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Recap Day 1 
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Parallel computing models

Task parallel
many independent runs
needs orchestration
for monte-carlo, parameter sweeps

Shared memory
always within one batch node
uses threads

often implicit

Distributed memory
can use one or more batch nodes
uses separate processes
almost always using MPI
for PDE problems, time stepping

Image source: computing.llnl.gov



PTC: Parallel and GPU 
programming in Python 
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Start End Duration Title

09:00 10:00 01:00 Introduction to GPU computing

10:00 10:15 00:15 Coffee break

10:15 11:15 01:00 GPU programming with Python

11:15 12:15 01:00 Hands-on: GPU programming with Python

12:15 13:15 01:00 Lunch

13:15 14:45 01:30 Advanced GPU computing with Python

14:45 15:00 00:15 Coffee break

15:00 17:00 02:00 Hands-on: Advanced GPU computing with Python

DAY 2



Introduction to GPU computing

Moore’s law

Gordon Moore (co-founder of Intel) predicted in 1965 
that the transistor density of semiconductor chips 
would double roughly every 18 months. 

“The complexity for minimum component costs has 
increased at a rate of roughly a factor of two per year 
... Certainly over the short term this rate can be 
expected to continue, if not to increase....” 

Electronics Magazine 1965
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Introduction to GPU computing
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Introduction to GPU computing

Moore’s law

More transistors = more functionality 

Improved technology = faster clocks = more speed 

Thus, every 18 months, we obtained better and faster 
processors. 

They were all sequential: they execute one operation 
per clock cycle. 

We no longer gain performance by “growing” 
sequential processors 
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Introduction to GPU computing

New ways of using transistors

Improve PERFORMANCE by using parallelism on-chip: 
multi-core (CPUs) and many-core processors (GPUs). 
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Introduction to GPU computing

Graphic Processing Units (GPUs)
GPU is one of the main hardware components of current 
computer architecture (e.g: phones, game consoles, HPC!)

Originally designed to render images to display, modern 
graphic processing units are used for some of the most 
complex calculations, such as big data, ML/DL and AI.

Within the years GPUs evolved from single core, fixed 
functional hardware, into a set of programmable parallel cores.

This started the era of General Purpose GPU (GPGPU). 
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Introduction to GPU computing

Graphic Processing Units (GPUs)
History

1990’s real time 3D rendering (Video games, Movies, etc.)

Super VGA (SVGA) or even Ultra VGA (UVGA)

Computationally very expensive!!!

Before 1990’s graphics were done on CPU’s as well as 
framerate:

reduced quality images 

No 3D rendering
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Introduction to GPU computing

Graphic Processing Units (GPUs)
History

1996 introduction Voodoo graphic chip

one of the first video card for parallel work

NVIDIA 1997 released the first chip to combine 3D 
acceleration with traditional 2D and video acceleration.

1999 first “GPU” with the GeForce 256
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Introduction to GPU computing
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Introduction to GPU computing
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2020



Introduction to GPU computing
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Introduction to GPU computing

Hardware Performance metrics

Clock frequency [GHz] = absolute hardware speed 

Memories,CPUs,interconnects

Operational speed [GFLOPs] 

Operations per second
single AND double precision 

Memory bandwidth [GB/s] 

Memory operations per second
- Can differ for read and write operations! 

Differs a lot between different memories on chip 

Power [Watt] 
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Introduction to GPU computing
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Introduction to GPU computing
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Introduction to GPU computing
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Introduction to GPU computing
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www.top500.org

http://www.top500.org/


Introduction to GPU computing

Benefits of using GPUs

Graphics processing units (GPUs) were originally 
designed for running games and graphics workloads that 
were highly parallel in nature.

High demand in FLOPS for data parallel throughput 
workloads

GPGPU: general purpose computing on GPUs, highly 
parallel, multithreaded, manycore processor with high 
computational power and high memory bandwidth.
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Introduction to GPU computing

GPU vs CPU
CPU for ”heavy” tasks with complex control flows and 
branching (VM,  branching, security, etc.)

