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Abstract: Archived seismograms recorded in the 20th century present a valuable source of informa-
tion for monitoring earthquake activity. However, old data, which are only available as scanned
paper-based images should be digitised and converted from raster to vector format prior to reuse for
geophysical modelling. Seismograms have special characteristics and specific features recorded by
a seismometer and encrypted in the images: signal trace lines, minute time gaps, timing and wave
amplitudes. This information should be recognised and interpreted automatically when processing
archives of seismograms containing large collections of data. The objective was to automatically digi-
tise historical seismograms obtained from the archives of the Royal Observatory of Belgium (ROB).
The images were originally recorded by the Galitzine seismometer in 1954 in Uccle seismic station,
Belgium. A dataset included 145 TIFF images which required automatic approach of data process-
ing. Software for digitising seismograms are limited and many have disadvantages. We applied
the DigitSeis for machine-based vectorisation and reported here a full workflowof data processing.
This included pattern recognition, classification, digitising, corrections and converting TIFFs to the
digital vector format. The generated contours of signals were presented as time series and converted
into digital format (mat files) which indicated information on ground motion signals contained in
analog seismograms. We performed the quality control of the digitised traces in Python to evaluate
the discriminating functionality of seismic signals by DigitSeis. We shown a robust approach of
DigitSeis as a powerful toolset for processing analog seismic signals. The graphical visualisation of
signal traces and analysis of the performed vectorisation results shown that the algorithms of data
processing performed accurately and can be recommended in similar applications of seismic signal
processing in future related works in geophysical research.

Keywords: seismology; Galitzine seismometer; horizontal component; analogue seismogram;
digitising; earthquake recording; ground motions; historical seismograms; seismic waves

1. Introduction
1.1. Background

The seismicity of the Earth represents a physical phenomenon resulting from the
tectonic processes of energy accumulation and release [1]. This fundamental concept of the
Earth’s physics is reflected in the movements on the surface that have a different intensity of
the vibrations caused by the fluctuations of energy [2]. In geodynamics, the seismicity is the
result of the self-organisation of the Earth which responds to the lithosphere movements [3].
Measuring seismic signals using seismometers enables to evaluate ground motions of the
Earth associated with the earthquakes of various magnitude or ambient seismic noise [4].
Evaluating seismic ambient noise is effective in different contexts, including imaging and
monitoring the Earth’s interior, seismic mapping at a global or regional scale, environmental

Sensors 2023, 23, 56. https://doi.org/10.3390/s23010056 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23010056
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-5759-1089
https://orcid.org/0000-0003-3477-2001
https://orcid.org/0000-0002-4988-6477
https://orcid.org/0000-0002-6461-1551
https://doi.org/10.3390/s23010056
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23010056?type=check_update&version=1


Sensors 2023, 23, 56 2 of 34

studies, investigations on elastic deformations at shallow depths in the crust, to mention
a few.

The EO data processing in seismology has undergone a long process of technical
evolution [5,6]. The instruments used for seismic data recording went through a constant
development of technologies and state-of-the-art methods. The systematic, precise and
operative observation of the seismicity of the Earth began in late 19th century along with a
progress in technology, development of new seismographs and advances in geophysical
methods [7]. From the 1880s to the 1960s, seismographs were used for recording ground
motion continuously and systematically [7]. The data were stored in an analogue paper-
based format using narrow-band low-range instruments [8,9] or as magnetic tapes [10].

Starting in the 1960s, seismology benefited from the onset of the computer era that
led to a transition to digital data which increased in quantity worldwide along with in-
strumental development [11]. A global initiative of seismological network WWSSN was
created in 1960s to generate a collection of the high-quality big seismic datasets [12,13].
This initiative was possible due to the uniformly accepted technical equipment and stan-
dardised workflow for data calibration in each seismic station. Currently, seismograms are
recorded and stored digitally in high-performance data centres using advanced algorithms
of signal processing [14]. However, the historical datasets from the pre-digital period re-
main a valuable database containing unique information on seismicity of the Earth that is
useful for practical scientific purposes [15–19].

Processing these datasets is important for practical applications in the fields of seis-
mology, geology, tectonics and physics of the Earth. The wide use of information re-
trieved from the seismograms [20] includes such domains as geophysics [21], ocean climate
modelling [22], subsurface exploration, global and planetary tectonics [23–25], risk as-
sessment in civil engineering [26–28], earthquakerisk analysis with associated features
(dynamic rupture, seismic tomography and wave forms) [29–33], and volcanology [34].

Recently, with the advances in studies of the ambient wavefield, or “noise”-based
techniques, it has become possible to use the data recorded between the earthquakes
to conduct monitoring [35–37]. Moreover, the advanced methods of data processing
facilitate signal and image analysis in geoscience and geophysics in various contexts [38–43].
Aside from the terrestrial regions, oceans are another important global source of seismic
energy [44–46]. They mostly generate surface waves that travel large distances and can
affect remotely located areas. The microseisms are the dominant component of the ground
motions recorded at the Earth’s surface. In turn, the analysis of microseisms allows deeper
insights into the evolution of oceanic climate [47,48] and the dynamics of the atmosphere–
ocean–earth couplings [44,49,50].

1.2. Motivation

Old analog seismograms present a key source of information regarding the seis-
micity of the Earth in the pre-digital age. There is also a time-sensitive component of
digitising seismograms before they are degraded and lost over time. The importance
of the historical datasets for geophysical research raise the need to ensure their digital
conservation [51–54]. Using archived information, it is also possible to analyse past seismic-
ity in historical contexts [55–57], which is important for geophysical reconstructions and
climate modelling. Datasets on seismic velocity as time series can be used for monitoring
volcanoes. Moreover, retrospective analysis of the old seismograms enables to model
earthquake cycles as a continuous process and to gain deeper insights into the physics
of the Earth. Finally, the interpretation of the old seismograms provides an important
information for the long-term prognosis. For instance, datasets on earthquakes, including
locations and magnitude, are essential for predictive modelling [58].

Such analyses are largely based on the retrieval of information from the digital seis-
mograms [59]. However, the use of such information relies heavily on our access to large
historical datasets of seismograms. While paper-based seismograms archived in observato-
ries contain valuable scientific information, they are not suitable to reuse in data modelling.
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In contrast, seismograms in vector format present uniformed and standardised data collec-
tions in digital format that can be accurately processed. Processing such datasets enables
to explain the physical nature of the ground motion signals from the Earth’s interior. The
updates of such datasets depends on the accurate and standardised recording systems
using commonly accepted and approved instruments (seismometers and seismographs)
with products that remain consistent through the decades of operation [3].

