPC workflow
- Summary

82

Intel[®] oneAPI performance analysis tools overview


Copyright © 2021 Intel Corporation. All rights reserved

intel.

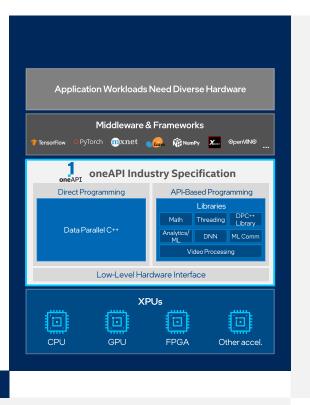
83

Introducing oneAPI

- Cross-architecture programming that delivers freedom to choose the best hardware
- Based on industry standards and open specifications
- Exposes cutting-edge performance features of latest hardware
- Compatible with existing high-performance languages and programming models including C++, OpenMP, Fortran, and MPI

Learn More: <u>intel.com/oneAPI</u> Copyright © 2021 Intel Corporation. All rights reserved.

oneAPI Industry Initiative

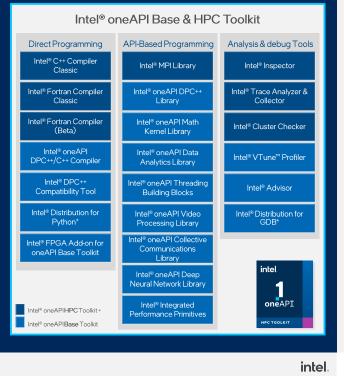

- A cross-architecture language based on C++ and SYCL standards
- Powerful libraries designed for acceleration of domain-specific functions
- Low-level hardware abstraction layer
- Open to promote community and industry collaboration
- Enables code reuse across architectures and vendors

The productive, smart path to freedom for accelerated computing from the economic and technical burdens of proprietary programming models

Learn More: intel.com/oneAPI

Copyright © 2021 Intel Corporation. All rights reserved.

intel.


85

Intel[®] oneAPI

Base & HPC Toolkit

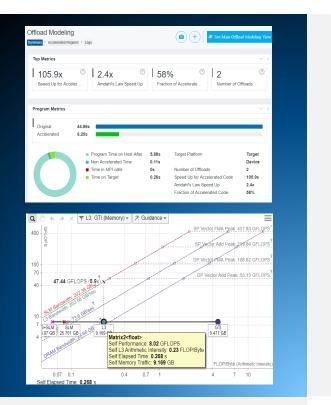
- Intel[®] oneAPI Tools for HPC: Deliver Fast Applications that Scale
- A toolkit that adds to the Intel[®] oneAPI Base Toolkit for building high-performance, scalable parallel code on C++, Fortran, OpenMP & MPI from enterprise to cloud, and HPC to AI applications.
- Targeted for C++, Fortran, OpenMP, MPI Developers
- Accelerate performance on Intel[®] Xeon[®] & Core[™] Processors and Accelerators
- Deliver fast, scalable, reliable parallel code with less effort; built on industry standards

Learn More: <u>intel.com/oneAPI-HPCKit</u> Copyright © 2021 Intel Corporation. All rights reserved

Intel® VTune™ Profiler

- Get the Right Data to Find Bottlenecks
 - Profiling for CPU, GPU, FPGA, threading, memory, cache, storage, offload, power...
 - DPC++, C, C++, Fortran, Python*, Go*, Java*, or a mix
 - Linux, Windows, FreeBSD, Android, Yocto and more
- Analyze Data Faster
 - See data on your source, in architecture diagrams, as a histogram, on a timeline...
 - Filter and organize data to find answers
- Work Your Way
 - Graphical user interface or command line
 - Profile locally and remotely
 - Install as an application
 - Install as a server accessible with a web browser

Copyright © 2021 Intel Corporation. All rights reserved.



Part of the Intel[®] oneAPI Base Toolkit intel

87

Intel[®] Advisor

- Offload Modelling
 - Efficiently offload your code to GPUs even before you have the hardware
- Automated Roofline Analysis
 - Optimize your GPU/CPU code for memory and compute
- Vectorization Optimization
 - Enable more vector parallelism and improve its efficiency
- Thread Prototyping
 - Add effective threading to unthreaded applications
- Flow Graph Analyzer
 - Create, visualize and analyze task and dependency computation graphs

Part of the Intel[®] oneAPI Base Toolkit **intel**.

Copyright © 2021 Intel Corporation. All rights reserved.

Performance Analysis Types Get the big picture first with a Snapshot or Platform Profiler

	<u>Snapshot</u> Quickly size potential performance gain. Run a test "during a coffee break".	<u>In-Depth</u> Advanced collection & analys Insight for effective optimization	
 Application Focus HPC App developer focus 1 app running during test 	VTune Profiler's Application Performance Snapshot ^{L®}	VTune Profiler • Many profiles Intel Advisor • Vectorization ITAC • MPI Optimization	S-M® S® S-L®
<u>System Focus</u> • Deployed system focus • Full system load test		VTune Profiler - System-wide sampling - Platform Profiler:	S-M® L®

Maximum collection times: L[®]=long (hours) M[®]=medium (minutes) S[®]=short (seconds-few minutes)

Copyright © 2021 Intel Corporation. All rights reserved.

intel.

89

Application Performance Snapshot A part of Intel® VTune™ Profiler

A Fast Way to Discover Untapped Performance

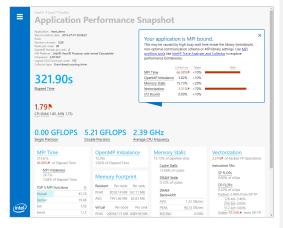
Intel® VTune™ Profiler - Application Performance Snapshot

Quick & easy performance overview

Install & run a test case during a coffee break

All the data in one place

MPI + OpenMP + Memory + Floating Point


Popular MPI implementations

Intel[®] MPI, MPICH, OpenMPI and Cray MPI

New for 2020:

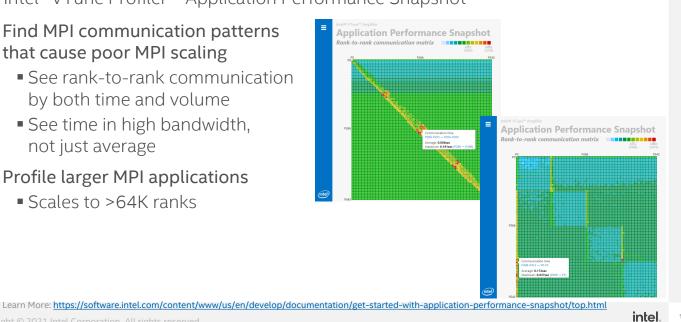
- Communication pattern diagnosis
- See time in high bandwidth, not just average
- Profile large MPI applications >64K ranks

Linux* only.

intel.

91

Better Snapshots – More Ranks


Intel® VTune Profiler – Application Performance Snapshot

Find MPI communication patterns that cause poor MPI scaling

- See rank-to-rank communication by both time and volume
- See time in high bandwidth, not just average

Profile larger MPI applications

Scales to >64K ranks

Intel[®] Application Performance Snapshot Example

```
Source Application Performance Snapshot environment
 source /opt/intel/oneapi/vtune/latest/apsvars.sh
# Collect data
> mpirun -np 4 -env OMP NUM THREADS=2 aps ./testc
# Generate report
aps --report aps_result_20210512/ -s
Loading 100.00%
| Summary information
 _____
 Application
                             : testc
                             : 2021-05-12 14:02:57
 Report creation date
 Number of ranks
                             : 4
                              : 4
 Ranks per node
 OpenMP threads number per rank: 2
                   : Intel(R) Xeon(R) Processor code named Broadwell
 HW Platform
 Frequency
                             : 2.19 GHz
 Logical core count per node : 88
 Collector type
                            : Driverless Perf system-wide counting
```

Copyright © 2021 Intel Corporation. All rights reserved.

intel.

93

Introduction to Intel[®] VTune[™] Profiler

Features and analysis types, Graphical User Interface (GUI), Command Line Interface (CLI)

intel.

Intel[®] VTune[™] Profiler analysis

- Analysis separated into two (three) steps
 - Collect: collection of analysis data
 - Finalize*: resolve symbol information for the data
 - *Report*: compilation of reports from the data
 - The use of GUI and/or CLI is supported in both steps
- Nonintrusive sampling -based collection
 - No special (re)compiles needed
 - Works on optimized builds, to view source code, compile with debugging symbols (i.e., -g)
 - Statistical analysis to determine approximate behaviour

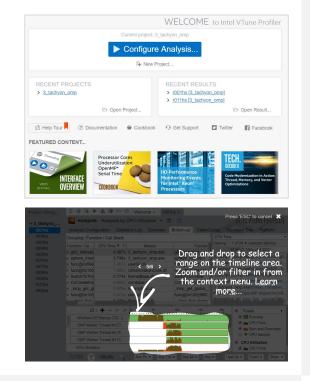
Copyright © 2021 Intel Corporation. All rights reserved.

Data Collection

Software Collector	Hardware Collector
Uses OS interrupts	Uses the on-chip Performance Monitoring Unit (PMU)
Collects from a single process tree	Collect system wide or from a single process tree.
~10ms default resolution	~1ms default resolution (finer granularity - finds small functions)
Either an Intel [®] or a compatible processor	Requires a genuine Intel [®] processor for collection
Call stacks show calling sequence	Optionally collect call stacks
Works in virtual environments	Works in a VM only when supported by the VM (e.g., vSphere*, KVM)
No driver required	Uses Intel driver or perf if driver not installed
No special recompiles C C I	DDC++ C# Fortron Jove Duthon Accombly

No special recompiles - C, C++, DPC++, C#, Fortran, Java, Python, Assembly

VTune Graphical User Interface (GUI)


Graphical tool vtune-gui • Default location (Linux): /opt/intel/oneapi/vtune/2021.2.0/bin64/vtune-gui Pure GUI workflow Ø ALGORITHM MICROARCHITECTURE Memory Consumption Detection • Set up a project croarchite Explorati Choose analysis type PARALLELISM 1/0 • View analysis results Threading HPC Performance Characterizatio Input and Outp PLATFORM ANALYSES ACCELERATORS System Throttling Platform Profiler 0 GPU CPU/FPGA Compute/Media Interaction

intel.

VTune GUI

Intel® VTune™ Profiler

- Welcome page
 - Quick access to documentation and training
- Built-in sample code, pre-collected results
 - Easy to explore tutorials
- Help tour overlay
 - Quickly learn essential user interface controls

Copyright © 2021 Intel Corporation. All rights reserved.

intel.

VTune GUI: Profile Python & Go! And Mixed Python / C++ / Fortran

Low Overhead Sampling


- Accurate performance data without high overhead instrumentation
- Launch application or attach to a running process

Precise Line Level Details

• No guessing, see source line level detail

Mixed Python / native C, C++, Fortran...

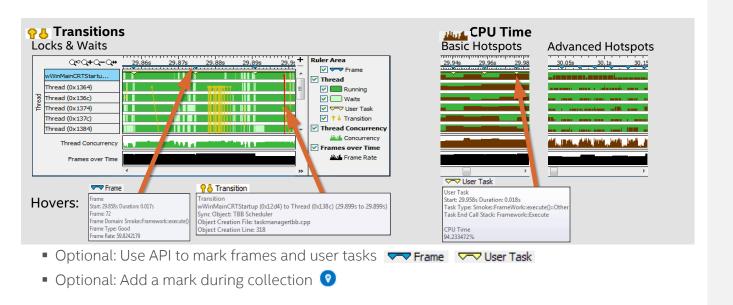
Optimize native code driven by Python

Copyright © 2021 Intel Corporation. All rights reserved.

VTune GUI: Hotspots Double Click from Grid or Timeline

View Source / Asm or both **CPU** Time Right click for instruction reference manual 17 60 sembly grouping: Address • 0 CPU Time: 1 0.2475 👍 CPU Time: Total Address A Sour... Source Assembly tmax.x +-565 curpos = nXp; 0x40dcbf ock 44: 0x40dcbf 0x40dcc1 572 est esi, esi 572 7 <Block 50> Quick Asm navigation: 0x40c 0x40dcc3 Block 45: mov eax, dword ptr [esi+0x4] Select source to highlight Asm 0x40dcc3 573 0.053s mov ecx, dword ptr [edi+0x10]
mov edx, dword ptr [edi+0xc]
mov eax, dword ptr [eax]
cmp dword ptr [ecx+eax+4], edx 0.750s 0.265s 0x40dcc6 573 cur = g->cells[voxindex]; while (cur != NULL) { 0x40dcc9 573 0.020s 0.055s 571 572 0x40dccc 573 0x40dcce 573 cmp dword ptr 1.177s 574 ry->mbox[cur->obj->id] = ry-: 0.604s 0x40dcd1 573 575 576 cur->obj->methods->intersect 0.687s 0x40dcd3 Block 46: 0x40dcd3 574 0.604s mov dword 577 cur = cur->next; 0.4235 0x40dcd6 575 mov eax. d ptr [esi+0x4] 0.1755 578 Dx40dcd9 575 push edi 579 curvox.z += step.z; 0.019s 0x40dcda 575 push eax mov ecx, dwo 580 581 0x40dcdb 575 0.027s if (ry->maxdist < tmax.z || curve 0.011s ptr [eax+0x8] 575 break; 0x40dcde mov eax, dwo ptr [ecx] 0.130s voxindex += step.z*g->xsize*g call eax 0.078s 0x40dce0 575

Scroll Bar "Heat Map" is an overview of hot spots


Click jump to scroll Asm

Copyright © 2021 Intel Corporation. All rights reserved.

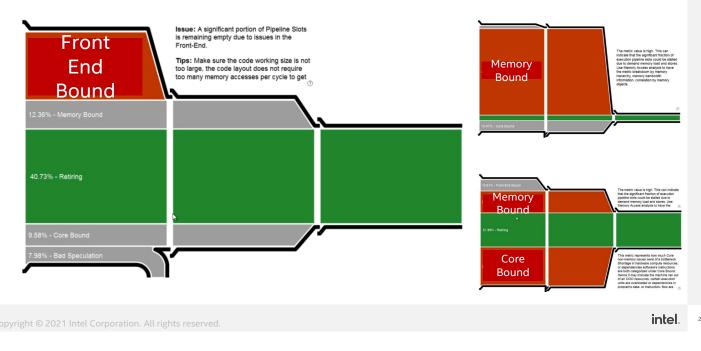
20

intel.

VTune GUI: Threading

Copyright © 2021 Intel Corporation. All rights reserved.

101

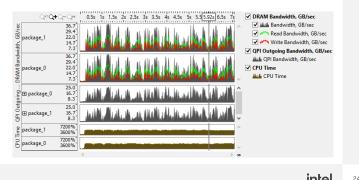

VTune GUI: HPC Performance Characterization Threading, Memory Access, Vectorization

- Threading: CPU Utilization
- Serial vs. Parallel time
- Top OpenMP regions by potential gain
- Tip: Use hotspot OpenMP region analysis for more detail
- Memory Access Efficiency
- Stalls by memory hierarchy
- Bandwidth utilization
- Tip: Use Memory Access analysis
- Vectorization: FPU Utilization
- FLOPS[†] estimates from sampling
- Tip: Use Intel Advisor for precise metrics and vectorization optimization

```
    Control Provided State Production
    A Analysis Configuration Control Contention Control Control Control Control Contro Control Contro
```

Copyright © 2021 Intel Corporation. All rights reserved.

VTune GUI: Microarchitecture Exploration


103

VTune GUI: Memory Access Analysis

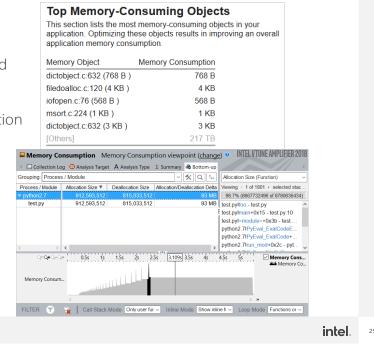
- Tune data structures for performance
 - Attribute cache misses to data structures (not just the code causing the miss)
 - Support for custom memory allocators
- Optimize NUMA latency & scalability
 - True & false sharing optimization
 - Auto detect max system bandwidth
 - Easier tuning of inter-socket bandwidth
- Easier install, Latest processors
 - No special drivers required on Linux*
 - Intel[®] Xeon Phi[™] processor MCDRAM (high bandwidth memory) analysis

Top Memory Objects by Latency

Memory Object	Total Latency	Loads	Stores	LLC Miss Count [®]
alloc_test.cpp:157 (30 MB)	65.6%	4,239,327,176	4,475,334,256	0
alloc_test.cpp:135 (305 MB)	6.8%	411,212,336	441,613,248	0
alloc_test.cpp:109 (305 MB)	6.3%	439,213,176	449,613,488	0
alloc_test!I_data_init.436.0.6 (576 B)	5.2%	742,422,272	676,820,304	0
[vmlinux]	4.6%	173,605,208	116,003,480	0
[Others]	11.5%	1,533,646,008	1,674,450,232	0

VTune GUI: Memory Consumption Analysis

See What Is Allocating Memory


- Lists top memory consuming functions and objects
- View source to understand cause
- Filter by time using the memory consumption timeline
- Standard & Custom Allocators
 - Recognizes libc malloc/free, memkind and jemalloc libraries
 - Use custom allocators after markup with ITT Notify API

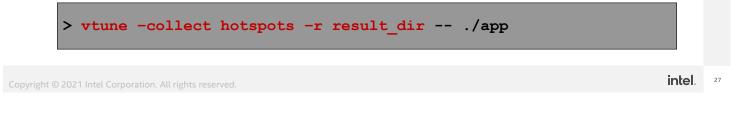
Languages

- Python*
- Linux*: Native C, C++, Fortran Native language support is not currently available for Windows*

Native language support is not currently available for wind

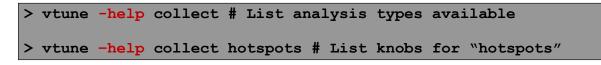
Copyright © 2021 Intel Corporation. All rights reserved.

105


VTune GUI: Results comparison

- Quickly identify cause of regressions.
 - Run a command line analysis daily
 - Identify the function responsible so you know who to alert
- Compare 2 optimizations What improved?
- Compare 2 systems What didn't speed up as much?

Grouping:	Function / Call Stack						
F	unction / Call Stack	CPU Time	:Difference 🕶	Module	CPU Time:r007hs 🔺	CPU Tim	e:r006hs
■ FireObjec	t::checkCollision	4.850s		SystemProceduralFire.DLL	6.281s	1.431s	0
⊞ FireObjec	:t::ProcessFireCollisionsRange	4.644s		SystemProceduralFire.DLL	5.643s	0.999s	0
dllStopPl	ugin	3.765s		RenderSystem_Direct3D9.DLL	9.184s	5.419s	


VTune CLI: syntax

- VTune command line application vtune
 vtune <-action> [-action-option] [-global-option] [[--]
 <target> [target-options]]
 - -action: collect, finalize or report
 - -action-option: modifies the behaviour of an action
 - -global-option: adjusts global settings
 - <target>: denotes the target application to profile


```
VTune CLI: collect
```

- Syntax: -c[ollect] <analysis type> [-analysis-option]
 - The type of analysis defined with **analysis type**
 - Analysis type defines the set of available analysis-option modifiers or "knob"s
- Command line help with -help on each analysis type and available knobs

VTune CLI: collect - analysis types

- For HPC, the analysis types of interest are
 - hotspots: Identify hotspots, collect stacks and call trees
 - hpc-performance: Analyze CPU and FPU utilization and memory access efficiency
 - **threading**: Analyze threading efficiency
 - memory-access: Identify memory access related issues and estimate memory bandwidth
 - **memory-consumption**: Identify memory consumption
 - io: Analyze processor and disk input and output
 - uarch-exploration: Identify low-level hardware issues

Copyright © 2021 Intel Corporation. All rights reserved.

VTune CLI: collect - global modifiers

- A large number of global modifiers available
 - **-finalization-mode**: whether to finalize the result after the collection stops
 - -data-limit: limit the amount of data collected. The default is 1GB, set to 0 for unlimited
 - -quiet: limit the amount of information displayed
 - -search-dir: path where the binary and symbol files are stored
 - -result-dir: path where the result will be stored

intel.

VTune CLI: finalize

- To free compute resources, it may be beneficial to finalize the collected results separately
 - Examples: proling runs on a cluster with multiple nodes, profiling runs on a KNL, re-resolving symbols
- Syntax:

-finalize -result-dir <result_directory> [-search-dir <symbols_directory>]

 Finalization can be performed on a different platform than what the results were collected on

Copyright © 2021 Intel Corporation. All rights reserved.	intel.	31

111

VTune CLI: report

- Syntax:

 -r[eport] <report type> [-report-option]
 The type of report defined with report type
 - Report type defines the set of available **report-option** modifiers
- Command line help with -help

>	vtune	-help	report	#	List	report	types	available
---	-------	-------	--------	---	------	--------	-------	-----------

- > vtune -help report hotspots # Usage of "hotspots" report
- NOTE: using a GUI to view results is preferrable

VTune CLI: report - report types

- For HPC, the report types of interest are
 - **summary**: Report overall application performance
 - hotspots: Report CPU time for application
 - hw-events: Display the total number of hardware events
- A report is automatically based on the type of data collected!

VTune CLI: report - global modifiers

- A large number of global modifiers available
 - -column: Specify which columns to include or exclude
 - -filter: Specify which data to include or exclude
 - -group-by: Specify grouping in a report
 - -time-filter: Specify which time range to include
 - -source-search-dir: path where the source code is stored
 - -result-dir: path where the result will be stored

VTune CLI: example

 Collect hotspots of application nbody, store results to directory nbody_hs

> vtune -collect hotspots -r nbody_hs -- ./nbody 262144

 View available columns in the result and then compile a hotspots report from specific columns

```
> vtune -report hotspots -r nbody_hs column=?
> vtune -report hotspots -r nbody_hs -column="CPU
Time:Self","Source File"
```

Copyright © 2021 Intel Corporation. All rights reserved

intel.

115

Intel[®] VTune[™] Profiler HPC workflow Use of Intel[®] VTune[™] Profiler in a cluster environment

Profiling HPC applications

- VTune can profile hybrid MPI+OpenMP applications on a cluster
 - For profiling MPI, use Intel[®] Trace Analyzer and Collector or Intel[®] MPI Performance Snapshot
- Recommended workflow:
 - Run collect (and finalize) with CLI on a cluster
 - Run report with GUI on a local workstation or a cluster login node
 - Finalized collection results can be transferred if needed

VTune with MPI applications (1/3)

- Single node application launch:

 <p
- > vtune -collect advanced-hotspots -r result_dir -- mpirun -np 48
 ./mpi_app
- Encapsulates all the ranks to result directory
 - Example: ranks 0-47 in **result_dir**
- Works whenever VTune is able to track the processes created
 - Limited to profiling over a single node

intel.


```
Copyright © 2021 Intel Corporation. All rights reserved
```

intel.

VTune with MPI applications (3/3)

Selective rank profiling by modifying the MPI process launch:

> mpirun -n 1 ./mpi_app : -n 1 vtune -collect hotspots -r
result_dir ./mpi_app : -n 14 ./mpi_app

Intel MPI supports -gtool "<command>:<rank-set>[=mode]" option:

> mpirun -n 16 -gtool "vtune -collect hotspots -r result_dir :1"
./mpi_app

Intel®

Notices & Disclaimers

Performance varies by use, configuration, and other factors. Learn more at www.Intel.com/PerformanceIndex.

Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available updates. See configuration disclosure for details.

Your costs and results may vary.

Intel technologies may require enabled hardware, software or service activation.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands may be claimed as the property of others.

