
Parallel Mixing Chamber Application using
OpenMP and OpenACC

Glener Lanes Pizzolato , Natiele Lucca , Mariana Toledo Costa , Claudio
Schepke

Federal University of Pampa – Alegrete – RS – Brasil
{glenerpizzolato,natielelucca,marianatoledo}.aluno@unipampa.edu.br

claudioschepke@unipampa.edu.br

Abstract. An application was previously developed to simulate mixing
chamber problems. So it is possible to propose new catalysis substances,
develop new propulsive engines, or evaluate fuel combustion computa-
tionally. However, the discrete representation of a simulation has an ex-
pressive processing time. In this article, parallelization techniques are
proposed and evaluated for the mixing chamber application to run the
simulations in multicore and GPU architectures. The results obtained
show that the application was 500% faster in multicore and 50% in a
Quadro M5000 GPU architecture.

1 Introduction

Compilation directives make it possible to parallelize an application by adding
comments (pragmas) to the source code, generating minimal impacts on the
original version [12], or even worsening the performance of the original code [5].
Using such a parallelism approach requires knowing the application and identi-
fying in advance where parallelism can be applied. Directives can also generate
different types of concurrent execution (thread, loops, vector instructions, GPU
kernel, ...).

In this article we use a mixing chamber simulation application as previously
discussed in [13]. This application has an expressive simulation time. The ob-
jective of the work is to reduce the simulation time and to evaluate ways to
inject parallel compilation directives and their impacts on performance and code
change.

The contributions of this paper is to accelerate a mixing chamber applica-
tion using OpenMP and OpenACC.

The remainder of the paper does organize as follows. Section 2 presents the
related work. Section 3 presents the functionalities of the application and the
structure of the code. The development of the parallelization does detail in Sec-
tion 4. The methodology of the experiments is described in Section 5. Section 6
shows performance results for the different parallel approaches. At last, Section 7
presents the conclusion and future work of this paper.

https://orcid.org/0000---
https://orcid.org/0000-0001-7636-8512
https://orcid.org/0000---
https://orcid.org/0000-0003-4118-8831

2 Related Work

This chapter covers related works that use parallel APIs for concurrent ap-
plication execution. Table 1 shows a comparison of the parallel programming
interfaces and objectives of each of the eight selected works.

Table 1. Related Works

Article Name API Used Kind of Work

[1]-Practical Parallelization of Scientific
Applications with OpenMP, OpenACC
and MPI

OpenMP,
OpenACC
and MPI

Realizes a parallelization of
four sequential applications

[9]-Performance analysis of CUDA, Ope-
nACC and OpenMP programming models
on TESLA V100 GPU

CUDA,
OpenMP and
OpenACC

Comparison of the APIs

[14]-Experiences in porting mini-
applications to OpenACC and OpenMP
on heterogeneous systems

OpenACC
and OpenMP

Methodology for migrat-
ing small applications to
OpenMP and OpenACC

[7]-Parallel programming languages on
heterogeneous architectures using Open-
MPC, OmpSs, OpenACC and OpenMP

OpenMPC,
OpmSs, Ope-
nACC and
OpenMP

Review three programming
frameworks that solve Ja-
cobi’s iterative method

[15]-Parallel Computation of a Dam-
Break Flow Model Using OpenACC and
OpenMP

OpenACC
and OpenMP

Parallelize a flow simulation
model dam-break

[4]-Concurrent Parallel Processing on
Graphics and Multicore Processors with
OpenACC and OpenMP

OpenMP,
OpenACC
and MPI

Explore a hybrid shared and
distributed memory system

[10]-Power and energy footprint of
OpenMP programs using OpenMP run-
time API

OpenMP Study of coarse and fine level
characteristics of OpenMP
programs for energy usage

[8]-Exploring loop scheduling enhance-
ments in OpenMP

OpenMP Presents a detailed perfor-
mance study of the loop
scheduling methods.

[6]-Parallel computation of aerial target
reflection of background infrared radiation:
Performance comparison of OpenMP, Ope-
nACC, and CUDA implementations

OpenMP,
OpenACC
and CUDA

An application evaluated in
distinct parallel implemen-
tations

All related works evaluate the OpenMP and parallel programming interfaces.
Some also consider other interfaces. Article [1] evaluates the parallelization of
4 codes, but each uses a specific interface or architecture. Article [9] provides
a specific GPU architecture assessment through two benchmarks. The authors
of [10] also use benchmark to evaluate energy consumption impact. Article [14]
evaluates the performance of 4 routines/methods in 5 computing environments,
exploring heterogeneous parallelism (CPU/GPU) of the latest OpenMP and

