PARALLEL AND GPU I

PROGRAMMING IN PYTHON

PRACE Training Course

Marco Verdicchio, Carlos Teijeiro Barjas, Ben Czaja
HPC advisors, SURF

Recap Day 1

Parallel computing models

® Task parallel

many independent runs

needs orchestration

for monte-carlo, parameter sweeps
@ Shared memory

always within one batch node

uses threads
often implicit
= Distributed memory

can use one or more batch nodes

uses separate processes
almost always using MPI
for PDE problems, time stepping

network

Image source: computing.linl.gov

PTC: Parallel and GPU
programming in Python

DAY 2
Start End Duration Title
09:00 10:00 01:00 Infroduction to GPU computing
10:00 10:15 00:15 Coffee break
10:15 11:15 01:00 GPU programming with Python
11:15 12:15 01:00 Hands-on: GPU programming with Python
12:15 13:15 01:00 Lunch
13:15 14:45 01:30 Advanced GPU computing with Python
14:45 15:00 00:15 Coffee break
15:00 17:00 02:00 Hands-on: Advanced GPU computing with Python

Introduction to GPU computing

Moore’s law

= Gordon Moore (co-founder of Intel) predicted in 1965
that the transistor density of semiconductor chips
would double roughly every 18 months.

= “The complexity for minimum component costs has
increased at a rate of roughly a factor of two per year
... Certainly over the short term this rate can be
expected to continue, if not to increase....”

Electronics Magazine 1965

Rttt et ot
.”;‘! cﬁ“" Ir:. :'

Introduction to GPU computing

Moore's law describes the empirical regt
This advancement is important for other

rity that the number of transistors on integrated circuits double
S

approximately every two years.
vects of technological progress in computing - such as processing speed or the price of computers.

Moore’s Law: The number of transistors on microchips doubles every two years
in Data

Transistor count
50,000,000,000

10,000,000,000 ot : S 8 6 &
18-core X 33 -3
5,000,000,000 Xbox One O ¢

1,000,000,000 00
500,000,000 hEaae \ ¥ Foer

100,000,000
50,000,000

10,000,000 O S
5,000,000 ‘ X

1,000,000 ntel 8048 sno
500,000 o) [4 .,

100,000 i, MaTi 9.
50,000 °

10,000 1. , a1 o 816 B
5,000 &

1,000

2 nbank a0 ab. o Ghoak o0 oF . ok o o0 b 4P
S A QY T TR QT T T Y R gl) Y o
iki/Transistor count) Y€Ar in which the microchip was first introduced

) make progress against the world's largest problem: I r CC-BY by the authors Hannah Ritchie and Max Roser

O X o & O O
O £ £ O &N &
S S S

\o)

ource;
QurWorldinDat

Introduction to GPU computing

Moore’s law

@ More transistors = more functionality
= |Improved technology = faster clocks = more speed

= Thus, every 18 months, we obtained better and faster
processors.

= They were all sequential: they execute one operation
per clock cycle.

= We no longer gain performance by “growing”

sequential processors ‘]
RS
 Tandr of Consrss o Nopuld Cnd

Introduction to GPU computing

New ways of using transistors

Improve PERFORMANCE by using parallelism on-chip:
multi-core (CPUs) and many-core processors (GPUs).

Introduction to GPU computing

Graphic Processing Units (GPUs)

GPU is one of the main hardware components of current
computer architecture (e.g: phones, game consoles, HPC!)

Originally designed to render images to display, modern
graphic processing units are used for some of the most
complex calculations, such as big data, ML/DL and Al.

7
@
’

Within the years GPUs evolved from single core, fixed
functional hardware, into a set of programmable parallel cores.

This started the era of General Purpose GPU (GPGPU).

Introduction to GPU computing

Graphic Processing Units (GPUs)

History
®» 1990’s real time 3D rendering (Video games, Movies, etc.)

® Super VGA (SVGA) or even Ultra VGA (UVGA)
» Computationally very expensive!!!

» Before 1990’s graphics were done on CPU’s as well as
framerate:

® reduced quality images

®» No 3D rendering

Introduction to GPU computing

Graphic Processing Units (GPUs)

History
®» 1996 introduction Voodoo graphic chip

® one of the first video card for parallel work

= NVIDIA 1997 released the first chip to combine 3D
acceleration with traditional 2D and video acceleration.

