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Abstract—Energy storage systems can provide peak shaving
services in distribution grids to enable an increased penetration
of renewable energy sources and load demand growth. Moreover,
storage owners can make profits through energy arbitrage in
electricity markets by buying energy when the price is low
and selling when the price is high. This work considers the
energy scheduling of a storage system integrated in a transformer
substation to minimize the transformer power limit violations
and maximize the arbitrage profits. However, uncertainty on
the electricity price and net-load demand of the distribution
grid may cause a mismatch between scheduled and actual
operation, causing transformer power violations and reduced ar-
bitrage profits. Towards this direction, a scenario-based stochastic
optimization scheme to make uncertainty-aware decisions is
developed, considering both net-load and price uncertainty. The
corresponding scheme is formulated as a linear program that can
be solved efficiently even under a large number of scenarios. The
performance of the proposed scheme is evaluated and compared
to the corresponding deterministic scheme using net-load profiles
from a real distribution grid and price data from the Spanish day-
ahead electricity market. The developed scheme can be used for
enhancing both the bidding and operating strategy of a storage
system.

Index Terms—Distribution grids, energy arbitrage, energy
storage systems, peak shaving, stochastic optimization

I. INTRODUCTION

Energy storage systems (ESSs) is an emerging technology
that can be used to compensate the negative effects of the
increasing penetration of renewable energy sources (RESs)
into the power system. ESSs can provide several services to
the power grid, such as frequency control, energy shifting, and
peak shaving [1]. Moreover, with the evolution of electricity
markets, ESSs can take advantage of market operation and
make profits using energy arbitrage.

Energy arbitrage strategies that buy and store energy when
electricity prices are low and sell when the prices are high to
maximize profits are proposed in [2]–[4]. Specifically, these
strategies consider the energy management of prosumers in
distribution grids [2], the ESSs operation for reducing the
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peak load of a distribution substation [3], and the market
bidding and operation of an ESS participating in day-ahead
and real-time electricity markets [4]. Price and load uncertainty
is ignored in [2] and [3], while a stochastic formulation to
make decisions under price uncertainty is presented in [4].

Peak shaving strategies to ensure the operational limits of
distribution feeders under an increased RES penetration and
load demand growth are proposed in [5]–[9]. The strategies
in [5]–[7] provide only peak shaving services, ignoring the
electricity prices. Both peak shaving and energy arbitrage
strategies are presented in [8] and [9]. In [8], a deterministic
scheme is developed that uses forecasts of the feeder load and
day-ahead electricity prices, while a stochastic scheme that
handles the load and generation uncertainty is developed in
[9]. However, the price uncertainty is ignored in both works;
thus, reduced arbitrage profits may result from the bidding
strategies in day-ahead markets when the price forecasting
error is high. In addition, mixed-integer optimization problems
are formulated in [3], [4], [6], [9] which are hard to solve.

This work develops an optimization scheme for the energy
scheduling of an ESS to provide peak shaving services to a
power transformer as well as to maximize the arbitrage profits
under uncertainty. The contributions of the paper are: 1) the
building of a scenario-based stochastic optimization model to
make uncertainty-aware decisions, considering both grid net-
load demand1 and price uncertainty, 2) the formulation of
the corresponding model as a linear program, integrating a
relaxed ESS model, that can be solved efficiently even under
a large number of scenarios, 3) the performance evaluation
of the proposed stochastic scheme with the corresponding
deterministic optimization scheme using net load and price
data from a real distribution grid and the Spanish day-ahead
electricity market. The proposed stochastic scheme can be used
for bidding and operating strategies.

For the rest of this paper the problem statement and solu-
tion methodology to develop the deterministic and stochastic
optimization schemes are described in Sections II and III.
The scenario selection methodology is explained in Section
IV and simulation results are presented in Section V. Finally,
conclusions are given in Section VI.

1Grid net-load demand: The load demand minus the RES generation of the
distribution grid.
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Fig. 1. An integrated BESS in an HV/MV transformer substation for peak
shaving and energy arbitrage purposes.

II. PROBLEM STATEMENT

This work considers the usage of a battery energy storage
system (BESS) integrated in a high voltage/medium voltage
(HV/MV) transformer substation for peak shaving and energy
arbitrage purposes. At the MV side, a BESS is directly
connected to the substation through an MV feeder, while a
second feeder is used to serve an MV distribution grid with
high RES penetration, as shown in Fig. 1.