Introduction to AMD µProf Profiler v3.4

Dr.-Ing. Michael Klemm Senior FAE, Principal Member of Technical Staff HPC Center of Excellence

[AMD Public Use]

AMD offers software development tools optimized for HPC applications on EPYC[™] CPUs while supporting developer choice with tools and methods

- ▲ AMD Optimizing CPU Compiler (AOCC)
- AMD Optimized CPU Libraries (AOCL)
- ▲ AMD µProf profiler
- Spack package support of HPC applications
- Support of open-source tools

<mark>µ</mark>Prof vs. <mark>u</mark>prof usage

- ▲ AMD µProf is pronounced as "MICROprof"
- "uprof" is used for computer-readable form
 - Directory path names
 - Command lines
 - Scripts
 - URLs

125

AGENDA

AMD µProf Profiler Introduction - v3.4 2021

- ▲ AMD µProf Overview
- Profiling Overview
- ▲ System Analysis
- Application Analysis

Overview of AMD µProf

[AMD Public Use]

AMD Profiler Strategy

Offer developer choices – the profiler that best suites the need and development environment

- ▲ perf kernel common profiler utility used to build custom profiler applications on Linux®
- Enabled to reflect counters and events supported by latest AMD processors
- PAPI is automatically supported given PERF kernel support
- Tools built on PERF kernel driver or PAPI have the necessary support to work well on latest AMD processors
 - PERF tool (application)
 - PAPI-based tools like HPCTool kit etc
- ▲ AMD µProf offers a richer experience with AMD support
 - Intuitive graphical user interface and command line interface
 - Supporting Linux[®], Windows[®] and FreeBSD
 - Supports performance monitoring recipes data from set of events and associated calculation around them

[AMD Public Use]

AMD µProf Profiler Overview

Measure and analyze the performance of an application or the entire system running Linux® or Windows®

- System Analysis
 - Monitors basic core, level 3 cache and data fabric performance metrics
- Application Analysis
- CPU Profiling to identify runtime performance bottlenecks of an application or the entire system
- ▲ Power Profiling
 - Monitors thermal & power characteristics of system
- Energy Analysis
 - Identifies energy hotspots in the application

AMD µProf Profiler Introduction - v3.4 2021

Sard Configuration See Configuration Config								
Select Cronignations Particle Protecting of the path to be exceeded. Note that have can application by gending the gending the board on the second by sending whethy particle particle may end on the second by th	HOME PROFILE	SUMMARY ANALYZE	SOURCES					SETTINGS
Stard Configuration	Start Profiling	Select Profile Target	Application					
the start is default to its same locations where the securated is to locate and under specific by you. Depart landwing application, you can all colors system wide data but one affinity will not wire Application Options Working Directory Clight Descurptions wirelide in non-environment Stable Windows, NT, v148, v44, Descurptionment Variable Working Directory Clight Descurptions wirelide in non-environment Stable Windows, NT, v148, v44, Descurptionment Variable Working Directory Clight Descurptions wirelide in non-environment Variable Windows, NT, v148, v44, Descurptionment Variable Working Directory Clight Descurption Clight Descurp	Saved Configurations							
Application Options Brenze Working Directory CightTestSuiteESampleProgramsGomarKSubjetWindows_htt;r148_v64_Debug Brenze Environment Variables Enter environment variable in reame-environer format		directorty defaults to the same location w	here the executable is located un	less specified by you. Despite launching application, you can still collect :	ed and the working directory system wide data but core aff	. The working nity will not wo	rk	
Working Directory Cight TestSuiteSampleHorgamufGrmarkSable/Windows, MT, V142, v442, debug Brever Environment Variables Environment variables		Application Path	C:\git\TestSuite\SampleProgra	ms\ScimarkStable\Windows_NT_v140_x64_Debug\ScimarkStable.exe			Browse	
Environment Variables Enter environment variable in «raame++-svalue» format. Collect System Wide Data Terminate Application After Profiling Core Affinity 0.12-4 Vis Is databated		Application Options						
Collect System Wide Data Terminate Application After Profiling Core Affinity US2 14		Working Directory	C:\git\TestSuite\SampleProgra	ms\ScimarkStable\Windows_NT_v140_x64_Debug			Browse	
Termina Application After Profiling Core Affinity 0.12 - 4		Environment Variables	Enter environment variable in	<name>=<value> format</value></name>		Ac	ld -	
✓ IS h diskled		Collect System Wide Data	C10					
▼ (B) is disabled		Terminate Application After Profiling						
C. C. M. Charles and C. M. Cha		Core Affinity	0,1,2 - 4					
C. C. M. Charles and C. M. Cha								
C. C. M. Device and A. C. M. Constants Characteristics Charact								
C. C. M. Device and A. C. M. Constants Characteristics Charact								
C. C. M. Charles and C. M. Cha								
C. C. M. Charles and C. M. Cha								
C. C. M. Device and A. C. M. Constants Characteristics Charact								
C. C. M. Charles and C. M. Cha	▼ IBS is disabled							
		Config Name AMDuProf-TBP-ScimarkS	table(2)	Reset Name	Previous	Next C	lear Options	Start Profile

[AMD Public Use]

Broad AMD µProf 3.4 support of Operating Systems & and Compilers

Component	Supported Version	Languages
OpenMP® Spec	OpenMP® v5.0	
	• LLVM™ 8 - 12	• C, C++
Compiler	• AOCC 2.x, 3.0	C, C++, Fortran
	Intel Compiler Collection (ICC) 19.1	C, C++, Fortran
OS	 Ubuntu® 18.04 LTS Ubuntu® 20.04 LTS Red Hat® Enterprise Linux® 8.x CentOS™ 8.x Windows® 10 thru 20H2 Windows Server® 2019 	

<u>µProf – Feature support matrix</u>

Feature	Linux®	Windows®	FreeBSD
System Analysis*			
AMD uProfPcm	Yes	Yes	Yes
Application Analysis (CPU Performance Profiling)			
Micro-Architecture Analysis (EBP)	Yes	Yes	Yes
Instruction Based Sampling (IBS)	Yes	Yes	
OS Timer based profiling (TBP)	Yes	Yes	
Callstack sampling – Native (C, C++, Fortran)	Yes	Yes	Yes
Callstack sampling – Java	Yes		
Callstack sampling – System-wide	Yes		Yes
HPC - OpenMP Tracing	Yes		
HPC - MPI Code Analysis (single & multi node)	Yes		
Cache Analysis	Yes	Yes	
Thread Concurrency Chart		Yes	

AMD µProf Profiler Introduction - v3.4 2021

* Only on EPYC server platforms

[AMD Public Use]

<u>µProf – Feature support matrix</u>

Feature	Linux	Windows	FreeBSD
Power Profiling			
Live Power Profiling	Yes	Yes	
Power Application Analysis#		Yes	
Usability			
Graphical Interface	Yes	Yes	
Command Line Interface	Yes	Yes	Yes
Virtualization – TBP and EBP support			
VMware ESXi™	Yes	Yes	
KVM	Yes	Yes	

Support

Releases

Public release : <u>https://developer.amd.com/amd-uProf/</u>

Documentation

- User guide: <installation-path>/Help/User_Guide.pdf
- Online user guide: https://developer.amd.com/amd-uProf/

▲ Installation path:

- Linux® : /opt/AMDuProf_<version>/
- Windows® : C:\Program Files\AMD\AMDuProf

AMD µProf Profiler Introduction - v3.4 2021

133

Profiling - Overview

What is profiling?

- Profiling measures how a program interacts with the hardware it is running on
- Used to evaluate performance and solve problems
 - What part of my code is the most critical (most utilized or accessed)?
 - Why is my critical loop too slow?
 - Am I hitting or missing cache?
 - · Is the hardware configured optimally for this code?
 - · Is the code optimal for this hardware?
- Profiling can also be used in comparative evaluation of architectures
 - · How does this code run on machine A vs. machine B?
- Profiling can solve power problems (which can lead to performance problems)
 - · What part of my code causes the CPU to consume the most power?
- Power and heat may be a cause of performance problems

AMD µProf Profiler Introduction - v3.4 2021

[AMD Public Use]

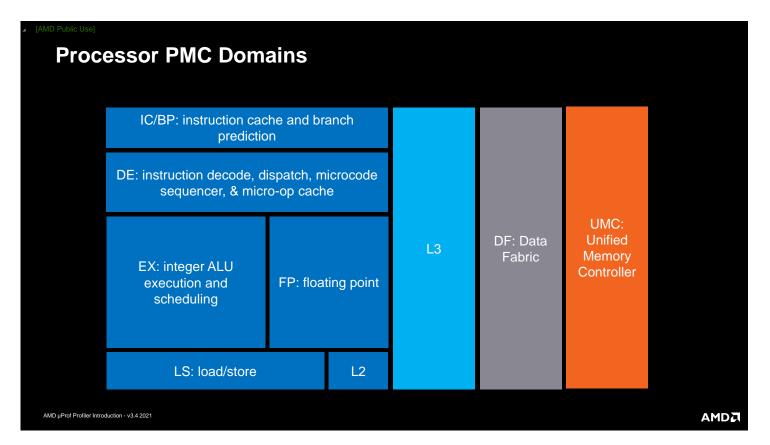
Types of Profilers

- Counter-based profiling
 - Periodically collect PMC event counts while the application is running
 - Distinguish what happened in hardware or software
 - Accurate with minimal overhead
- Statistical sampling profiling
 - Based on certain triggers, collect profile data (IP, PID, TID, Callstack)
 - Processor triggers Performance Monitor Counter (PMC) threshold interrupts
 - Software triggers Timer, Context Switches, Page faults
 - Identify where an event happens and how frequently
 - Overhead is a function of sampling frequency

Trace profiling

- Capture interesting events while running the code ETW, OMPT, PMPI etc.,
- Identify what happened in the software
- Some overhead but accurate
- Call Graph profiling
 - Call sequence
- Code Instrumentation profling
 - May require changing the code manual or automatic process
 - Some tools can do this to the compiled binary (dynamic instrumentation)

[AMD Public Use]


Processor Performance Monitoring Counters (PMCs)

- PMCs are AMD processor registers (MSRs)
 - Covering Core, L3 cache, and Data Fabric functions
 - Hundreds of processor events available
 Ex: CPU Cycles not in Halt, Retired Instructions
 - PMCs can be programmed to monitor processor events
- Processor Core PMCs
 - 6 MSRs per core thread
 - Core PMC events can be monitored in Sampling & Count mode
 - Count mode running count value of processor events
 - Sampling mode
 - Based on certain triggers, collect profile data (IP, PID, TID, call stack)
 - HW Triggers Performance Monitor Counter (PMC) threshold interrupts
 - ▲ Software triggers Timer, Context Switches, Page faults

AMD µProf Profiler Introduction - v3.4 2021

- Processor in socket hierarchy
 - · Chiplets in processor connected by Data Fabric
 - Core Complexes (CCXs) in Chiplets
 - ▲ Cores in CCX
 - ▲ L3 cache in CCX
- ▲ L3 Cache PMCs
 - Operate at the core complex (CCX) level for each CCX in the processor
 - 6 MSRs; Count mode only
- Data Fabric PMCs
 - · Apply at the chiplet die level
 - 4 MSRs; Count mode only

Application Analysis

[AMD Public Use]

Application Analysis – Overview

- CPU Profile to identify runtime performance bottlenecks of an application or the entire system
 - Where the application spends its time (hotspots)
 - Bottlenecks due to core micro-architectural constraints (IPC, cache misses, etc.)
 - Parallelism issues Thread concurrency
- Data Collection
 - Statistical sampling Timer, Core PMC, IBS
 - Callstack
 - Tracing ETW, JVMTI (Java), OMPT

- Data Visualization
 - Data attribution at various program units -Process / Module / Thread / Function / Source / Instruction
 - Flame graph, Callgraph
- Ease of use
 - No special recompile C, C++, C#, Fortran, Java, Assembly
 - Debug info required for function & source
 - Graphical interface (AMDuProf)
 - Command Line interface (AMDuProfCLI)

[AMD Public Use]

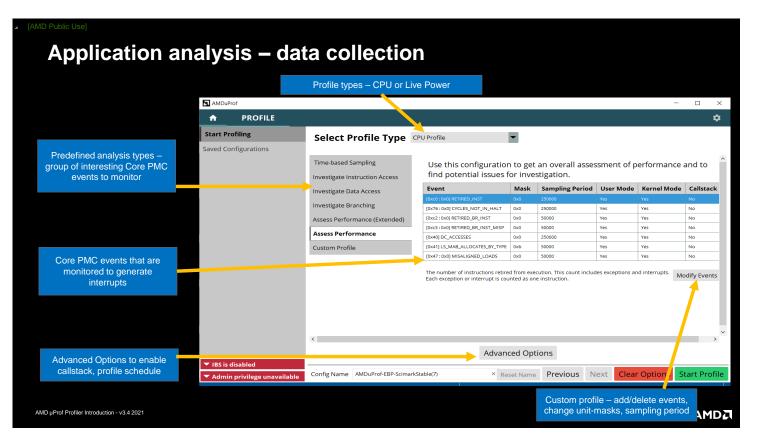
Application Analysis – Performance Data

Primary data

- Basic hotspots Timer based profiling (TBP)
 - Which functions consume most of time?
- Micro-architectural exploration Core PMC Event based profiling (EBP)
 - Which functions consume most of the cycles?
 - Why cache misses?, branch mispredictions?
- Memory access Instruction Based Sampling (IBS)
 - Memory access
 - Potential false cache sharing
- ▲ HPC using OMPT
 - OpenMP® parallel region analysis

AMD µProf Profiler Introduction - v3.4 2021

Secondary data


- Call graph
 - Call sequence
- Thread concurrency
 - Windows® only

141

[AMD Public Use]

Application Analysis – data collection

AMDuProf		- 🗆	×
PROI			\$
Select profile target – application, process, system	Select Profile Target Application Launch an application by specifying the path to the executable. Note that you can optionally specify program options, environment variables required and the working directory. The working directory defaults to the same location where the executable is located unless specified by you. Despite launching application after profiling or not.		
	Application Path ::\git\TestSuite\SamplePrograms\ScimarkStable\Windows_NT_v140_x64_Debug\ScimarkStable.exe ×	Browse	
	Application Ontion Working Directory C:\git\TestSuite\SamplePrograms\ScimarkStable\Windows_NT_v140_x64_Debug ×	Browse	
Feed in profile application details	Environment Variables Enter environment variable in <name>=<value> format Add Collect System Wide Data ••••••••••••••••••••••••••••••••••••</value></name>		
	Terminate Application After Profiling 🔍		
	Core Affinity 0,1,2 · 4		
	Config Name AMDuProf-TBP-ScimarkStable(2) × Reset Name Previous Next Clear Option	s Start F	rofile
ID µProf Profiler Introduction - v3.4 2021		ļ	

Application Analysis – data collection (CLI)

```
Collect assess performance data
$ AMDuProfCLI collect --config assess -o /tmp/namd-assess /tmp/run-namd.sh
Profile completed ...
Generated raw file : /tmp/namd-assess.caperf
Generate Report - this will create /tmp/namd-assess/namd-assess.db & /tmp/namd-
assess/namd-assess.csv
$ AMDuProfCLI report -i /tmp/namd-assess.caperf
Translation started ...
...
Generated report file : /tmp/namd-assess/namd-assess.csv
To only translate - this will create /tmp/namd-assess/namd-assess.db (import in GUI)
$ AMDuProfCLI translate -i /tmp/namd-assess.caperf
Translation started ...
...
Generated db file : /tmp/namd-assess/namd-assess.db
Importing
The rawfile collected or the processed db file can also be imported in GUI for further analysis
```

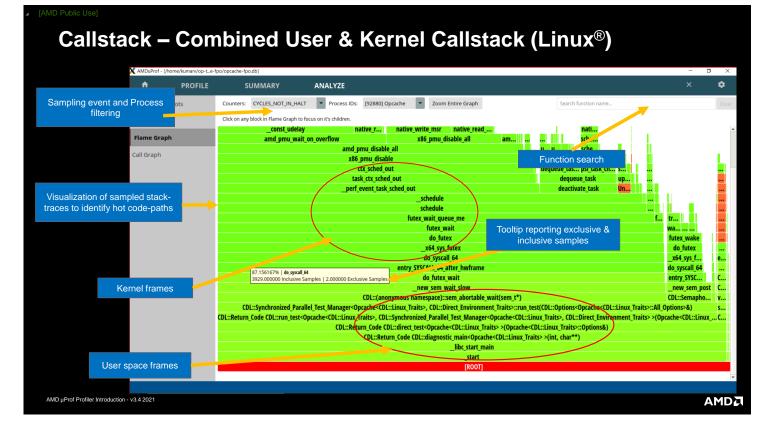
[AMD Public Use]

Application analysis – Function hotspots

	SUMMARY ANALYZE							× 🌣	
	Filters and Options							Load more function	is
Filters & Options	View All Data		Show Values By	Sample Count	S	ystem Modules:	Exclude Include	1	
View: Select what metric to report;	search Type function name		Enable Regex Search						
Show data by: count or %;	Functions	Modules	L1_ DEMAND_DC_REFILLS.ALL	L2_CACHE_ACCESS.FROM_L1_DC_MISS	IPC	CPI	RETIRED_BR_INST_MISP (PTI)	%RETIRED_BR_INST_MISP	1
Include or exclude system modules;	ComputeNonbondedUtil::calc_pair_energy(nonbonded*)	namd2	32022	32139	1.01	0.99	16.83	5.7	-
	pairlist_from_pairlist(double, double, double, double, [,	namd2	18286	18475	1.02	0.98	15.89	5.2	28
	ComputeNonbondedUtil::calc_pair_energy_fullelect(nonbo	namd2	20440	19636	1.02	0.98	18.94	6.4	19
	ComputeNonbondedUtil::calc_self_energy(nonbonded*)	namd2	23644	22869	1.02	0.98	7.48	2.7	15
	ComputeNonbondedUtil::calc_self_energy_fullelect(nonboi	namd2	12080	13036	1.02	0.98	6.88	3.1	0
Double click on a function to	read_hpet	[vmlinux]	830	716	0.98	1.02	7.84	1.8	38
view Source	omedialElem*, int, double*,	namd2	69	71	0.84	1.20	32.02	2.9	1 5
view Source	sincos	libm-2.27.so	51	61	0.89	1.12	21.85	2.0	18
	_ieee754_atan2_fma	libm-2.27.so	79	69	0.96	1.04	16.35	1.6	<i>i</i> 7
	PmeRealSpace::compute_forces_order4(float const* const	namd2	192	267	1.14	0.88			
	AngleElem::computeForce(AngleElem*, int, double*, doubl	namd2	57	102	0.76	1.31	21.63	1.7	'8
Issue threshold – CPI > 1.0 will	Lattice::delta(Vector const&, Vector const&) const	namd2	53	79	0.90	1.11	15.63	1.4	11
be highlighted			132		0.20	5.08	6.02	0.6	j8
se mg me a	ieee754_acos_fma	libm-2.27.so	28	63	0.74	1.35	10.83	0.9	10
	BondElem::computeForce(BondElem*, int, double*, double	namd2	32	107	0.55	1.81	2.44	0.2	!4
	Sequencer::submitHalfstep(int)	namd2	635	788		0.76	2.11	0.2	21
	PmeRealSpace::fill_charges_order4(float**, float**, int&, in	namd2	163	275		0.81			
	copy_user_generic_string	[vmlinux]	391	197	0.09	11.29		<u> </u>	
	HomePatch::addForceToMomentum(double, int, int)	namd2	330	542		1.01	2.30	0.1	_
Low confidence level due to	Sequencer::submitReductions(int)	namd2	311	490	1.41	0.71	8.83	1.3	-
	Patch::forceBoxClosed()	namd2	78	374		1.47	11.28	3.8	-
low number of samples	Patch::positionsReady(int)	namd2		180		2.06	29.41	1.6	-
collected – values will be	memcpy_ssse3	libc-2.27.so	151	342		2.30	22.39	2.1	6
grayed	1	11-44	40	70	1.20	0.70	250	~ ~	Þ
AMD µProf Profiler Introduction - v3.4 2021								AMD	

[AMD Public Use]

Application analysis – Analyze


SUMMARY ANALYZE							×	\$
Filters and Options						Load m	nore profile data	more functions
View All Data	Group By Proc	ess 💌	Show Valu	es By Sample C	Count 💌	System Module	es: Exclude Incl	ude
Process	CYCLES_NOT_IN_HALT V	MISALIGNED_LOADS	RETIRED_INST	RETIRED_BR_INST	RETIRED_BR_INST_MISP	L1_DC_ACCESSES.ALL	L1_ DEMAND_DC_REFILLS.ALL	L2_CACHE_ACCESS.FR
namd2 (PID 170485) (Rank 1)	28858	15678	28876	19739	820	29721	28928	29258
namd2 (PID 170484) (Rank 0)	28815	15047	28809	19404	795	29668	28287	28804
namd2 (PID 170487) (Rank 3)	28811	18463	28816	18568	752	29575	27689	28162
 namd2 (PID 170486) (Rank 2) 	28795	15272	28800	19630	818	29605	28209	28800
▼ Load Modules								
namd2	26404	14748	26780	17151	772	27731	27431	27925
[Sys] [vmlinux]	1411	236	1149	1032	22	945	376	385
[Sys] libm-2.27.so	489	218	393	927	19	432	58	66
libfftw3f.so.3.5.8	173		352	314	2	378	92	150
[Sys] libc-2.27.so	109	19	59	112	2	51	153	187
4								Þ
Search : Type function name								Go Back
Search : Type function name								GO BACK
Functions (for namd2)	CYCLES_NOT_IN_HALT		RETIRED_INST	RETIRED_BR_INST	RETIRED_BR_INST_MISP	L1_DC_ACCESSES.ALL V	L1_ DEMAND_DC_REFILLS.ALI	
	CYCLES_NOT_IN_HALT 7882		RETIRED_INST 8006	RETIRED_BR_INST 4763	RETIRED_BR_INST_MISP	L1_DC_ACCESSES.ALL ▼ 8432		
Functions (for namd2)		MISALIGNED_LOADS	8006 5244		279		2 7934	L2_CACHE_ACCESS.FR(7813 4612
Functions (for namd2) ComputeNonbondedUtil::calc_pair_energy(nonbonded*)	7882	MISALIGNED_LOADS	8006 5244 4758	4763	279	8432	2 7934 5 4550	L2_CACHE_ACCESS.FRG 7813 4612 4890
Functions (for namd2) ComputeNonbondedUtil::calc_pair_energy(nonbonded*) pairlist_from_pairlist(double, double, double, double, [,	7882	MISALIGNED_LOADS 1819 1692	8006 5244	4763 3178	279	8432	2 7934 5 4550 2 4865	L2_CACHE_ACCESS.FRI 7813 4612 4890 5765
Functions (for namd2) ComputeNonbondedUtil:calc_pair_energy(nonbonded*) pairitst_from_pairitst(double, double, double, f, pair_energy_fullelect(nonbo	7882 5091 4609	MISALIGNED_LOADS 1819 1692 1079	8006 5244 4758	4763 3178 2720	279 171 181 72	8432 5565 4792	2 7934 5 4550 2 4865 2 6017	L2_CACHE_ACCESS.FRG 7813 4612 4890
Functions (for namd2) ComputeNonbondedUtil:calc_pair_energy(nonbonded*) pairlist_from_pairlist(double, double, double, double, f 	7882 5091 4609 4470	MISALIGNED_LOADS 1819 1692 1079 5778	8006 5244 4758 4563	4763 3178 2720 2471	279 171 181 72 34	8432 5565 4792 4742	2 7934 5 4550 2 4865 2 6017 3 3112	L2_CACHE_ACCESS.FRI 7813 4612 4890 5765 3353 17
Functions (for namd2) ComputeNonbondedUti::calc_pair_energy(nonbonded*) pairlist_from_pairlist(double, double, double, double, f pair_energy_fullect(nonboi ComputeNonbondedUti::calc_self_energy(nonbonded*) ComputeNonbondedUti::calc_self_energy_fullelect(nonboi	7882 5091 4609 4470 2756	MISALIGNED_LOADS 1819 1692 1079 5778 2602	8006 5244 4758 4563 2795	4763 3178 2720 2471 1238 426 333	279 171 181 72 34 9 3	8432 5565 4792 4742 2918	2 7934 5 4550 2 4865 2 6017 3 3112 3 26	L2 CACHE ACCESS.FRI 7813 4612 4890 5765 3353 17 34
Functions (for namd2) ComputeNonbondedUtil::calc_pair_energy(nonbonded*) pairlist_from_pairlist(double, double, double, f pair_energy_fullelect(nonboi ComputeNonbondedUtil::calc_self_energy_fullelect(nonboi DihedralElem::computeForce(DihedralElem*, int, double*,	7882 5091 4609 4470 2756 239	MISALIGNED_LOADS 1819 1692 1079 5778 2602 109	8006 5244 4758 4563 2795 201	4763 3178 2720 2471 1238 426	279 171 181 72 34 9 3	8432 5565 4792 4742 2918 198	2 7934 5 4550 2 4865 2 6017 3 3112 3 26 0 16	L2 CACHE_ACCESS.FRI 7813 4612 4890 5765 3353 177 34 22
Functions (for namd2) ComputeNonbondedUtil:calc_pair_energy(nonbonded*) pairlist_from_pairlist(double, double, double, f pair_energy_fullelect(nonbor ComputeNonbondedUtil:calc_self_energy(nonbonded*) ComputeNonbondedUtil:calc_self_energy_fullelect(nonbor DihedraElem::computeForce(DihedraElem*, int, double*, AngleElem::computeForce(AngleElem*, int, double*, double	7882 5091 4609 4470 2756 239 179	MISALIGNED_LOADS 1819 1692 1079 5778 2602 109 93	8006 5244 4758 4563 2795 201 127	4763 3178 2720 2471 1238 426 333	279 171 181 72 34 9 3	8432 5565 4792 4742 2918 198 140	2 7934 5 4550 2 44655 2 66117 3 3112 3 262 5 16 5 16 7 14	L2_CACHE_ACCESS_FRI 7813 4612 4890 5765 3353 17 34 34 22 69
Functions (for namd2) ComputeNonbondedUtil:calc_pair_energy(nonbonded*) pairlist_from_pairlist(double, double, double, f c. pair_energy_fullelect(nonboi ComputeNonbondedUtil:calc_self_energy_fullelect(nonbor DihedralElem:computeForce(DihedralElem*, int, double*, AngleElem:computeForce(QhigheElem*, int, double*, double*, Lattice:delta(Vector const&, Vector const&) const	7882 5091 4609 4470 2756 239 179 139	MISALIGNED_LOADS 1819 1692 1079 5778 2602 109 93	8006 5244 4758 4563 2795 201 127 132	4763 3178 2720 2471 1238 426 333 285	279 171 181 72 34 9 3	8433 5565 4792 4742 2918 198 140 139	2 7934 5 4550 2 4865 2 6017 3 3112 3 226 0 16 9 14 4 37	L2_CACHE_ACCESS.FR 7813 4612 4890 5765 33533 177 34 22 69 58
Functions (for namd2) ComputeNonbondedUtl::calc_par_energy(nonbonded*) pairlist_from_pairlist(double, double, double, f 	7882 5091 4609 4470 2756 239 179 139 78	MISALIGNED_LOADS 1819 1692 1079 5778 2602 109 93	8006 5244 4758 4563 2795 201 127 132 97	4763 3178 2720 2471 1238 426 333 285 137	279 171 181 72 34 9 3 6	8432 5565 4792 4742 2918 198 198 144 135 124	2 7934 5 4550 2 4865 2 6017 8 3112 3 26 0 116 9 114 4 37 9 57	L2_CACHE_ACCESS_FRI 7813 4612 4890 5765 3353 17 34 34 22 69
Functions (for namd2) ComputeNonbondedUtil::calc_pair_energy(nonbonded*) pairlist_from_pairlist(double, double, double, f pair_energy_fullelect(nonboi ComputeNonbondedUtil::calc_self_energy_fullelect(nonboi DihedralElem::computeForce(DihedralElem*, int, double*, AngleElem::computeForce(AngleElem*, int, double*, doubli Lattice::delta(Vector const&, Vector const&) const. PmeRealSpace::Compute_forces_order4(float*, float*, int&, in PmeRealSpace::compute_forces_order4(float*, const*	7882 5091 4609 4470 2756 239 179 139 78 145	MISALIGNED_LOADS 1819 1692 1079 5778 2602 109 93 70	8006 5244 4758 4563 2795 201 127 132 97 154	4763 3178 2720 2471 1238 426 333 285 137 151	279 171 181 72 34 9 3 6	8432 5565 4792 4742 2918 198 198 146 133 124	2 7934 5 4550 2 4865 2 6017 8 3112 3 26 0 116 9 114 4 37 9 57	L2_CACHE_ACCESS.FR 7813 4612 4890 5765 33533 177 34 22 69 58
	 Filters and Options View All Data Process namd2 (PID 170485) (Rank 1) namd2 (PID 170485) (Rank 0) namd2 (PID 170486) (Rank 3) namd2 (PID 170486) (Rank 3) anmd2 (PID 170486) (Rank 3) Load Modules Damd2 [Sys] [umlinux] [Sys] [umlinux] [Sys] [umlinux] [Sys] [ibm-2.27.so 	▶ Filters and Options View All Data ▼ Group By Proces Process CYCLIS_NOT_IN_HALT ▼ ▶ Namd2 (PID 170485) (Rank 1) 28858 ▶ namd2 (PID 170483) (Rank 0) 28815 ▶ 28815 ▶ namd2 (PID 170483) (Rank 0) 28811 ▼ ▶ namd2 (PID 170486) (Rank 2) 28795 ▼ ▶ Load Modules ■ ■ ■ [Sys] (tymlinux] 1411 [Sys] (tymlinux] 1411 [Sys] (bm-2.27.50 489 109 109	Image: Process Group By Process MISALIONED LOADS	▶ Filters and Options View All Data Group By Process Show Value Process CYCLES JODI,N.HALT MISALIGHED_IDADS RETIRED_INST > namd2 (PID 170485) (Rank 1) 28838 15678 28876 > namd2 (PID 170485) (Rank 0) 28815 15047 28809 > namd2 (PID 170485) (Rank 2) 28795 15272 28800 > Load Modules Imadd2 26404 14748 20760 [Sys] Jinlim-2.7.so 489 218 333 Ib/fWrd/so.3.5.8 173 352 [Sys] libc-2.27.so 109 19 59	Filters and Options View All Data Group By Process Show Values By Sample C Process CrCLES (MT,N, IAAT V) MISALIGAED, IAOS RETIRED, INST RETIRED, INST	▶ Filters and Options View All Data ✓ Group By Process ✓ Show Values By Sample Court ✓ ▶ namd2 (PID 170485) (Rank 1) 28815 15678 28876 19739 8200 ▶ namd2 (PID 170480) (Rank 0) 28815 15678 28876 19739 8200 ▶ namd2 (PID 170480) (Rank 1) 28815 15678 28876 19739 8200 ▶ namd2 (PID 170480) (Rank 2) 28795 15272 28800 19630 818 ▶ Load Modules 11411 2266104 14748 26780 17151 7722 [Sys] (lyml:nux] 11411 236 1149 1032 222 [Sys] (lyml:so.35.8 173 352 314 2 [Sys] lybc-2.27.so 109 19 59 112 2	Filters and Options Group By Process Group By Process Show Values By Sample Court System Module • namd2 (PID 170483) (Rank 1) 28858 15678 28876 17939 26268 27251 27261 27261 272731 100, ACCSSSS.ALL 272731 27261 27731 28050 27731 29575 29575 29575 29575 29575 29575 29575 2811 18463 2816 1757 27731 27731 Syst plumlaudies 21448 26760 17151 722 27731 Syst plumlaudies 2867 1333 2262 2955 IbiffWadds.os.3.8 26404 14748 26760 17151 722 27731 <tr< td=""><td>Softment Anterial Count of the second of th</td></tr<>	Softment Anterial Count of the second of th