GPU do one thing well: handling billions of repetitive ”light” 
tasks

GPUs have 1000s of ALU compared to traditional CPUs that 
are commonly build with 4-8

GPU is specialized for compute-intensive highly parallel 
computations with more transistors dedicated to data 
processing rather than flow control and caching
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Introduction to GPU computing

GPU vs CPU
Different design for different goals

GPU workload is highly parallel

CPU general purpose

CPU: minimize latency from one thread

Big on-chip chaces

control logic

GPU: maximize throughput

Multithreading can hide latency 

Simple/shared control login
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Introduction to GPU computing

GPU vs CPU

CPU architectures must minimize latency within each thread

GPUs, threads are lightweight, so a GPU can switch from stalled threads to other threads at no cost, 
minimizing latency with computation
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Image source: developer.nvidia.com



Introduction to GPU computing

GPU vs CPU
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CPU strengths GPU strengths

Very large main memory High bandwidth main memory

Very fast clock speeds Latency tolerant via parallelism

Latency optimized via large caches Significantly more compute resources

Small number of threads can run very quickly High throughput

High performance/watt

CPU weaknesses GPU weaknesses

Relatively low memory bandwidth Relatively low memory capacity

Low performance/watt Low per-thread performance



Introduction to GPU computing

GPU vs CPU
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https://youtu.be/-P28LKWTzrI

https://youtu.be/-P28LKWTzrI


Introduction to GPU computing

GPU vs CPU
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HOSTDEVICE



Introduction to GPU computing

GPU ecosystem 
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Introduction to GPU computing

GPU ecosystem 
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CUDA Tools and Ecosystem described in details on the 
NVIDIA Developer Zone
https://developer.nvidia.com/

CUDA Tools and Ecosystem described in details on the 
NVIDIA Developer Zone
https://developer.nvidia.com/gpu-accelerated-libraries

https://developer.nvidia.com/
https://developer.nvidia.com/gpu-accelerated-libraries


Introduction to GPU computing

Introduction to CUDA programming model 

Introduced by NVIDIA in 2006, Compute Unified Device 
Architecture

General purpose programming model that leverages the parallel 
compute engine in NVIDIA GPUs

Targeted software stack

Driver for loading computation programs into GPU:

standalone driver optimized for computation

explicit GPU memory managemnt
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Introduction to GPU computing

Introduction to CUDA programming model 

The GPU is viewed as a compute device that: 

Is a coprocessor to the CPU (or host) 

Has its own DRAM (device memory) 

Runs many threads in parallel 

Hardware switching between threads fast 

Overprovision (1000s of threads) hide latencies 
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Data-parallel portions of an application are executed on the device 
as kernels which run in parallel on many threads 

Differences between GPU and CPU threads 

GPU threads are extremely lightweight 

Very little creation overhead

GPU needs 1000s of threads for full efficiency 

Multi-core CPU needs only a few 



Introduction to GPU computing

Introduction to CUDA programming model 

To execute any CUDA program, there are three main steps:

1. Copy the input data from host memory to device memory, also known as host-to-device 
transfer.

2. Load the GPU program and execute, caching data on-chip for performance.

3. Copy the results from device memory to host memory, also called device-to-host transfer.
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Introduction to GPU computing

Introduction to CUDA programming model 

CUDA kernel and thread hierarchy 

The CUDA kernel is the portion of code executed on the GPU

This is executed n times in parallel by n different CUDA threads

A group of threads is called “threads block” and they are grouped 
into “Grids”

A kernel is executed as a grid of blocks of threads
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Introduction to GPU computing

Introduction to CUDA programming model 

CUDA kernel and thread hierarchy 

CUDA defines built-in 3D variables for threads and blocks 
(threadIdx, blockIdx, blockDim)

Threads in the same block can communicate with each other via shared 
memory, barrier synchronization or other synchronization primitives such as 
atomic operations.