1.3. Related Work

The first attempts to digitise the analogue recordings of seismic events and convert
the data into numeric format started in 1960s. An ad hoc algorithm of thinning the lines
on scanned seismograms and converting the image into a 0–1 digital matrix was devel-
oped by [60]. Another study used a device initially designed for weather maps and
adjusted for automatic converting of seismic signals into a digital form and plotting them
using a cathode-ray tube display [61]. The progress of digitising signals accelerated in
1980s [62,63] and 1990s [64–69] along with the increase of the computer-based algorithms
and developed geophysical software. The digitising approaches have become more and
more automated since 2000s, along with a rapid development of the programming lan-
guages and IT tools [9,70–72].

Recently, the use of the automated digitisers of seismograms instead of the manual
vectorisers has received much attention. They enable vectorising the recordings of the
acceleration of the strong motion ground. The advanced algorithms include the automated
recognition of noise [63], handling smooth and wigged traces for tracing waves [70],
synchronisation of the time scale for the three motion components, handling scratches,
distortions or line crossings on the image, and adjusting rotated position [73].

Digitising old seismograms is a not straightforward task. Often the problems are
caused by the recording methods in old mechanical seismographs. For instance, high
velocity of stylus that does not touch the paper, clipping of amplitudes, low-contrast dark
background on smoked paper, records damaged over time due to bad storage conditions of
paper [74], to mention some of them. At the same time, the digitising process should be as
automated as possible, to avoid human-induced errors. As a response to these needs, vari-
ous programs for automatic, quick and accurate digitising and modelling of seismograms
were developed. The advances in pattern recognition are supported by rapid growth of pro-
gramming languages [75–79], and specifically, Python [80–82], improvements of algorithms
of ML for image segmentation and clustering [83–87], and signal processing [88,89].

Pattern recognition is a key basis for digitising seismograms using in many existing
software. For example, the Teseo [90] traces raster files using cubic Bézier curves handling
monochrome images by a combination of manual and automatic methods and neural
networks. A software using C# uses an algorithm of colour scene recognition by Color
Scene Filed Method [91]. A MATLAB-based program used algorithm of inversion problem
for a matrix of model parameters and observed seismic data [92]. Another example of
seismic software, the SeisDig, developed by Berkeley Seismological Laboratory, presents an
interactive MATLAB-based tool which performs trace inspection, checks time conservation,
recognises events and inputs metadata header [93]. An approach to seismic recording
is presented in DigiSeis [94] aimed at digitizing signals using a built-in PC sound card
for signal processing. It visualises the two-channel seismic data in time and frequency,
and performs time series analysis. Extracting wave data from paper seismograms was
attempted by [95] with a seismogram digitization and DB management system using
Delphi3 approach based on Pascal.

1.4. Contribution

As a response to the needs for accurate vectorising of old archived seismograms, the
goal of our study was to perform a digitisation of seismic traces contained in historical
seismograms. To this end, we applied the DigitSeis software [96] for semi-automated
vectorising of seismograms. The aim was to convert an existing large historical collection
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of seismograms archived in Royal Observatory of Belgium (ROB) from raster format
into a vector format using advanced technical functionality of machine processing in an
automatic and accurate way. The dataset included over 140 scanned raster images in TIFF
format which were converted into the digital MATLAB output with generated .mat format
files.

The objective was to update the historical dataset of the old seismograms recorded
at Uccle station in 1954 by the Galitzine seismometer. We scanned the large volume of
archived seismogram data and vectorised the files using DigitSeis. Our study contributes
to the maintaining methods of vectorising archived seismograms for information retrieval
and analysis. We also identified the limits and possibilities of the vectorisation tools to
propose a framework of using machine methods for geophysics and seismology.

The proposed framework benefits from simple, efficient pixelwise processing of ana-
logue paper-based seismograms, which is easily amenable to various data formats. More-
over, the use of DigitSeis does not require the pre-processing of time gaps and marks,
initialization strategies, neither has smoothness constraints with regard to image resolution.
Other advantages include the adaptability to structure of recorded papers and easy recog-
nition of seismic traces, including fine details. Consequently, our approach is not biased
by instability for the dataset containing seismograms recorded by the same instrument
(Galitzine), and we do not have difficulty handling materials with varying records, e.g.,
records containing noise or high-frequency waves. Extensive experiments on vectorised
seismograms shown that our implementation using robust algorithms of DigitSeis produces
stable, accurate, and efficient vectorisation of analogue seismograms.

2. Materials and Methods
2.1. Study Area

The study was performed in the Université Libre de Bruxelles, École Polytechnique de
Bruxelles, Laboratory of Image Synthesis and Analysis (LISA), Belgium. We used archives
obtained as a courtesy of ROB, Department of Seismology & Gravimetry, UCC, Figure 1.
The data processing is performed within the framework of the SeismoStorm project.

Figure 1. Study area: Location of Uccle seismic station, ROB on the topographic map of Belgium.
Software: GMT version 6.1.1, creator: P. Wessel et al. [97], University of Hawai’i at Mānoa, Honolulu,
HI, USA. Cartography source: authors.
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Established in 1899 by Eugène Lagrange, Uccle was the only seismic station in Belgium
for the most of the 20th century. Afterwards seismic monitoring gradually expanded to
a larger seismic network system of Belgium [98]. Nowadays, the Royal Observatory of
Belgium (ROB) located in Uccle remains an important centre of Belgian seismic network.
It collects seismic data from 28 measuring stations of Belgium and Luxembourg, and
maintains the archiving of the seismogram database.

2.2. Instrument

The dataset obtained from the Galitzine seismometer was processed using the DigitSeis
vectoriser. The original seismograms have been received from UCC using the Galitzine
seismometer, Figure 2. It is the 1st electromagnetic instrument developed by B.B. Galitzine
in 1910 (Figure 2) [99,100], designed to record a single component (horizontal or vertical)
for earthquake recording [101]. This type of seismographs is constructed using a following
principle: a coil of wire is fixed to the pendulum which oscillates between the poles driven
by the earthquake forces. The movement of coil between a strong magnet generates an
electric induction current. The current is being transferred to a sensitive galvanometer to
direct a beam of light onto the photographic paper which visualizes the strength of the
signals [102].