[AMD Public Use]

Application analysis – Source view

	f	PROFILI		SUMMARY	ANALYZE	SOURCES					×	\$
	Computer	nbondedUtil::calc_p	air_energy(no	nbonded*) ×								
Filter by Process and Thread	 Filters 											
	PID: All Pro	cess (100.00%)	Ŧ	TID: All Threads (100.00	%) 🔻 View All Data	w.	Show Values By	Sample Count	-		Show Assem	nbly 🧲
	Line				Source		MISALIGNED_LOADS	RETIRED_INST	RETIRED_BR_INST	RETIRED_BR_INST_MISP	L1_DC_ACCESSES.AL	u
	210	BigRea	l vdw_d =	A * table_four_i[0]	<pre>B * table_four_i[4];</pre>							
	211	BigRea	l vdw_c =	A * table_four_i[1]	<pre>B * table_four_i[5];</pre>		7	1 152	85		В	158
	212	BigRea	l vdw_b =	A * table_four_i[2]	<pre>B * table_four_i[6];</pre>		41	8 903	467	1	6	928
ect source line to highlight	Non-cont	iguous source line(s)										
rresponding assembly	343	ENERGY	(294	3 6227	3318	16	4	6492
		iguous source line(s).										
	475		_c += vdw				70					1618
	476		_b += vdw	_b;			30	5 593	319	1	6	568
		iguous source line(s)										
	484		(di	ffa * fast_d + fast_c	<pre>* diffa + fast_b;</pre>		65	8 1350	731	4	1	1409
	A	ddress	Line		Assemb	ly	MISALIGNED_LOADS	RETIRED_INST	RETIRED_BR_INST	RETIRED_BR_INST_MISP	L1_DC_ACCESSES.AL	u
	0x49d354		224			•	-	-				
			321	vunpcklpd %xmm9,%xmm3	,%xmm7				1			
	0x49d359		343	vmovddup %xmm9,%xmm3	·			5 15	1	1	1	18
lectron over iow of	0x49d359 0x49d35e				-			5 15 2 4	1 10	a	1	18 3
			343	vmovddup %xmm11,%xmm9	%xmm5,%xmm3		13	2 4	4		8	18 3 292
Heatmap – overview of hotspots	0x49d35e		343 321	vmovddup %xmm11,%xmm9 vblendpd \$0x01,%xmm8,	%xmm5,%xmm3 5,%xmm5		13	2 4 3 281	4	•	8 6	18 3 292 438
	0x49d35e 0x49d364 0x49d369 0x49d372		343 321 475 475 321	<pre>vmovddup %xmm11,%xmm9 vblendpd \$0x01,%xmm8, vunpckhpd %xmm13,%xmm vmovapd +0x00000130+(vmulpd %xmm7,%xmm4,%x</pre>	%xmm5,%xmm3 5,%xmm5 %rsp),%xmm10 mm6		17	2 4 3 281 9 429 1 3	4 167 239	2 2 2	1 1 8 6	438 3
	0x49d35e 0x49d364 0x49d369 0x49d372 0x49d376		343 321 475 475 321 321	<pre>vmovddup %xmm11,%xmm9 vblendpd \$0x01,%xmm8, vunpckhpd %xmm13,%xmm vmovapd +0x00000130+(vmulpd %xmm7,%xmm4,%x vsubpd %xmm7,%xmm4,%x</pre>	%xmm5,%xmm3 5,%xmm5 %rsp),%xmm10 mm6 mm4			2 4 3 281 9 429 1 3	4 167 239	2 2 2	1 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	
Heatmap – overview of hotspots	0x49d35e 0x49d364 0x49d369 0x49d372 0x49d376 0x49d376		343 321 475 475 321 321 321	<pre>vmovddup %xmm1, %xmm9 vblendpd \$0x01,%xmm8, vunpckhpd %xmm13,%xmm vmovapd +0x00000130+(vmulpd %xmm7,%xmm4,%x vsubpd %xmm7,%xmm4,%x vblendpd \$0x01,%xmm14</pre>	\xmm5,\xmm3 5,\xmm5 \rsp),\xmm10 mm6 mm4 ,\xmm13,\xmm7		31	2 4 3 281 9 429 1 3 3 657 5 2	4 167 239 239 2 2 371 371	1 	8 6 8	438 3 651 6
	0x49d35e 0x49d364 0x49d369 0x49d372 0x49d376 0x49d37a 0x49d37a		343 321 475 475 321 321 321 321 343	<pre>vmovddup %xmm1,%xmm9 vblendpd \$0x01,%xmm8, vunpckhpd %xmm13,%xmm vmovapd +0x00000130+(vmulpd %xmm7,%xmm4,%x vblendpd \$0x01,%xmm4,%x vblendpd \$0x11,%xmm4,%x</pre>	\$xmm5, %xmm3 5, %xmm5 %r5p), %xmm10 mm6 mm4 ,%xmm13, %xmm7 mm7		31	2 4 3 281 9 429 1 3 3 657 5 2 5 38	4 167 239 2 2 371 371 3 371 371 371 371 371 371 371 3	- - - - -	8 6 8 8	438 3 651 6 30
	0x49d35e 0x49d364 0x49d369 0x49d372 0x49d376 0x49d376		343 321 475 475 321 321 321	<pre>vmovddup %xmm1,%xmm9 vblendpd \$0x01,%xmm8, vunpckhpd %xmm13,%xmm vmovapd +0x00000130+(vmulpd %xmm7,%xmm4,%x vblendpd \$0x01,%xmm4,%x vblendpd \$0x11,%xmm4,%x</pre>	\$xmm5,%xmm3 5,%xmm5 wrsp),%xmm10 mm6 mm4 ,%xmm13,%xmm7 mm7 3d(%rip),%xmm3,%xmm7 0x;	154950	31	2 4 3 281 9 429 1 3 3 655 5 3 5 38 2 310	4 167 239 2 2 371 3 3 17 2 129	1	8 8 8 8 9	438 3 651 6

AMD µProf Profiler Introduction - v3.4 2021

[AMD Public Use]						
Predefined	Events					
A PROFILE	SUMMARY	ANALYZE MEMORY	SOURCES			×
Start Profiling	Select Profile Type	PU Profile 🔻				
Saved Configurations	Time-based Sampling Investigate Branching Investigate Instruction Access Investigate Data Access Assess Performance Instruction-based Sampling Assess Performance (Extended) Cache Analysis Custom Profile	Select the relevant events to prof Filter • Predefined texts: [Devi cod] CV(LES, NOT, IN, HALT 10xx0: cod] RETIRED, INS7 [Dxx2: cod] RETIRED, BR, INST [Dxx2: cod] IL2, CACHE, ACCESSEROM, LI [Dx60: cod] IL2, CACHE, ACCESSEROM, LI [Dx60: cod] IL2, CACHE, MISS, FROM, LI [Dx60: cod] IL2, CACHE,	+ Add Event + L1 IC MISS J.C.MISS J.C.MISS +	[0x76 : 0x0] CYCLES_NOT_I	Monitored Events Mask User Kernet Interval 0x0 V • 1000000 0x0 V • 10000000) + 🗆
			Advanced Options			
	Config Name AMDuProf-Custom-false	e_sharing × Res	et Name	Previous	Next Clear Options	Start Profile
AMD µProf Profiler Introduction - v3.4 2021						A

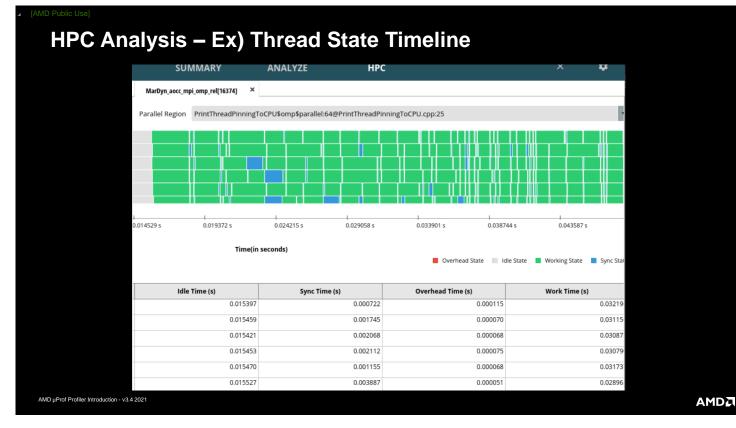
HPC Analysis

- When the threads execute the parallel region code, maximize CPU utilization.
- Due to several reasons the threads wait without doing useful work
 - Idle: A thread finishes it task within the parallel region and waits at the barrier for the other threads to complete.
 - Sync: If locks are used inside the parallel region, threads can wait on synchronization locks to acquire the shared resource.
 - Overhead: Thread management overhead.

- Analysis
 - Parallel Regions: List of all the parallel regions executed with associated metrics.
 - Region Detailed Analysis: thread timeline view

 activity of all the threads in a parallel region.
 - Thread spending too much time on non work activity ?
 - Change scheduling, loop chunk size

HPC Analysis – Example


Data Collection

номе	PROFILE	SUMMARY	ANALYZE	НРС		SETTINGS
Start Profiling	Advanced	Options				
Saved Configurations						
Remote Profile	OpenMP	Tracing option				
	You can enable	the openMP tracing option	to collect openMP metric	cs data.		
	Enable OpenMF	P Tracing				
Collection	run usir	ng CLI				
			config	tbp -o /tmp/my	yapp_perf <openmp-app< th=""><th>></th></openmp-app<>	>
Report Gene				-		
\$ AMDuProfCL1	l report	-i /tmp/mya	app_perf.ca	aperi		
µProf Profiler Introduction - v3.4 2021						P

[AMD Public Use]

HPC Analysis – Ex) Hotspots

ROFILE	SUMMARY	ANALYZE		НРС			×	\$
Filters	and Options				Lo	ad more profile o	data Load mo	re functions
View	All Data 🔹 Group B	y Process	Show Value	es By Sample C	Count 💌	System Modules:	Exclude	Include
	Process	CYCLES_NOT_IN_HALT	RETIRED_INST	RETIRED_BR_INST	RETIRED_BR_INST_	MISALIGNED_LOAD	L1_DC_ACCESSES.A	I L1_DEMAND_I
MarDyn	(PID 34199) (Rank 0)	1439263	107098	1 33356	4 250	1038384	4 779030	157
MarDyn	(PID 34200) (Rank 1)	1432633	106179	1 33100	1 22	7 102971	1 772759	9 153
MarDyn	(PID 34198) (Rank 2)	1432277	106278	1 331014	4 23	7 1030275	5 773897	7 153
▼ MarDyn	(PID 34201) (Rank 3)	1430964	106114	4 33192	5 23	3 1031625	5 771600) 150
▼ Load N	Modules							
libo	omp.so	845992	508884	4 29681	3 15	3 1022936	5 309503	3 4
Mar	rDyn	576792	543699	9 3149	1 83	3 5386	5 456975	5 146
	ppen-pal.so.40.20.0	5498	600	1 243	3	1610	5 3650	
4								•
Search :	Type function name							Go Back
Functio	ons (for MarDyn (PID 34199) (Rank 0))	CYCLES_NOT_IN_HAI	RETIRED_INST	RETIRED_BR_INST	RETIRED_BR_INST_M	MISALIGNED_LOADS	L1_DC_ACCESSES.ALI	L1_DEMAND_DC
kmp_har	dware_timestamp	426845	257815	150921	70	519577	156671	39
kmp_hyp	er_barrier_release(barrier_type, kmp_inl	366641	221168	128318	75	448139	135959	37
void Vector	rizedCellProcessor::_calculatePairs <cellp< td=""><td>320623</td><td>300418</td><td>15184</td><td>50</td><td>2965</td><td>252824</td><td>798</td></cellp<>	320623	300418	15184	50	2965	252824	798
void Vector	rizedCellProcessor::_calculatePairs <cellp< td=""><td>86562</td><td>81172</td><td>4154</td><td>12</td><td>819</td><td>67620</td><td>217</td></cellp<>	86562	81172	4154	12	819	67620	217
void Vector	rizedCellProcessor::_calculatePairs <singl< td=""><td>65328</td><td>63266</td><td>2810</td><td>6</td><td>587</td><td>52457</td><td>230</td></singl<>	65328	63266	2810	6	587	52457	230
_kmp_hyp	er_barrier_gather(barrier_type, kmp_inf	53910	31976	18609	10	62242	18291	4
MaskingCh	ooser::load(double const*, unsigned lor	28855	26342	1503	3	278	22325	99
MaskingCh	ooser::storeCalcDistLookup(unsigned lo	23666	22341	607	2	170	19436	13
11 ··· -·					_			

[AMD Public Use]

HPC Analysis

- Env variables
 - uProf_MAX_PR_INSTANCES Set the max number of unique parallel regions to be traced. The default value is set to 512
 - uProf_MAX_PR_INSTANCE_COUNT -Set the max number of times one unique parallel region to be traced
- Notes
 - Data processing and loading of HPC page can be slower – depending on number of parallel regions and their instances traced.

Limitations not supported

- OpenMP® profiling with system-wide profiling scope.
- Loop chunk size and schedule type when these parameters are specified using schedule clause. It shows the default values (i.e., '1' & 'Static') in this case.
- Nested parallel regions.
- GPU offloading and related constructs.
- Call stack for individual OpenMP threads.
- OpenMP profiling on Windows® and FreeBSD platforms.
- Applications with static linkage of OpenMP libraries.

MPI Code Profiling

Support matrix

Component	Supported Version
MPI Spec	• MPI 3.1
	Open MPI v4.1.0
MPI Libraries	• MPICH 3.4.1
MPT LIDIATIES	ParaStation® MPI 5.4.8
	Intel® MPI 2019
	Ubuntu 18.04 LTS
	Ubuntu® 20.04 LTS
OS	 Red Hat® Enterprise
	Linux® 8.x
	 CentOS[™] 8.x

Usage Model:

Collect performance data
\$ mpirun -np <n> AMDuProfCLI collect
--config tbp --mpi --output-dir /tmp/mpi-prof-data ./myapp

Collect performance data in multiple node \$ mpirun -np 16 -H host1,host2 AMDuProfCLI collect --

config tbp --mpi --output-dir /tmp/myapp-perf myapp.exe

Profiling specific rank
\$ export AMDuProfCLI_CMD='AMDuProfCLI collect --config
tbp --mpi --output-dir /tmp/myapp-perf'

\$ mpirun -np 4 -host host1 myapp.exe : -host host2 -np 2
"\$AMDuProfCLI_CMD" myapp.exe

Translate profile data
\$ AMDuProfCLI translate --input-dir /tmp/myapp-perf/ -host host1

Import the DB for further analysis

AMD µProf Profiler Introduction - v3.4 2021

155

[AMD Public Use]

Application analysis – Command Line Interface

- List supported predefined profile configs are recorded by the hardware
 - \$./AMDuProfCLI info --list collect-configs
- Collect profile data for "assess" predefined configuration, launching NAMD application
 - \$./AMDuProfCLI collect --config assess –o /tmp/amd/namd-assess /home/amd/apps/NAMD/runme.sh
 - Profile completed ...
 - Generated raw file : /tmp/amd/namd-assess.caperf
- Generate profile report from the raw profile data collected using "assess" configuration
 - \$./AMDuProfCLI report -i /tmp/amd/namd-assess.caperf --src-path /home/amd/apps/NAMD/NAMD_2.12_Source/
 - Translation started ...
 - ...
 - Generating report file...
 - Report generation completed...
 - · Generated report file : /tmp/amd/namd-assess/namd-assess.csv

Application analysis – Linux[®] perf kernel module constraints

- Profiling as non-root user requires /proc/sys/kernel/perf_event_paranoid to be set to -1
- Open file descriptors should be increased to (using "ulimit -n" command)
 - ~100 * number of logical cores
- ▲ For Gen2 and Gen3 EPYC[™] processors, following distributions are supported:
 - Red Hat Enterprise Linux (RHEL) 8.0.2 with kernel version 4.18.0-80.7.1.el8 or later
 - CentOS® 8.0.1905 with kernel version 4.18.0-80.7.1.el8 or later
 - Ubuntu® 18.04.3 LTS or 19.10 or later
 - SUSE® Linux Enterprise Server (SUSE) 15 SP1 with kernel version 4.12.14-197.26 or later
- ▲ On Gen2 and Gen3 EPYC, older Linux[®] kernels may lead to following error messages:
 - kernel: "Uhhuh. NMI received for unknown reason 3d on CPU 1."
 - kernel: "Do you have a strange power saving mode enabled?"
 - · kernel: "Dazed and confused, but trying to continue"

157

[AMD Public Use]

DISCLAIMER AND TRADEMARKS

DISCLAIMER The information contained herein is for informational purposes only, and is subject to change without notice. While every precaution has been taken in the preparation of this document, it may contain technical inaccuracies, omissions and typographical errors, and AMD is under no obligation to update or otherwise correct this information. Advanced Micro Devices, Inc. makes no representations or warranties with respect to the accuracy or completeness of the contents of this document, and assumes no liability of any kind, including the implied warranties of noninfringement, merchantability or fitness for particular purposes, with respect to the operation or use of AMD hardware, software or other products described herein. No license, including implied or arising by estoppel, to any intellectual property rights is granted by this document. Terms and limitations applicable to the purchase or use of AMD's products are as set forth in a signed agreement between the parties or in AMD's Standard Terms and Conditions of Sale.

© 2021 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo, EPYC, and combinations thereof are trademarks of Advanced Micro Devices, Inc. Other product names used in this publication are for identification purposes only and may be trademarks of their respective companies. The CentOS Marks are trademarks of Red Hat, Inc. Intel is a registered mark of Intel Corporation. Java is a registered mark of Oracle and/or its affiliates. LLVM is a trademark of LLVM Foundation. Linux is the registered trademark of Linus Torvalds in the U.S. and other countries. The OpenMP name and the OpenMP logo are registered trademarks of the OpenMP Architecture Review Board. Oracle is a registered mark of Oracle and/or its affiliates. ParTec and ParaStation are registered trademarks of ParTec Cluster Competence Center GmbH. Red Hat and the Shadowman logo are registered trademarks of Red Hat, Inc. www.redhat.com in the U.S. and other countries. SUSE is a registered trademark of SUSE LLC or its subsidiaries or affiliates. Windows is a registered trademark of Microsoft Corporation in the US and/or other countries. Ubuntu and the Ubuntu logo are registered trademarks of Canonical Ltd. VMware ESXi is a trademark of VMware. Windows and Windows Server are registered trademarks of Microsoft Corporation in the US and/or other countries.

AMDZ

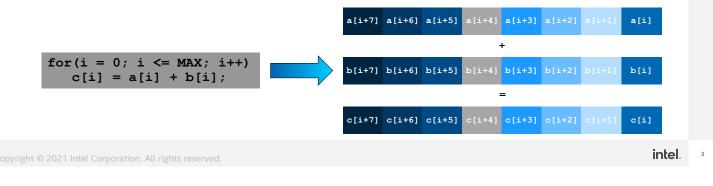
[ONLINE] Node Level Performance Optimization @ CSC, 18-20.5.2021

Vectorization with Intel[®] Compilers and OpenMP* SIMD

Dr. Mikko Byckling, IAGS DEE XCSS

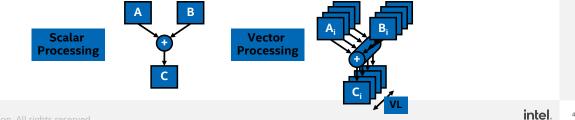
intel

Acknowledgements: Martyn Corden, Intel; Steve "Dr. Fortran" Lionel, ex-Intel *Other names and brands may be claimed as the property of others.


160

Contents

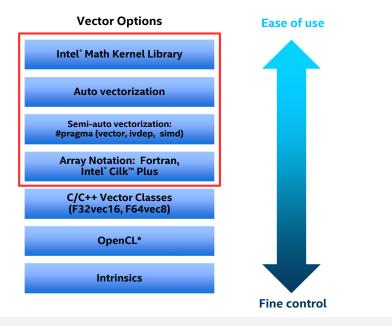
- Vectorization overview
 - Terminology, vectorization code types, data layout and alignment
- SIMD instruction set switches (for Intel[®] compilers)
- OpenMP* SIMD
 - OpenMP* SIMD construct
 - OpenMP* DECLARE SIMD construct
- SIMD programming patterns
 - Reduction, outer loop vectorization, compress, search and histogram loops
- Summary


Vectorization of code

- Transform sequential code to exploit SIMD processing capabilities of Intel[®] processors
 - Calling a vectorized library
 - Automatically by tools like a compiler
 - Manually by explicit syntax

Vectorization terminology

- Single Instruction Multiple Data (SIMD)
 - Processing vector with a single operation
 - Provides data level parallelism (DLP)
 - More efficient than scalar processing due to **DLP**
- Vector
 - Consists of more than one element
 - Elements are of same scalar data types (e.g. floats, integers, ...)
- Vector length (VL), i.e., number of elements in the vector



Peel, main and remainder loops

- A vectorized loop consists of
 - Peel loop (optional)
 - Used for the unaligned references in the loop. Uses scalar or slower vector.
 - Main loop body
 - Typically, the fastest part
 Typically, the fastest part
 - Loop remainder (optional)
 - Used when the number of iterations (trip count) is not divisible by the vector length. Uses Scalar or slower vector.
- Larger vector registers mean more iterations in peel/remainder
- To avoid overhead from peel/remainder loops
 - Avoid loops with a very small trip count
 - Align the data
 - If possible, let the number of iterations be divisible by the vector length

Copyright © 2021 Intel Corporation. All rights reserved.

Vectorization software architecture

Copyright © 2021 Intel Corporation. All rights reserved.

164

Overview of vector code types OpenMP SIMD function Auto vectorization for (int i = 0; i < N; ++i) { #pragma omp declare simd A[i] = B[i] + C[i];float ef(float a, float b) { return a + b; } #pragma omp simd for (int i = 0; i < N; ++i) Array notation A[i] = ef(B[i], C[i]);A(:) = B(:) + C(:)OpenMP SIMD construct #pragma omp simd for (int i = 0; i < N; ++i) { A[i] = B[i] + C[i];}

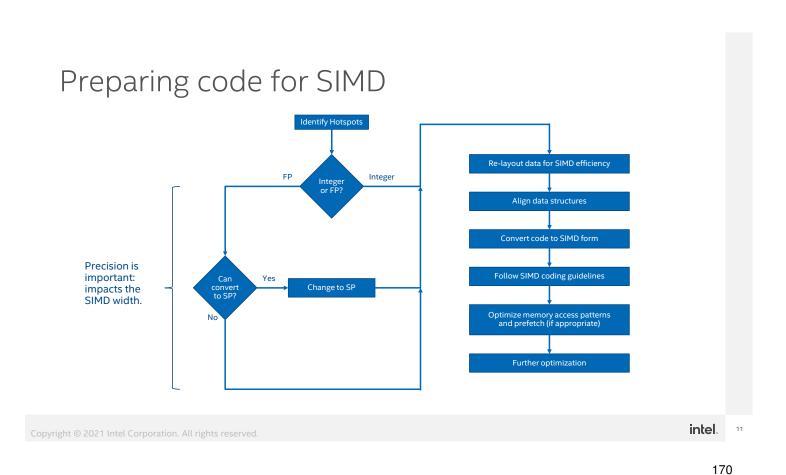
intel.

Automatic vectorization

- The compiler vectorizer works similarly for SSE, AVX, AVX2 and AVX-512 (C/C++, Fortran)
 - Enabled by default at optimization level -02
 - Some ISA features, such as vector masks, gather/scatter instructions and fused multiply-add (FMA) enable better vectorization of code
- Vectorized loops may be recognized by
 - Compiler vectorization and optimization reports (Intel compilers)
 -qopt-report-phase=vec -qopt-report=5
 - \bullet Looking at the assembly code, -S
 - Using Intel® VTune™ or Intel Advisor

Optimization report: Example

Example novec.f90: 1: subroutine fd(y) 2: integer :: : real, dimension(10), intent(inout) :: y 3: do i=2,10 4: 5: y(i) = y(i-1) + 1end do 6: 7: end subroutine fd \$ ifort -c novec.f90 -qopt-report=5
ifort: remark #10397: optimization reports are generated in *.optrpt files in the output location \$ cat novec.optrpt LOOP BEGIN at novec.f90(4,5) remark #15344: loop was not vectorized: vector dependence prevents vectorization remark #15346: vector dependence: assumed FLOW dependence between y line 5 and y line 5 remark #25436: completely unrolled by 9 LOOP END


Copyright © 2021 Intel Corporation. All rights reserved.

intel.