A. Objective Function

Energy arbitrage and peak shaving are achieved by man-
aging the BESS power set-points to maximize the arbitrage
profits and minimize the transformer power limit violations,
given by

minimize ∆T (−
∑
t∈T

cAt P
S
t +W

∑
t∈T

xt), (1)

where T = {1, ..., T} denotes the considered time horizon
and ∆T the time-step duration in hours. Variables PS

t denote
the BESS charging (negative values) and discharging (positive
values) power and xt the transformer power violations. Param-
eters cAt and W denote the electricity price for energy arbitrage
at time t in e/MWh and a penalty term that controls the trade-
off between maximizing arbitrage profit and minimizing power
violations. This work aims to eliminate the power violations to
protect the transformer; thus, the value of W must be selected
sufficiently large. As a result, the arbitrage profit is maximized
as far as it does not creates power violations.

B. Constraints

1) Power Balance: According to Fig. 1, the power balance
at the MV bus is defined as

PF
t + PS

t = DA
t , ∀t ∈ T , (2)

where variables PF
t and constants DA

t denote the transformer
power and net-load demand of the MV grid at time-step t in
MW, respectively.

2) Power Violations: The soft constraint that ensures the
operational limits, PF and P

F
, of the power transformer is

expressed as

PF − xt ≤ PF
t ≤ P

F
+ xt, ∀t ∈ T . (3)

The penalization of xt in (1) aims to avoid the overloading of
the transformer.

3) BESS Model: To model the BESS we consider the
relaxed but convex model that we proposed in [2]

Ct+1 = Ct +∆T (−PS
t − PL

t ), ∀t ∈ T , (4a)

C0 = I, C ≤ Ct ≤ C, ∀t ∈ T , (4b)

− P
c ≤ PS

t ≤ P
d
, ∀t ∈ T , (4c)

PL
t ≥ edPS

t , PL
t ≥ (−ec)PS

t , ∀t ∈ T , (4d)

PL
t ≤ ecP

c
+ α(PS

t + P
c
), ∀t ∈ T , (4e)

where variables Ct and PL
t denote the BESS state-of-charge

(SoC) in MWh and power losses in MW, respectively. Con-
stants C and C denote the minimum and maximum SoC limits,
I the initial SoC, and P

c
and P

d
the charging and discharging

power limits. In addition, ec and ed denote the charging and
discharging power losses coefficients, such that ed = 1/ηd−1
and ec = 1− ηc where ηd and ηc are the corresponding one-
way efficiency ratios, and α = (edP

d − ecP
c
)/(P

d
+ P

c
).

This model is exact, generating the optimal solution, when
equality is attained in one of the two constraints in (4d). More
information regarding this model is given in [2].

Parameters DA
t and cAt presented in (1) and (2) are the

actual grid net-load demand and electricity prices, defined as

DA
t = DP

t + ξt, ∀t ∈ T , (5a)

cAt = cPt + ψt, ∀t ∈ T , (5b)

where DP
t and cPt are the predicted net load and electricity

prices, while ξt and ψt are the prediction errors at time-step
t, respectively. DA

t and cAt are generally unknown as they
are associated with future information; hence, DA

t and cAt
are replaced by DP

t and cPt in the deterministic optimization
problem (1)-(4e). Note that high prediction errors may cause a
mismatch between scheduled and actual operation, causing re-
duced arbitrage profits and transformer power limit violations.
This problem is addressed in the next section.

III. SOLUTION METHODOLOGY

This section builds on the formulation of Section II to
develop a scenario-based stochastic optimization scheme that
makes uncertainty-aware BESS decisions, considering both
net-load and price uncertainty.

A. Objective Function

For the stochastic optimization scheme we consider the set
of scenarios S = {1, ..., S} with S = |S|; each scenario
concerns the net-load demand and electricity price of the
considered horizon T . Let constants ct,s and variables x̂t,s
denote the electricity prices and the transformer power limit
violations at time-step t of scenario s, respectively. In this case,
the objective (1) is reformulated to maximize and minimize
the weighted-average arbitrage profit and power violations,
respectively, across all scenarios, yielding

minimize ∆T (−
∑
s∈S

ws

∑
t∈T

ct,sP
S
t +W

∑
s∈S

ws

∑
t∈T

x̂t,s),

(6)



where constants ws denote the weighting parameter of scenario
s such that

∑
s∈S ws = 1. Note that the BESS charg-

ing/discharging power, PS
t , denotes the operating decision

variables; thus, is scenario independent.