OpenACC specifications. The parallelism evaluation of the interfaces that pro-
vide task parallelism uses the Jacoby method in [7]. However, the codes presented
show loop parallelism in the OpenMP and CUDA versions. The results presented
are limited to OpenMP 4, OpenACC, and OpenMPC. Article [15] parallelizes
a 2D shallow water control application, using finite volume discretization with
OpenMP and OpenACC. The speedup was 17.64 and 8.6 for each interface.
Article [4] also uses the OpenMP and OpenACC interfaces for an application
called MBFLO3 that provides a 3D general-purpose multidisciplinary solution
using structured meshes discretized by finite volumes. The article [8] addresses
aspects of OpenMP scheduling. Articles [15], [4] and [6] are similar to our pro-
posal, essentially changing the application itself, while the article [7] is just the
parallelization of a numerical method.

3 Mixing Chamber Application

The flowchart of the application is presented in Figure 1. The algorithm is com-
posed essentially of a big loop where for each time step the physical properties
are calculated. The algorithm executes for a number N of iterations predefined by
the user, wherein each iteration step of the Runge-Kutta method of sixth-order
executes following a time interval dt also predefined. In addition to the iterative
step, the algorithm is composed of an initialization step responsible for reading
input data and allocating and initializing variables. After the iterative step, it
performs memory deallocations and application termination. Data structures,
including those that store the discrete values of each physical property, as well
as used constants, parameters, and limits, are maintained globally.

The operations performed within the main loop that iterates over the dt

time step are: acoustic font: simulates a disturbance (turbulence), acting as
a pulse inside the chamber; rhs euler: performs all derivative calculations for
all physical properties of interest; bufferxy: handles non-reflective boundary
conditions; rk steep: concatenates the steps of the sixth-order Runge-Kutta
method; filtering: treats numerical noise for each discrete point, considering
seven neighboring points on each side; ccpml: it handles the boundary conditions
of the region of interest.

4 Implementation

We develop two parallel versions of the application. The OpenMP version ex-
plores loop parallelism. For the OpenACC implementation, we provide kernels
to the main functions of the code.

4.1 Parallelism with OpenMP

OpenMP is a programming model that has a simple and flexible interface for par-
allel application development [2]. OpenMP is standardized by directives. These

Fig. 1. Steps of the algorithm

directives define what parallelism will be applied at runtime. OpenMP has di-
rectives to launch and synchronize threads in loops, independent sections, and
parallel regions, for example. It is also possible to define the number of threads
if the variables are public or private and reductions, for example.

In our work, we add the !$omp parallel for directive to distribute the loop
operations among the defined number of threads. The code has a large number
of single and nested loops. Some of them have data dependencies, and can not be
nested. A code snippet is present in Algorithm 1. The parallel threads operates
over the x and y dimensions of the data. In this code, nk iterates each of the 5
physical properties. While this is not the case for this example, in other cases
there are interactions among the data of the physical properties in a specific
loop.

Similar parallel loops are localized and injected in all 6 routines of the itera-
tive step. In the tests, we run individual experiments for each evaluated number
of threads.

Algorithm 1 Code region used OpenMP

1 do k=1,nk

2 !$omp parallel do private(i,j)

3 do i=ii ,fi

4 do j=j1,j2

5 Du=0.d0

6 do s=-1,5

7 Du=Du+dfb(s)*u(k,i,j+s)

8 end do

9 u(k,i,j) = u(k,i,j)-sigmaf*Du

10 end do

11 end do

12 !$omp end parallel do

13 end do

4.2 Parallelism with OpenACC

OpenACC is an API based on directives for developing parallel applications on
heterogeneous architectures, available for C/C++ and FORTRAN [3]. Those
directives specify loops and code blocks that can be offloaded from the CPU to
an attached accelerator [11].

OpenACC allows the execution of an instruction on multiple data reducing
the execution time considerably. However, OpenACC has the onus of the memory
copies from the host to the device and from the device to the host. These memory
copies can make them unfeasible and significantly reduce performance gain.

In this work, we use directives for copying memory and creating kernels in
nested loops and independent loops. In the parallel implementation using Ope-

nACC, we explore kernels or loop parallelism for GPU, like the code snippet
presented in Algorithm 2. Similar parallelism approach was adopt in other func-
tions called by the main iterative step.

Algorithm 2 Code region used OpenACC

1 do k=1,nk

2 !$acc kernels present(u,dfb)

3 do i=ii ,fi

4 do j=j1,j2

5 Du=0.d0

6 do s=-1,5

7 Du=Du+dfb(s)*u(k,i,j+s)

8 end do

9 u(k,i,j) = u(k,i,j)-sigmaf*Du

10 end do

11 end do

12 !$acc end kernels

13 end do

5 Methodological Approach

We compare the numerical results of the parallel versions to the results obtained
by the sequential implementation to guarantee numerical compatibility. That
is, to have identical numerical results, which indicates that the code is free of
the insertion of programming errors resulting from parallelization. We consider
identical results when the difference between in the results are more than 10−12.

