
Presentation title1 www.prace-ri.eu

PRACE Training Centre @ SURFsara

SURFsara

Carlos Teijeiro Barjas

Presentation title2 www.prace-ri.eu

SURFsara

• Created in 1971 as a
collaboration between
CWI, UvA and VU

• Provides integrated ICT
infrastructure for
research (data storage,
visualization, networking,
cloud and
supercomputing)

• Host of Dutch national
supercomputers since
1984

• Partner of the PRACE
project

Presentation title3 www.prace-ri.eu

Partnership for Advanced Computing in Europe (PRACE)

• Enable high impact scientific discovery

• Engineering research and development across all disciplines

• Enhance European competitiveness for the benefit of society

• Established as an international not-for-profit association with seat in Brussels

• Collaboration between 26 member countries whose representative organizations create

a pan-European supercomputing infrastructure

• Extensive education and training effort: seasonal schools, workshops…

• Currently at the Fifth Implementation Phase (PRACE-5IP)

Presentation title4 www.prace-ri.eu

PRACE Training Centres (PTCs)

• BSC - Barcelona Supercomputing Center (Spain)

• CSC - IT Center for Science (Finland)

• CINECA - Consorzio Interuniversitario (Italy)

• EPCC at the University of Edinburgh (UK)

• GCS - Gauss Supercomputing Center (Germany)

• GRNET - Greek Research and Technology Network (Greece)

• ICHEC - Irish Centre for High-End Computing (Ireland)

• IT4I - IT4Innovations National Supercomputing Center (Czech Republic)

• MdlS - Maison de la Simulation (France)

• SURFsara (The Netherlands)

Presentation title5 www.prace-ri.eu

PRACE Training Centre at SURFsara

• Organization of training workshops from 1 to 3 days

• All events are organized in the Netherlands (Amsterdam/Utrecht)

• Support for research and development institutions in the Netherlands

• All trainings and materials are provided in English

• All information can be found in the in the PRACE Training Portal

http://www.training.prace-ri.eu/

http://www.training.prace-ri.eu/

Presentation title6 www.prace-ri.eu

Presentation of the course:

Parallel and GPU Programming in Python

SURFsara

Carlos Teijeiro Barjas

Presentation title7 www.prace-ri.eu

Timetable for the 10th December

• 09:00 - 09:15: Welcome & Introduction

• 09:15 - 10:30: Best practices in Scientific Computing & Python

• 10:30 - 10:45: Coffee break

• 10:45 - 12:00: Introduction to efficient shared memory programming

• 12:00 - 13:00: Lunch

• 13:00 - 14:30: Hands-on: Introduction to efficient Python CPU programming

• 14:30 - 14:45: Coffee break

• 14:45 - 15:30: Shared Memory Programming in Python: Numba, Cython and OpenMP

• 15:30 - 15:45: Coffee break

• 15:45 - 17:15: Hands-on: Numba, Cython

Presentation title8 www.prace-ri.eu

Timetable for the 11th December

• 09:00 - 10:30: Introduction to the GPU ecosystem

• 10:30 - 10:45: Coffee break

• 10:45 - 12:00: Hands-on: Programming GPUs with Numba

• 12:00 - 13:00: Lunch

• 13:00 - 14:30: Hands-on: Programming GPUs with PyCUDA

• 14:30 - 14:45: Coffee break

• 14:45 - 15:30: Distributed Memory Architecture & MPI

• 15:30 - 15:45: Coffee break

• 15:45 - 16:55: Hands-on: Introduction to mpi4py

• 16:55 - 17:00: Closing session

Presentation title9 www.prace-ri.eu

Best practices in Scientific Computing & Python

SURFsara

Carlos Teijeiro Barjas

Presentation title10 www.prace-ri.eu

Outline

• General best practices in scientific programming

• Useful tools to start your project

• Python Enhancement Proposals (PEPs)

• Some language conventions

Presentation title11 www.prace-ri.eu

Outline

• General best practices in scientific programming

• Useful tools to start your project

• Python Enhancement Proposals (PEPs)

• Some language conventions

Presentation title12 www.prace-ri.eu

Four simple recommendations to encourage best practices in

research software:

• https://f1000research.com/articles/6-876/v1

https://f1000research.com/articles/6-876/v1

Presentation title13 www.prace-ri.eu

Write programs for people, not computers

• A program should not require its readers to hold more than a handful of facts in memory

at once.

• Make names consistent, distinctive, and meaningful.

• Make code style and formatting consistent.

Presentation title14 www.prace-ri.eu

Let the computer do the work

• Make the computer repeat tasks.

• Save recent commands in a file for re-use.

• Use a build tool to automate workflows.

Presentation title15 www.prace-ri.eu

Make incremental changes

• Work in small steps with frequent feedback and course correction.