® 1999 first “GPU” with the GeForce 256

10 @3%

Introduction to GPU computing

SCORE: 153

11

Introduction to GPU computing

2020

12

Introduction to GPU computing

2020

13

Introduction to GPU computing

Hardware Performance metrics

» Clock frequency [GHz] = absolute hardware speed
® Memories,CPUs,interconnects
» Operational speed [GFLOPs]

Operations per second
single AND double precision

®» Memory bandwidth [GB/s]

Memory operations per second
- Can differ for read and write operations!

Differs a lot between different memories on chip

= Power [Watt]

14

Supercomputer Power (FLOPS), 1993 to 2020

The growth of supercomputer power, measured as the number of floating-point operations carried out per second (FLOPS) by the
largest supercomputer in any given year. FLOPS are a measure of calculations per second for floating-point operations.
Floating-point operations are needed for very large or very small real numbers, or computations that require a large dynamic
range. It is therefore a more accurate measured than simply instructions per second.

World

100,000 trillion
10,000 trillion
1,000 trillion
100 trillion

10 trillion

1 trillion

1993 1995 2000 2005 2010 2015 2020

Source: TOP500 Supercomputer Database CCBY

Introduction to GPU computing

15

Theorelical Peak Performance, Single Pracision

10*

GFLOP/sec
o)
[~}

10°

""""""""""""""" INTEL Xeon CPUs gl

T E e ;
¥ ¥ : NVIDIA GeForce GPUs — Il
: AMD Radeon GPUs —{)—
: INTEL Xeon Phis ——age—
L L L L L 1
2008 2010 2012 2014 2016 2018
End of Year

Introduction to GPU computing

Theoretical Peak Performance, Double Precision

4
LA ? : : M(50
: . Q2
: &
: : &
x . O
e : Q\'&‘ :
. \e‘ " :
: y o :
103 """"""""""""" ke E,Q’\Q """ é)ﬁQ R e = M o e et S i o R e o v o " =
. TN e .
o . = /\Q .
(@] : & A2 '
g : Q . \'\:‘i\/ \XO :
© i :
%0 . . r‘;\('.:\. :
;:(-\l.p-’ o ;
» 0 f\”' ' < :
fgl;p O C ,'\00 . 'ls’cs\ -
Q\O - \\\»‘C' > 'roop fo :
s 2\ v p
2% & :
102 L. e I e a e T A o e s o T A A e o Y T O R o o e arats s
' . B INTEL Xeon CPUs =i
. . ,g,*j & NVIDIA Tesla GPUs =l
& ;cgz, &0 . AMD Radeon GPUs =
© & W INTEL Xeon Phis =t
L L L L L
2008 2010 2012 2016 2018
End of Year

16

Introduction to GPU computing

17

10

Theoretical Peak Memory Bandwidth Comparison

ok _Xeon Phi 7120 (KNC)
o .\:i\‘k‘" Tesla K20X :

|
W
9’1%7'

) *cpﬁ}%o *5690 5 :
o2 (oL : INTEL Xeon CPUs == |
& ye
: NVIDIA Tesla GPUs
: AMD Radeon GPUs =
; , , , INTEL Xeon Phis st
2008 2010 2012 2014 2016 2018

End of Year

Introduction to GPU computing

18

Rank

System

Supercomputer Fugaku - Supercomputer Fugaku, A64FX 48C
2.2GHz, Tofu interconnect D, Fujitsu

RIKEN Center for Computational Science

Japan

rSummit - IBM Power System AC922, IBM POWER® 22C

3.07GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR
Infiniband, IBM

DOE/SC/0ak Ridge National Laboratory

United States

\.

rSierra - IBM Power System AC922, IBM POWER® 22C 3.1GHz,
NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband, IBM /
NVIDIA / Mellanox
DOE/NNSA/LLNL

United States
_

Sunway TaihuLight - Sunway MPP, Sunway SW26010 260C
1.45GHz, Sunway, NRCPC

National Supercomputing Center in Wuxi

China

Selene - NVIDIA DGX A100, AMD EPYC 7742 64C 2.25GHz,
NVIDIA A100, Mellanox HDR Infiniband, Nvidia

NVIDIA Corporation

United States

Tianhe-2A - TH-IVB-FEP Cluster, Intel Xeon E5-2692v2 12C
2.2GHz, TH Express-2, Matrix-2000, NUDT

National Super Computer Center in Guangzhou

China

Cores

7,630,848

2,614,592

1,572,480

10,649,600

555,520

4,981,760

Rmax
(TFlop/s)

442,010.0

148,600.0

94,640.0

93,014.6

63,460.0

61,444.5

Rpeak
(TFlop/s)

537,212.0

200,794.9

125,712.0

125,435.9

79.215.0

100,678.7

Power
(kW)

29,899

10,096

7,438

15,371

2,646

18,482

www.top500.org

http://www.top500.org/

Introduction to GPU computing

Benefits of using GPUs

» Graphics processing units (GPUs) were originally
designed for running games and graphics workloads that
were highly parallel in nature.