Figure 2. Instrument used for data capture in 1954: Horizontal Galitzine seismometer located in UCC.
Image source: courtesy of ROB. Photo source: R. S. M. De Plaen.

The structure of the Galitzine seismometer is presented in Figure 2. The pendulum (at
the front), consists of a mass suspended by the two wires. It includes several parts: copper
plate fixed on the rod next to the coil; electromagnetic seismometer with a coil attached
to the arm of the pendulum which oscillates in a magnetic field between the poles of a
magnet (at the back) and generates an electric current by induction; Foucault current for
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damping; horizontal component (7 kg); tracing device with an optical recording system
which includes a photographic paper and a galvanometer mirror with a mobile frame; and
the speed settings with a period of 12 s.

B.B. Galitzine improved the accuracy of the seismometer by reducing the sensitivity
of the system through diverting a part of the current. Thus, the Galitzine seismome-
ter includes the two special features: (1) Damping the resistance to the galvanometer;
(2) Damping the seismometer pendulum through the cumulated effect of a magnetic
damping device and the external resistance to the pendulum coil. Due to such effec-
tiveness, this principle is widely used for seismic measurements by the Galitzine-type
seismometers [103].

2.3. Workflow

The general flowchart scheme for data processing is shown in Figure 3. This study
is based on integrating the approach which combines several methods. The data were
collected from the archives of ROB as historical seismograms recorded by the Galitzine
seismometer in 1954. In 2021, the data were scanned in A0 format in a very-high resolution
(600 dpi) and saved as TIFFs which were imported to DigitSeis and converted into 8-bit
native HSV format.

Figure 3. Conceptual flowchart for the technical process. Plotting: PlantUML.
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The next steps included stepwise data processing in DigitSeis. The pre-processing
included image loading, measuring time gaps and navigating selected segments. The
object classification included the setup of image threshold, marking time parameters and
exploring small regions for detailed trace analysis. Major steps included vectorisation,
digitising. Finally, the post-processing of data consisted in converting the output files into
the .mat format. Most of the traces were well recognised by the algorithms of DigitSeis
during digitising, while selected segments required interactive corrections which were
repeated iteratively for each seismogram. The results of DigitSeis data processing shown a
relatively good recognition of lines and traces. The validation of data was performed for
the exported files.

The digitised seismic traces present a series of traces with time gaps identified semi-
automatically. The files were converted into .mat format and processed as the next steps
using Python. The Matplotlib library was used for post-processing steps and quality control.
We analysed the repeatability of the segments broken by DigitSeis and visualised the
received vector traces as separate plots. We checked the time ticks which were automatically
recognised by the program per minute using time gaps, and segments of the lines.

2.4. Data

The dataset received from the Uccle station presents a large collection of scanned
paper-based seismograms with selected examples presented in Figure 4).

(a)

(b)

(c)
Figure 4. Cont.
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(d)

Figure 4. Examples of the raw data: old analog seismograms recorded by Uccle seismic station,
Belgium, 1954, scanned and saved as TIFF files. Some images have visible distortions and de-
fects. (a) Empty records between the lines of seismic traces with enlarged fragment of seismogram.
Here: UCC19540106Gal_N_0811.TIFF. (b) Partially spotted image caused by storage with enlarged
fragment of seismogram. Here: UCC19540107Gal_N_0815.TIFF. (c) Continuous noise dark back-
ground on the image with blurred traces which causes lack of contrast for the automated image
recognition. Here: UCC19540108Gal_N_0815.TIFF. (d) Overlapped traces of a very large event
which cause a problem during vectorising with selected enlarged fragment of seismogram. Here:
UCC19540112Gal_E_0750.TIFF.

The images are stored as TIFF files which present a matrix of 2D arrays of pixels. Each
pixel is represented by a corresponding number of grayscale [104]. The images were stored
at a resolution of 300 dpi, ca. 350–400 MB size each, in 256 B/W monochrome scales. The
standard format of all the images ensured the integrity and compatibility of the whole
dataset used for data analysis. The resolution of 300 dpi was considered enough for the
ambient seismic noise analysis, even though some files were originally saved at 1200 dpi.
The records from the Galitzine seismometer are monochrome while those of Wiecherts are
stored in color.

The dataset included a collection of 145 images covering the period from 1 January
1954 to 12 March 1954. Some of the images are well preserved, while others have distortions
and defects visible on the aged paper, Figure 4. The scanned images of old seismograms
have different features and characteristics, which increase technical difficulties of processing
such data: line breaks, distortions, defects, blurred lines, spots, etc. For instance, some data
had defects due to the record imperfectness or various cases related to storage. Oftentimes,
the traces are slanted as shown, e.g., in Figure 6, while others appear more horizontal, see
Figure 7. This is basically caused by the physical features of spiral recording by a rotating
drum of the seismometer. Technical tasks concerned the quality of the recordings on such
data with each individual seismogram and challenges to the semi- automatic recognition of
traces on the old scanned paper.

2.5. Software and Workflow

The software used in this study included DigitSeis, a MATLAB based software for
processing analog scanned seismograms [96]. We followed a structured workflow for data
processing, Figure 5.
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Figure 5. Pipeline schematic diagram for workflow process for vectorising seismograms.

We used the DigitSeis software version 1.5, developed by Bogiatzis, P. and Ishii, M.
from the Department of Earth and Planetary Sciences, Harvard University, Cambridge,
MA, USA. The DigitSeis is developed as an instrument for digitising scanned seismograms.
It extracts the data from the seismograms and processes them as an image matrix. The
DigitSeis converts scanned raster images of analog seismograms from the original TIFF
format into the convenient digital format using algorithms of signal processing. The ap-
proach of the DigitSeis is based on the principles of semi-automated algorithms of signal
processing as time series. It applies minor human supervision, mostly for the adjust-
ment of the functionality in selected process steps and for monitoring technical workflow
(Figure 6).

The workflow of seismogram vectorisation by DigitSeis can be summarised in five
major steps as follows: (1) Image preprocessing; (2) Identification of time marks and traces;
(3) Image vectorising and classification; (4) Trace correction and control; (5) Timing and
conversion (SAC).