• Use a version control system.

• Put everything that has been created manually in version control.

Presentation title16 www.prace-ri.eu

Don’t repeat yourself (or others)

• Every piece of data must have a single authoritative representation in the system.

• Modularize code rather than copying and pasting.

• Re-use code instead of rewriting it.

Presentation title17 www.prace-ri.eu

Plan for mistakes

• Add assertions to programs to check their operation.

• Use an off-the-shelf unit testing library.

• Turn bugs into test cases.

• Use a symbolic debugger.

Presentation title18 www.prace-ri.eu

Optimize software only after it works correctly

• Use a profiler to identify bottlenecks.

• Write code in the highest-level language possible.

Presentation title19 www.prace-ri.eu

Document design and purpose, not mechanics

• Document interfaces and reasons, not implementations.

• Refactor code in preference to explaining how it works.

• Embed the documentation for a piece of software in that software.

Presentation title20 www.prace-ri.eu

Collaborate

• Use pre-merge code reviews.

• Use pair programming when bringing someone new up to speed and when tackling

particularly tricky problems.

• Use an issue tracking tool.

Presentation title21 www.prace-ri.eu

Outline

• General best practices in scientific programming

• Useful tools to start your project

• Python Enhancement Proposals (PEPs)

• Some language conventions

Presentation title22 www.prace-ri.eu

Some tools may help building a project from scratch…

• Cookiecutter

• Pytest

• Documentation: Doxygen and Sphinx

https://github.com/audreyr/cookiecutter
https://pytest.org/
http://doxygen.nl/
http://www.sphinx-doc.org/

Presentation title23 www.prace-ri.eu

Outline

• General best practices in scientific programming

• Useful tools to start your project

• Python Enhancement Proposals (PEPs)

• Some language conventions

Presentation title24 www.prace-ri.eu

PEP 20: the Zen of Python………. import this!

Presentation title25 www.prace-ri.eu

PEP 8: Style Guide for Python Code

Main source of information: https://www.python.org/dev/peps/pep-0008/

Presentation title26 www.prace-ri.eu

Improving the readability of code: consistency!

• Consistency with the style guide is important.

• Consistency within a project is more important.

• Consistency within one module or function is the most important.

“A Foolish Consistency is the Hobgoblin of Little Minds”

Presentation title27 www.prace-ri.eu

Improving the readability of code: consistency!

• Consistency with the style guide is important.

• Consistency within a project is more important.

• Consistency within one module or function is the most important.

“A Foolish Consistency is the Hobgoblin of Little Minds”

Presentation title28 www.prace-ri.eu

Code Layout – Indentation & Line Breaks

• Spaces are the preferred indentation method (4 spaces per level)

• Limit all lines to a maximum of 79 characters

Aligned with opening delimiter.

foo = long_function_name(var_one, var_two,

var_three, var_four)

More indentation included to distinguish this from the rest.

def long_function_name(

var_one, var_two, var_three,

var_four):

print(var_one)

Hanging indents should add a level.

foo = long_function_name(

var_one, var_two,

var_three, var_four)

Presentation title29 www.prace-ri.eu

Code Layout – Indentation & Line Breaks

• Should a line break before or after a binary operator?

•  For old code, consistency is the key

•  For new code, it is recommended to break the line before the operator

income = (gross_wages

+ taxable_interest

+ (dividends - qualified_dividends)

- ira_deduction

- student_loan_interest)

Presentation title30 www.prace-ri.eu

Code Layout – Blank Lines

• Surround top-level function and class definitions with two blank lines.

• Method definitions inside a class are surrounded by a single blank line.

from setuptools import setup

from setuptools.command.test import test as TestCommand

class PyTest(TestCommand):

user_options = [('pytest-args=', 'a', “Args list”)]

def initialize_options(self):

TestCommand.initialize_options(self)

self.pytest_args = []

Presentation title31 www.prace-ri.eu

Code Layout – Imports

• Imports should be on separate lines.

Yes:

import os

import sys

No:

import sys, os

• It's okay to say this though:

from subprocess import Popen, PIPE

Presentation title32 www.prace-ri.eu

Code Layout – Imports

• Imports are always put at the top of the file, just after any module comments and

docstrings, and before module globals and constants.

• Absolute imports are recommended, as they are usually more readable and tend to be

better behaved (or at least give better error messages) if the import system is incorrectly

configured

import mypkg.sibling

from mypkg import sibling

from mypkg.sibling import example

• Wildcard imports (from <module> import *) should be avoided

Presentation title33 www.prace-ri.eu

Code Layout – Comments

• Comments that contradict the code are worse than no comments.

• Always make a priority of keeping the comments up-to-date when the code changes!

• Comments should be complete sentences.