The number of threads per block and the number of blocks per grid specified 
at call time of the kernel by the programmer.

CUDA architecture limits the numbers of threads per block (1024 threads per 
block limit).
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Introduction to GPU computing

Introduction to CUDA programming model

// Kernel - Adding two matrices MatA and MatB
__global__ void MatAdd(float MatA[N][N], float MatB[N][N], float MatC[N][N]) 

{ 
int i = blockIdx.x * blockDim.x + threadIdx.x; 
int j = blockIdx.y * blockDim.y + threadIdx.y; 
if (i < N && j < N) 
MatC[i][j] = MatA[i][j] + MatB[i][j]; 

} 

int main() 
{ 

... 

// Matrix addition kernel launch from host code 
dim3 threadsPerBlock(16, 16); 
dim3 numBlocks((N + threadsPerBlock.x -1) / threadsPerBlock.x, (N+threadsPerBlock.y -1)/ threadsPerBlock.y);
MatAdd<<<numBlocks, threadsPerBlock>>>(MatA, MatB, MatC); 
... 

}
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Introduction to GPU computing

Introduction to CUDA programming model

// Kernel - Adding two matrices MatA and MatB
__global__ void MatAdd(float MatA[N][N], float MatB[N][N], float MatC[N][N]) 

{ 
int i = blockIdx.x * blockDim.x + threadIdx.x; 
int j = blockIdx.y * blockDim.y + threadIdx.y; 
if (i < N && j < N) 
MatC[i][j] = MatA[i][j] + MatB[i][j]; 

} 

int main() 
{ 

... 

// Matrix addition kernel launch from host code 
dim3 threadsPerBlock(16, 16); 
dim3 numBlocks((N + threadsPerBlock.x -1) / threadsPerBlock.x, (N+threadsPerBlock.y -1)/ threadsPerBlock.y);
MatAdd<<<numBlocks, threadsPerBlock>>>(MatA, MatB, MatC); 
... 

}
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Introduction to GPU computing

Introduction to CUDA programming model 
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Image source: developer.nvidia.com



Introduction to GPU computing

GPU architecture

The hardware groups threads that execute the 
same instruction into warps. 

Several warps constitute a thread block. 

Several thread blocks are assigned to a Streaming 
Multiprocessor (SM). 

Several SM constitute the whole GPU unit (which 
executes the whole Kernel Grid).
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Introduction to GPU computing

GPU architecture
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Introduction to GPU computing

GPU architecture
Global memory This memory is accessible to all threads as well as the host 
(CPU) and is allocated and deallocated by the host. Used to initialize the data 
that the GPU will work on.

Shared memory Each thread block has its own shared memory which is 
accessible only by threads within the block. Much faster than global memory. 
Requires special handling to get maximum performance and only exists for 
the lifetime of the block.

Local memory Each thread has its own private local memory. Only exists for 
the lifetime of the thread and is generally handled automatically by the 
compiler.

Constant and texture memory are read-only memory spaces accessible by 
all threads. Constant memory is used to cache values that are shared by all 
functional units Texture memory is optimized for texturing operations 
provided by the hardware
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Introduction to GPU computing

Introduction to CUDA programming model 

There are different ways to optimize CUDA codes:

Number of threads per block

Workload per thread

Total work per thread block 

Correct memory access and data locality

…
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Introduction to GPU computing

PyCUDA
PyCUDA gives you easy, Pythonic access 
to Nvidia’s CUDA parallel computation API.

https://documen.tician.de/pycuda/

Numba
Numba is an open source JIT compiler that translates a 
subset of Python and NumPy code into fast machine code.

http://numba.pydata.org/
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http://nvidia.com/
http://nvidia.com/cuda/
https://documen.tician.de/pycuda/
http://numba.pydata.org/