An algorithm embedded in DigitSeis uses trace analyses which enables to track the
lines and to record their values using time gaps. We applied this method to identify traces
on the scanned TIFF files of seismograms and processed them by a semi-automatic detection
of lines and distortions. The latter include, for instance, broken lines, spots, repetitive gaps
on the series of lines. The digitising was adjusted with aim to distinguish the skeleton
of lines, similar to the ‘0–1’ matrix, using methods of colour recognition on the image.
However, the directions of vector lines present another task that can only be solved using
the advanced analysis of the geometric trend of the trace by the automated tools. The
thickness of the traces and the time gaps were considered for each 30-min line on each
seismogram.
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(a) Original seismogram (UCC19540109Gal_E_0812.tif)

(b) Seismogram processed by DigitSeis

Figure 6. Seismogram recorded from Uccle station on 9 January 1954.

2.5.1. Image Preprocessing

First, the images were loaded into the program as TIFF files and converted into the
native 8-bit HSV formal of DigitSeis. The intensity of the monochrome images is either 0
(black) or 255 (white) in terms of grayscale. Visually, the image contained white traces of
the measured seismic signals over a black background (Figure 6). In the selected images
with limited data and large dark background, the areas of interest were cropped in order to
reduce the space without traces and to select only a part of image to test a smaller space
area of interest (Figure 7). The resulted analysis was saved continuously throughout the
workflow into a in the binary data MATLAB format as a .mat file.
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(a)

(b)
Figure 7. Analysing seismogram in paper-based format: traces and time gaps. (a) Original scanned
seismogram (UCC19540116Gal_E_0820.tif). (b) Enlarged fragment of image showing time gaps which
indicate minute marks and a zoomed segment separating the trace line between each other with tiny
white gaps breaking the traces.

2.5.2. Identifying the Time Gaps

The interpretation of seismic reflection signals involves the identification of the arrival
times recorded in the time markers or gaps. This is important step, because the exact
determination of time and coordinates of the signals is essential in seismology.

Therefore, we evaluated the 1-s time mark dimensions which show the breaks of
the line along its course. The recording contained the time marks at every minute.
The whole line represents, on average, 30 min intervals of the ground motion signals
(Figure 7). On the original TIFFs of the seismograms, the time is marked according to the
UTC time and most of the times is recorded at 30 mm/min. Marking time was performed
by measuring width and the offset of gaps in the traces and recording the values in a menu
bar. The time intervals on the seismograms can be represented in two ways: time marks
(small vertical dashed lines) or time gaps (small breaks between the lines). In this study, we
only had time gaps due to the technical specifics of the Galitzine seismometer. In DigitSeis,
the time marks are indicated as positive numbers, while time gaps—as negative ones.
Therefore, in our case the time intervals were indicated as negative numbers, Figure 8.
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(a)

(b)

Figure 8. Classification of seismogram processed by DigitSeis. (a) Identifying the time
marks on seismograms by measuring time gap between the records. Here: example on file
UCC19540119Gal_N_0825.tif. (b) Indicating the time marks on seismograms as −22 and preparing
image for the classification.

Identifying the time gaps is a preparatory step prior to classification. It is a necessary
step because time marks are used to properly identify the breaks between the signal traces.
In our dataset, the seismograms had only gaps as time marks, therefore, we only needed to
identify traces as necessary objects. To receive the accurate mean measurement values, we
indicated time gaps from −22 to −20, to ensure that smallergaps are included, Figure 9.
After the time mark width was defined, the signals were prepared for classification. The
traces were identified based on the analysis of areas of the colour contrast in a monochrome
scale and recognised the position of traces. We considered the curvature of traces and
measured the time gaps according to the path direction. As a result, vertical time gaps
were identified for which the threshold number was set in a such way that it was enough to
include the individual traces with smaller (or less distinguishable) gaps. Once we identified
the time gaps, the seismograms were ready for the next steps of classification.
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Figure 9. Threshold parameters for seismogram classification in DigitSeis.

2.5.3. Classification

The aim of the classification algorithm is to discriminate the traces from the time
marks and noises, and to perform a complete object recognition, that is, all objects are
to be classified and assigned to the correct category of classes. The image threshold for
classification was set as 82, Figure 9, representing the minimum intensity value of a pixel to
be included in classified objects. In our case, 82 was appropriate number for moderately
clear images and thin lines. The image threshold minimized the number of misclassified
pixels compared to other values, that is, the distributions of the grey level values in pixels
is best distinguished by these values, which makes up the object of seismic lines well
separated from the background of the seismogram. After we compared other values of the
image thresholds, we noted that the level of 82 well separates the lines of seismic signals
(as foreground pixels) from the scanned paper as background pixels. Thus, the empirical
selection of this value improved the results of image processing.

The threshold parameters for seismogram classification in DigitSeis includes several
values. The image threshold is set to 82, as explained above.

The time mark width indicates the distance between the tiny marks representing
minutes. Since they vary in different seismograms due to the individual paper records of
each seismograph, the width is detected manually on the screen. The lowest value was
selected to ensure that we do not skip the possible cases. The time mark offset is an option
useful for the seismograms where traces are interrupted each minute by an offset time
mark. In our case, we did not have time marks; instead the minutes are indicated by gaps
repeating each minute as tiny pauses in the recording. The object thickness represents a
natural width of the line recorded by a drum, which is visible on the paper and detectable
by a computer vision algorithm. In this case, we had a value of 25 pixels, Figure 9.

The Classification was performed using the ‘Classify Objects’ tool of DigitSeis where
the objects on the image were classified into 2 categories: ‘traces’ and ‘noise’. In our
case, we did not have time marks, but time gaps instead. In some cases, noise objects
were misclassified into the ‘trace’ category and vice versa. Therefore, their categories were
adjusted manually and corrected to the appropriate classes using the ‘Change Classification’
function. Here the traces separate the segments in a seismogram interrupted by the time
gaps.

These time gaps identify minute intervals in traces which are necessary to calculate
timing. The noise includes all the irrelevant objects and annotations on the seismograms,
e.g., spots, handwritten texts or annotations, usually placed on the edges of seismograms.
Using ‘the Classification’ tool, we converted the image from the raster TIFF format into the
vector binary format and classified scanned image into a set of objects with the two main
categories: (1) traces; (2) noise, see Figure 10. This dataset did not have time marks, but
time gaps instead; otherwise we would have a third class of objects—‘time marks’. The
classification algorithm performed the partition of the image into classes and assignment
of pixels into each categories, respectively.
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(a)

(b)

Figure 10. Results of the paper seismogram classification processed by DigitSeis. (a) Results of the
classified seismogram with shown identified object categories (fragment): traces (white) and noise
(red, here: handwritten annotations). (b) Small region analysis used for defining a smaller area of
interest for closer examination of a border region of the seismogram.