• “Python coders from non-English speaking countries: please write your comments in

English, unless you are 120% sure that the code will never be read by people who don't

speak your language.” (!!! ...)

Presentation title34 www.prace-ri.eu

Code Layout – Comments

• Block comments generally apply to some (or all) code that follows them, and are

indented to the same level as that code.

• Each line of a block comment starts with a # and a single space.

This is a typical comment for a Python code.

It continues in the next line.

• Use inline comments sparingly: in fact they are distracting if they state the obvious.

Avoid this:
x = x + 1 # Increment x

But this can be useful:
x = x + 1 # Compensate for border

Presentation title35 www.prace-ri.eu

Code Layout – Comments

• A documentation string (docstring) is a string literal that can be included as the first

statement of the definition of a class, function, method or module

• The conventions for docstrings are described in PEP 257

• The closing characters of a multiline docstring (""") should be on a line by itself, except

for one liner docstrings

"""Return a foobang.

Optional plotz says to frobnicate the bizbaz first.

"""

Presentation title36 www.prace-ri.eu

Code Layout – Comments

• A combination of docstrings and block comments is useful in order to provide a

description of the function and notes for programmers together

The following function represents a performance bottleneck

def heavy_computation(x, y, z)

"""Perform some really heavy computation"""

• The leading comment block is a programmer’s note, whereas the docstring describes

the operation of the function or class and will be shown in an interactive Python session

when the user types:

>>> help(heavy_computation)

Presentation title37 www.prace-ri.eu

Self-documenting Code – Naming

• Variable, class or function names should speak for themselves.

decay()

decay_constant()

get_decay_constant()

p = 100

pressure = 100

• Moreover, the naming convention should be consistent

var, VAR, _var, var_, MyVar, myVar, my_var, MY_VAR

Presentation title38 www.prace-ri.eu

Self-documenting Code – Simple Functions

• Functions must be small to be understandable: they should do only one clear thing.

import numpy as np

def initial_cond(N, Dim):

"""Generates initial conditions for N unity masses at rest

starting at random positions in D-dimensional space.

"""

position0 = np.random.rand(N, Dim)

velocity0 = np.zeros((N, Dim), dtype=float)

mass = np.ones(N, dtype=float)

return position0, velocity0, mass

Presentation title39 www.prace-ri.eu

Outline

• General best practices in scientific programming

• Useful tools to start your project

• Python Enhancement Proposals (PEPs)

• Some language conventions

Presentation title40 www.prace-ri.eu

Pitfalls that should be avoided

• Multiple and messy circular dependencies

• Hidden coupling: modifying code in one class should never break tests in unrelated test

cases

• Heavy use of global state or context

• Spaghetti code: multiple pages of nested if clauses and for loops with a lot of copy-

pasted procedural code and no proper segmentation

• Ravioli code: hundreds of similar little pieces of logic without proper structure

Presentation title41 www.prace-ri.eu

Dynamic Typing

• Avoid using the same variable name for different things

• Good practice: assign a variable only once

• Check your code: Pylint, Pyflakes, Flakes8, Pychecker

Bad Good

a = 1 count = 1

a = 'a string' msg = 'a string'

def a(): def func():

pass # Do something pass # Do something

items = 'a b c d' items_string = 'a b c d'

items = items.split(' ') items_list = items_string.split(' ')

items = set(items) items = set(items_list)

Presentation title42 www.prace-ri.eu

Alternatives to checking for equality

Bad Good

Checking for True # Just check the value

if attr == True: if attr:

print('True!') print('attr is truthy!')

Checking for None # or check for the opposite

if attr == None: if not attr:

print('attr is None!') print('attr is falsey!')

or, since None is

considered false,

explicitly check for it

if attr is None:

print('attr is None!')

Presentation title43 www.prace-ri.eu

Accessing dictionary elements

Bad (also removed in Python 3.x) Good

d = {'hello': 'world'} d = {'hello': 'world'}

if d.has_key('hello'): print(d.get('hello', 'default_value'))

print(d['hello']) print(d.get('thingy', 'default_value'))

else: # Or:

print('default_value') if 'hello' in d:

print(d['hello'])

Presentation title44 www.prace-ri.eu

Looping over dictionaries

d = {'matthew': 'blue', 'rachel': 'green','raymond': 'red'}

Bad (not working in Python 3.x anymore) Good

for k in d: d = {k: d[k] for k in d if not

print(k) k.startswith('r')}

print(d)

for k in d.keys():

if k.startswith('r'):

del d[k]

Presentation title45 www.prace-ri.eu

Manipulating lists

Bad Good

Filter elements greater than 4 # List comprehension

a = [3, 4, 5] a = [3, 4, 5]

b = [] b = [i for i in a if i > 4]

for i in a:

if i > 4: # Or:

b.append(i) b = filter(lambda x: x > 4, a)