5.1 Parameters of Input

We select 2 domains for the simulation of of mixing in the chamber. The Case
A is a mesh of 461× 381, simulating 100 discrete time steps; and the Case B is
a mesh of 921 × 761, running 200 discrete time steps. An expressive number of
discrete-time steps are necessary to simulate the same time interval when more
mesh elements represent a domain.

Table 2 describes the two case studies. Mesh I represents a default mesh.
Mesh II defines a second great mesh. This one has approximately 4× the num-
ber of discrete elements, being more accurate (number of iterations and time
advance) and, consequently, more expensive to process.

The results are the average of 30 repetitions for each test performed in this
work. We define the number of threads as 2, 4, 8, 16, and 32 for OpenMP tests
These values help to exploit the available hardware resources.

Table 2. Mesh I and Mesh II parameters

Description Variable Mesh I Value Mesh II Value

x Dimension of the chamber imax 461 921
y Dimension of the chamber jmax 381 761
Time advance dt 0.01 0.005
Number of iterations maxit 100 200

5.2 Validation Environment

Table 3 shows the description of the execution environment. We compile the code
with pgf90. We use the flag -O3 for sequential execution. The tag -fopenmp is
added for the code compilation with OpenMP in addition to the flag -O3. The
tags -O3, -fast, -acc, and Minfo=all are added for the OpenACC version in
the compilation process.

Table 3. Architecture Specification

specification Xeon E5-2650 (×2) Quadro M5000

Frequency 2.00 GHz 1.04 GHz
Cores 8 (×2) 2048

Threads 16 (×2)
Cache L1 32 KB 64 KB
Cache L2 256 KB 2 MB
Cache L3 20 MB

RAM/Global memory 128 GB 8 GB

6 Experimental Results

In this section, we show the results generated by the experiments. Figure 2 and
Figure 3 present the execution time forMesh I andMesh II. The graphics present
the sequential, OpenMP, and OpenACC measured time. The standard deviation
was less than 1% in relation to the medium value.

The parallel OpenMP implementation provides execution time reduction. For
all experiments, using more OpenMP threads continuously reduces the execution
time, except when hyperthreading is active (32 OpenMP threads). The Mesh
II presents more performance gain than the Mesh I experiment for the same
number of threads. In the best case, the speedup was around 5 using 16 threads
in the Mesh II experiment.

The OpenACC implementation does not provide acceleration for the Mesh
I. It occurs due to the small mesh size in this test. In this case, the allocations,
copyin and copyout of memory operations in each iteration demand a similar

Fig. 2. Execution Time - Mesh I

Fig. 3. Execution Time - Mesh II

time in relation to the gain of the parallel GPU execution. In the Mesh II, the
OpenMP implementation provides some performance gain once the number of
elements to compute is large, and more operations are processed in GPU.

7 Conclusion and Future Works

Applications that enable the simulation of phenomena and physical environments
correspond to a range of efficient strategies for solving problems in several areas,
including complex environments, such as the simulation of a mixing chamber.

The main objective of this work was to evaluate CPU and GPU parallel
approaches in a mixing chamber simulation application. The performance gain
was around 500% for the best case in tests performed on a multicore architecture,
using 16 threads. The OpenACC implementations provide limited performance
gain due to the size of the mesh evaluated. But, for the second case study, we
obtain around 50% of performance gain. The performance on GPUs is below
what is found in other related works. In this sense, it is necessary to modify the
code and maintain the presence of data on the GPU throughout the iterative
stage, in order to minimize the impacts of data transfer.

In future works, we intend to optimize the code using other parallel ap-
proaches provided by OpenMP and OpenACC APIs (SIMD, section, task, tar-
get, and others) in order to increase the speed up of the application. We also
will explore CUDA API, using GPU to increase the computational power and
obtain better performance gains.

8 Acknowledgements

This study was partially funded by the Fundação de Amparo à Pesquisa do
Estado do Rio Grande do Sul (FAPERGS): 07/2021 PqG project No 21/2551-
0002055-5, PROBIC and PROBITI programs, Coordenação de Aperfeiçoamento
de Pessoal de Nivel Superior - Brasil (CAPES) - Finance Code 001, and the
Federal University of Pampa.