The algorithm of classification identified lines and traces, and discriminated them from
noise and time gaps. The results of the classification include two types of objects: traces and
noise, coloured by red or white, where red signifies noise (not used in the vectorisation) and
white—traces (signals of the ground motion, i.e., the majority of objects on the seismogram),
Figure 10. Combining separate segments of the traces was performed using the crosshairs,
Figure 11b. The classification settings were adjusted using the Classify Objects function
of DigitSeis, in order to make the automated processing smooth and accurate (Figure 11).
In this way, the procedure of image processing generated a pixel matrix for the traces by
scanning the whole image.

The analog seismograms almost always include imperfectness on the old paper, e.g.,
handwritten annotations, gaps in data, damaged parts of the records. Other issues arise
from the technical nuances caused by the seismometer instrument and the process of signal
recording. Therefore, to ensure the detailed selection of objects, a closer analysis of the
selected parts of the seismogram was performed using the ’Small Region Analysis’ function,
as shown in Figure 10b. As a result, traces, time gaps and noise were all classified more
accurately as a prerequisite for the next step of digitising.
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(a)

(b)

Figure 11. Results of the scanned seismogram classification processed by DigitSeis. (a) Results
of the classified image with shown yellow segments of the identified trace (enlarged fragment).
Here: example of file UCC19540109Gal_E_0812.tif. Yellow color signifies a selected segment on the
trace line.(b) Classified seismogram with traces saved in binary format 0–1. Here: example of file
UCC19540109Gal_E_0812.tif (seismogram recorded on 9 January 1954).

3. Results
3.1. Vectorisation

For vectorisation of lines, DigitSeis uses a mathematical algorithm of the ’golden-
section search’ which is based on the nonlinear optimisation approach. The principle
consists in finding an extremum (min/max) of a function inside a given interval [105,106].
Thus, it lessens the amplitude of the first derivative of the combined trace according
to the relative vertical shift between the seismic trace and the time gaps [96]. The vec-
torisation was obtained using the embedded algorithm of DigitSeis with selected exam-
ples of digitised seismograms shown in Figure 12. Figure 12a shows the vectorisation
for the whole seismogram, where many segments were identified correctly, while oth-
ers required additional interactive manual corrections as encompassed in yellow boxes.
Figure 12b visualises the enlarged fragment of the same seismogram with automatically
identified traces with curvatures and time gaps.
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(a)

(b)

Figure 12. Results of the paper-based seismogram vectorisation processed by DigitSeis. (a) Digitised
traces upon completion of the automated vectorisation. Some time gaps in the upper left part of
the image were too small and not clearly visible for the automatic discrimination between the trace
and the dark background. In these cases, gaps required manual correction to identify time intervals.
(b) The enlarged view of the automatically recognised digitised traces displayed by the lines of
various colours, zero-lines for each trace (cyan, dashed lines, numbered from top to bottom) and time
gaps (vertical yellow dashes).

To make the digitising workflow more effective and accurate, the images were zoomed
for the enlarged analysis. The example of the processed image taken on 9 January 1954
(UCC19540109Gal_E_0812.tif) contained 45 traces with numeration from top to bottom,
each horizontal line corresponds to the 30 min of measurements, Figure 12. Thus, the
whole image shows seismic situation for 24 h taken during 9 January 1954 (for the case of
UCC19540109Gal_E_0812.tif).

The complete processing of each seismogram required ca. 30–40 min for each im-
age. However, the time varies individually with the most time-consuming manual tasks
including the individual adjustments. These are required for each paper when deal-
ing with noise issues, e.g., detection of noise signals and deleting them from the image.
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Manual corrections tools required additionally approximately, 10–15 min for each case,
which also varied individually depending on the complexity of the scene. Another issue
is a check of the width of time gap which was adjusted for each seismograms manually.
Based on our experience, manual processing required time and the complete procedure
took about 40 min for a seismogram. As a result of the semi-automated data processing, the
seismograms were vectorized accurately and converted to the .mat format. To minimize
this time and to improve the process, more machine learning components could be added
for the next versions of the program, as a recommendation of the improvement of software.
This could include, for instance, a better detection and exclusion of noise signals such as
automatic recognition of the annotated handwritten notes which are often present on the
old paper-based scanned seismograms.

3.2. Post-Processing: Correcting Traces

The majority of traces and time gaps were well identified using the DigitSeis in
a semi-automatic mode, except for the selected lines that required manual corrections
in an interactive regime. Some of such traces on the images were classified wrong.
Figure 13 illustrates how the discriminability of trace lines against the background se-
lected by the golden-section search is performed using the method proposed in DigitSeis.

In most of the cases, they were located in the difficult segments of the image where the
program could not recognise selected traces correctly using algorithms of machine vision.
These difficulties were caused by the entangled path of the lines that could not be discrimi-
nated automatically and separated from noise and resulted in obvious misclassification
cases that were corrected manually. Figure 13 shows the cases where the machine could
not recognise the correct path of the line. This resulted in erroneous digitising and required
manual corrections of the parts of images that contain gaps, shows as yellow boxes in
Figure 13.

(a)

Figure 13. Cont.
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(b)

Figure 13. Identified traces for selective correction and re-digitising using Correct Trace mode.
(a) Identified wrong vector direction of line crossing individual traces. (b) Detected misclassifications
caused erroneous digitising. The gaps on the zero-lines (small yellow boxes) show the gaps that
existed in the old paper in the original image itself. Differently colored lines are used to distinguish
the segments of the traces.

Correcting the traces in each seismogram was performed using the ‘Correct Trace’
mode of DigitSeis. The identified traces were examined in an enlarged view (Figure 14)
and the lines were then manually adjusted. The misclassified traces were corrected semi-
automatically and the image was re-digitised. In such cases we identified the location and
the problem of the erroneous seismic traces on an image and classifies them anew in the
segments. We used the magnifying tool for enlarging a small portion of the trace in a reclas-
sification window, Figures 14 and 15. First, we identified traces that required correction,
and then corrected the line accordingly. Afterwards, the updated trace information was
integrated to the whole line of trace in each case. Some of such segments were manually
changed in the misclassified traces and the types of the objects were corrected in these
cases, e.g., annotations on the edges of paper have been assigned a category of ’noise’.
Visual inspection was performed upon the re-classification.