168

Reasons why automatic vectorization fails

- Compiler prioritizes code correctness
- Compiler heuristics to estimate vectorization efficiency
- Vectorization could lead to incorrect or inefficient code due to
 - Data dependencies
 - Alignment
 - Function calls in loop block
 - Complex control flow / conditional branches
 - Mixed data types
 - Non-unit stride between elements
 - Loop body too complex (register pressure)
 - ...

Data Layout – why it is important

- Instruction-Level
 - Hardware is optimized for contiguous loads/stores
 - Support for non-contiguous accesses differs with hardware (e.g., AVX2/AVX-512 gather)
- Memory-Level
 - Contiguous memory accesses are cache-friendly
 - Number of memory streams can place pressure on prefetchers

Data layout – common layouts

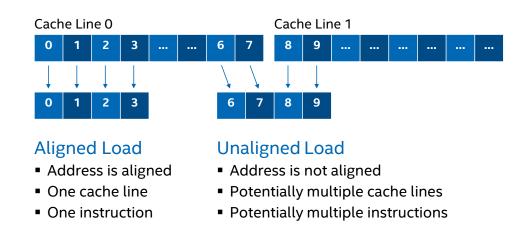
Array-of-Structs (AoS)

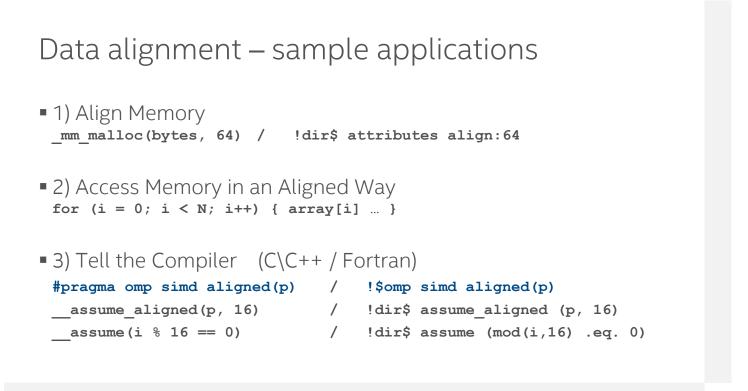
- Pros: Good locality of {x, y, z}, 1 memory stream
- Cons: Potential for gather/scatter

Struct-of-Arrays (SoA)

- Pros: Contiguous load/store
 - Cons: Poor locality of {x, y, z}, 3 memory streams

Hybrid (AoSoA)

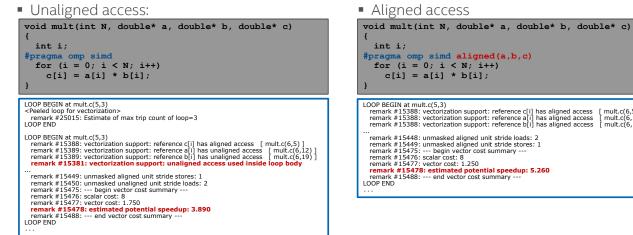

- Pros: Contiguous load/store, 1 memory stream
- Cons: Not a "normal" layout

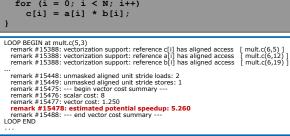

intel. ¹³

172

copyright © 2021 inter corporation. All rights reserved.

Data alignment – why it is important





intel.

174

Alignment impact: example

Both cases compiled as: icc -qopenmp -xCORE-AVX2 -qopt-report=5 -c mult.c -o mult.o

SIMD instruction set switches (for Intel[®] compilers)

Instruction set architecture switches, instruction set defaults

Copyright © 2021 Intel Corporation. All rights reserved

SIMD instruction set switches (1/3) For Intel[®] compilers

- Linux*, OS X*: -x<feature>, Windows*: /Qx<feature>
 - Might enable Intel processor specific optimizations
 - Processor-check added to "main" routine: Application errors in case SIMD feature missing or non-Intel processor with appropriate/informative message
- Linux*, OS X*: -ax<features>, Windows*: /Qax<features>
 - Multiple code paths: baseline and optimized/processor-specific
 - Optimized code paths for Intel processors defined by <features>
 - Multiple SIMD features/paths possible, e.g.: -axSSE2, CORE-AVX2
 - Baseline code path defaults to **-msse2** (/arch:sse2)
 - The baseline code path can be modified by **-m<feature>** or **-x<feature>** (/arch:<feature> or /Qx<feature>)

176

SIMD instruction set switches (2/3) For Intel[®] compilers

- Linux*, OS X*: -m<feature>, Windows*: /arch:<feature>
 - Neither check nor specific optimizations for Intel processors: Application optimized for both Intel and non-Intel processors for selected SIMD feature
 - Missing check can cause application to fail in case extension not available
- Default for Linux*: -msse2, Windows*: /arch:sse2
 - Activated implicitly
 - Implies the need for a target processor with at least Intel® SSE2
- Default for OS X*: -xsse3 (IA-32), -xssse3 (Intel[®] 64)

SIMD instruction set switches (3/3) For Intel[®] compilers

- Special switch for Linux*, OS X*: -xHost, Windows*: /QxHost
 - Compiler checks SIMD features of current host processor (where built on) and makes use of latest SIMD feature available
 - Code only executes on processors with same SIMD feature or later as on build host
 - As for **-x<feature>** or **/Qx<feature>**, if "main" routine is built with -xHost or /QxHost the final executable only runs on Intel processors
- Disabling vectorization Linux*, OS X*: -no-vec, Windows*: /Qvec-
 - Disables vectorization for the compile unit
 - The compiler can still use some SIMD features

intel.

SIMD feature set names (1/2) For Intel[®] compilers

	Description
CORE-AVX512	May generate Intel [®] Advanced Vector Extensions 512 (Intel [®] AVX-512) Foundation instructions, Intel [®] AVX-512 Conflict Detection instructions, and other AVX-512 subsets which will be available on future Intel [®] XEON [™] architecture Optimizes for Intel [®] processors that support Intel [®] AVX-512 instructions. Sets –qopt-zmm-usage=low by default.
MIC-AVX512	May generate Intel® Advanced Vector Extensions 512 (Intel® AVX-512) Foundation instructions, Intel® AVX-512 Conflict Detection instructions, Intel® AVX-512 Exponential and Reciprocal instructions, Intel® AVX-512 Prefetch instructions for Intel® processors, and the instructions enabled with CORE-AVX2. Optimizes for Intel® processors that support Intel® AVX-512 Instructions.
COMMON-AVX512	May generate Intel [®] Advanced Vector Extensions 512 (Intel [®] AVX-512) Foundation instructions and Intel [®] AVX-512 Conflict Detection instructions. Optimizes for Intel [®] processors that support Intel [®] AVX-512 instructions. Sets –qopt-zmm-usage=high by default.
CORE-AVX2	May generate Intel® Advanced Vector Extensions 2 (Intel® AVX2), Intel® AVX, SSE4.2, SSE4.1, SSE3, SSE2, SSE and Intel SSSE3 instructions.
CORE-AVX-I	May generate Intel® Advanced Vector Extensions (Intel® AVX), including instructions in 3rd generation Intel® Core™ processors, Intel® SSE4.2, SSE4.1, SSE3, SSE2, SSE and Intel SSSE3.

Copyright © 2021 Intel Corporation. All rights reserved.

intel. 21

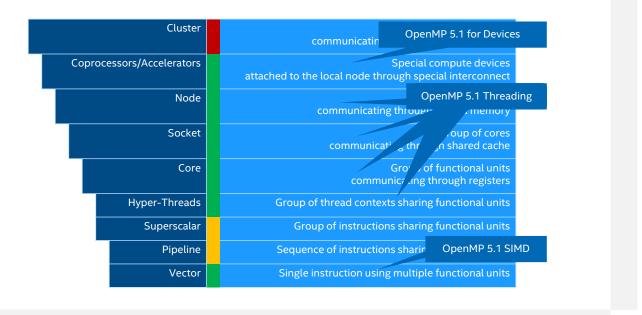
SIMD feature set names (2/2) For Intel[®] compilers

SIMD Feature	Description
AVX	May generate Intel [®] Advanced Vector Extensions (Intel [®] AVX), SSE4.2, SSE4.1, SSE3, SSE2, SSE and Intel SSSE3.
ATOM_SSE4.2	May generate MOVBE instructions for Intel processors (depending on setting of -minstruction or /Qinstruction). May also generate Intel [®] SSE4.2, SSE3, SSE2 and SSE instructions for Intel processors. Optimizes for Intel [®] Atom [™] processors that support Intel [®] SSE4.2 and MOVBE instructions.
SSE4.2	May generate Intel [®] SSE4.2, SSE4.1, SSE3, SSE2, SSE and Intel SSSE3.
SSE4.1	May generate Intel [®] SSE4.1, SSE3, SSE2, SSE and Intel SSSE3.
ATOM_SSSE3 deprecated: SSE3_ATOM & SSSE3_ATOM	May generate MOVBE instructions for Intel processors (depending on setting of -minstruction or /Qinstruction). May also generate Intel [®] SSE3, SSE2, SSE and Intel [®] SSSE3 instructions for Intel processors. Optimizes for Intel [®] Atom [®] processors that support Intel [®] SSE3 and MOVBE instructions.
SSSE3	May generate Intel [*] SSE3, SSE2, SSE and Intel SSSE3.
SSE3	May generate Intel [®] SSE3, SSE2 and SSE.
SSE2	May generate Intel [*] SSE2 and SSE.

22

OpenMP* SIMD

OpenMP* SIMD construct, OpenMP* DECLARE SIMD construct


Copyright © 2021 Intel Corporation All rights reserved	*Other names and brands may be claimed as the property of others.
--	---

182

OpenMP* API

- De-facto standard, OpenMP* 5.1 out since November 2020
- API for C/C++ and Fortran for shared-memory parallel programming
- Based on directives
- Portable across vendors and platforms
- Supports various types of parallelism

Levels of parallelism in OpenMP 5.1

Copyright © 2021 Intel Corporation. All rights reserved.

intel.²

184

Explicit vectorization

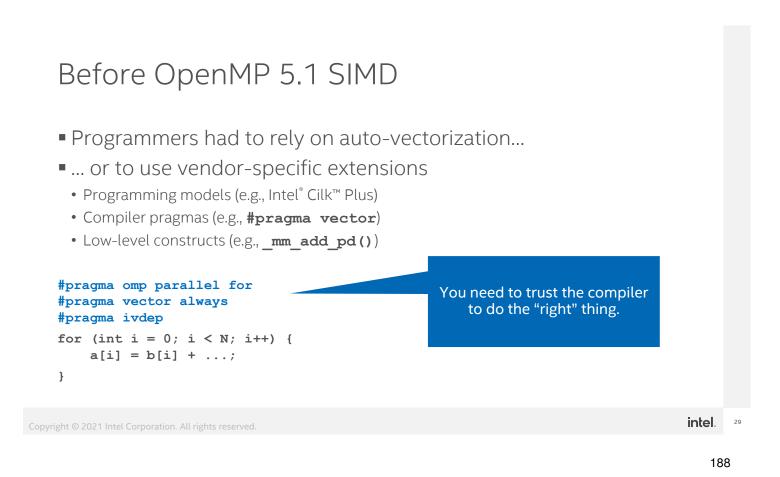
- Compiler Responsibilities
 - Allow programmer to declare that code **can** and **should** be run in SIMD
 - Generate the code the programmer asked for
- Programmer Responsibilities
 - Correctness (e.g., no dependencies, no invalid memory accesses)
 - Efficiency (e.g., alignment, loop order, masking)

Explicit vectorization: example

```
float sum = 0.0f;
float *p = a;
int step = 4;
#pragma omp simd reduction(+:sum) linear(p:step)
for (int i = 0; i < N; ++i) {
   sum += *p;
   p += step;
}
```

- The two += operators have different meaning from each other
- The programmer should be able to express those differently
- The compiler has to generate different code
- The variables i, p and step have different "meaning" from each other

Copyright © 2021 Intel Corporation. All rights reserved.

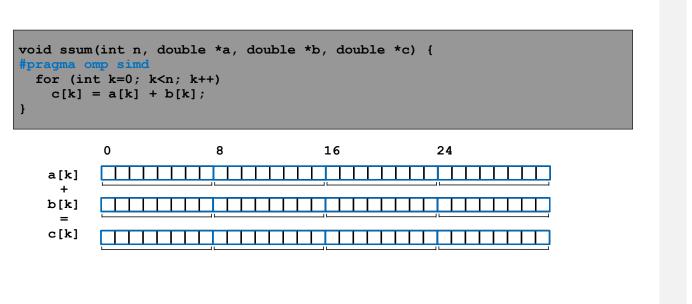

186

intel.

Explicit vectorization: example

```
#pragma omp declare simd simdlen(16)
uint32_t mandel(fcomplex c)
{
    uint32_t count = 1; fcomplex z = c;
    for (int32_t i = 0; i < max_iter; i += 1) {
        z = z * z + c; int t = cabsf(z) < 2.0f;
        count += t;
        if (!t) { break; }
    }
    return count;
}</pre>
```

- mandel() function is called from a loop over X/Y points
- We would like to vectorize that outer loop
- Compiler creates a vectorized function that acts on a vector of N values of c


OpenMP SIMD Loop Construct

- Vector parallelism is decribed with simd construct
 - Cut loop into chunks that fit a SIMD vector register
 - No thread parallelization of the loop body

```
Syntax(C/C++)
#pragma omp simd [clause[[,] clause],...]
for-loop
```

```
Syntax (Fortran)
!$omp simd [clause[[,] clause],...]
do-loop
```

OpenMP SIMD: example


```
Copyright © 2021 Intel Corporation. All rights reserved.
```

intel. 31

190

OpenMP SIMD loop clauses

private(var-list):

Uninitialized vectors for variables in var-list

reduction(op:var-list):

Create private variables for var-list and apply reduction operator op at the end of the construct

OpenMP SIMD loop clauses

safelen(length)

- Maximum number of iterations that can run concurrently without breaking a dependence
- in practice, maximum vector length
- linear(list[:linear-step])
 - The variable's value is in relationship with the iteration number

 $x_i = x_{orig} + i * linear-step$

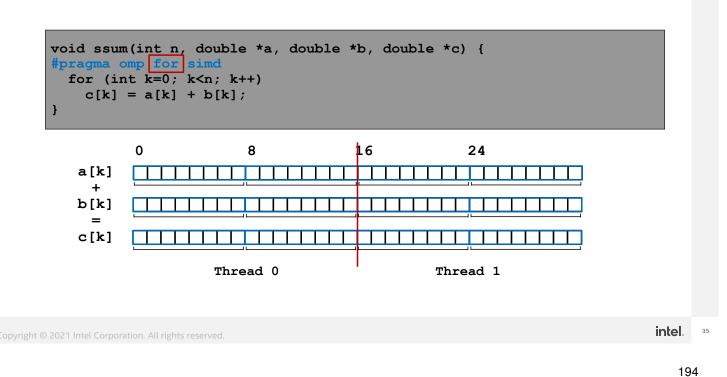
aligned(list[:alignment])

- Specifies that the list items have a given alignment
- Default is alignment for the architecture

collapse(n)

- Combine the iteration space of the next ${\bf n}$ loops

Copyright © 2021 Intel Corporation. All rights reserved.


OpenMP SIMD worksharing construct

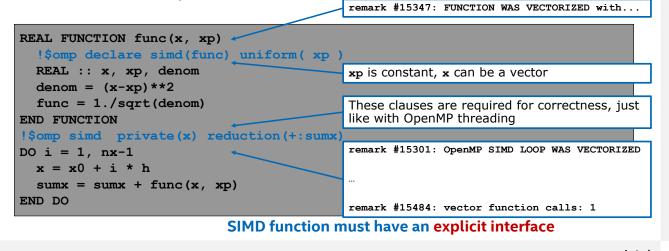
- Parallelize and vectorize a loop nest
 - Distribute a loop's iteration space across a thread team
 - Subdivide loop chunks to fit a SIMD vector register

Syntax (C/C++) #pragma omp for simd [clause[[,] clause],...] for-loop

Syntax (Fortran) !\$omp do simd [clause[[,] clause],...] do-loop

OpenMP SIMD workshare: example

SIMD function vectorization

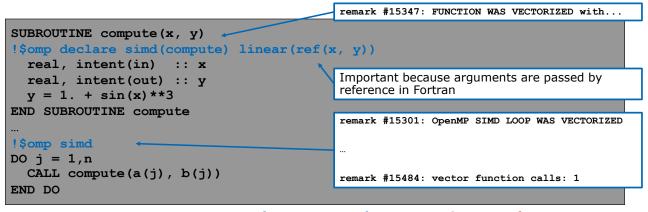

- Declare one or more functions to be compiled for calls from a SIMDparallel loop
- Syntax (C/C++):

```
#pragma omp declare simd [clause[[,] clause],...]
[#pragma omp declare simd [clause[[,] clause],...]]
[...]
function-definition-or-declaration
```

Syntax (Fortran):

OpenMP **DECLARE SIMD**: example

 Generate a SIMD-enabled (vector) version of a scalar function that can be called from a vectorized loop


Copyright © 2021 Intel Corporation. All rights reserved.

intel.

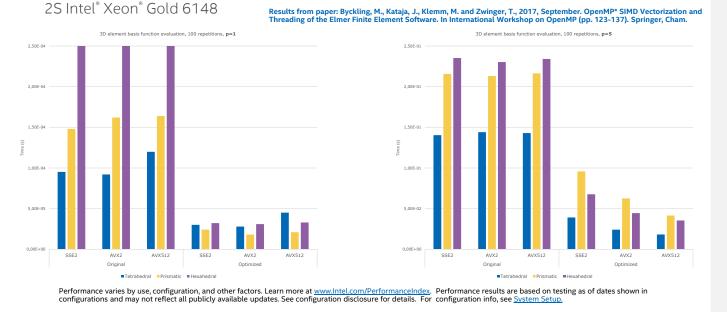
196

OpenMP **DECLARE SIMD**: example

 Generate a SIMD-enabled (vector) version of a scalar subroutine that can be called from a vectorized loop:

SIMD function must have an explicit interface

Simple function vectorization clauses simple (length) enerate function to support a given vector length simple (argument-list) enerate a constant value between the iterations of a given loop simple a constant value between the iterations of a given loop enderate and a statement enderate and a from inside an if statement enderate (argument-list[:linear-step]) enderate (argument-list[:alignment]) Same as in SIMD


SIMD function arguments and **LINEAR (REF)**

- Whenever SIMD function arguments are passed by reference:
 - The compiler places consecutive addresses in a vector register, resulting in a gather from the addresses when the values are needed (**=slow**)
 - **LINEAR (REF (...)**) tells the compiler that the addresses are consecutive, resulting to a single dereference and then copy of the consecutive values to a vector register (=fast)
- Recall that Fortran passes all arguments by reference
 - **LINEAR (REF (...)**) is very important for efficient SIMD vectorization of Fortran functions and subroutines

Targeting SIMD functions for CPU ISA

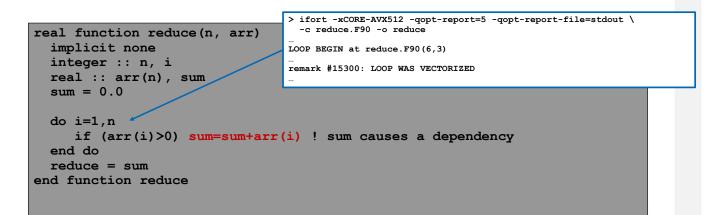
- The default binary ABI requires passing arguments in 128 bit xmm registers
 - ABI is selected irrespective of **-xCORE-AVX2** or **-xCORE-AVX512** feature flags
 - Results in inefficient 128 bit code instead of 256 or 512 bit
 - Compiler optimization report: remark #15347: FUNCTION WAS VECTORIZED with xmm, simdlen=4,...
- Intel[®] compiler flag -vecabi=cmdtarget
 - SIMD register width chosen according to the -x<feature>
 - Compiler optimization report: remark #15347: FUNCTION WAS VECTORIZED with zmm, simdlen=16, ...

Example: OpenMP 4.0 SIMD in Elmer

Copyright © 2021 Intel Corporation. All rights reserved.

SIMD programming patterns

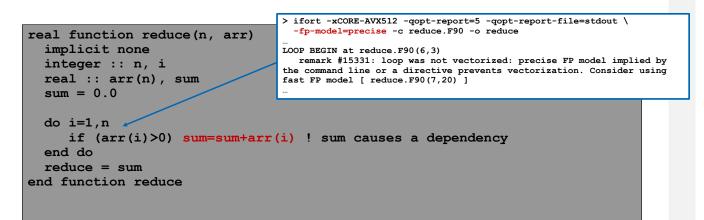
Reduction, outer loop vectorization, compress, search and histogram loops


SIMD programming patterns

- Dependencies can make vectorization unsafe
- Some special patterns can still be handled by the compiler
 - The compiler may recognize a pattern (auto-vectorization)
 - Often works only for simple, 'clean' examples
 - The compiler is enforced (explicit vector programming)
 - May work for more complex cases
 - Examples: reduction, compress/expand, search, etc.
- Speed-up can come from vectorizing the rest of a large loop more than from vectorization of the pattern itself

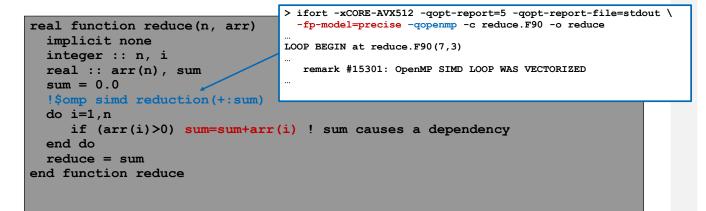
intel.

intel.


Reduction

Reduction operations commonly auto-vectorize with any instruction set

	Copyright ©	2021 Intel	Corporation.	All rights	reserved.
--	-------------	------------	--------------	------------	-----------


Reduction and floating point models

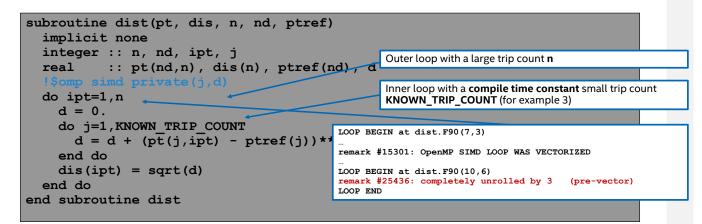
 Vectorization would change order of operations and hence the compiler is unable to vectorize

```
Copyright © 2021 Intel Corporation. All rights reserved.
```

OpenMP reductions

Floating point model can be overridden with explicit vector reduction (OpenMP SIMD reduction)

Copyright © 2021 Intel Corporation. All rights reserved.


intel. 4

OpenMP SIMD outer loop vectorization

<pre>subroutine dist(pt, dis, n, nd, ptref) implicit none</pre>		
integer :: n, nd, ipt, j	Outer loop with a large trip count n	
<pre>real :: pt(nd,n), dis(n), ptref(r !\$omp simd private(j,d)</pre>	ια, α	
do ipt=1,n	Inner loop with a small trip count nd	
d = 0.		
<pre>do j=1,nd d = d + (pt(j,ipt) - ptref(j))** end do</pre>	LOOP BEGIN at dist.F90(7,3) remark #15301: OpenMP SIMD LOOP WAS VECTORIZED	
dis(ipt) = sqrt(d) end do	 LOOP BEGIN at dist.F90(9,6) remark #25460: No loop optimizations reported LOOP END	
end subroutine dist		

When nd is small (typically <8), outer loop vectorization may be profitable.
 Private copies of j and d needed for correctness

OpenMP SIMD outer loop vectorization

 If the inner loop trip count is fixed and the compiler knows it, the inner loop can be completely unrolled

```
Copyright © 2021 Intel Corporation. All rights reserved.
```

```
intel. 4
```

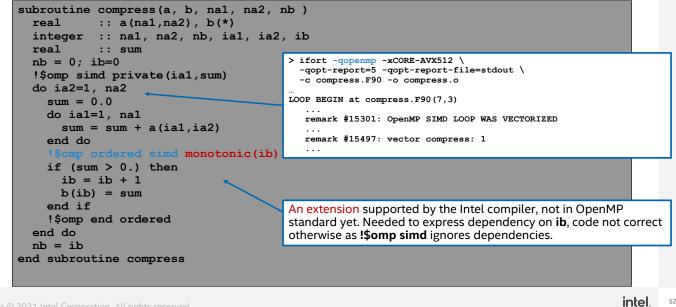

```
208
```

Compress pattern

<pre>real, intent(out) :: b(*) integer, intent(in) :: na integer, intent(out) :: nb integer :: 1a nb = 0 do ia=1, na if(a(ia) > 0.) then nb = nb + 1 ! dependency b(nb) = a(ia) ! compress end if end do end subroutine compress</pre>

Compress pattern does not auto-vectorize with Intel[®] AVX2

Compress pattern



Auto-vectorizes with Intel[®] AVX512 (vcompressps instruction)

Copyright © 2021 Intel Corporation. All rights reserved.

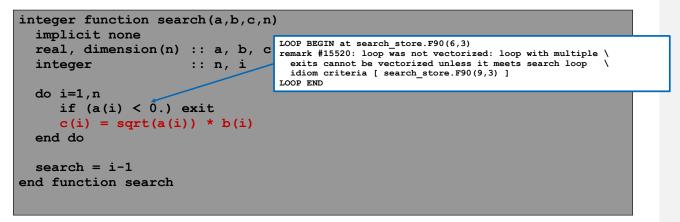
```
210
```

Compress pattern (OpenMP SIMD)

Search loops

- A vectorizable loop must have a single exit and the iteration count must be known at the start of execution
 - Else a later iteration may have started before an earlier iteration decides the loop should be terminated
- Simple "search" loops are an exception which the compiler recognizes
 - executes special code if an exit occurs during a SIMD iteration
 - only works if no stores back to memory

Copyright © 2021 Intel Corporation. All rights reserved.


integer function search(na, target, array)	
<pre>implicit none integer, intent(in) :: na, target, array(na)</pre>	 LOOP BEGIN at search.F90(6,3)
integer :: i	 remark #15300: LOOP WAS VECTORIZED
<pre>do i=1,na if (array(i) == target) exit end do</pre>	••
<pre>search = i end function search</pre>	

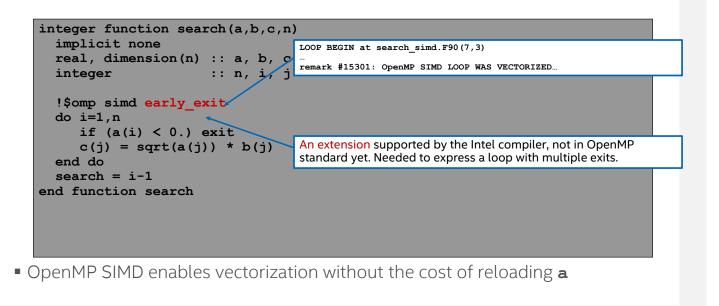
Search pattern auto-vectorizes if it contains no stores back to memory

intel.