B. Constraints

1) Power Balance and Violations: The constraints in (2)
and (3) are reformulated to consider the scenarios, yielding

P̂F
t,s + PS

t = Dt,s, ∀t ∈ T ,∀s ∈ S, (7a)

PF − x̂t,s ≤ P̂F
t,s ≤ P

F
+ x̂t,s, ∀t ∈ T ,∀s ∈ S, (7b)

where variables P̂F
t,s and constants Dt,s denote the transformer

power and grid net-load demand at time-step t of scenario s.
2) BESS Model: The constraints of the relaxed BESS

model remain the same with the deterministic scheme, con-
straints (4a)-(4e), because PS

t is scenario independent.
The stochastic scheme can be used for (a) bidding strategies

in day-ahead markets by submitting the buying/selling power,
defined by PS

t ∀t ∈ T , for the next day and (b) operating
strategies by applying this scheme in a model predictive
control framework during the actual BESS operation.

IV. SCENARIO SELECTION

This section explains the methodology of selecting the sce-
nario curves for the net-load demand and electricity prices that
are used in the stochastic scheme. Assuming that prediction
data are unavailable, we utilize only historical data. Let day
D denote the current day and D+1 the day ahead where we
aim to determine the BESS decisions PS

t ∀t ∈ T . We assume
that the decisions are made at the end of day D, enabling
the use of the actual price and load data of this day. Let
N = {D−N+1, ..., D} and M = {D−M+1, ..., D} denote
the set of the previous days where the corresponding load
and price curves of the last N and M days are used, respec-
tively. The importance factors f = [1/N, 2/N, ..., N/N ] and
f̂ = [1/M, 2/M, ...,M/M ] are introduced for each demand
and price curve, aiming to assign an increasing importance on
daily profiles closer to day D. The weights of the load and
price curves are defined as

ϕn = fn/
∑
i

fi, n = {1, ..., N}, (8a)

ϕ̂m = f̂m/
∑
j

f̂j , m = {1, ...,M}, (8b)

where fn is the n element of vector f . To deal with the two
source of uncertainty, we build the scenario tree presented in
Fig. 2 where each scenario s ∈ S represents a combination of
a single load and price curve with ws = ϕn · ϕ̂m. Thus, the
total number of scenarios are S = N ·M . In the deterministic
scheme we use the actual demand and price curves of day D
as the prediction data.

V. SIMULATION RESULTS

This section investigates the performance of the determin-
istic and stochastic optimization schemes using historical net-
load data from a real distribution grid in Larnaca, Cyprus.
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Fig. 2. Scenario tree.

Electricity price data are obtained from the Spanish day-
ahead electricity market [10], because the Cypriot electricity
market has not commenced operation yet. Currently, power
violations do not occur in the real power transformer; however,
to emulate the power violations and to use currently available
net-load profiles we reduce the transformer upper and lower
limits to P

F
= 2.2 MW and PF = −1.8 MW, respectively. In

addition, we consider a BESS with usable capacity of 2 MWh,
4 MW charging and discharging power, and 96% one-way
efficiency. The penalty cost W is set to 100, 000 to eliminate
the transformer power violations.

The considered problems are coded in Matlab and solved
using optimization solver Gurobi [11] on a personal computer
with 8 GB RAM and an Intel Core-i5 3.2 GHz processor. The
horizon is set to one day with 30-minute time intervals.

The optimization schemes are evaluated for each day of
the period 01/03/2020-31/12/2020 utilizing the real net-load
and price data, where the scenarios for the stochastic scheme
and the predicted curves for the deterministic approach are
selected according to Section IV. Next, Section V-A studies
the performance of both schemes for a single day, Section V-B
demonstrates aggregate results, and Section V-C presents the
execution times of the stochastic scheme for different number
of scenarios.

A. Performance evaluation

The performance of the deterministic and stochastic scheme
is studied for a randomly selected evaluation day (18/07/2020).

1) Deterministic scheme: The actual net-load demand and
energy price curves of the evaluation day along with the
demand and price curves of the previous day, 17/07/2020, used
as prediction data in the deterministic scheme are illustrated in
Figs. 3(a)-(b). The BESS charging/discharging decisions made
by the optimization scheme based on the prediction data are
shown in Fig. 4(a), indicating the BESS charging and discharg-
ing power during low and high energy prices, respectively.
The BESS SoC based on the charging/discharging power
is demonstrated in Fig. 4(b). Fig. 5 depicts the scheduled
transformer power obtained from the deterministic scheme
and the actual transformer power resulting from applying the
BESS charging/discharging decisions considering the actual
curves. Although the scheduled transformer power is between
the limits, the actual transformer power exceeds the limits due



Fig. 3. (a) Net-load demand curves (MW) and (b) day-ahead energy prices
(e/MWh). The demand and price curves for 17/07/2020 are used as the
predicted curves in the deterministic scheme, while the actual curves for
18/07/2020 are used for evaluation.