(a)

Figure 14. Cont.
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(b)
Figure 14. Correcting misclassified traces with wrong direction based on colour and geometric pixel’s
characteristics. The pixels on the monochrome image were assigning to categories using threshold
values to 1 (white) and all other pixels to 0 (black) for automated detection of lines. The differently
colored lines are used to distinguish the segment of trace lines. (a) Overlap of line traces unrecognised
during digitising: one segment of trace went steeply downwards and merged with another trace.
(b) Enlarged view of the manually corrected entangled traces.

A certain limitation is that our method using DigitSeis does not consider overlapping
cases of the seismic traces with high level of signals where amplitudes of the trace lines
may exceed the width of the 30-min track in a paper space, and thereby may confuse
different steps of vectorisation that should be adjusted manually. For example, the cases
demonstrated in Figure 14 have the two overlapping traces where the algorithm of DigitSeis
could not recognise the line correctly and the line was interacted manually with vector
segments corrected by hand.

Other misclassified segments are presented in complex regions of seismograms with
overlapped traces where the corrections required manual adjustments. Graphical represen-
tations of the encountered problems and complicated cases are illustrated. Since correction
of these cases is a time-consuming process, without taking account for overlapping neigh-
bouring traces the processing of larger dataset becomes difficult. This may confuse the
interpretation of the seismic signals and result in misinterpretation. Consequently, accurate
vectorisation requires automation for more distinct recognition of the skeleton of the target
trace lines. In our future work, we are going to investigate the modelling of trace lines in
seismograms using algorithms of Python in order to facilitate the recognition task.

The vectorised traces were then highlighted by random colours and corresponded to
the traces in the image, Figure 16. The vectorised curves of traces were optimised by the
approximations with the minimum distortion of the line by spline functions. The results
of the processing of the classified image Figure 17a are presented as a digitised vector
image with the distinct coloured traces and minute time gaps randomly coloured on the
digitised image, Figure 17b. Correcting the classification of traces was a necessary step
before vectorisation.
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(a)

(b)
Figure 15. Correcting trace for the selected segments. (a) Merging the trace initially broken into
the three separate parts (three small yellow boxes). (b) Reclassification of the selected segment and
digitising the centroid of the trace line.

(a)

Figure 16. Cont.
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(b)
Figure 16. Corrected digitised traces upon completion of the semi-automated vectorisation.
(a) Corrected digitised traces upon the completion of the semi-automated vectorisation process.
(b) Visible SDT lines (bold) after the semi-automated vectorisation.

(a)

(b)
Figure 17. Classified image (a) and digitised results (b). Here: UCC19540311Gal_E_0727
(11 March 1954). (a) Classified image recognised by DigitSeis into ‘traces’ and ‘noise’ (Here: the image
UCC19540311Gal_E_0727.TIFF). (b) The distinct coloured traces and minute time gaps are visible on
a digitised image (Here: the resulted file in a MATLAB format, UCC19540311Gal_E_0727.mat).
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In general, the automatic tracing of lines by DigitSeis performed well for the segments
with low amplitude of seismic signals that do not cross each other. For the cases where
traces overlap and interest due to the seismic-phase arrivals, large amplitudes cross the
neighbouring traces. In this cases we corrected the truncated waveforms manually, as
explained above. We used special tools allowing to pick up the trace, correct its vertical
extent, and separate it from the neighbouring lines by manually removing the parts of the
segment that were erroneously classified to the given trace. Using zooming, we isolated
the segments of the seismic lines and repeated the classification process, followed by the
time identification and vectorisation.

Manual correction during the vectorisation process was performed by tracing down
a line in a selected segments where merged regions were separated manually and lines
directions were corrected along the necessary fragments of trace. Selected polygons were
assigned manually by vectorising using modality in the ’Correct Trace’ function, Figure 15.

3.3. Timing and Converting

After all the traces were digitised, the time was calculated using the ’Calculate Timing’
function, Figure 18. The time calculation properties were setup using a menu, where the
program asks for the default time and time increment. In the demonstrated case, it is on
9 January 1954, Figure 18a. Thus, we defined the absolute time for one record as a reference
point which was then highlighted in red. The basis of setting the reference time point is
according to the metadata presented in each seismogram.

When originally recorded, the analog seismograms included the information regarding
the date, hour and minutes of the start of seismic recording. This original information of
time series data from the digital records of Uccle station was copied and used to set the
reference time. For the setup of time marks, we identified the time gaps that correspond
to the beginning of each minute and provided the absolute time using a special menu,
Figure 18b. It included the time in HH:MM format and year-month-day period that exist in
each seismogram. The time and date associated with the time mark were then entered, and
the time marks were recalculated, Figure 18c.

(a) Time calculation process
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(b) Timing setup using time display increment

(c) Time markers at 1-min intervals on each 30-minute trace

Figure 18. Seismogram image with adjusted timing. Here: UCC19540311Gal_E_0727.mat.

The duration for the most of the lines was 30 min, and the seismograms were recorded
by a drum of the seismometer in one day. So, we indicated the time between the gaps in
seconds, and the program drew the gaps (visible yellow vertical dashed), Figure 18c and
in the enlarged view, Figure 19. The time markers were visualised using the time gaps
classified in a previous step and measured automatically using a threshold. Afterwards,
the resulting data were exported into the MATLAB format, and saved as the .mat files.
In MATLAB environment, the vector files were opened, checked and overlaid over the
scanned TIFF image, respectively. The resulting files converted into MATLAB contained
vector lines as traces, that is, included information received in DigitSeis. The converted file
included the vectorised image with traces, its classification structure with segments and
parts of the lines and time gap breaks. Therefore, a special value of the DigitSeis consists in
its compatibility with MATLAB and possibility of further reuse of the processed files in
other tools, such as Python. In this way, the vectorising workflow that we performed using
DigitSeis is a continuous procedure can be smoothly integrated and exported to another
software as a stepwise chain of the separated processes.
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(a)

(b)
Figure 19. Fragments of the digitised image (Here: UCC19540311Gal_E_0727.mat) (11 March 1954).
(a) Scanning of trace lines on the digitised image (Here: UCC19540311Gal_E_0727.mat). (b) Separation
of traces and time gaps by filtering (time gap setup as ’−12’ in this case).