212

Search pattern (with stores)

Search pattern with stores does not auto-vectorize

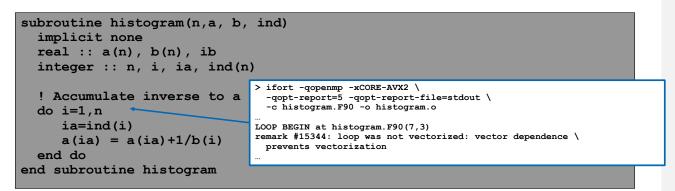

Copyright © 2021	Intel Corporation	. All rights reserved.
------------------	-------------------	------------------------

Search pattern (with stores, vectorized)

integer function search(a,b,c,n)	
implicit none	LOOP BEGIN at search_split.F90(6,3)
real, dimension(n) :: a, b, c integer :: n, i, j	remark #15300: LOOP WAS VECTORIZED
<pre>do i=1,n if (a(i) < 0.) exit</pre>	
end do	LOOP BEGIN at search_split.F90(11,3)
<pre>search = i-1</pre>	 remark #15300: LOOP WAS VECTORIZED
do j=1,search	
c(j) = sqrt(a(j)) * b(j) end do	
end function search	

Splitting the loop enables vectorization with the cost of reloading a

Search pattern (with stores, OpenMP SIMD)



Copyright © 2021 Intel Corporation. All rights reserved.

intel.

216

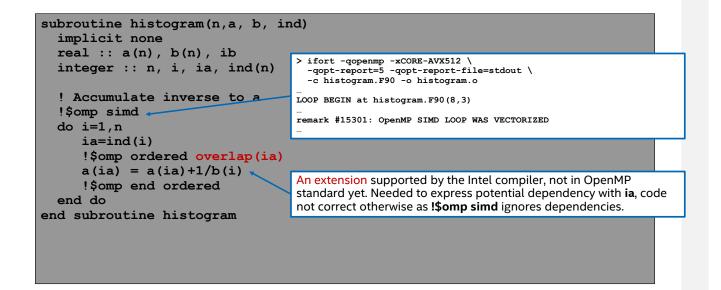
Histogram pattern

- Histogram pattern does not auto-vectorize with Intel[®] AVX2
 - Store to a is a scatter (indirect addressing) and ia can have the same value for different values of i
 - Vectorization with **!\$omp simd** may cause incorrect results

intel. 58

Histogram pattern

```
subroutine histogram(n,a, b, ind)
implicit none
real :: a(n), b(n), ib
integer :: n, i, ia, ind(n)


! Accumulate inverse to a
do i=1,n
    ia=ind(i)
    a(ia) = a(ia)+1/b(i)
end do
end subroutine histogram
```

- Histogram pattern auto-vectorizes with Intel[®] AVX512
 - The **VPCONFLICT** instruction detects elements with conflicting indexes, allowing the generationg of a mask for the conflict free subset of elements
 - Then re-execute the computation for remaining elements recursively

Copyright © 2021 Intel Corporation. All rights reserved.

intel.

Histogram pattern (OpenMP SIMD)

Histogram speed-up Speed-up depends on the problem details Comes mostly from vectorization of other heavy computation in the loop, not from the scatter itself Speed-up may be (much) less if there are many conflicts, for instance for histograms with a singularity or a narrow spike Speed-up due to vectorization would be considerably higher on Intel® Xeon Phi™ x200 processors because scalar processor is slower. Many problems map to histograms For instance: energy deposition in cells in particle transport Monte Carlo simulation, etc.

Copyright © 2021 Intel Corporation. All rights reserved.

220

intel.

Summary

- With Intel[®] Xeon processors, vectorization (and multithreading) are the keys to good floating point performance
- Application may have to be modified to improve vectorization (and threading) properties
- OpenMP is a standardized way to program vectorized and multithreaded programs

Inte

Configuration details

Benchmarks computed on Intel internal system with Intel OPA.

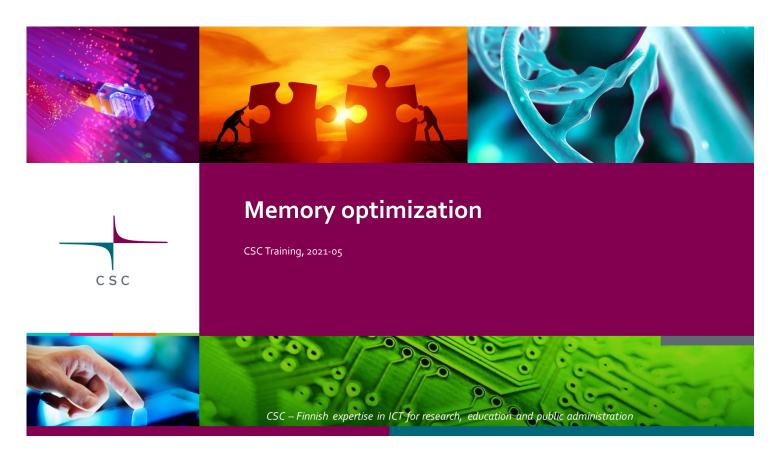
Intel® Xeon® processor Gold 6148: Dual Intel® Xeon® processor Gold 6148 2.4Ghz, 20 cores/socket, 40 cores, 40 threads (HT and Turbo ON), DDR4 192 GB, 2666 MHz, RHEL 7.3, 1.0 TB SATA drive WD1003FZEX-00MK2A0, /proc/sys/vm/nr_hugepages=8000, Intel® Parallel Studio XE 2017 Update 4, tbbmalloc_proxy Intel® Xeon® settings: Environment variables: KMP_AFFINITY=scatter,granularity=fine, I_MPI_FABRICS=shm, I_MPI_PIN_PROCESSOR_LIST=allcores:map=bunch

intel. 64

Notices & Disclaimers

Performance varies by use, configuration, and other factors. Learn more at <u>www.Intel.com/PerformanceIndex</u>.

Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available updates. See configuration disclosure for details.


Your costs and results may vary.

Intel technologies may require enabled hardware, software or service activation.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands may be claimed as the property of others.

Copyright © 2021 Intel Corporation. All rights reserved

intel.

Outline

- Deeper view into data caches
- Basic considerations for cache efficiency
 - Loop traversal and interchange
 - Data structures
- Cache optimization techniques
 - Cache blocking

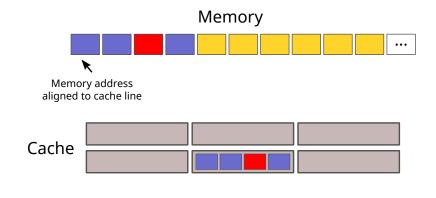
227

Data caches

- Modern CPUs use multilevel caches to access data
- Utilize spatial and temporal locality of data: if data is already in the cache, latency and bandwidth are improved
- For instance, on Intel Cascade lake

Deeper view into data caches

- $\,\circ\,$ L1 cache: latency 4-6 cycles, sustained bandwidth 133 B/cycle/core
- \circ L2 cache: latency 14 cycles, sustained bandwidth 52 B/cycle/core
- L3 cache: latency 50-70 cycles, sustained bandwidth 16 B/cycle/core
- Main memory: latency 120-150 ns, bandwidth 128 GB/s per socket


Data caches

- Sizes of the data caches are small compared to the main memory
 - ∘ L1 ~32 KiB
 - L2 512-1024 KiB
 - ∘ L3 1-4 MiB / core
- Terminology
 - Cache hit: the requested data is in the cache
 - Cache miss: the requested data is not in the cache
- Optimizing the use of caches is extremely important to leverage the full power of modern CPUs

Cache organization

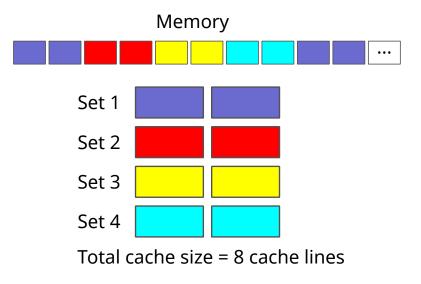
- Cache is read and written in units of cache lines
 - 64 bytes in current x86 CPUs
- Upon miss, a line is evicted from the cache and replaced by the new line
 - $\circ\,$ Cache replacement policy determines which line is evicted
- Inclusive cache: all the lines in the upper-level cache are also in the lower level
- Exclusive cache: lines in the upper-level cache are not in the lower level
- Cache can be also non-inclusive non-exclusive, *i.e.* line may or may not be present in lower-level cache

Cache organization

Write policies

- Most modern CPUs employ a *write-back* cache write policy
 - $\circ\,$ a changed cache line is updated in the lower level hierarchy only when it is evicted
- Upon write miss, the cache line is typically first read from the main memory (*write-allocate* policy)
- In multicore CPUs with private caches, writes may require updates also in the caches of the other cores

Cache associativity

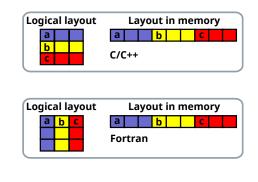

- A cache with the size of 32 KiB can fit 32 KiB / 64 B = 512 cache lines
- In *fully associate* cache, each of the 512 entries can contain any memory location • Each entry needs to be checked for a hit which can be expensive for large caches
- In *direct mapped* cache, each memory location maps into exactly one cache line
 - Part of the cache is not fully utilized if memory addresses are not evenly distributed: some cache lines are evicted repeteadly while others remain empty
- Set associative caches can achieve best of the both worlds: efficient search and good utilization

Set associative cache

- A N-way set associative cache is divided into sets with N cache lines in each
 - 8-way set associative 32 KiB cache has 64 sets with 8 cache line entries per set
- A memory address is mapped into any entry within a set
 - need to search only over N entries for a hit
 - better utilization than in a direct mapped cache, but conflict misses still possible
- Fully associative and direct mapped as limiting cases N=∞ and N=1

233

Example: 2-way set associative cache


- Compulsory misses: happens the first time a memory address is accessed
 - Prefetching may prevent compulsory misses
- Capacity misses: happens when data the data is evicted due to cache becoming full
 - Can be caused by bad spatial and temporal locality of data in the application (inherent or bad implementation)
- Conflict misses: happens when a set becomes full even when other sets have space
 - $\,\circ\,$ Can be caused by particular memory access patterns

Optimizing data access

Accessing multidimensional arrays

- Accessing multidimensional arrays in incorrect order can generate poor cache behaviour
- Loops should written such that the *innermost* loop index matches the *contiguous* array index
 - C/C++ uses row major layout, i.e. last index is contiguous
 - Fortran uses column major layout, i.e. first index is contiguous

 Compiler optimizations may permute the loop indices automatically if possible

Loop interchage example: Fortran

Original loop

real :: a(N,M) real :: sum

do i=1,N

do j=1,M sum = sum + a(<mark>i</mark>,j) end do end do

Interchanged

real :: a(N,M)
real :: sum
do j=1,M
 do i=1,N
 sum = sum + a(i,j)
 end do

end do

C S C

Loop interchage example: C/C++

Original loop

float **a; float sum;

for (int i=0; i < M; i++)

for (int j=0; j < N; j++)
sum = sum + a[j][i];</pre>

Interchanged

float **a; float sum; for (int j=0; j < N; j++) for (int i=0; i < M; i++) sum = sum + a[j][i];

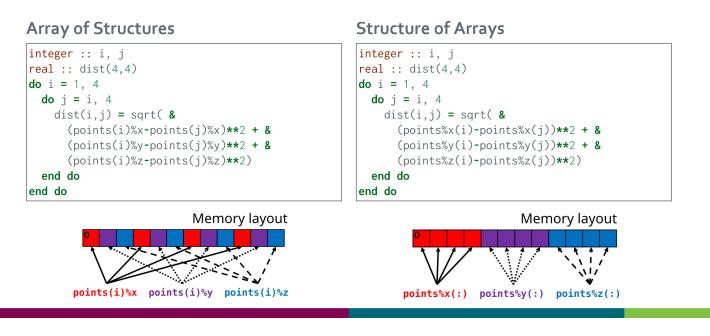
Data structures

- Data structure choice has an effect on the memory layout
 - Structure of arrays (SoA) vs. Array of Structures (AoS)
- Data should be stored based on its usage pattern
 - Avoid scattered memory access
- Occasionally, use of nonconventional ordering or traversal of data is beneficial
 - Colorings, space filling curves, etc.

Data structures: memory layout

Array of Structures

```
type point
  real :: x, y, z
end type point
```


type(point), allocatable :: points

```
allocate(points(N))
```

Structure of Arrays

```
type point
  real, allocatable :: x(:)
  real, allocatable :: y(:)
  real, allocatable :: z(:)
end type point
type(point) :: points
allocate(points%x(N), &
        points%y(N), &
        points%z(N))
```

Data structures: memory layout

243

Cache blocking

- Multilevel loops can be iterated in blocks in order improve data locality
 - Perform more computations with the data that is already in the cache
- Complicated optimization: optimal block size is hardware dependent (cache sizes, SIMD width, *etc.*)
- Cache oblivious algorithms use recursion to improve performance portability

Cache blocking example

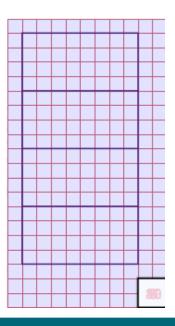
• Consider a 2D Laplacian

- (Fictitious) cache structure
 - Each line holds 4 elemets
 - $\circ\,$ Cache can hold 12 lines of data
- No cache reuse between outer loop

iterations

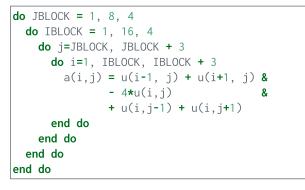
ł						
ł						
ł						
ł						
I						
Ì						
1						
1						
1						
•						
1						
					-18	6
						2

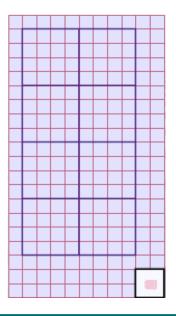
245


650

Cache blocking example

• Blocking the inner loop


do IBLOCK = 1,	16, 4	
do j=1, 8		
do i=1, IBI	_OCK, IBLOCK + 3	
a(i,j) =	u(i-1, j) + u(i+1, j)	&
-	4 * u(i,j)	&
+	u(i,j - 1) + u(i,j+1)	
end do		
end do		
end do		


• Better reuse for the j+1 data

Cache blocking example

• Iterate over 4x4 blocks

650

Cache blocking with OpenMP

- OpenMP 5.1 standard has tile construct for blocking
 - Compiler support not necessarily ready yet

Array padding

- When data is accessed in strides which are multiple of the cache set size, conflict misses may occur
 - $\circ\,$ In 8-way associative 32 KiB cache, there are 64 sets
 - Memory address which are 64*64 = 4096 bytes apart map into a same set
 - Example: in float a[1024][1024] each column maps into a same set
- Array padding, *i.e.* allocating extra data can in some cases reduce conflict misses
 - float a[1024 + 16][1024]
 - Padding should preferably preserve alignment of data

Prefetching

- Modern CPUs try to predict data usage patterns and prefetch data to caches before it is actually needed
 - Can alleviate even compulsory misses
- Prefetching can be requested also by software

• Compiler

- Programmer via software directives and intrinsinc functions
- Difficult optimization:
 - Too early: cache is filled with unnecessary data
 - Too late: CPU has to wait for the data

Non-temporal stores

- With write-allocate policy, a write miss incurs a load from main memory
- If data is going to be just written and not reused, some CPUs contain instructions for bypassing the cache by writing directly into the memory with *non-temporal stores*
- Non-temporal stores can be used via pragmas, compiler options, or intrinsincs
 - o omp simd nontemporal(list)(OpenMP 5.0)
 - Possible benefits depend a lot on application, and misuse can degragade performance
 - Hardware may also recognize access pattern and switch into non-temporal stores

Summary

- Efficient cache usage is on of the most important aspects for achieving good performance
 - Exploite spatial and temporal locality
- Progammer can improve the cache usage by optimizing data layouts and access patterns

csc

Outline

- Loop transformations
- Mathematical routines
- Branches
- Function inlining
- Intrincic functions

Loop transformations

Loop transformations

- Loop transformations can provide better vectorization prospects, improve instruction level parallelism, pipeline utilization and cache usage
- Common transformations: interchange, unrolling, fusion, fission, sectioning, unroll and jam
- In many cases compiler can make loop transformations with high enough optimization level
 - $\,\circ\,$ Understanding the concepts is still be useful for the programmer
- In some cases manual programming can be useful
 - When misused, transformation can be disadvantageous for performance
 - Readability of code often suffers

Loop unrolling

- If the loop body is very small, overhead from incrementing the loop counter and from the test for the end of the loop can be high
- When vectorizing, loop is implicitly unrolled by the vector length
- May improve pipeline utilization and instruction level parallelism
- Additional logic needed for remainder
- May increase register pressure

```
do i=1,N
  c[i] = a[i] + b[i]
end do

do i=1,N,4  ! unroll four times
  c[i] = a[i] + b[i]
  c[i+1] = a[i+1] + b[i+1]
  c[i+2] = a[i+2] + b[i+2]
  c[i+3] = a[i+3] + b[i+3]
end do
```

Loop fission

- Loop fission (or loop distribution) splits one loop into sequence of loops
- May improve cache usage and reduce register pressure
- May allow vectorization by moving dependencies
- Some dependencies may prohibit fission

Loop fusion

- Loop fusion (or loop jamming) merges multiple loops into one
- May improve cache usage
- May allow better pipeline utilization and instruction level parallelism
- May cause dependencies which prevent applying the transformation

do j=1,N
 b(i) = a(i) * a(i)
end do
do j=1,N
 c(i) = c(i) * a(i)
end do

do j=1,N
 b(i) = a(i) * a(i)
 c(i) = c(i) * a(i)
end do

Loop sectioning

- Loop sectioning (or strip mining) transforms a loop into smaller chunks by creating additional inner loops
- May improve cache usage
- May make the code easier for compiler to vectorize

```
do i=1,N
    process1(data(i))
    process2(data(i))
end do
```

do i=1,N,S
 do j=i, min(N, i + S)
 process1(data(i))
 end do
 do j=i, min(N, i + S)
 process2(data(i))
 end do
end do

Loop unroll and jam

- Unroll and jam unrolls an outer loop and fuses then the inner loop
- May allow better pipeline utilization and instruction level parallelism
- May potentiate other optimizations

do j=1,N,2
 do i=1,M
 b1 = 2 * a(i, j)
 b2 = 2 * a(i, j + 1)
 c(i, j) = b1*b1
 c(i, j + 1) = b2*b2
 end do
end do

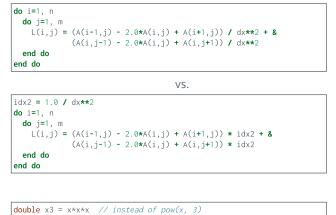
261

csc

Other optimizations

Optimizing mathematical operations

• Due to finite precision of floating point numbers, compilers need to be carefull in some optimizations


$$(a + b) + c \neq a + (b + c)$$

- Some mathematical routines (sqrt, pow, sin, cos, ...) can be calculated with different algorithms with different performance and precision
 - In some applications it is possible to compromise precision for speed
- Most compilers have an option for faster mathematics ('-ffast-math' for gcc/clang and '-fp-model fast=2' for Intel)

Important to check that results are valid !

Optimizing mathematical operations

- If *fast math* options cannot be use (*i.e.* part of the application requires higher precision), programmer can make some optimizations by hand
- Examples:
 - Move division out of the loop
 - Replace pow(x, n) where n is small integer with multiplications (C/C++)

Optimizing branches

- Branches have the possibility of stalling the CPU pipeline, and can thus be expensive
- When possible, if statements should be outside loop bodies • manual loop transformations can be helpful
- Hardware branch predictor works well when the branching follows regular pattern
 - $\circ\,$ performing extra work for improving predictability may be worthwhile

Inline functions

- When inlining, compiler replaces a call to function by the function body
 - Reduces function call overhead
 - If function is called within a loop, may provide additional optimization prospects
- Compiler uses heuristics to decide if inlining is beneficial
 - Might require "interprocedural optimization" options
- In C/C++ inline keyword is *hint* for the compiler to inline
- In Fortran, programmer can force inlining only via compiler directives, otherwise compiler makes the decision whether to inline a function
- Overuse of inlining increases the executable size and may hurt performance

Intrinsic functions

- Intrinsic functions are special functions that the compiler replaces with equivalent CPU instruction
 - "high level assembly"
 - Often compiler specific
- Examples:
 - \circ Software prefetch: _mm_prefetch (C/C++), mm_prefetch (Fortran)
 - Non-temporal stores: _mm_stream_xxx (C/C++ only)
 - AVX instructions
- Recommended only in special cases
 - Can make the code non-portable
 - $\circ\,$ Can also degragade performance compiler might know better when to use

Summary

- Loops can be transformed in various ways in order to improve performance
 - $\,\circ\,$ Often better leave the transformations for the compiler
- Many mathematical operations can be performed faster with some compromise on precision
- Hard to predict branches may stall the CPU pipeline

Web resources

• Intel Intrinsics guide: https://software.intel.com/sites/landingpage/IntrinsicsGuide/

269

CSC

Programming OpenMP

Parallel Region

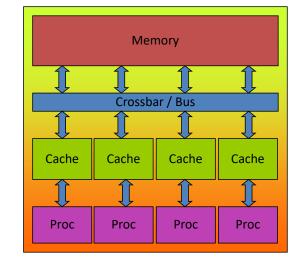
Michael Klemm

Credit for these slides go to the OpenMP tutorial gang: Bronis R. de Supinski, Christian Terboven, Ruud van der Pas, Xavier Teruel

OpenMP Tutorial Members of the OpenMP Language Committee

OpenMP's machine model

OpenMP Tutorial


Members of the OpenMP Language Committee

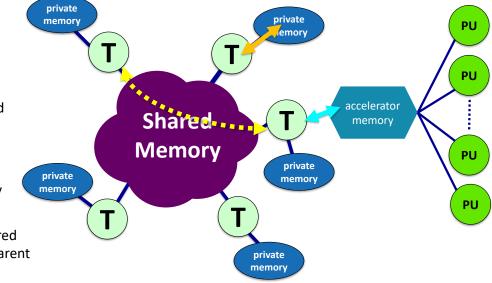
• OpenMP: Shared-Memory Parallel Programming Model.

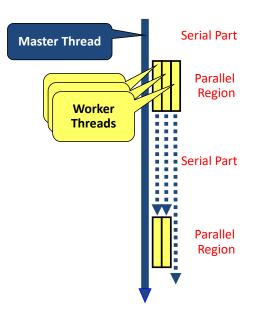
All processors/cores access a shared main memory.

Real architectures are more complex, as we will see later / as we

Parallelization in OpenMP employs multiple threads.

270


The OpenMP Memory Model


- All threads have access to the same, globally shared memory
- Data in private memory is only accessible by the thread owning this memory
- No other thread sees the change(s) in private memory
- Data transfer is through shared memory and is 100% transparent to the application

OpenMP Tutorial Members of the OpenMP Language Committee

The OpenMP Execution Model

- OpenMP programs start with just one thread: The *Master*.
- Worker threads are spawned at Parallel Regions, together with the Master they form the Team of threads.
- In between Parallel Regions the Worker threads are put to sleep. The OpenMP *Runtime* takes care of all thread management work.
- Concept: Fork-Join.
- Allows for an incremental parallelization!

272

<u>OpenMP</u>

OpenMP

OpenMP

Parallel Region and Structured Blocks

· The parallelism has to be expressed explicitly.

```
C/C++

#pragma omp parallel

{

...

structured block

...

}

Fortran

!$omp parallel

...

structured block

...

!$omp parallel
```

Specification of number of threads:

parallel construct

- Or: Via num threads clause:

add num threads (num) to the

- Environment variable: OMP NUM THREADS=...

- Structured Block
 - Exactly one entry point at the top
 - Exactly one exit point at the bottom
 - Branching in or out is not allowed
 - Terminating the program is allowed (abort / exit)

OpenMP Tutorial Members of the OpenMP Language Committee

```
Starting OpenMP Programs on Linux
```

• From within a shell, global setting of the number of threads:

```
export OMP_NUM_THREADS=4
./program
```

• From within a shell, one-time setting of the number of threads:

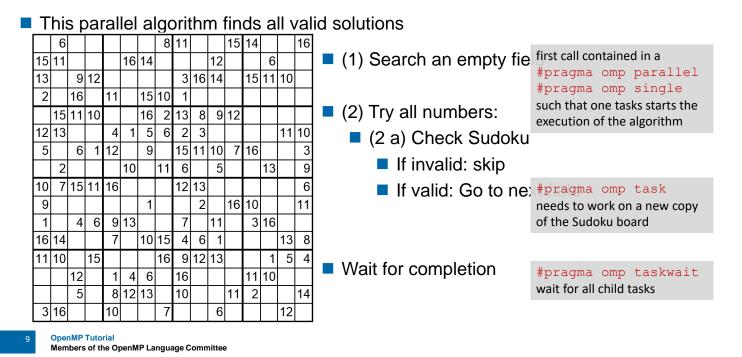
```
OMP_NUM_THREADS=4 ./program
```


Programming OpenMP

Tasking Introduction

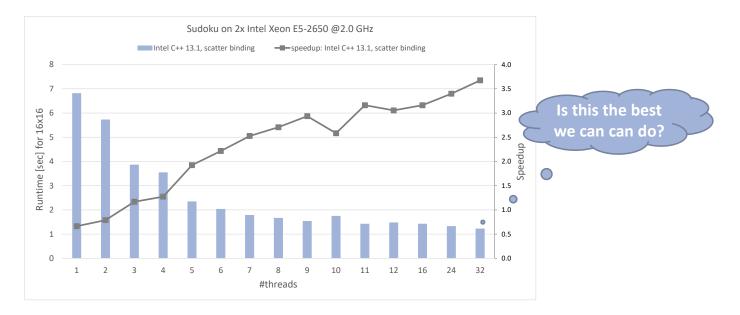
7

OpenMP Tutorial Members of the OpenMP Language Committee


Sudoko for Lazy Computer Scientists

- <u>Open**MP**</u>
- Lets solve Sudoku puzzles with brute multi-core force 6 8 11 15 14 16 (1) Search an empty field 15 11 16 14 12 6 3 16 14 15 11 10 13 9 12 2 16 11 15 10 1 (2) Try all numbers: 15 11 10 16 2 13 8 9 12 12 13 4 5 6 2 3 11 10 1 (2 a) Check Sudoku 5 1 12 15 11 10 7 16 3 6 9 If invalid: skip 2 10 11 6 5 13 9 10 7 15 11 16 12 13 6 If valid: Go to next field 2 16 10 11 9 1 1 4 6 9 13 7 11 3 16 10 15 16 14 7 4 6 1 13 8 11 10 15 9 12 13 16 5 4 1 Wait for completion 12 1 4 6 16 11 10 8 12 13 5 10 11 2 14 3 16 10 6 12

OpenMP Tutorial


Parallel Brute-force Sudoku

278

Open**MP**

Performance Evaluation

Tasking Overview

```
11
```

OpenMP Tutorial Members of the OpenMP Language Committee

280

Open**MP**

What is a task in OpenMP?