» High demand in FLOPS for data parallel throughput
workloads

» GPGPU: general purpose computing on GPUs, highly
parallel, multithreaded, manycore processor with high
computational power and high memory bandwidth.

19

+

CPU
MULTIPLE CORES

GPU
THOUSANDS OF CORES

Introduction to GPU computing

GPU vs CPU

» CPU for "heavy” tasks with complex control flows and
branching (VM, branching, security, etc.)

AU AW
= GPU do one thing well: handling billions of repetitive ”light” XU PATU

tasks

®» GPUs have 1000s of ALU compared to traditional CPUs that
are commonly build with 4-8

Control

» GPU is specialized for compute-intensive highly parallel
computations with more transistors dedicated to data
processing rather than flow control and caching

20 @3%

Introduction to GPU computing

GPU vs CPU

» Different design for different goals

GPU workload is highly parallel

CPU general purpose ALU = ALU
Control

AU AWU

®» CPU: minimize latency from one thread

Big on-chip chaces

e

control logic

» GPU: maximize throughput
Multithreading can hide latency

Simple/shared control login

- @3%

Introduction to GPU computing

GPU - High Throughput Processor Computation Thread

Processing

§
Ll | Waiting for data

CPU core — Low Latency Processor

O B JE B BB BN B

. Ready to be processed

Image source: developer.nvidia.com

CPU architectures must minimize latency within each thread

GPUs, threads are lightweight, so a GPU can switch from stalled threads to other threads at no cost,
minimizing latency with computation

2 m

Introduction to GPU computing

GPU vs CPU

CPU strengths GPU strengths
Very large main memory High bandwidth main memory
: : GPU Accelerator
CPU Very fast clock speeds Latency tolerant via parallelism Outimized for
Optimized for Parallel Tasks
Serial Tasks Latency optimized via large caches Significantly more compute resources ———
Small number of threads can run very quickly High throughput —

High performance/watt

CPU weaknesses GPU weaknesses
Relatively low memory bandwidth Relatively low memory capacity
Low performance/watt Low per-thread performance

2 @3%

Introduction to GPU computing

GPU vs CPU

=) Mythbusters Demo GPU versus CPU

MORE VIDEOS

p o o035/133

https://youtu.be/-P28LKWTzrl

24

B & Youlube S I3

https://youtu.be/-P28LKWTzrI

Introduction to GPU computing

GPU vs CPU

HOW GPU ACCELERATION WORKS

Application Code
| |

|

I

r

&

DEVICE | GPU | 5% of Code

Compute-Intensive Functions

Rest of Sequential
HOST

25

Introduction to GPU computing

GPU ecosystem

GPU DEVELOPER ECO-SYSTEM

Debuggers GPU Compilers

& Profilers

Auto-parallelizing
& Cluster Tools Libraries

Numerical
Packages

C

C++ BLAS

FFT
LAPACK

cuda-gdb
NV Visual Profiler
Parallel Nsight

MATLAB
Mathematica

Fortran
Java

NI LabView Python

pyCUDA

NPP
Video
Imaging
GPULib

Visual Studio
Allinea
TotalView

OEM Solution Providers
cmeasr JESLI= SUPERMICR®
sgi FUITSU ‘Bulk

Y e NEC

Consultants & Training

L 3cceleware GRS [§STONE RIDGE

ANEO GPU Tech

AArrayFire FHEg
SemPhotonics DCREARNKE -4!3

26

Introduction to GPU computing

GPU ecosystem

CUDA Tools and Ecosystem described in details on the
NVIDIA Developer Zone

https://developer.nvidia.com/

CUDA Tools and Ecosystem described in details on the
NVIDIA Developer Zone
https://developer.nvidia.com/gpu-accelerated-libraries

undreds of SDK's, performance

27

NVIDIA DEVELOPER HOME BLOG FORUMS DOCS DOWNLOADS TRAINING

NVIDIA ON-DEMAND

NVIDIA® CUDA-X, built on top of NVIDIA CUDA®, is a collection of libraries, tools, and technologies that deliver d

ramatically higher performance
compared to CPU-only alte o

nce
per ing [HPC).

