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Abstract. The potential to solve complex problems along with the per-
formance that deep learning offers has made it gain popularity in the
scientific community. Increased performance through scaling creates a
challenge related to the trade-off between accuracy and performance. It
is mandatory to optimize a set of hyperparameters. In this work, the
Multi-Objective Optimization method is presented to find the optimal
values of the hyperparameters in a formal way. The expected results is
a minimization of the trade-offs.
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1 Introduction

Throughout time, high performance computing (HPC) applications have been
solving complex problems that require large amounts of hardware resources.
However, to take advantage of those resources, it is necessary to scale efficiently.
Therefore, it is necessary to solve the challenges that scaling implies. A special
type of application that has benefited from the distributed and parallel archi-
tecture of HPC systems is deep learning (DL). These applications have evolved
creating innovative approaches in many domains of science and engineering [4].
DL frameworks that support the training of neural networks (NN) have evolved
to use new acceleration hardware (GPU, TPU) and implement parallel mecha-
nisms for the execution of distributed training (DT). On the other hand, despite
improvements in hardware and software to increase performance, it is necessary
to take into account other variables that affect DL training. In particular, we
must consider the hyperparameters which must vary and be adjusted according
to the type of problem. Furthermore, this leads to the generation of trade-offs
between performance and accuracy when scaling DL applications. Clearly, the
configuration of hyperparameters is not trivial and is key to the correct perfor-
mance of a distributed DL application. Therefore, to contribute to the study of
this problem, we propose the implementation of a hyperparameter optimization
approach based on the Multi-Objective Optimization (MOO) method.
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Fig. 1: Accuracy of training scaling up to 240 GPUs with DDP on ResNet50 [8].

2 Hyperparameter optimization with Multi-Objective
Optimization

In a previous study [8] several distributed training mechanisms (Distributed
Data Parallel, Horovod, DeepSpeed and FairScale) that are used in PyTorch [7]
were analyzed to allow distributed training to increase performance when scaling
on GPUs. These mechanisms have different approaches to perform paralleliza-
tion and become an additional element that influences the tradeoffs generated
when scaling DL applications. Figure 1 shows the trade off between accuracy
and performance when scaling GPUs (240) of several distributed trainings. It
is notable that the increase in performance generates a loss of accuracy which
can be mitigated with adjustments in the learning rate. However, this may not
work, and cause divergence of other model parameters [5]. Additionally, large
batch sizes not optimized for scaling can cause tradeoffs [2,3]. Also, sophisticated
optimization and autotuning techniques can be used, which vary depending on
the configuration of elements involved in the training.

The learning rate and batch size mentioned above are two important hy-
perparameters, but they are not the only ones. Taking PyTorch as a ref-
erence, there are other hyperparameters such as momentum, weight decay,
betas that are directly related to the optimizer (ADAM, SGD). In addi-
tion, when implementing other optimization mechanisms such as the automatic
adjustment of the learning rate (LambdalR, MultiplicativeLR, StepLR,
MultiStepLR, ExponentiallR, and ReducelLROnPlateau) new hyperparame-
ters are added. One example is the patience hyperparameter that is part of
the ReduceLROnPlateau learning rate scheduler. There are many more hyper-
parameters, which can have a different impact on the behavior of training. The
importance of an adequate configuration of the hyperparameters is clear, how-
ever, it is also necessary to take into account other elements that add variability
in the training, such as the number of GPUs or the type of dataset.

2.1 Multi-Objective Optimization (MOO)

It is an area of multiple-criteria decision-making which is related to the mathe-
matical solution of problems involving more than one objective to be optimized
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simultaneously. MOO has been applied in many areas of science where decisions
are required to be made in the presence of a trade-off between two or more objec-
tives [1]. The general approach is to determine an entire Pareto optimal solution
set or a representative subset. A Pareto optimal set is a set of solutions that is
not dominant with respect to another. However, identifying a complete Pareto
optimal set for many multi-objective problems is practically impossible. So the
practical approach is always to investigate a set of solutions that represents the
Pareto optimal set as well as possible [6].

2.2 Towards hyperparameter optimization with MOO

DL applications present variable behavior depending on the configuration of
their hyperparameters, which are directly affected by other external elements
related to the execution environment or the data type. In this context, the K
hyperparameters become the K objectives of a multi-objective decision problem.
Then, given an n-dimensional array = = {z1,...,2,} in a solution space X,
an array x* must be found that minimizes to a set of K objective functions
z(x*) = {z1(z*), ..., z(z*) }. Furthermore, the solution space X will be restricted
by a series of constraints g;(z*) = b;, for example the number of GPUs.

This leads us to conclude that there is a good opportunity to apply a formal
method to determine the most optimal values for the hyperparameters of a DL
application. The problem in question not only requires taking into account the
most important hyperparameters for optimization, but also the entire context in
which the DL application is framed. Analyzing the context of the application,
other elements that affect it could be extracted. Of course, these may not be
modifiable, but they can be taken into account to generate the set of solutions.
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