3.4. Validating the Results Using Python

To evaluate the discriminating functionality of the seismic traces by DigitSeis algo-
rithms over the dataset, we validated the results and performed the quality control of the
digitised traces using Python [107]. The Matplotlib library [108] was applied for export
and graphical visualisation of the MAT files. For tuning the parameters of the digitising
process in the next series of recording, we performed the post-processing of the result using
graphical visualisation and the analysis of the performed vectorisation by exporting the
files in MAT format into Python, Figures 20 and 21.
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(a)

(b)
Figure 20. Controlling digitising results using Python (Matplotlib library). (a) Quality control for
time gaps: missed marks in unrecognised segments. (b) Correctly identified time gaps controlled
by Python’s Matplotlib. Different color dots are used to separate minute marks (green), hour marks
(blue) and margin values and outliers (red).

The length distribution of the segments imported is represented in Figure 21, the
peak correspond to the typical frequent segment length Styp (approximately 1415 pixels
in our setup for 59 s of recording). We arbitrarily keep as valid the segment inside the
range [0.8 ∗ Styp, 1.1 ∗ Styp]. The starting position of these segments is represented as
the green dots in Figure 20a. From the distribution of the short invalid segments, as
shown in Figure 20a, we can identify small segments corresponding to the typical hours
marks length Htyp (around 210 pixels here). The valid hours marks are considered in the
range [0.9 ∗ Htyp, 1.1 ∗ Htyp] . The respective graphs are presented for the seismogram
UCC19540311Gal_E_0727_280.mat taken on 11 March 1954, Figure 21c,d.
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The starting position of the hours segments is indicated by the blue dots in Figure 20.
Most of the hours marks are aligned, because of the rotation speed of the main drum is
two per hour. Some marks have the same length which is also presented in the border and
noise segments. By looking to the colour dot distribution, it is possible to check the overall
quality of the detected segments.

The misclassified pixels were induced by the distortions of paper which caused the
erroneous recognition of pixels in the edge of paper (red dots). Such pixels are classified
as noise in the segments of trace in a way that it erroneously depicts the edges of seismic
trace, as shown in Figure 20. The average length of segments was divided automatically by
DigitSeis, and then evaluated and visualised by Matplotlib, Figure 21.

(a) (b)

(c) (d)

Figure 21. Validating the results of segments tracing in Python, Matplotlib for selected seismo-
gram. (a,c): Frequency of segment length: size of various segments in a trace. (b,d): Analy-
sis of statistics on segment length per hours of recording. (a,b): UCC19540109Gal_E_0812.mat
(c,d): UCC19540311Gal_E_0727_280.mat.

Seismic traces and short time gaps were classified based on their geometrical charac-
teristics and threshold. Therefore, the quality of scanned paper may affect the automatic
recognition and interpretation. For instance, some segments were merged into one con-
tinuous line, while others were broken apart. Figure 21 illustrates the analysis of the
performance of DigitSeis in vectorising the segments of a trace for the two examples
(UCC19540109Gal_E_0812.mat and UCC19540311Gal_E_0727_280.mat): the average length
of the identified segments of seismic lines as ’trace’ and the frequency of the segments per
hour, respectively.

Seismic lines were separated into the segments, according to the traced lines
(a 30-min trace on each seismograms) using algorithms of DigitSeis. The program searched
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for the correct path of the line and zero-lines using the defined parameters of the skeleton
of line. Separating the traces and noise from the time gaps and the background on the
paper was performed automatically. Therefore, screening and examining each pixel of the
raster image was performed through the defined classifier thresholds which resulted in
variations of selected segments of the traces.

The parameters for image classification included image threshold at 82% and the
time mark width for gaps as −12 (in some cases up to −22, depending on the quality of
scanned paper). The setup parameters included threshold and intervals of the time gaps
corresponding to the minute marks made by the drum of the seismometer. Some gaps were
identified better, while others were blurred, Figure 20. As a results, the discrimination of
the traces varied based on the admissible properties using image thresholds, as assessed by
Python, Figure 21.

4. Discussion
4.1. Summary

We have introduced a classification driven approach of DigitSeis for processing analog
seismograms from the collection of ROB. Using the functionality of this program, we
presented a workflow on dataset processing with seismograms containing time gaps.
Object features, automatically detected on seismograms, were extracted from raster images
using algorithms of image classification by DigitSeis. The derived vector file contained
classified objects such as segments of line traces, noise and time gaps. The algorithms of
DigitSeis processed well relatively large files (each scanned seismogram has a size of ca.
350–400 MB) and converted these data into .mat files.

The process of classifying and digitising paper-based seismograms is based on recog-
nising the features of the scanned objects such as lines and handwritten marks classified as
noise. The major principle of DigitSeis consists in classifying the training lines (traces of
seismograms) based on the decision according to the threshold test. For instance, we set up
experimentally the time gaps from −22 to −12 to indicate the small distance breaking the
minute marks, which was used to identifies all those gaps throughout the image. Based on
the setup parameters of threshold, the objects on seismograms were identified stepwise on
the whole image.

This workflow classified the image and digitised the objects in a semi-automated
way. The results were converted into the .mat format. However, certain segments of the
lines required manual tracing the paths and corrections, as demonstrated previously. The
most complicated cases of the overlapped traces were corrected separately using visual
characteristics of these segments to discriminate the traces from noise signals. Such areas
were zoomed as the selected enlarged areas on the seismogram and corrections were
performed manually using a crosshair. Specifically, we identified broken segments, crossed
directions of the lines and overlay in traces. using the described workflow we vectorised
the seismograms from the archives of the ROB and converted them from raster into vector
format.

We presented a practical application of DigitSeis software for digitising scanned
historical seismograms in a semi-automatic regime. We note that while using a good
digitiser is a major task of any seismological research, there are still more algorithms
that need to be adjusted for a fully automated system of classification and digitising of
seismograms. Processing seismograms is an essential part of geophysical research having
its specifics compared to simple images: minute time marks made by the drum, seismogram
timing, recognition of line directions, smooth data conversion, etc. Our goal was to present
here a practical application in signal processing by DigitSeis using dataset on historical
seismograms with time gaps.

4.2. Limitations

A limitation of our work is that we need to label all the attributes (time gaps and
traces, deleting) in each seismogram, specify the noise on the background paper, check
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the segments for misclassification issues, correct the overlapped traces and control the
identified traces manually. This is a time-consuming process and we need to acquire this
for each processed seismogram. This limits the speed of data processing in case of big data
issues and overall limits the scalability of our method for novel dataset. In this paper, we
have proposed a DigitSeis solution to perform the vectorising task by converting scanned
images in raster format into vector format. Since the output format was compatible with
Python we processed data using Matplotlib library as a separate step. For a fully automated
data processing and rapid building of big data corpus of digitised seismograms, we propose
to use the advanced solutions of ML techniques in similar future works. As an example for
this, we suggest a ML solution of combining DigitSeis with Python.