Presentation title46 www.prace-ri.eu

Manipulating lists

Bad Good

Add three to all list members. # List comprehension

a = [3, 4, 5] a = [3, 4, 5]

for i in range(len(a)): a = [i + 3 for i in a]

a[i] += 3

Or:

a = map(lambda i: i + 3, a)

Presentation title47 www.prace-ri.eu

Looping over a collection and indices

colors = ['red', 'green', 'blue', 'yellow']

What people usually do Better

for i in range(len(colors)): for i, color in enumerate(colors):

print(i, '--->', colors[i]) print(i, '--->', color)

Presentation title48 www.prace-ri.eu

Distinguishing multiple exit points in loops

What people usually do Better

def find(seq, target): def find(seq, target):

found = False for i, value in enumerate(seq):

for i, value in enumerate(seq): if value == target:

if value == target: break

found = True else:

break return -1

if not found: return i

return -1

return i

Presentation title49 www.prace-ri.eu

Unpacking sequences

p = 'Raymond', 'Hettinger', 0x30, 'python@example.com'

What people usually do Better

fname = p[0] fname, lname, age, email = p

lname = p[1]

age = p[2]

email = p[3]

Presentation title50 www.prace-ri.eu

Updating multiple state variables

What people usually do Better

def fibonacci(n): def fibonacci(n):

x = 0 x, y = 0, 1

y = 1 for i in range(n):

for i in range(n): print(x)

print(x) x, y = y, x+y

t = y

y = x + y

x = t

Presentation title51 www.prace-ri.eu

Concatenating strings

names = ['raymond', 'rachel', 'matthew', 'roger', 'betty',

'melissa', 'judith', 'charlie']

What people usually do Better

s = names[0] print(', '.join(names))

for name in names[1:]:

s += ', ' + name

print(s)

Presentation title52 www.prace-ri.eu

Reading the contents from a file

What people usually do Better

f = open('data.txt') with open('data.txt') as f:

try: data = f.read()

data = f.read()

finally:

f.close()

Presentation title53 www.prace-ri.eu

References

• Four simple recommendations to encourage best practices in research software.
Jiménez RC et al. F1000Research. https://f1000research.com/articles/6-876/v1

• Best Practices for Scientific Computing. Wilson G, Aruliah DA, Brown CT, Chue Hong
NP, Davis M, et al. (2014). PLOS Biology 12(1): e1001745.
https://doi.org/10.1371/journal.pbio.1001745

• Best Practices in Scientific Computing – Software Carpentry
http://swcarpentry.github.io/slideshows/best-practices/#slide-0

• Cookiecutter at GitHub: https://github.com/audreyr/cookiecutter

• Python Template from the NLeSC: https://github.com/NLeSC/python-template

• Sphinx documentation: http://www.sphinx-doc.org

• Doxygen documentation: http://doxygen.nl/

https://f1000research.com/articles/6-876/v1
https://doi.org/10.1371/journal.pbio.1001745
http://swcarpentry.github.io/slideshows/best-practices/#slide-0
https://github.com/audreyr/cookiecutter
https://github.com/NLeSC/python-template
http://www.sphinx-doc.org/
http://doxygen.nl/

Presentation title54 www.prace-ri.eu

References

• The Hitchhacker’s guide to Python by Kenneth Reitz, Tanya Schlusser. Publisher:
O'Reilly Media, Inc. http://python-guide-pt-br.readthedocs.io/en/latest/

• Transforming Code into Beautiful, Idiomatic Python by Raymond Hettinger - PyCon
2013. https://www.youtube.com/watch?v=OSGv2VnC0go

• Raymond Hettinger - Beyond PEP 8 -- Best practices for beautiful intelligible code –
PyCon 2015 https://www.youtube.com/watch?v=wf-BqAjZb8M

• Effective Computation in Physics by Anthony Scopatz, Kathryn D. Huff. Publisher:
O'Reilly Media, Inc. http://physics.codes/

• Ned Batchelder: Getting Started Testing - PyCon 2014
https://www.youtube.com/watch?v=FxSsnHeWQBY

• pytest web site (https://pytest.org/) and a nice tutorial:
https://semaphoreci.com/community/tutorials/testing-python-applications-with-pytest

http://python-guide-pt-br.readthedocs.io/en/latest/
https://www.youtube.com/watch?v=OSGv2VnC0go
https://www.youtube.com/watch?v=wf-BqAjZb8M
http://physics.codes/
https://www.youtube.com/watch?v=FxSsnHeWQBY
https://pytest.org/
https://semaphoreci.com/community/tutorials/testing-python-applications-with-pytest

Presentation title55 www.prace-ri.eu

THANK YOU FOR YOUR ATTENTION

www.prace-ri.eu