ular dynamics, computational fluid dynamics,

om,

https://developer.nvidia.com/
https://developer.nvidia.com/gpu-accelerated-libraries

Introduction to GPU computing

Introduction to CUDA programming model

@ |Introduced by NVIDIA in 2006, Compute Unified Device
Architecture

= General purpose programming model that leverages the parallel
compute engine in NVIDIA GPUs

= Targeted software stack
@ Driver for loading computation programs into GPU:

= standalone driver optimized for computation

= explicit GPU memory managemnt

28

CPU

Application

CUDA Libraries

CUDA Runtime

CUDA Driver

GPU

Introduction to GPU computing

Introduction to CUDA programming model

The GPU is viewed as a compute device that:

= |s a coprocessor to the CPU (or host) = Data-parallel portions of an application are executed on the device
as kernels which run in parallel on many threads

= Has its own DRAM (device memory)
= Differences between GPU and CPU threads

= GPU threads are extremely lightweight
@ Runs many threads in parallel
= Very little creation overhead
= Hardware switching between threads fast
= GPU needs 1000s of threads for full efficiency
= Qverprovision (1000s of threads) hide latencies
= Multi-core CPU needs only a few

2 @3%

Introduction to GPU computing

Introduction to CUDA programming model

To execute any CUDA program, there are three main steps:

1. Copy the input data from host memory to device memory, also known as host-to-device
transfer.

2. Load the GPU program and execute, caching data on-chip for performance.

3. Copy the results from device memory to host memory, also called device-to-host transfer.

30

Introduction to GPU computing

Introduction to CUDA programming model >> >

CUDA kernel and thread hierarchy

float x = input[threadID];
float y = func(x);
output[threadID] = y;

The CUDA kernel is the portion of code executed on the GPU

CUDA Kernel
. .) Cuééads <
» This is executed n times in parallel by n different CUDA threads
= A group of threads is called “threads block” and they are grouped T
into “Grids” - : Block-0 Block-1 B[lock-(Kn

» Akernel is executed as a grid of blocks of threads \ j

Image source: developer.nvidia.com

- @3%

Introduction to GPU computing

Introduction to CUDA programming model

CUDA kernel and thread hierarchy

= CUDA defines built-in 3D variables for threads and blocks
(threadldx, blockldx, blockDim)

= Threads in the same block can communicate with each other via shared
memory, barrier synchronization or other synchronization primitives such as
atomic operations.

= The number of threads per block and the number of blocks per grid specified
at call time of the kernel by the programmer.

= CUDA architecture limits the numbers of threads per block (1024 threads per
block limit).

32

Host Device
Grid 1
Kernel —— Block Block Block
[(0, 0) (1,0) (2,0)
Block”” Block ' Block
(9}'1) . (1’1) "" (25 1)
" crid2
Kernel ——>
2 P ll
Block (1, 1)

Introduction to GPU computing

Introduction to CUDA programming model

// Kernel - Adding two matrices MatA and MatB
_global__ void MatAdd(float MatA[N] [N], float MatB[N][N], float MatCI[N][N])

{
int 1 = blockIdx.x * blockDim.x + threadIdx.x;
int j = blockIdx.y * blockDim.y + threadIdx.y;
if (i <N && j < N)
MatC[i] [j] = MatA[il[j] + MatB[il[j];

}

int main()

{

// Matrix addition kernel launch from host code

dim3 threadsPerBlock(16, 16);

dim3 numBlocks((N + threadsPerBlock.x -1) / threadsPerBlock.x, (N+threadsPerBlock.y -1)/ threadsPerBlock.y);
MatAdd<<<numBlocks, threadsPerBlock>>>(MatA, MatB, MatC);

}
33 H'l;

Introduction to GPU computing

Introduction to CUDA programming model

// Kernel - Adding two matrices MatA and MatB
_global__ void MatAdd(float MatA[N] [N], float MatB[N][N], float MatCI[N][N])

{
int 1 = blockIdx.x * blockDim.x + threadIdx.x;
int j = blockIdx.y * blockDim.y + threadIdx.y;
if (i <N && j < N)
MatC[i] [j] = MatA[il[j] + MatB[il[j];

}

int main()

{

// Matrix addition kernel launch from host code

dim3 threadsPerBlock(16, 16);

dim3 numBlocks((N + threadsPerBlock.x -1) / threadsPerBlock.x, (N+threadsPerBlock.y -1)/ threadsPerBlock.y);
MatAdd<<<numBlocks, threadsPerBlock>>>(MatA, MatB, MatC);