- Tasks are work units whose execution
 - → may be deferred or...
 - \rightarrow ... can be executed immediately
- Tasks are composed of
 - → code to execute, a data environment (initialized at creation time), internal control variables (ICVs)
- Tasks are created...
 - ... when reaching a parallel region \rightarrow implicit tasks are created (per thread)
 - ... when encountering a task construct \rightarrow explicit task is created
 - ... when encountering a taskloop construct \rightarrow explicit tasks per chunk are created
 - ... when encountering a target construct \rightarrow target task is created

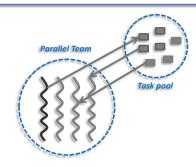
Tasking execution model

Supports unstructured parallelism

→ unbounded loops

```
while ( <expr> ) {
    ...
}
```

\rightarrow recursive functions


```
void myfunc( <args> )
{
    ...; myfunc( <newargs> ); ...;
}
```

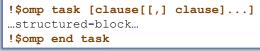
- Several scenarios are possible:
 - → single creator, multiple creators, nested tasks (tasks & WS)
- All threads in the team are candidates to execute tasks

```
OpenMP Tutorial
Members of the OpenMP Language Committee
```

```
    Example (unstructured parallelism)
```

```
#pragma omp parallel
#pragma omp master
while (elem != NULL) {
    #pragma omp task
        compute(elem);
    elem = elem->next;
}
```


282


The task construct

Deferring (or not) a unit of work (executable for any member of the team)

```
#pragma omp task [clause[[,] clause]...]
{structured-block}
```

```
Where clause is one of:
```

\rightarrow private(list)		
→ firstprivate(list)		
\rightarrow shared(list)	Data Environment	
\rightarrow default(shared none)		Ī
\rightarrow in_reduction(r-id: list)		
\rightarrow allocate([allocator:] list)	Missellanaous	
\rightarrow detach(event-handler)	Miscellaneous	

\rightarrow if(scalar-expression)	
\rightarrow mergeable	Cutoff Strategies
\rightarrow final(scalar-expression)	
→ depend(dep-type: list)	Synchronization
\rightarrow untied	
\rightarrow priority(priority-value)	Task Scheduling
\rightarrow affinity(list)	

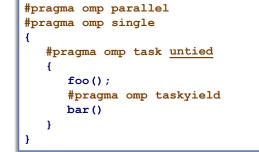
Task scheduling: tied vs untied tasks

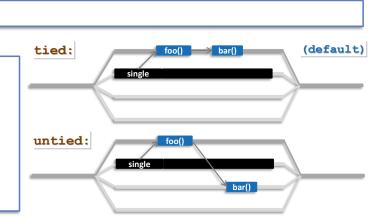
- Tasks are tied by default (when no untied clause present)
 - → tied tasks are executed always by the same thread (not necessarily creator)
 - → tied tasks may run into performance problems
- Programmers may specify tasks to be untied (relax scheduling)

#pragma omp task untied
{structured-block}

- \rightarrow can potentially switch to any thread (of the team)
- → bad mix with thread based features: thread-id, threadprivate, critical regions...
- → gives the runtime more flexibility to schedule tasks
- → but most of OpenMP implementations doesn't "honor" untied 😕

Task scheduling: taskyield directive


Open**MP**


284

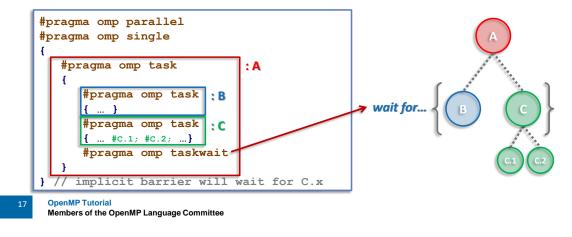
- Task scheduling points (and the taskyield directive)
 - → tasks can be suspended/resumed at TSPs → some additional constraints to avoid deadlock problems
 - → implicit scheduling points (creation, synchronization, ...)
 - → explicit scheduling point: the taskyield directive

```
#pragma omp taskyield
```

Scheduling [tied/untied] tasks: example

OpenMP Tutorial Members of the OpenMP Language Committee

Task synchronization: taskwait directive



The taskwait directive (shallow task synchronization)

→ It is a stand-alone directive

#pragma omp taskwait

→ wait on the completion of child tasks of the current task; just direct children, not all descendant tasks; includes an implicit task scheduling point (TSP)

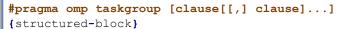
286

Task synchronization: barrier semantics

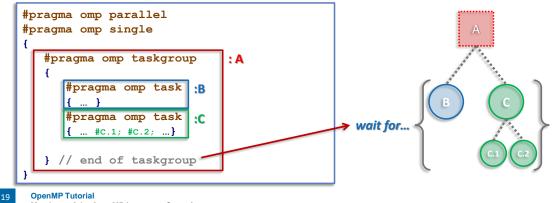
OpenMP barrier (implicit or explicit)

→ All tasks created by any thread of the current team are guaranteed to be completed at barrier exit

#pragma omp barrier


→ And all other implicit barriers at parallel, sections, for, single, etc...

Task synchronization: taskgroup construct



The taskgroup construct (deep task synchronization)

→ attached to a structured block; completion of all descendants of the current task; TSP at the end

 \rightarrow where clause (could only be): reduction(reduction-identifier: list-items)

Members of the OpenMP Language Committee

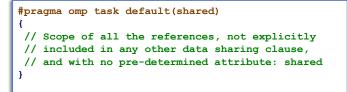
288

Data Environment

OpenMP Tutorial Members of the OpenMP Language Committee

Explicit data-sharing clauses

Explicit data-sharing clauses (shared, private and firstprivate)


#pragma omp task	shared(a)
{	
<pre>// Scope of a:</pre>	shared
}	

```
#pragma omp task private(b)
 // Scope of b: private
```

#pragma omp task firstprivate(c) // Scope of c: firstprivate

- If default clause present, what the clause says
 - → shared: data which is not explicitly included in any other data sharing clause will be shared
 - → none: compiler will issue an error if the attribute is not explicitly set by the programmer (very useful!!!)

ł

#pragma omp task default(none)

{

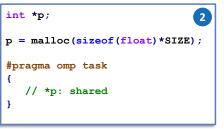
ł

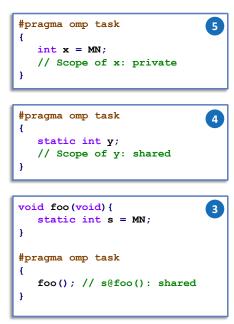
// Compiler will force to specify the scope for // every single variable referenced in the context

Hint: Use default(none) to be forced to think about every variable if you do not see clearly.

OpenMP Tutorial Members of the OpenMP Language Committee

290


)pen**iv**


Pre-determined data-sharing attributes

- threadprivate variables are threadprivate (1)
- dynamic storage duration objects are shared (malloc, new,...) (2)
- static data members are shared (3)
- variables declared inside the construct
 - \rightarrow static storage duration variables are shared (4)
 - \rightarrow automatic storage duration variables are private (5)
- the loop iteration variable(s)...

<pre>int A[SIZE]; #pragma omp threadprivate(A)</pre>	1
<pre>// #pragma omp task { // A: threadprivate }</pre>	

OpenMP Tutorial	
Members of the OpenMP Language Committee	\$

Implicit data-sharing attributes (in-practice)

- Implicit data-sharing rules for the task region
 - → the shared attribute is lexically inherited
 - → in any other case the variable is firstprivate

	<pre>int a = 1; void foo() { int b = 2, c = 3;</pre>
	<pre>#pragma omp parallel private(b) {</pre>
	int d = 4;
	#pragma omp task
	{
	int e = 5;
	// Scope of a:
	// Scope of b: // Scope of c:
	// Scope of d:
	// Scope of e:
	}
	}
	}
23	OpenMP Tutorial

Members of the OpenMP Language Committee

- → Pre-determined rules (could not change)
- Explicit data-sharing clauses (+ default)
- → Implicit data-sharing rules
- (in-practice) variable values within the task:
 - \rightarrow value of a: 1
 - \rightarrow value of b: x // undefined (undefined in parallel)
 - value of c: 3
 - value of d: 4
 - value of e: 5

292

Openiv

Open

Task reductions (using taskgroup)

Reduction operation

- → perform some forms of recurrence calculations
- → associative and commutative operators
- The (taskgroup) scoping reduction clause

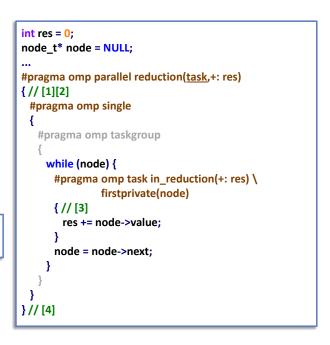
```
#pragma omp taskgroup task_reduction(op: list)
{structured-block}
```

- → Register a new reduction at [1]
- → Computes the final result after [3]
- The (task) in_reduction clause [participating]

```
#pragma omp task in_reduction(op: list)
{structured-block}
```

→ Task participates in a reduction operation [2]

<pre>int res = 0; node_t* node = NULL;</pre>
#pragma omp parallel
{
#pragma omp single
{
<pre>#pragma omp taskgroup task reduction(+: res)</pre>
{//[1]
while (node) {
<pre>#pragma omp task in reduction(+: res) \</pre>
firstprivate(node)
{ // [2]
res += node->value;
}
node = node->next;
1
}//[3]
<i>[] [] [[[[[[[[[[</i>
1



Task reductions (+ modifiers)

- Reduction modifiers
 - → Former reductions clauses have been extended
 - → task modifier allows to express task reductions
 - → Registering a new task reduction [1]
 - → Implicit tasks participate in the reduction [2]
 - → Compute final result after [4]
- The (task) in_reduction clause [participating]

#pragma omp task in_reduction(op: list)
{structured-block}

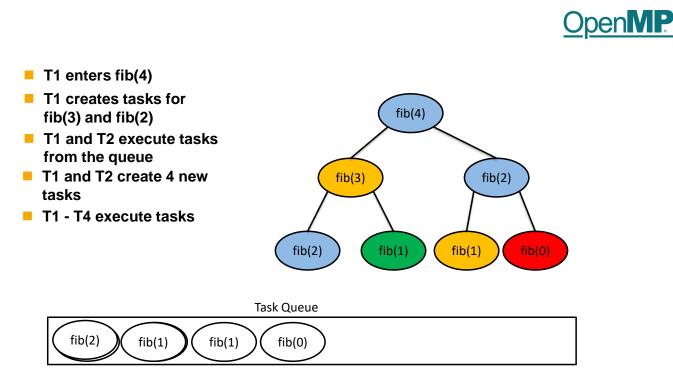
→ Task participates in a reduction operation [3]

OpenMP Tutorial Members of the OpenMP Language Committee

294

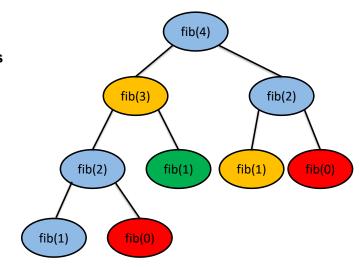
Tasking illustrated

OpenMP Tutorial Members of the OpenMP Language Committee



Fibonacci illustrated

1	<pre>int main(int argc,</pre>	<pre>14 int fib(int n) {</pre>	
2	<pre>char* argv[])</pre>	15 if (n < 2) ret	urn n;
3	{	16 int x, y;	
4	[]	17 #pragma omp ta	sk shared(x)
5	#pragma omp parallel	18 {	
6	{	19 x = fib(n	- 1);
7	<pre>#pragma omp single</pre>	20 }	
8	{	21 #pragma omp ta	sk shared(y)
9	<pre>fib(input);</pre>	22 {	
10	}	23 y = fib(n	- 2);
11	}	24 }	
12	[]	25 #pragma omp ta	skwait
13	}	26 return x+y	;
		27 }	


Only one Task / Thread enters fib() from main(), it is responsible for creating the two initial work tasks

Taskwait is required, as otherwise x and y would get lost Members of the OpenMP Language Committee

- T1 enters fib(4)
- T1 creates tasks for fib(3) and fib(2)
- T1 and T2 execute tasks from the queue
- T1 and T2 create 4 new tasks
- T1 T4 execute tasks
- **—** ...

OpenMP Tutorial Members of the OpenMP Language Committee

298

The taskloop Construct

OpenMP

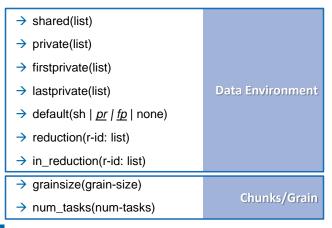
Tasking use case: saxpy (taskloop)

```
for ( i = 0; i<SIZE; i+=1) {</pre>
                                                      Difficult to determine grain
   A[i]=A[i]*B[i]*S;
}
                                                           \rightarrow 1 single iteration \rightarrow to fine
for ( i = 0; i<SIZE; i+=TS) {</pre>
                                                           \rightarrow whole loop \rightarrow no parallelism
   UB = SIZE < (i+TS)?SIZE:i+TS;</pre>
                                                      Manually transform the code
   for ( ii=i; ii<UB; ii++) {</pre>
       A[ii]=A[ii]*B[ii]*S;
                                                           → blocking techniques
   1
}
                                                      Improving programmability
                                                           OpenMP taskloop
#pragma omp parallel
#pragma omp single
                                                       #pragma omp taskloop grainsize(TS)
for ( i = 0; i<SIZE; i+=TS) {</pre>
                                                       for ( i = 0; i<SIZE; i+=1) {</pre>
   UB = SIZE < (i+TS)?SIZE:i+TS;</pre>
                                                          A[i]=A[i]*B[i]*S;
   #pragma omp task private(ii) \
                                                       }
    firstprivate(i,UB) shared(S,A,B)
   for ( ii=i; ii<UB; ii++) {</pre>
                                                           → Hiding the internal details
       A[ii]=A[ii]*B[ii]*S;
   }
                                                           \rightarrow Grain size ~ Tile size (TS) \rightarrow but implementation
}
                                                              decides exact grain size
```

300

Open**VI**.

The taskloop Construct

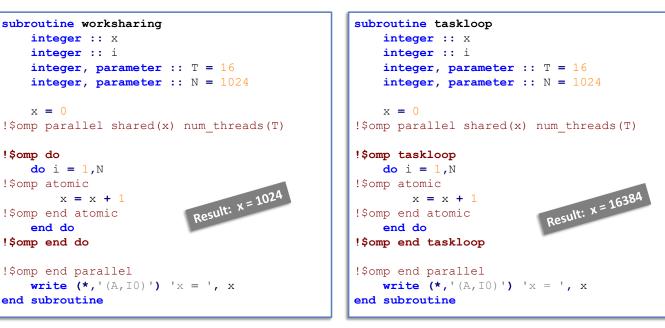

Members of the OpenMP Language Committee

Task generating construct: decompose a loop into chunks, create a task for each loop chunk

#pragma omp taskloop [clause[[,] clause]...]
{structured-for-loops}

Where clause is one of:

OpenMP Tutorial

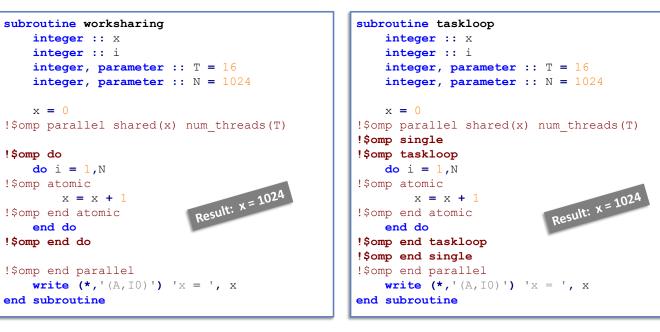


!\$omp taskloop [clause[[,] clause]...]
...structured-do-loops...
!\$omp end taskloop

\rightarrow if(scalar-expression)		
→ final(scalar-expression)	Cutoff Strategies	
→ mergeable		
\rightarrow untied	Schodulor (P/H)	
\rightarrow priority(priority-value)	Scheduler (R/H)	
→ collapse(n)		
→ nogroup	Miscellaneous	
→ allocate([allocator:] list)		

OpenMP Tutorial Members of the OpenMP Language Committee

Worksharing vs. taskloop constructs (1/2)


OpenMP Tutorial Members of the OpenMP Language Committee

302

Open**MP**

<u>Open</u>MP

Worksharing vs. taskloop constructs (2/2)

Taskloop decomposition approaches

- Clause: grainsize(grain-size)
 - → Chunks have at least grain-size iterations
 - → Chunks have maximum 2x grain-size iterations

```
int TS = 4 * 1024;
#pragma omp taskloop grainsize(TS)
for ( i = 0; i<SIZE; i+=1) {
    A[i]=A[i]*B[i]*S;
}</pre>
```

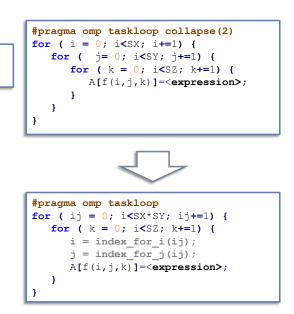
- Clause: num_tasks(num-tasks)
 - → Create num-tasks chunks
 - → Each chunk must have at least one iteration

```
int NT = 4 * omp_get_num_threads();
#pragma omp taskloop num_tasks(NT)
for ( i = 0; i<SIZE; i+=1) {
    A[i]=A[i]*B[i]*S;
}</pre>
```

- If none of previous clauses is present, the number of chunks and the number of iterations per chunk is implementation defined
- Additional considerations:
 - → The order of the creation of the loop tasks is unspecified
 - → Taskloop creates an implicit taskgroup region; nogroup → no implicit taskgroup region is created

```
OpenMP Tutorial
Members of the OpenMP Language Committee
```

304


Collapsing iteration spaces with taskloop

The collapse clause in the taskloop construct

#pragma omp taskloop collapse(n)
{structured-for-loops}

- → Number of loops associated with the taskloop construct (n)
- → Loops are collapsed into one larger iteration space
- Then divided according to the grainsize and num_tasks
- Intervening code between any two associated loops
 - → at least once per iteration of the enclosing loop
 - → at most once per iteration of the innermost loop

307

Task reductions (using taskloop)

- Clause: reduction (r-id: list)
 - → It defines the scope of a new reduction
 - \rightarrow All created tasks participate in the reduction
 - → It cannot be used with the nogroup clause
- Clause: in reduction(r-id: list)
 - → Reuse an already defined reduction scope
 - \rightarrow All created tasks participate in the reduction
 - It can be used with the nogroup* clause, but it is user responsibility to guarantee result

```
7 OpenMP Tutorial
Members of the OpenMP Language Committee
```

```
double dotprod(int n, double *x, double *y) {
   double r = 0.0;
   #pragma omp taskloop reduction(+: r)
   for (i = 0; i < n; i++)
     r += x[i] * y[i];
   return r;
}
double dotprod(int n, double *x, double *y) {</pre>
```

```
double r = 0.0;
#pragma omp taskgroup task_reduction(+: r)
{
    #pragma omp taskloop in_reduction(+: r)*
    for (i = 0; i < n; i++)
        r += x[i] * y[i];
    }
    return r;
}</pre>
```

306

Composite construct: taskloop simd

- Task generating construct: decompose a loop into chunks, create a task for each loop chunk
- Each generated task will apply (internally) SIMD to each loop chunk

```
C/C++ syntax:
```

```
#pragma omp taskloop simd [clause[[,] clause]...]
{structured-for-loops}
```

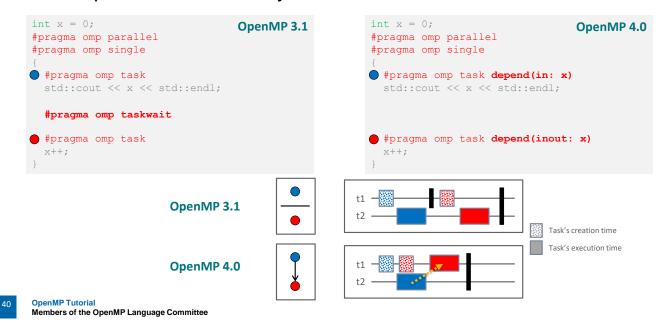
Fortran syntax:

```
!$omp taskloop simd [clause[[,] clause]...]
...structured-do-loops...
!$omp end taskloop
```

Where clause is any of the clauses accepted by taskloop or simd directives

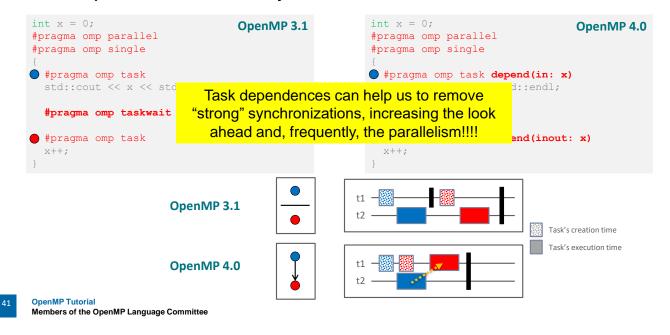
Improving Tasking Performance: Task dependences

39

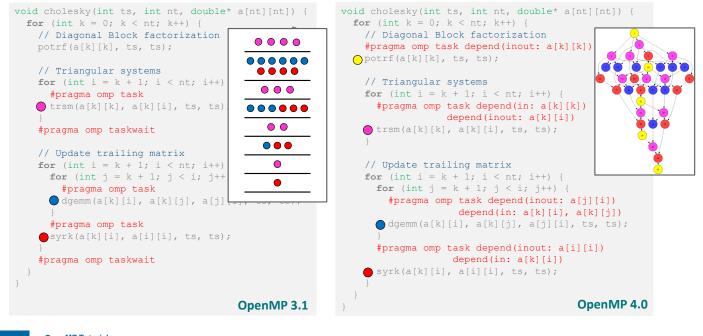

OpenMP Tutorial Members of the OpenMP Language Committee

308

Motivation


Task dependences as a way to define task-execution constraints

Motivation


OpenMP?

Task dependences as a way to define task-execution constraints

Open**MP**

Motivation: Cholesky factorization

Motivation: Cholesky factorization

void cholesky(int ts, int n uble* a[nt][nt]) { for (int k = 0; k < nt; k</pre> Cholesky - Scalability (2 NUMA Nodes x 24 Cores, N=8192, TS=256) // Diagonal Block facto 1400 on depend_tasks ----: a[k][k]) potrf(a[k][k], ts, ts); // Triangular systems 1200 for (int i = k + 1; i <</pre> #pragma omp task trsm(a[k][k], a[k][i] ++) { : a[k][k]) a[k][i]) 1000 #pragma omp taskwait ts); 800 // Update trailing matr for (int i = k + 1; i < 9 for (int j = k + 1; j < #pragma_omp_tack</pre> ++) { 600 j++) { #pragma omp task ●dgemm(a[k][i], a[k] inout: a[j][i]) [k][i], a[k][j]) #pragma omp task 400 a[j][i], ts, ts); syrk(a[k][i], a[i][i] put: a[i][i]) #pragma omp taskwait k][i]) 200 ts); 0 **OpenMP 4.0** 10 15 20 25 30 35 5 40 45 50 Threads Using 2017 Intel compiler

43

OpenMP Tutorial Members of the OpenMP Language Committee

312

What's in the spec

What's in the spec: a bit of history

OpenMP 4.0

• The depend clause was added to the task construct

OpenMP 4.5

- The depend clause was added to the target constructs
- Support to doacross loops

OpenMP 5.0

- lvalue expressions in the depend clause
- New dependency type: mutexinoutset
- Iterators were added to the depend clause
- The depend clause was added to the taskwait construct
- · Dependable objects

OpenMP Tutorial Members of the OpenMP Language Committee

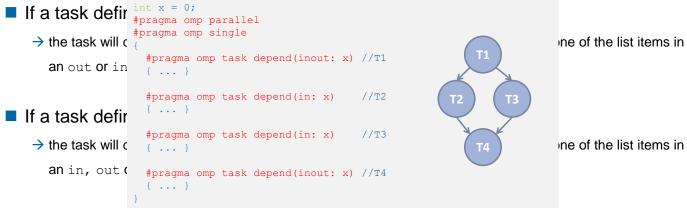
Open**MP**

What's in the spec: syntax depend clause

depend([depend-modifier,] dependency-type: list-items)

where:

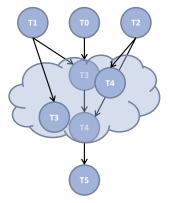
- → depend-modifier is used to define iterators
- > dependency-type may be: in, out, inout, mutexinoutset and depobj
- → A list-item may be:
 - C/C++: A lvalue expr or an array section depend (in: x, v[i], *p, w[10:10])
 - Fortran: A variable or an array section depend (in: x, v(i), w(10:20))


What's in the spec: sema depend clause (1)

- A task cannot be executed until all its predecessor tasks are completed
- If a task defines an in dependence over a list-item
 - the task will depend on all previously generated sibling tasks that reference that list-item in an out or inout dependence
- If a task defines an out/inout dependence over list-item
 - The task will depend on all previously generated sibling tasks that reference that list-item in an in, out or inout dependence

What's in the spec: depend clause (1)

A task cannot be executed until all its predecessor tasks are completed



What's in the spec: depend clause (2)

Open

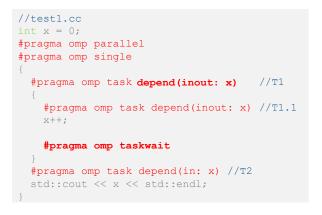
New dependency type: mutexinoutset

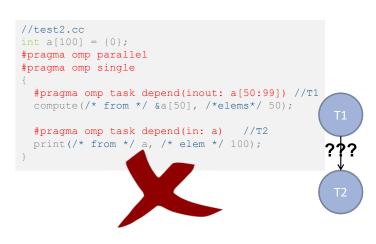
```
int x = 0, y = 0, res = 0;
#pragma omp parallel
#pragma omp single
  #pragma omp task depend(out: res) //TO
   res = 0;
  #pragma omp task depend(out: x) //T1
  long_computation(x);
 #pragma omp task depend(out: y) //T2
 short computation(y);
  #pragma omp task depend(in: x) depend(motexincesset/Ties) //T3
 res += x;
  #pragma omp task depend(in: y) depend(intexingetset/Tfes) //T4
 res += y;
  #pragma omp task depend(in: res) //T5
  std::cout << res << std::endl;</pre>
 OpenMP Tutorial
```


1. inoutset property: tasks with a mutexinoutset dependence create a cloud of tasks (an inout set) that synchronizes with previous & posterior tasks that dependent on the same list item

2. mutex property: Tasks inside the inout set can be executed in any order but with mutual exclusion

Members of the OpenMP Language Committee

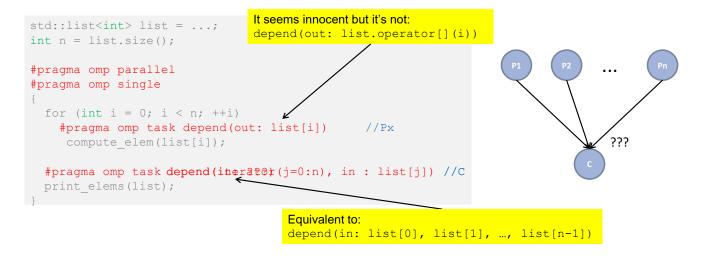

318


What's in the spec: depend clause (3)

Open**MP**

Task dependences are

List items used in the depend defined among sibling tasks clauses [...] must indicate identical or disjoint storage



What's in the spec: depend clause (4)

Iterators + deps: a way to define a dynamic number of dependences

OpenMP Tutorial Members of the OpenMP Language Committee

320

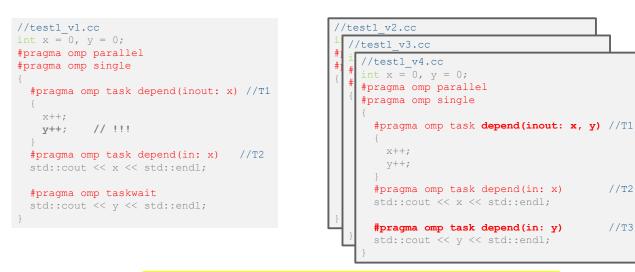
Philosophy

OpenMP Tutorial Members of the OpenMP Language Committee

Philosophy: data-flow model

- Task dependences are orthogonal to data-sharings
 - → Dependences as a way to define a task-execution constraints
 - Data-sharings as how the data is captured to be used inside the task

Philosophy: data-flow model (2)


- Properly combining dependences and data-sharings allow us to define a task data-flow model
 - \rightarrow Data that is read in the task \rightarrow input dependence
 - \rightarrow Data that is written in the task \rightarrow output dependence

A task data-flow model

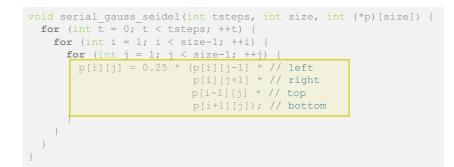
- →Enhances the composability
- →Eases the parallelization of new regions of your code

Philosophy: data-flow model (3)

If all tasks are properly annotated, we only have to worry about the dependendences & data-sharings of the new task!!!