Using a fully automated methods of data-driven algorithms, for instance by Python,
may improve the performance of vectorising model without human-specified manual
adjustments of data processing, as was the case in our work. Therefore, one direction
for our future work is to use the programming techniques to apply the algorithm of
vectorization using learned attributes of seismograms (time marks/gaps, width of vector
traces) for a big corpus of data. This would improve the speed and effectiveness of big
data processing which is the case of large archives and libraries, such as ROB. Thereby,
one can reuse the algorithm using attributes of seismograms to detect similar features
on a new dataset without time-consuming work on identifying and labelling attributes.
Thus, machine learning techniques of programming should be developed to adaptively
determine the optimal parameters in the seismograms using attributes selected as model.

4.3. Future Directions

In the future work, we intend to increase our database with scanned images from
other periods, due to the importance of the archived seismograms. Past seismicity of the
Earth, climate modelling, exploring the atmosphere-ocean-solid earth interactions, are some
of the examples of many cases and applications in geosciences where scanned historical
seismograms can be used. Archives of seismological observatories containing records from
the pre-satellite period are a crucial source of information for such tasks. To fully utilise
the potential of historical seismograms, the abilities and advantages of modern digitising
systems should be used. In our research we demonstrated the functionality of DigitSeis
applied for the vectorisation of old seismograms collected from the historical dataset of
ROB. Currently the archive includes data for 1954. In the next steps of our project, we will
include other periods and coverage of seismograms to enlarge the database.

5. Conclusions

Earthquakes are one of the most hazardous geological processes which significantly
affect the environment, human lives and property. The analysis of ground motions of
the Earth is an essential background for prognosis of earthquakes. However, a thorough
analysis of seismic data requires the use of the advanced methods for effective and robust
processing and accurate interpretation. This is possible using semi-automatic approaches of
signal recognition and interpretation, as we demonstrated in this paper. Analog historical
seismograms are valuable source of information for retrospective modelling of the Earth’s
seismicity which should be converted into a digital format, to be reused in modelling. Once
digitised, a corpus of the vectorised seismograms can be effectively used for earthquake
engineering, retrospective data modelling and prognosis or similar geophysical tasks. For
instance, integration and comparison of old and current seismic situation enables the
computational analysis of the seismicity of the Earth.

Computational geophysics benefits from the large archives of seismogram datasets
which contain a valuable source of information that can be reused due to automated
digitising. The subsequent generation of the digitised corpus on seismograms enables
to restore seismic information contained in historical records from UCC with the aim of
capturing and analysing characteristics of traces and parameters of ground motions. If
scanned seismograms are digitised rapidly and accurately, they can be released in an
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accessible manner for further analysis. To this end, a copious amounts of historical seismic
data must be processed, classified, digitised and annotated. To meet such challenges of
modern seismology, the effective methods of processing analog seismograms are required.
Some of the existing approaches in vectorising seismograms are presented in the proprietary
software and can only be achieved through the restricted access. These methods have their
advantages and shortcomings, and the use of these software is not at the level required for
rapid and accurate processing of analog seismograms. Reasons for this are a lack of fully
developed algorithms, finely adjusted to digitise specifically seismic data. Another reasons
is that the digitising software for seismic signals processing may not be available in open
access.

In response to these needs, this paper demonstrated the successful application of Digit-
Seis for semi-automatic vectorisation of the archived scanned seismograms.
We described the workflow and pointed at the major advantages and drawbacks. The
approach of DigitSeis implemented processing seismic traces and detecting time gaps
based on the threshold parameters of lines. The algorithms considered specific format and
characteristics of seismic data such as amplitude of traces, time gaps and 30-minute record
intervals in data recording. Using algorithms of DigitSeis we converted raster scanned
files from ROB archives into digital vector format for further reuse. As a central added
value of this paper, we demonstrated that this state-of-the-art software is a very useful tool
for digitising signal seismic traces. The algorithms of DigitSeis were used for processing
a corpus of data collected from the historical records of UCC station recorded by the
Galitzine seismometer in ROB, UCC, Belgium. Currently the dataset includes scanned
historical images from 1954, however, the data collection with be expanded to cover other
periods. The workflow of DigitSeis was used for semi-automated training of parameters
of seismograms and the computer vision algorithms were applied to detect features of
seismic traces. The algorithms of DigitSeis were evaluated on vectorisation task with a case
of scanned monochrome seismograms of Galitzine seismometer. The signals of seismic
traces were vectorised and recognised using defined thresholds and parameters of time
gaps, and converted to vector format as .mat files.

Experimental results showed that DigitSeis presents a useful tool for vectorisation
of analog scanned seismograms. The proposed framework is applicable to a variety of
similar tasks in trace recognition for seismic datasets. For instance, the evaluated workflow
for digitising seismograms can be exported to larger datasets and cover seismic archives
since 1910s up to now to extend building a corpus of digitised seismograms. However, our
experience also illustrated that the limits of this software which makes the fully automatic
analysis impossible. For example, special cases (noises or stains, crossing lines), required a
thorough manual assistance because the functionality and operations in vectorising were
limited and required interactive corrections of the recognised traces. Therefore, the tools of
DigitSeis still require improvements for the processing of big data as streams. Nevertheless,
the Integration of workflow with ML is possible if the generated file are converted into the
.mat format for post-processing in MATLAB or Python. Data integration enables overlay of
vectorised traces over the scanned images for data control. The advantages of DigitSeis
in digitising seismograms enable recurrent and consistent information capture on seismic
signal levels, repeatability of the recorded peaks, time gaps, period of data capture, intensity
of signals and strength of Earth’s ground motion. All this information can be used for
seismicity analysis and relevant geophysical studies.
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Abbreviations

GPS Global Positioning System
AI Artificial Intelligence
WWSSN World-Wide Standardized Seismograph Network
EO Earth Observation
IRIS Incorporated Research Institutions for Seismology
GMT Generic Mapping Tools
UCC Uccle seismic station
ML Machine Learning
DL Deep Learning
FFT Fast Fourier Transform
DFT Discrete Fourier Transform
IFT Inverse Fourier Transform
HSV Hue, Saturation, Value
ROB Royal Observatory of Belgium
UTC Coordinated Universal Time
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