}
34 ‘E’!’::il\

Introduction to GPU computing

Introduction to CUDA programming model

CUDA thread CUDA core
CUDA streaming
CUDA thread block Multiprocessor(SM)

e m

CUDA-capable GPU

CUDA kernel grid
- o - [-

Image source: developer.nvidia.com

35

Introduction to GPU computing

[InstuctionCache
. o ememees
GPU architecture ———— | —
Warp Scheduler [Warp Scheduler
Dispatch Unit Dispatch Unit | Dispatch Unit Dispatch Unit
e 3+ | 3+ 3
Register File (16,384 x 32-bit) Register File (16,384 x 32-bit)
Core | Core || Core LDIST Core | Core || Core LDIST
= The hardware groups threads that execute the
" . " Core Core Core LD/ST [Core Core Core LDIST
same instruction into warps. - ||

Core | Core | Core LDIST Core | Core |Core LDIST
Core | Core |Core LD/ST Core Core | Core LDIST
Core | Core | Core LDIST Core | Core | Core LDIST

Core Core |Core LDIST Core Core | Core LDIST

= Several warps constitute a thread block.

Instruction Buffer | Instruction Buffer |
Warp Scheduler Warp Scheduler

Dispatch Unit Dispatch Unit Dispatch Unit Dispatch Unit

o Several th read bIOCkS are aSSigned to a Streaming Register File (16,384 x 32-bit) Register File (16,384 x 32-bit)
Multiprocessor (SM).

Core | Core |Core LDIST Core | Core | Core LDIST
Core Core | Core LDIST Core | Core |Core LDIST
Core | Core | Core LDIST Core | Core | Core LDIST

Core Core | Core LDIST Core Core Core LDIST

= Several SM constitute the whole GPU unit (which
executes the whole Kernel Grid).

Core | Core | Core LDIST Core | Core |Core LDIST

Tex Tex Tex Tex

96KB Shared Memory

36

ing

to GPU comput

Introduction

GPU architecture

PCI Express 3.0 Host Interface

EX 3

PolyMorph Engine

TPC

E= =
TPC

Raster Engine
=8
TPC

E= = ~8
TPC TPC

GPC
Raster Engine
g = g = =~ ~8 =8
TPC TPC TPC TPC TPC

-
e« H
H
mm
2§
..m
2
i | B
= H
_m..m
5l
[o8
SR
s H
«
m
gE
H
H
?
-l .H
a £
sl

Jajjonuo) Aiowapy

J9jj03u0) Aowsy

13jjo13u0) Alowspy

J9jj03u09 Kioway

19jj03u0) Alowsy

PolyMorph Engino PolyMorph Engine
TPC TPC TPC
=3 8 T+
Raster Engine Raster Engine Raster Engine

J13jjo3u0) Klowapy

37

Introduction to GPU computing

GPU architecture

38

Global memory This memory is accessible to all threads as well as the host
(CPU) and is allocated and deallocated by the host. Used to initialize the data
that the GPU will work on.

Shared memory Each thread block has its own shared memory which is

accessible only by threads within the block. Much faster than global memory.

Requires special handling to get maximum performance and only exists for
the lifetime of the block.

Local memory Each thread has its own private local memory. Only exists for
the lifetime of the thread and is generally handled automatically by the
compiler.

Constant and texture memory are read-only memory spaces accessible by
all threads. Constant memory is used to cache values that are shared by all
functional units Texture memory is optimized for texturing operations
provided by the hardware

(Device) Grid

Block (0, 0)

o]

Block (1, 0)

o

Thread (0, 0) Thread (1, 0)

Thread (0, 0) Thread (1, 0)

Introduction to GPU computing

Introduction to CUDA programming model

There are different ways to optimize CUDA codes:

@ Number of threads per block
@ Workload per thread
= Total work per thread block

@ Correct memory access and data locality

39

Introduction to GPU computing

PyCUDA

PyCUDA gives you easy, Pythonic access
to Nvidia’s CUDA parallel computation API.

https://documen.tician.de/pycuda/

Numba

Numba is an open source JIT compiler that translates a
subset of Python and NumPy code into fast machine code.

http://numba.pydata.org/

40

http://nvidia.com/
http://nvidia.com/cuda/
https://documen.tician.de/pycuda/
http://numba.pydata.org/