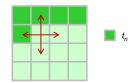
OpenMP Tutorial Members of the OpenMP Language Committee

Use case



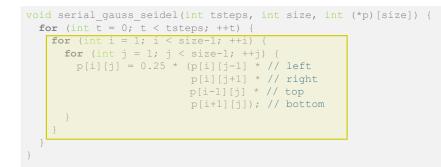
//т2

//тЗ

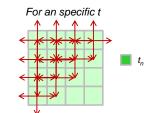

Use case: intro to Gauss-seidel

Access pattern analysis

For a specific t, i and j



Each cell depends on: - two cells (north & west) that are computed in the current time step, and - two cells (south & east) that were computed in the previous time step


7 OpenMP Tutorial Members of the OpenMP Language Committee

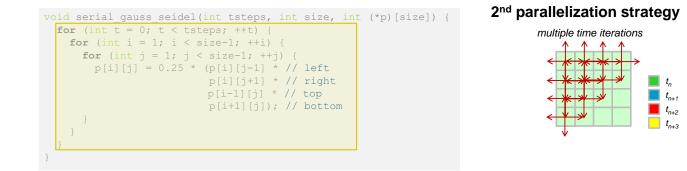
Open**MP**

Use case: Gauss-seidel (2)

1st parallelization strategy

We can exploit the wavefront to obtain parallelism!!

Use case : Gauss-seidel (3)


```
void gauss seidel(int tsteps, int size, int TS, int (*p)[size]) {
  int NB = size / TS;
  #pragma omp parallel
  for (int t = 0; t < tsteps; ++t) {</pre>
    // First NB diagonals
    for (int diag = 0; diag < NB; ++diag) {</pre>
      #pragma omp for
      for (int d = 0; d <= diag; ++d) {</pre>
        int ii = d;
        int jj = diag - d;
         for (int i = 1+ii*TS; i < ((ii+1)*TS); ++i)
for (int j = 1+jj*TS; i < ((jj+1)*TS); ++j)</pre>
             p[i][j] = 0.25 * (p[i][j-1] * p[i][j+1] *
                                  p[i-1][j] * p[i+1][j]);
    // Lasts NB diagonals
    for (int diag = NB-1; diag \geq 0; --diag) {
      // Similar code to the previous loop
```

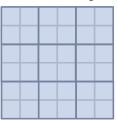
```
OpenMP Tutorial
Members of the OpenMP Language Committee
```

328

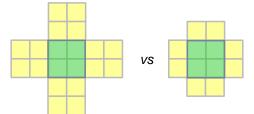
Open**MP**

Use case : Gauss-seidel (4)

We can exploit the wavefront of multiple time steps to obtain MORE parallelism!!



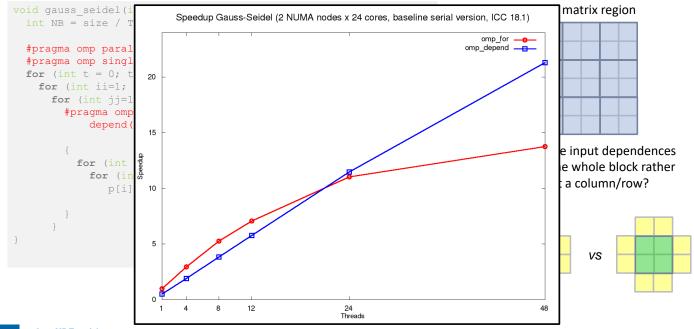
Open


Use case : Gauss-seidel (5)

inner matrix region

Open**MP**

Q: Why do the input dependences depend on the whole block rather than just a column/row?


OpenMP Tutorial Members of the OpenMP Language Committee

61

330

<u>OpenMP</u>

Use case : Gauss-seidel (5)

OpenMP Tutorial

Members of the OpenMP Language Committee

Improving Tasking Performance: Cutoff clauses and strategies

OpenMP Tutorial Members of the OpenMP Language Committee

332

OpenMP: Memory Access

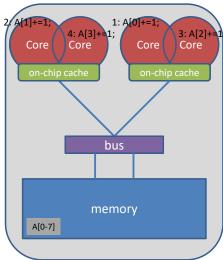
Example: Loop Parallelization

Assume the following: you have learned that load imbalances can severely impact performance and a *dynamic* loop schedule may prevent this:

 \rightarrow What is the issue with the following code:

```
double* A;
A = (double*) malloc(N * sizeof(double));
/* assume some initialization of A */
#pragma omp parallel for schedule(dynamic, 1)
for (int i = 0; i < N; i++) {
   A[i] += 1.0;
}
```

→How is A accessed? Does that affect performance?


False Sharing

False Sharing: Parallel accesses to the same cache line may have a significant performance impact!

Caches are organized in lines of typically 64 bytes: integer array a[0-4] fits into one cache line.

Whenever one element of a cache line is updated, the whole cache line is Invalidated.

Local copies of a cache line have to be re-loaded from the main memory and the computation may have to be repeated.

Open**VIP**

OpenMP Tutorial Members of the OpenMP Language Committee

Non-uniform Memory

How To Distribute The Data ?

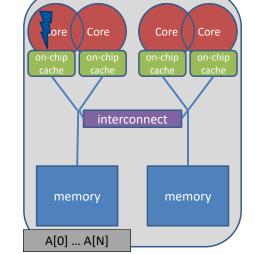
for (int i = 0; i < N; i++) { A[i] = 0.0; }</pre>

malloc(N * sizeof(double));

double* A;
A = (double*)

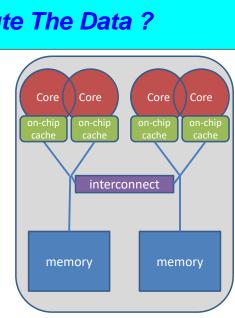
67

double* A;


OpenMP Tutorial Members of the OpenMP Language Committee

```
Non-uniform Memory
```

Serial code: all array elements are allocated in the memory of the NUMA node closest to the core executing the initializer thread (first touch)


```
A = (double*)
    malloc(N * sizeof(double));
for (int i = 0; i < N; i++) {
    A[i] = 0.0;
}</pre>
```

Members of the OpenMP Language Committee

336

OpenMP Tutorial

About Data Distribution

Important aspect on cc-NUMA systems

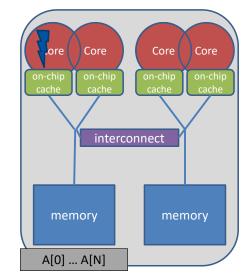
If not optimal, longer memory access times and hotspots

Placement comes from the Operating System

- This is therefore Operating System dependent
- Windows, Linux and Solaris all use the "First Touch" placement policy by default

 \rightarrow May be possible to override default (check the docs)

```
OpenMP Tutorial
Members of the OpenMP Language Committee
```


```
Non-uniform Memory
```

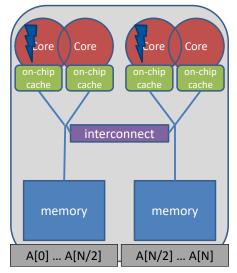
Serial code: all array elements are allocated in the memory of the NUMA node closest to the core executing the initializer thread (first touch)

for (int i = 0; i < N; i++) { A[i] = 0.0;}

malloc(N * sizeof(double));

double* A; A = (double*)

First Touch Memory Placement



First Touch w/ parallel code: all array elements are allocated in the memory of the NUMA node that contains the core that executes the thread that initializes the partition

```
double* A;
A = (double*)
    malloc(N * sizeof(double));
omp_set_num_threads(2);
#pragma omp parallel for
for (int i = 0; i < N; i++) {
    A[i] = 0.0;
}
```

Members of the OpenMP Language Committee

OpenMP Tutorial

340

Open**MP**

Serial vs. Parallel Initialization

Stream example on 2 socket sytem with Xeon X5675 processors, 12 OpenMP threads:

		сору	scale	add	triad
	ser_init	18.8 GB/s	18.5 GB/s	18.1 GB/s	18.2 GB/s
	par_init	41.3 GB/s	39.3 GB/s	40.3 GB/s	40.4 GB/s
ser_init:	a[0,N-1] b[0,N-1] c[0,N-1]	T1 T2 CPU T4 T5	T3 T7 0 6 T6 T10	T8 T9 CPU 1 T11 T12	MEM
par_init:	a[0,(N/2)-1] b[0,(N/2)-1] c[0,(N/2)-1]	CPU (T3 T7 T6 T10		a[N/2,N-1] b[N/2,N-1] c[N/2,N-1]

OpenMP Tutorial Members of the OpenMP Language Committee

Get Info on the System Topology

Before you design a strategy for thread binding, you should have a basic understanding of the system topology. Please use one of the following options on a target machine:

→Intel MPI's cpuinfo tool

→ cpuinfo

- Delivers information about the number of sockets (= packages) and the mapping of processor ids to cpu cores that the OS uses.
- hwlocs' hwloc-ls tool

→ hwloc-ls

→Displays a graphical representation of the system topology, separated into NUMA nodes, along with the mapping of processor ids to cpu cores that the OS uses and additional info on caches.

```
Decide for Binding Strategy
```

Selecting the "right" binding strategy depends not only on the topology, but also on application characteristics.

→Putting threads far apart, i.e., on different sockets

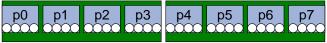
→May improve aggregated memory bandwidth available to application

- →May improve the combined cache size available to your application
- →May decrease performance of synchronization constructs
- \rightarrow Putting threads close together, i.e., on two adjacent cores that possibly share

some caches

- →May improve performance of synchronization constructs
- \rightarrow May decrease the available memory bandwidth and cache size

342


Places + Binding Policies (1/2)

- Define OpenMP Places
 - → set of OpenMP threads running on one or more processors
 - → can be defined by the user, i.e. OMP_PLACES=cores
- Define a set of OpenMP Thread Affinity Policies
 - → SPREAD: spread OpenMP threads evenly among the places, partition the place list
 - → CLOSE: pack OpenMP threads near master thread
 - → MASTER: collocate OpenMP thread with master thread
- Goals
 - → user has a way to specify where to execute OpenMP threads
 - → locality between OpenMP threads / less false sharing / memory bandwidth

OpenMP Tutorial Members of the OpenMP Language Committee

Places

Assume the following machine:

- → 2 sockets, 4 cores per socket, 4 hyper-threads per core
- Abstract names for OMP_PLACES:
 - → threads: Each place corresponds to a single hardware thread on the target machine.
 - → cores: Each place corresponds to a single core (having one or more hardware threads) on the target machine.
 - → sockets: Each place corresponds to a single socket (consisting of one or more cores) on the target machine.
 - \rightarrow II_caches: Each place corresponds to a set of cores that share the last level cache.
 - numa_domains: Each place corresponds to a set of cores for which their closest memory is: the same memory; and at a similar distance from the cores.

347

Places + Binding Policies (2/2)

OMP PLACES=(0, 1, 2, 3), (4, 5, 6, 7), ... = (0-3):8:4

pì

 $\dot{0}\dot{0}\dot{0}$

n0

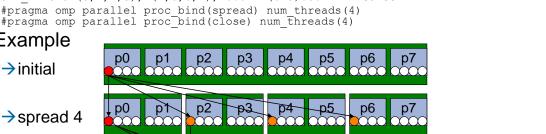
p0

n0

 $\gamma \gamma$

 \rightarrow separate cores for outer loop and near cores for inner loop

Outer Parallel Region: proc_bind(spread) num_threads(4) Inner Parallel Region: proc_bind(close) num_threads(4)


n3

p3

 $\dot{0}\dot{0}\dot{0}$

p2

 \rightarrow spread creates partition, compact binds threads within respective partition

p7

= cores

p6

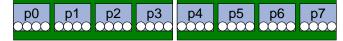
p5

n4

OpenMP Tutorial Members of the OpenMP Language Committee

Example's Objective:

Example


 \rightarrow initial

 \rightarrow spread 4

 \rightarrow close 4

More Examples (1/3)

Assume the following machine:

 \rightarrow 2 sockets, 4 cores per socket, 4 hyper-threads per core

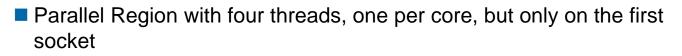
Parallel Region with two threads, one per socket

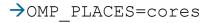
→OMP PLACES=sockets

 \rightarrow #pragma omp parallel num threads(2) proc bind(spread)

349

More Examples (3/3)


Spread a nested loop first across two sockets, then among the cores within each socket, only one thread per core


→OMP_PLACES=cores
→#pragma omp parallel num_threads(2) proc_bind(spread)

→#pragma omp parallel num_threads(4) proc_bind(close)

Members of the OpenMP Language Committee

OpenMP Tutorial

→#pragma omp parallel num_threads(4) proc_bind(close)

Places API (1/2)

- 1: Query information about binding and a single place of all places with ids 0 ... omp get num places():
- omp_proc_bind_t omp_get_proc_bind(): returns the thread affinity policy
 (omp_proc_bind_false, true, master, ...)
- int omp get num places(): returns the number of places
- int omp_get_place_num_procs(int place_num): returns the number of processors in the given place
- void omp_get_place_proc_ids(int place_num, int* ids): returns the ids of the processors in the given place

Places API (2/2)

- 2: Query information about the place partition:
- int omp_get_place_num(): returns the place number of the place to which the current thread is bound
- int omp_get_partition_num_places(): returns the number of places in the current partition
- void omp_get_partition_place_nums(int* pns): returns the list of place numbers corresponding to the places in the current partition

⁸¹ OpenMP Tutorial Members of the OpenMP Language Committee

<u>Open**MP**</u>

Places API: Example

Simple routine printing the processor ids of the place the calling thread is bound to:

```
void print_binding_info() {
    int my_place = omp_get_place_num();
    int place_num_procs = omp_get_place_num_procs(my_place);
    printf("Place consists of %d processors: ", place_num_procs);
    int *place_processors = malloc(sizeof(int) * place_num_procs);
    omp_get_place_proc_ids(my_place, place_processors)
    for (int i = 0; i < place_num_procs - 1; i++) {
        printf("%d ", place_processors[i]);
    }
    printf("\n");
    free(place_processors);
}</pre>
```

```
B OpenMP Tutorial
Members of the OpenMP Language Committee
```

352

Open

OpenMP 5.0 way to do this

Set OMP DISPLAY AFFINITY=TRUE

 \rightarrow Instructs the runtime to display formatted affinity information

 \rightarrow Example output for two threads on two physical cores:

nesting_level= 1, thread_num= 0, thread_affinity= 0,1
nesting_level= 1, thread_num= 1, thread_affinity= 2,3

- →Output can be formatted with OMP_AFFINITY_FORMAT env var or
 - corresponding routine
- Formatted affinity information can be printed with

omp display affinity(const char* format)

	т	omp_get_	num_teams()		Н	hostname				
L		omp_get_level()			Ρ	process identifie	r			
	n	omp_get_thread_num()			i	native thread ide	native thread identifier			
	Ν	omp_get_	num_threads(()	А	thread affinity: I	ist of processors (cores)		
Examp	O	_	IY_FORMAT="	Affin	ity:	: %0.3L %.8n %	5.15{A} %.12H"			
7055	2	Output: Affinity: Affinity:		0 1		-1,16-17 -3,18-19	host003 host003			

а

omp_get_ancestor_thread_num() at level-1

Members of the OpenMP Language Committee

OpenMP Tutorial

- Everything under control?
- In principle Yes, but only if
 - \rightarrow threads can be bound explicitly,

Affinity format specification

t

omp_get_team_num()

- \rightarrow data can be placed well by first-touch, or can be migrated,
- \rightarrow you focus on a specific platform (= OS + arch) \rightarrow no portability
- What if the data access pattern changes over time?
- What if you use more than one level of parallelism?

88 OpenMP Tutorial Members of the OpenMP Language Committee

NUMA Strategies: Overview

- First Touch: Modern operating systems (i.e., Linux >= 2.4) decide for a physical location of a memory page during the first page fault, when the page is first "touched", and put it close to the CPU causing the page fault.
- Explicit Migration: Selected regions of memory (pages) are moved from one NUMA node to another via explicit OS syscall.
- Next Touch: Binding of pages to NUMA nodes is removed and pages are migrated to the location of the next "touch". Well-supported in Solaris, expensive to implement in Linux.
- Automatic Migration: No support for this in current operating systems.

OpenMP Tutorial

Members of the OpenMP Language Committee

User Control of Memory Affinity

- Explicit NUMA-aware memory allocation:
 - \rightarrow By carefully touching data by the thread which later uses it
 - \rightarrow By changing the default memory allocation strategy
 - →Linux: numactl command
 - →Windows: VirtualAllocExNuma() (limited functionality)
 - \rightarrow By explicit migration of memory pages
 - →Linux: move_pages()
 - →Windows: no option
- Example: using numactl to distribute pages round-robin:

```
>numactl -interleave=all ./a.out
```


Open**MP**

<u>OpenMP</u>

Improving Tasking Performance: Task Affinity

39 OpenMP Tutorial Members of the OpenMP Language Committee

Motivation

Techniques for process binding & thread pinning available

→OpenMP thread level: OMP_PLACES & OMP_PROC_BIND

→OS functionality: taskset -c

OpenMP Tasking:

In general: Tasks may be executed by any thread in the team

→Missing task-to-data affinity may have detrimental effect on performance

OpenMP 5.0:

affinity clause to express affinity to data

affinity clause

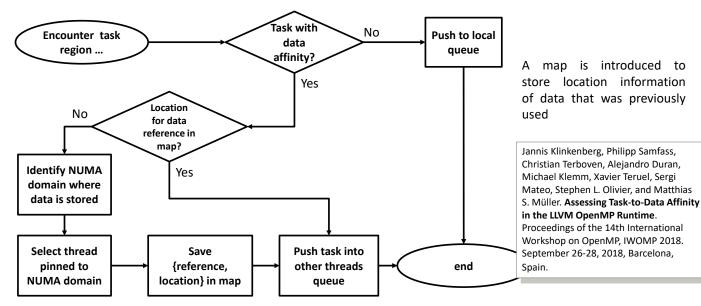
- New clause: #pragma omp task affinity (list)
 - →Hint to the runtime to execute task closely to physical data location
 - →Clear separation between dependencies and affinity
- Expectations:
 - →Improve data locality / reduce remote memory accesses
 - →Decrease runtime variability
- Still expect task stealing
 - \rightarrow In particular, if a thread is under-utilized

```
91 OpenMP Tutorial
Members of the OpenMP Language Committee
```

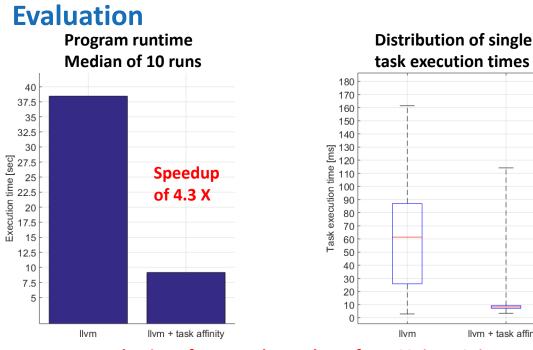
```
Code Example
```

Excerpt from task-parallel STREAM

```
1
    #pragma omp task \
2
        shared(a, b, c, scalar) \
3
        firstprivate(tmp_idx_start, tmp_idx_end) \
4
        affinity( a[tmp idx start] )
5
    {
6
       int i;
7
       for(i = tmp_idx_start; i <= tmp_idx_end; i++)</pre>
8
            a[i] = b[i] + scalar * c[i];
9
    }
```


>Loops have been blocked manually (see tmp_idx_start/end)

Assumption: initialization and computation have same blocking and same affinity


Selected LLVM implementation details

OpenMP Tutorial Members of the OpenMP Language Committee

93

362

task execution times

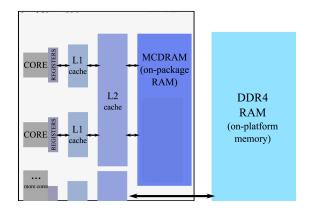
llvm + task affinity

LIKWID: reduction of remote data volume from 69% to 13%

OpenMP Tutorial Members of the OpenMP Language Committee

Summary

- Requirement for this feature: thread affinity enabled
- The affinity clause helps, if
 - →tasks access data heavily
 - →single task creator scenario, or task not created with data affinity
 - →high load imbalance among the tasks
- Different from thread binding: task stealing is absolutely allowed
 - OpenMP Tutorial Members of the OpenMP Language Committee



Managing Memory Spaces

Different kinds of memory

- Traditional DDR-based memory
- High-bandwidth memory
- Non-volatile memory

— ...

OpenMP Tutorial Members of the OpenMP Language Committee

Memory Management

- Allocator := an OpenMP object that fulfills requests to allocate and deallocate storage for program variables
- OpenMP allocators are of type omp_allocator_handle_t
- Default allocator for Host

>via OMP ALLOCATOR env. var. or corresponding API

OpenMP 5.0 supports a set of memory allocators

366

369

OpenMP Allocators

Selection of a certain kind of memory

Allocator name	Storage selection intent
omp_default_mem_alloc	use default storage
omp_large_cap_mem_alloc	use storage with large capacity
omp_const_mem_alloc	use storage optimized for read-only variables
omp_high_bw_mem_alloc	use storage with high bandwidth
omp_low_lat_mem_alloc	use storage with low latency
omp_cgroup_mem_alloc	use storage close to all threads in the contention group of the thread requesting the allocation
omp_pteam_mem_alloc	use storage that is close to all threads in the same parallel region of the thread requesting the allocation
omp_thread_local_mem_alloc	use storage that is close to the thread requesting the allocation

Using OpenMP Allocators

New clause on all constructs with data sharing clauses:

→ allocate([allocator:] list)

Allocation:

```
> omp_alloc(size_t size, omp_allocator_handle_t allocator)
```

Deallocation:

> omp_free(void *ptr, const omp_allocator_handle_t allocator)

- → allocator argument is optional
- allocate directive: standalone directive for allocation, or declaration of allocation stmt.