References

1. Aldinucci, M., Cesare, V., Colonnelli, I., Martinelli, A., Mittone, G., Cantalupo, B.,
Cavazzoni, C., Drocco, M.: Practical Parallelization of Scientific Applications with
OpenMP, OpenACC and MPI. Journal of Parallel and Distributed Computing 157
(06 2021)

2. Ayguade, E., Copty, N., Duran, A., Hoeflinger, J., Lin, Y., Massaioli, F., Teruel, X.,
Unnikrishnan, P., Zhang, G.: The Design of OpenMP Tasks. IEEE Transactions
on Parallel and Distributed Systems 20(3), 404–418 (2009)

3. Chandrasekaran, S., Juckeland, G.: OpenACC for Programmers: Concepts and
Strategies. Addison-Wesley Professional, 1st edn. (2017)

4. Christopher P. Stone, Roger L. Davis, D.Y.L.: Concurrent Parallel Processing on
Graphics and Multicore Processors with OpenACC and OpenMP. Accelerator
Programming Using Directives (2018), https://www.springerprofessional.

de/concurrent-parallel-processing-on-graphics-and-multicore-process/

15456018

5. Gonçalves, R., Amaris, M., Okada, T., Bruel, P., Goldman, A.: OpenMP is Not
as Easy as It Appears. In: 2016 49th Hawaii International Conference on System
Sciences (HICSS). pp. 5742–5751 (2016)

6. Guo, X., Wu, J., Wu, Z., Huang, B.: Parallel Computation of Aerial Target Re-
flection of Background Infrared Radiation: Performance Comparison of OpenMP,
OpenACC, and CUDA Implementations. IEEE Journal of Selected Topics in Ap-
plied Earth Observations and Remote Sensing 9(4), 1653–1662 (2016)

7. Hernandez, E., Palacios, G., Maŕın, C.: Parallel Programming Languages On Het-
erogeneous Architectures Using Openmpc, Ompss, Openacc, and Openmp. Tec-
nura 18 (08 2015)

8. Kasielke, F., Tschüter, R., Iwainsky, C., Velten, M., Ciorba, F.M., Banicescu, I.:
Exploring Loop Scheduling Enhancements in OpenMP: An LLVM Case Study.
In: 2019 18th International Symposium on Parallel and Distributed Computing
(ISPDC). pp. 131–138 (2019)

9. Khalilov, M., Timoveev, A.: Performance analysis of CUDA, OpenACC and
OpenMP programming models on TESLA V100 GPU. Journal of Physics: Confer-
ence Series 1740, 012056 (jan 2021), https://doi.org/10.1088/1742-6596/1740/
1/012056

10. Nandamuri, A., Malik, A.M., Qawasmeh, A., Chapman, B.M.: Power and Energy
Footprint of OpenMP Programs Using OpenMP Runtime API. In: 2014 Energy
Efficient Supercomputing Workshop. pp. 79–88 (2014)

11. OpenACC: What is OpenACC? (2021), https://www.openacc.org/, [Online;
acessed july, 20 2021]

12. Parikh, D.N., Huang, J., Myers, M.E., van de Geijn, R.A.: Learning from Op-
timizing Matrix-Matrix Multiplication. In: 2018 IEEE International Parallel and
Distributed Processing Symposium Workshops (IPDPSW). pp. 332–339 (2018)

13. Pizzolato, G., Schepke, C., Lucca, N.: Aceleração de uma Aplicação de Simulação
de Câmara de Combustão em Multi-Core. In: Anais do XXII Simpósio em Sistemas
Computacionais de Alto Desempenho. pp. 36–47. SBC, SBC, Porto Alegre, RS,
Brasil (2021), https://sol.sbc.org.br/index.php/wscad/article/view/18510

14. Vergara Larrea, V.G., Budiardja, R.D., Gayatri, R., Daley, C., Hernandez, O., Jou-
bert, W.: Experiences in porting mini-applications to OpenACC and OpenMP on
heterogeneous systems. Concurrency and Computation. Practice and Experience
32(20) (4 2020), https://www.osti.gov/biblio/1649533

15. Zhang, S., Yuan, R., Wu, Y., Yi, Y.J.: Parallel Computation of a Dam-Break
Flow Model Using OpenACC Applications. Journal of Hydraulic Engineering 143,
04016070 (08 2016)

https://www.springerprofessional.de/concurrent-parallel-processing-on-graphics-and-multicore-process/15456018
https://www.springerprofessional.de/concurrent-parallel-processing-on-graphics-and-multicore-process/15456018
https://www.springerprofessional.de/concurrent-parallel-processing-on-graphics-and-multicore-process/15456018
https://doi.org/10.1088/1742-6596/1740/1/012056
https://doi.org/10.1088/1742-6596/1740/1/012056
https://www.openacc.org/
https://sol.sbc.org.br/index.php/wscad/article/view/18510
https://www.osti.gov/biblio/1649533