Fig. 4. BESS decisions using the deterministic scheme for 18/07/2020: (a)
BESS charging/discharging power (MW) and (b) SoC (MWh).

Fig. 5. The scheduled transformer power (MW) obtained from the determin-
istic scheme and the actual transformer power for 18/07/2020.

to the net-load prediction error. As a result, the actual energy
violations are 0.104 MWh, while the arbitrage profit is 14.65
e. To protect the transformer when energy violations occur,
load shedding or RES curtailments may be applied which are
undesirable.

2) Stochastic scheme: To construct the scenario set S ,
we utilize the net-load curves for 18/06/2020-17/07/2020
(N = 30) as well as the price curves for 08/07/2020-
17/07/2020 (M = 10) presented in Figs. 6(a)-(b). The BESS
charging/discharging decisions and SoC are shown in Figs.

Fig. 6. (a) Net-load demand curves (MW) and (b) day-ahead energy prices
(e/MWh). The demand curves for 18/06/2020-17/07/2020 and price curves
for 08/07/2020-17/07/2020 are used as the scenarios in the stochastic scheme,
while the actual curves for 18/07/2020 are used for evaluation.

Fig. 7. BESS decisions using the stochastic scheme for 18/07/2020: (a) BESS
charging/discharging power (MW) and (b) SoC (MWh).

Fig. 8. The scheduled transformer power (MW) obtained from the stochastic
scheme for each scenario and the actual transformer power for 18/07/2020.

7(a)-(b), observing the BESS charging and discharging during
the early morning and evening when the scenario prices are
low and high, respectively. Since the net-load curves exceed
the transformer upper limit during the evening (see Fig. 6(a)),
the BESS discharging during these hours prevents the power
violations as can be seen by the scheduled transformer power
of each scenario in Fig. 8. The uncertainty-aware decisions
made by the stochastic scheme result in 0 MWh actual energy
violations and 19.43 e arbitrage profit, 32.62% higher than
the deterministic scheme.



Fig. 9. Aggregate daily results for the stochastic optimization problem under
a different number of electricity price scenarios: (a) Average daily profits (e)
and (b) average energy violations (MWh).

Fig. 10. Aggregate daily results for the stochastic optimization problem under
a different number of net-load scenarios: (a) Average daily profits (e) and (b)
average energy violations (MWh).

B. Aggregate performance evaluation

The aggregate performance of the two optimization
schemes is investigated for the evaluation period 01/03/2020-
31/12/2020. Fig. 9 shows the actual average (a) daily profits
and (b) energy violations resulting from the deterministic
and stochastic scheme for varying number of price scenarios
(M ). It is observed that the energy violations remain constant
when the number of price scenarios increases, while the
maximum arbitrage profits are achieved for 15 ≤ M ≤ 20.
Fig. 10 demonstrates the reduction of the energy violations
when the number of load scenarios (N ) increases; however,
the arbitrage profits are also reduced. The superiority of the
stochastic scheme compared to the deterministic scheme is
demonstrated in both Figs. 9 and 10, always achieving higher
arbitrage profits and lower energy violations. Selecting the
scenarios in a more sophisticated way, e.g., utilizing prediction
schemes, can yield even better performance. Note that the
BESS relaxation exactness is always satisfied in the simulation
results, obtaining the optimal solution.

TABLE I
EXECUTION SPEED FOR DIFFERENT NUMBER OF SCENARIOS

S = 500 S = 1000 S = 2000

(N = 50,M = 10) (N = 50,M = 20) (N = 50,M = 40)

1.36 s 2.81 s 11.31 s

C. Execution speed

The execution speed of the stochastic optimization scheme
under an increasing number of scenarios for the evaluation
day 18/07/2020 is presented in Table I. The small execution
times indicate that the formulated linear program can be solved
efficiently even under a large number of scenarios.

VI. CONCLUSIONS

This work develops a scenario-based stochastic optimization
scheme for the energy scheduling of a BESS integrated in a
transformer substation to provide peak shaving services and
maximize arbitrage profits under net-load demand and price
uncertainty. The proposed scheme as well as the corresponding
deterministic scheme are formulated as linear programs that
can be solved efficiently. Two main remarks can be drawn from
the results. First, the stochastic scheme achieves significant
better performance compared to the deterministic scheme,
increasing the actual arbitrage profits and reducing the actual
energy violations. Second, the appropriate selection of price
and net-load scenarios is critical because the price scenarios
can increase the arbitrage profits, while the net-load scenarios
can eliminate the energy violations but reduce the arbitrage
profits. The proposed scheme can be used to define both the
bidding and operating strategies of a BESS.
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