OpenMP

OpenMP Allocator Traits / 1

Allocator traits control the behavior of the allocator

	sync_hint	contended, uncontended, serialized, private default: contended
	alignment	positive integer value that is a power of two default: 1 byte
	access	all, cgroup, pteam, thread default: all
	pool_size	positive integer value
	fallback	default_mem_fb, null_fb, abort_fb, allocator_fb default: default_mem_fb
	fb_data	an allocator handle
	pinned	true, false default: false
	partition	environment, nearest, blocked, interleaved default: environment
ori	al	

OpenMP Tutorial Members of the OpenMP Language Committee

OpenMP Allocator Traits / 2

fallback: describes the behavior if the allocation cannot be fulfilled

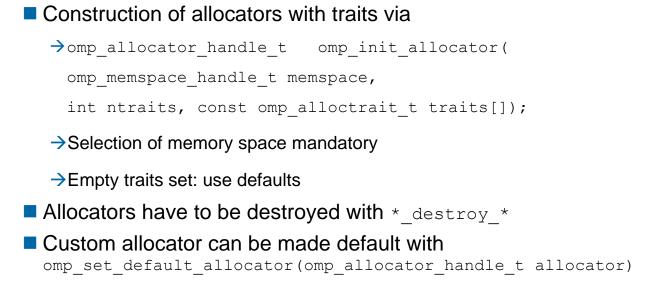
→default mem fb: return system's default memory

 \rightarrow Other options: null, abort, or use different allocator

pinned: request pinned memory, i.e. for GPUs

370

102


OpenMP Allocator Traits / 3

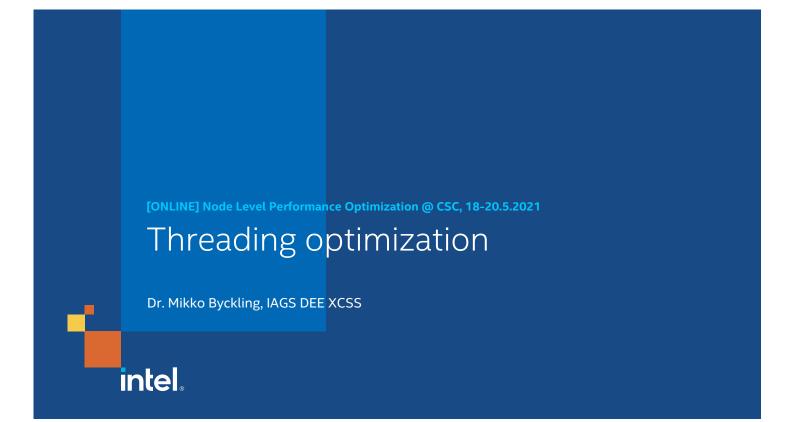
- partition: partitioning of allocated memory of physical storage resources (think of NUMA)
 - >environment: use system's default behavior
 - →nearest: most closest memory
 - >blocked: partitioning into approx. same size with at most one block per storage resource
 - →interleaved: partitioning in a round-robin fashion across the storage

resources

OpenMP Allocator Traits / 4

OpenMP

OpenMP Memory Spaces


Storage resources with explicit support in OpenMP:

omp_default_mem_space	System's default memory resource
omp_large_cap_mem_space	Storage with larg(er) capacity
omp_const_mem_space	Storage optimized for variables with constant value
omp_high_bw_mem_space	Storage with high bandwidth
omp_low_lat_mem_space	Storage with low latency

 \rightarrow Exact selection of memory space is implementation-def.

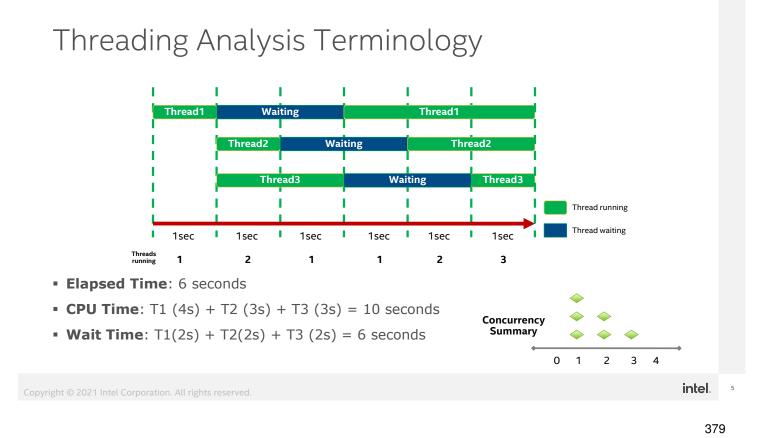
 \rightarrow Pre-defined allocators available to work with these

OpenMP Tutorial Members of the OpenMP Language Committee

Contents

- Common performance issues in thread parallel applications
- Analyzing multi-threaded performance with Intel® VTune[™] Profiler
- Common NUMA Issues and Optimizations
- Thread affinity and pinning
 - OpenMP Applications
 - Hybrid MPI+OpenMP Applications

Common performance issues in thread parallel applications


Common issues, terminology

Issues in (Thread) Parallel Applications

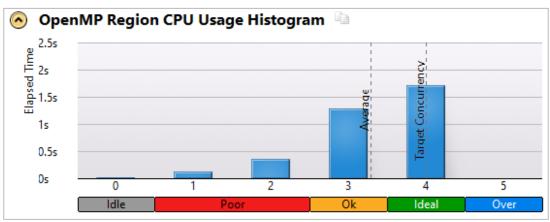
- Load imbalance
 - Work distribution is not optimal
 - Some threads are heavily loaded, while others idle
 - Slowest thread determines total speed-up
- Locking issues
 - Locks prohibit threads to concurrently enter code regions
 - Effectively serialize execution
- Parallelization overhead
 - With large no. of threads, data partition get smaller
 - Overhead might get significant (e.g. OpenMP startup time)

intel.

intel.

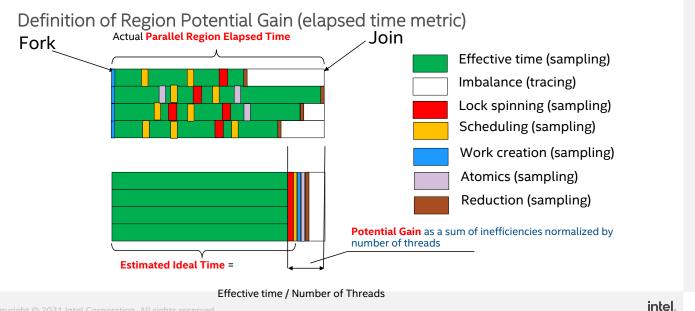
Analyzing multi-threaded performance with Intel® VTune™ Profiler

Overview, treading analysis, thread timeline, MPI+OpenMP analysis


VTune GUI: OpenMP analysis

- Tracing of OpenMP constructs to provide region/work sharing context and imbalance on barriers
 - Advanced hotspots w/o stacks is recommended to make sampling representative for small regions
- VTune is provided with information by Intel OpenMP RTL
 - Fork-Join points of parallel regions with number of working threads (Intel Compilers version 14 and later)
 - OpenMP construct barrier points with imbalance info and OpenMP loop
 metadata
 - Embed source file name to an OpenMP region with **-parallel-source-info=2** compiler option

Copyright © 2021 Intel Corporation. All rights reserved.


intel.

VTune GUI: Thread Concurrency Histogram Global view of OpenMP concurrency

Copyright © 2021 Intel Corporation. All rights reserved.

VTune GUI: OpenMP region view

383

VTune GUI: Threading Analysis (1/5)

\odot	OpenMP Analysis. Collection Time ^② : 11.400		
	\odot Serial Time (outside any parallel region) $^{\odot}$: 0.017s (0.1%)		
	⊘ Parallel Region Time [®] : 11.384s (99.9%)		
	Estimated Ideal Time [®] : 7.351s (64.5%)		
	OpenMP Potential Gain [@] : 4.033s (35.4%) 🏲		
► 😔	Top OpenMP Regions by Potential Gain 🔋		
\sim			shows the elapsed time
\sim	Top OpenMP Regions by Potential Gain This section lists OpenMP regions with the highest potential for performance i		shows the elapsed time OpenMP Region Time ⁽⁾
\sim	Top OpenMP Regions by Potential Gain This section lists OpenMP regions with the highest potential for performance in that could be saved if the region was optimized to have no load imbalance ass	OpenMP Potential Gain [®]	

- 1) Is the **serial** time of my application significant enough to prevent scaling?
- 2) How much performance can be gained by tuning OpenMP?
- 3) Which OpenMP regions / loops / barriers will benefit most from tuning?
- 4) What are the inefficiencies with each region? (click the link to see details)

VTune GUI: Threading Analysis (2/5) Focus On What's Important Actual Elapsed Time Join Fork What region is inefficient? Effective time Lock spinning Is the potential gain worth it? Imbalance Scheduling Why is it inefficient? Work forking Potential Imbalance? Scheduling? Lock spinning? Gain Ideal Time Potential Lock Fork Scheduling Imbalance Advanced Hotsp Intel VTune Amplifie H 🖨 Bot -OpenMP Region / Function - Stack OpenMP Potential Gair CPU Tir nMP Region / Function / Call Stack Elapsed Time Effective Time by Utilization Imbalance Lock Contention OpenMP Count Creation Scheduling Reduction Spin Time threads 🛙 Idle 📕 Poor 🚺 Ok 📕 Ideal 📗 Ov 2 0// 02 210 34.7% ■MAIN_\$omp\$parallel:24@/I 4.819s 0.286s 24 0s 0.000s 0.8% 2.006 - outside any region] 0.0% 0.012s 0.045s 0.091s 0s pmp\$parallel:24@/h Selected 1 row(s): 0.001s 24 11.095s MAIN_\$ 0.000 0.0% 75 76 0.004s 0.016 172.963s 92.219s 0.08 < intel.

VTune GUI: Threading Analysis (3/5) Parallel Region Inefficiencies

Grouping: OpenMP Region / Function / Call Stack												🦯 Imbalance		
OpenMP Potential Gain 📧 OpenMP Potential Gain (% of Collection Tents) 🖾														
OpenMP Region / Function / Call Stack				Crea	Sch	Red	Other	Imbalance (%	Lock Con	Crea (%)	sch (%)	Red ((%)	Other (%)	
conj_grad_\$omp\$parallel:24@/home/vtune/work/apps/NPB/NPB3.3.1/NPB3.3-OMP/CG/cg.f:514:695		3.944s	0s	0.000s	0.002s	0.000s	0.010s	34.69	0.0%	0.0%	0.0%	0.0%	0.1%	
MAIN_\$omp\$parallel:24@/home/vtune/work/apps/NPB/NPB3.3.1/NPB3.3-OMP/CG/cg.f:185:231		0.086s	0s	0s	0s	0s	0.000s	0.89	0.0%	0.0%	0.0%	0.0%	0.0%	
[Serial - outside any region]							0s						0.0%	
MAIN_\$omp\$parallel:24@/home/vtune/work/apps/NPB/NPB3.3.1/NPB3.3-OMP/CG/cg.f:339:345		0.000s	0s	0s	0s	0s	0s	0.09	6 0.0%	0.0%	0.0%	0.0%	0.0%	
MAIN_\$omp\$parallel:24@/home/vtune/work/apps/NPB/NPB3.3.1/NPB3.3-OMP/CG/cg.f:361:365		0.000s	0s	0s	0s	0s	0s	0.09	6 0.0%	0.0%	0.0%	0.0%	0.0%	
white		0.0005	US	US	05	05		0107	0.070	0.070	01010	0.070	0.0%	
		0.000s	0s Os	0s Os	0s Os	0s						0.0%		
MAIN_SompSparallel:24@/home/vtune/work/apps/NPB/NPB3.3.1/NPB3.3-OMP/CG/cg.f:263:269														
MAIN_SompSparallel:24@/home/vtune/work/apps/NPB/NPB3.3.1/NPB3.3-OMP/CG/cg.f:263:269		0.000s	0s	Os	Os	Os	0s							
MAIN_SompSparallel:24@/home/vtune/work/apps/NPB/NPB33.1/NPB33-OMP/CG/cg.fz63.269 Advanced Hotspots Hotspots viewpoint (<u>change</u>) ③ I 3 Collection Log 3 ④ Analysis Target 3 Analysis Target 1 Analysis Target 3 An		0.000s	0s	Os	Os	Os	0s							Likely culprit:
MAINsomp\$parallel:24@/home/vtune/work/apps/NPB/NPB33.1/NPB33-OMP/CG/cg.fz63.269 Advanced Hotspots Hotspots viewpoint (<u>change</u>) ③ Collection Log ④ Analysis Target △ Analysis Target ↓ Analysis Target ↓ Cal		0.000s Top-do	0s	0s	Os 'asks and	Os	0s		6 0.0%	0.0%	0.0%	0.0%	0.0%	Likely culprit:
MAIN_Somp\$parallel:24@/home/vtune/work/apps/NPB/NPB33.1/NPB33-OMP/CG/cg.fz63:269 Advanced Hotspots Hotspots viewpoint (<u>change</u>) ③ Collection Log ④ Analysis Target ▲ Analysis Target ▲ Analysis Type ↓ M. Summary ▲ Bottom-up ▲ Cal	Ier/Callee	0.000s Top-do Oper	Os wn Tree	0s	Os 'asks and	Os d Frame	es es	0.09 OpenMP Pc Imbalance Lo	6 0.0%	0.0% ain (% of	0.0%	0.0%	0.0%	
MAIN_SompSparallel:24@/home/vtune/work/apps/NPB/NPB33.1/NPB33-OMP/CG/cg.fz83:269 Advanced Hotspots Hotspots viewpoint (change) ③ Collection Log ④ Analysis Target ▲ Analysis Type 11 Summary ④ Bottom-up ፍ Cal ouping: OpenMP Region / Function / Call Stack OpenMP Region / Function / Call Stack	Ier/Callee	0.000s Top-do Oper Lock	Os wn Tree	0s E E T tential G	0s asks and	Os d Frama Reduc	es Conter 0.002s	OpenMP Pc Imbalance (%) Cc	tential G	0.0% ain (% of	0.0% Collecti duling %) 25.9%	0.0%	0.0%	Dynamic
MAIN_SompSparallel:24@/home/vtune/work/apps/NPB/NPB3.3.1/NPB3.3-OMP/CG/cg.fz63.269 Advanced Hotspots Hotspots viewpoint (change) ② Image: Collection Log ④ Analysis Target: Analysis Type: Ht Summary ⑥ Bottom-up ◆ Call Image: Collection Log ● Analysis Target: Analysis Type: Ht Summary ⑧ Bottom-up ◆ Call Image: Collection Log ● Analysis Target: Analysis Type: Ht Summary ● Bottom-up ◆ Call Image: Collection Log ● Analysis Target: Analysis Type: Ht Summary ● Bottom-up ◆ Call Image: Collection Log ● Analysis Target: Analysis Type: Ht Summary ● Bottom-up ◆ Call Image: Collection Log ● Analysis Target: Analysis Target: Analysis Type: An	Ier/Callee	0.000s Top-dor Oper Lock Con	0s wn Tree nMP Pot	0s E E T tential G Sched	Os Tasks and Gain Juling R	Os d Frama Reduc	es () () () () () () () () () ()	OpenMP Pc Imbalance Lc (%) Cc	tential G ock Cre 0.0% 0.	0.0% ain (% of a Sche) ()	0.0% Collecti duling %) 25.9%	0.0% on Time) Red (%) 0.0%	0.0% 0.0%	Dynamic
© MAIN_SompSparallek24@/home/vtune/work/apps/NPB/NPB331/NPB33-OMP/CG/cg.£263:269 Advanced Hotspots Hotspots viewpoint (<u>change</u>) ⑦ © Callection Log ♥ Analysis Target ☆ Analysis Type ♥ H Summary ⊗ Bottom-up ♥ Cal Souping: © CoemP Region / Function / Call Stack	Ier/Callee	0.000s Top-dor Oper Lock Con	0s wn Tree nMP Pot Creation 0.000	0s tential G Sched	Os asks and Gain duling R 3.1285	0s d Frame Reduc 0.001s 0s	es Conter 0.002s	OpenMP Pc Imbalance (%) 1.7% (tential G ock. Creen	0.0% ain (% of a Sche)) (1) (1) (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2	0.0% Collecti duling %) 25.9% 0.0%	0.0%	0.0%	

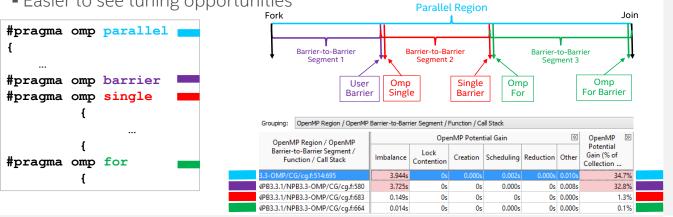
Copyright © 2021 Intel Corporation. All rights reserved

intel.

VTune GUI: Threading Analysis (4/5)

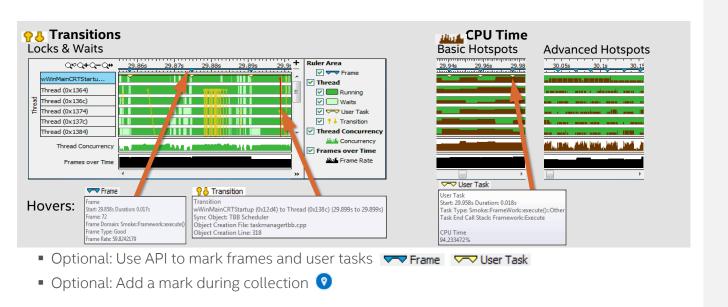
Mapping regions to source code

- View data specific to the region at the source code level
- With '-parallel-source-info=2' compiler option to embed source file name in region name


387

VTune GUI: Threading Analysis (5/5)

Understanding parallel inefficiency


Detailed Barrier to Barrier Analysis


- Tune each segment separately
- Easier to see tuning opportunities

intel

VTune GUI: Thread timeline

VTune GUI: MPI + OpenMP analysis

Tune OpenMP performance of high impact ranks in VTune Profiler

Ranks sorted by OpenMP tuning impact on overall performance	• Top Open M This section list Process PID	s process	,	est MPI con	mmunication	ation Spin Time 🐁 spin time. enMP Potential Gain [©] (%) [©]	Serial Time		Per-rank O Potential G Serial Time	ain and
Process names link to OpenMP metrics	bt-mz.8.4 125 bt-mz.8.4 125 bt-mz.8.4 125 bt-mz.8.4 125 bt-mz.8.4 125	902 905		0.020 0.040 0.321 0.441	s 0.4% s 3.0%	3.392s 31.27 3.431s 31.67 3.025s 27.97 3.147s 29.07	0.291s 0.659s	2.7%		
Detailed OpenMP metrics	Advanced Hotspot	Analysis Target	Analysis Typ	e 📕 Summa		-up 🔹 Caller/Callee 🔹 Top-down T			Intel VTune Amp	↓ ↓ ↓ ↓ ×
	OpenMP Region / Function / Call Stack	OpenMP Potential Gain	Gain (% of Collection	Elapsed o Time Open thre	nMP Count eads		Spin 1 Imbalance Lock		Overhead Tir Creation Scheduling I	eduction Other
	conj_grad_\$omp\$parallel:240	4.040s			76	171.014s		0s 0s 2.160s	0.001s 0.048s	0.009s 0.085s
	■ MAIN_\$omp\$parallel:24@/h	0.088s		0.286s 24	1	4.784s		0s 0s 0.043s	0s 0s	Os Os
	Image: Serial - outside any region	0s		0.012s		0.045s		0s 0s 0.001s	0.001s Os	0s 0.002s
	MAIN_\$omp\$parallel:24@/h	0.000s	0.0%		75	0.004s		Os Os Os	Os Os	0s 0.001s
	Selected 1 row(s):			11.095s	76	171.014s	91.948s	0s 0s 2.160s	0.001s 0.048s	0.009s 0.085s v
	< >	<								>

Copyright © 2021 Intel Corporation. All rights reserved.

intel.

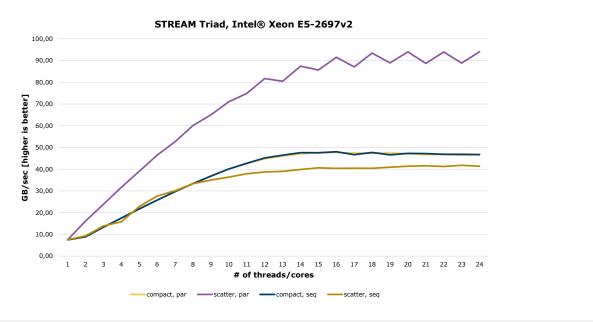
391

Common NUMA Issues and Optimizations

First touch policy, common optimizations

(Almost) all HPC systems are NUMA

- (Almost) all multi-socket compute servers are NUMA systems
 - Different access latencies for different memory locations
 - Different bandwidth observed for different memory locations
- Example: Intel[®] Xeon E5-2600v3 Series processor

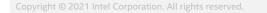


Copyright © 2021 Intel Corporation. All rights reserved.

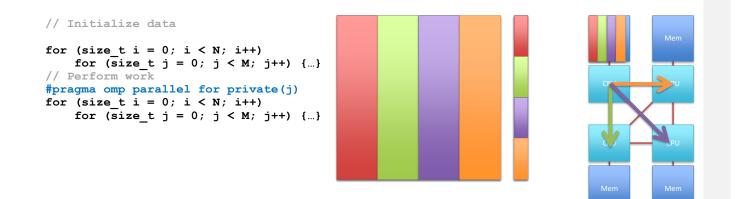
intel.

393

NUMA - Does it matter?

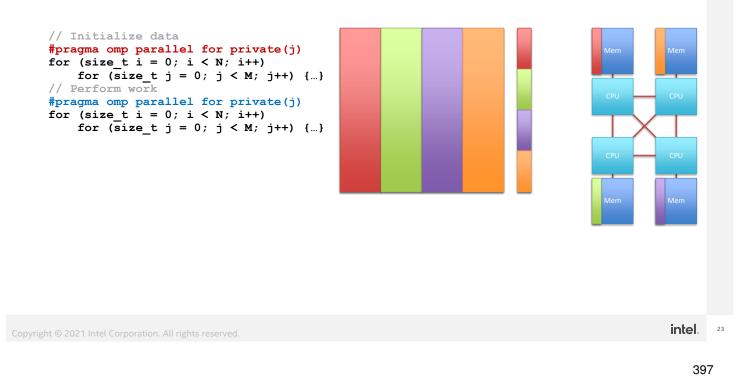

Copyright © 2021 Intel Corporation. All rights reserved.

20


intel.

First touch policy

- Modern operating systems all use virtual memory
- The OS typically optimizes memory allocations
 - malloc () does not allocate the memory directly
 - Only the memory management "knows" about the memory allocation, but no memory pages are made available
 - At first memory access (*write*), the OS physically allocates the corresponding page (First touch policy)
- On NUMA systems this might lead to performance issues in threaded or multi-process applications



NUMA Optimization with OpenMP

intel.

NUMA Optimization with OpenMP

NUMA issues and MPI Applications

- MPI applications might also be affected by NUMA issues:
 - A process allocates memory on one NUMA node...
 - ... and is then scheduled to run on another NUMA node.
- Intra-node communication might show different bandwidths and/or latencies to network fabric adapter
- The file system cache
 - Might reserve memory on one NUMA node..
 - ..and thus push out allocations to a remote NUMA node.

Summary

- Use threading analysis to find bottlenecks in the application
- NUMA can be an issue, so make sure that the application is NUMAaware
- Use pinning to keep thread in their NUMA domain and in their cores (cache!)

Copyright © 2021 Intel Corporation. All rights reserved

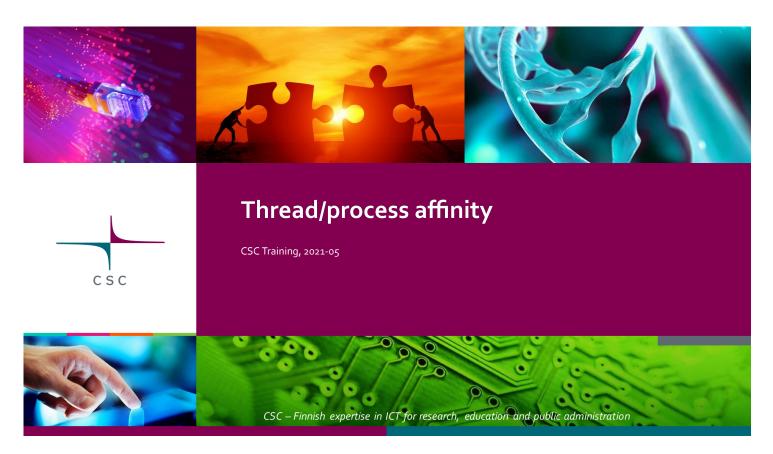
399

inte

Notices & Disclaimers

Performance varies by use, configuration, and other factors. Learn more at <u>www.Intel.com/PerformanceIndex</u>.

Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available updates. See configuration disclosure for details.


Your costs and results may vary.

Intel technologies may require enabled hardware, software or service activation.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands may be claimed as the property of others.

Copyright © 2021 Intel Corporation. All rights reserved

intel. 27

Thread and process affinity

- Normally, operating system can run threads and processes in any logical core
- Operating system may even move running task from one core to another
 - Can be beneficial for load balancing
 - For HPC workloads often detrimental as private caches get invalidated and NUMA locality is lost
- User can control where tasks are run via affinity masks
 - Task can be *pinned* to a specific logical core or set of logical cores

Controlling affinity

- Affinity for a *process* can be set with a numactl command
 - Limit the process to logical cores 0,3,7:
 - numactl --physcpubind=0,3,7 ./my_exe
 - $\circ\,$ Threads "inherit" the affinity of their parent process
- Affinity of a thread can be set with OpenMP environment variables
 - o OMP_PLACES=[threads,cores,sockets]
 - o OMP_PROC_BIND=[true, close, spread, master]
- OpenMP runtime prints the affinity with OMP_DISPLAY_AFFINITY=true

Controlling affinity

export	OMP_	_AFFINITY_	FORM	AT="Thread	%0.3n	affinity	%A"
export	OMP_	DISPLAY_A	FFIN	ITY=true			
./test							
Thread	000	affinity	0-7				
Thread	001	affinity	0-7				
Thread	002	affinity	0-7				
Thread	003	affinity	0-7				
OMP PL		-cores ./1	est				
		affinity	/				
Thread	001	affinity	1,5				
Thread	002	affinity	2,6				
Thread	003	affinity	3,7				

MPI+OpenMP thread affinity

- MPI library must be aware of the underlying OpenMP for correct allocation of resources
 - Oversubscription of CPU cores may cause significant performance penalty
- Additional complexity from batch job schedulers
- Heavily dependent on the platform used!

Example (incorrect): oversubscription of resources 01 02 03 00 01 02 03 04 05 06 07 04 05 06 07 00ugo cpu01 MPI task 0: MPI task 1: cpu00:00, cpu00:01, cpu00:01, cpu00:02, cpu00:02, cpu00:03 cpu00:03, cpu00:04 Example (correct): better use of resources 00 01 02 03 02 00 01 05 06 07 04 04 05 06 07 cpu00 cpu01 MPI task 0: MPI task 1: cpu00:00, cpu00:01, cpu01:00, cpu01:01,

cpu01:02, cpu01:03

cpu00:02, cpu00:03

406

Slurm configuration at CSC

- Within a node, --tasks-per-node MPI tasks are spread --cpus-per-task apart
- Threads within a MPI tasks have the affinity mask for the corresponging
 - --cpus-per-task cores

```
export OMP_AFFINITY_FORMAT="Process %P thread %0.3n affinity %A"
export OMP_DISPLAY_AFFINITY=true
srun ... --tasks-per-node=2 --cpus-per-task=4 ./test
Process 250545 thread 000 affinity 0-3
...
Process 250546 thread 000 affinity 4-7
...
```

- Slurm configurations in other HPC centers can be very different
 - Always experiment before production calculations!

Summary

- Performance of HPC applications is often improved when processes and threads are pinned to CPU cores
- MPI and batch system configurations may affect the affinity
 - very system dependent, try to always investigate

