Single step fabrication of a dual-sensitive chitosan hydrogel by C-Mannich reaction: Synthesis, physicochemical properties, and screening of its Cu²⁺ uptake

John Rey A. Romal ^{1,2,*} and Say Kee Ong ²

¹Department of Chemistry, Grand View University, Des Moines, IA 50316

²Department of Civil, Construction, and Environmental Engineering, Iowa State University, Ames, IA 50011

*Correspondence: jromal11@iastate.edu; jromal@grandview.edu

Abstract: Uncovering the value of waste materials is one of the keys to sustainability. In this current work, valorization of chitosan was pursued to fabricate a novel modified chitosan functional hydrogel using a process efficient protocol. The fabrication proceeds by a one-pot and single step C-Mannich condensation of chitosan (3% w/v), glutaraldehyde (20 eq.), and 4-hydroxycoumarin (40 eq.) at 22°C in 3% v/v acetic acid medium. The Mannich base modified chitosan hydrogel (CS-MB) exhibits a dual-responsive swelling behavior in response to pH and temperature that has not been observed in any other hydrogel systems. Combining the pre-defined optimal swelling pH (pH=4) and temperature (T=22°C), the CS-MB was screened for its Cu²⁺ adsorption capacity at this condition. The CS-MB achieved an optimal adsorption capacity of 12.0 mg/g with 1.2 g/L ad-sorbent dosage after 36 hours with agitation. The adsorption of Cu²⁺ in the surface of CS-MB was verified by EDS and an overview of the adsorption sites was exhibited by FT-IR. The simply fabricated novel CS-MB hydrogel under investigation presents a unique response to external stimuli that exhibits a promise in heavy metal removal from aqueous media.

Keywords: chitosan; hydrogel; dual responsive; Mannich reaction; water treatment; environmental engineering; heavy metal removal

Figure S1. FT-IR of CS-MB (1 eq. CS, 20 eq. Glu, 20 eq. 4-HC)

Figure S2. FT-IR of CS hydrogel film

Figure S3. FT-IR of fresh CS-MB (1 eq. CS, 20 eq. Glu, 40 eq. 4-HC)

Figure S4. FT-IR of exhausted CS-MB swelled at pH 2.4

Figure S5. FT-IR of exhausted CS-MB swelled at pH 4.0

Figure S7. FT-IR of exhausted CS-MB swelled at pH 8.1

Figure S8. FT-IR of exhausted CS-MB swelled at pH 10.0

Figure S9: Influence of pH and temperature of water on the equilibrium swelling capacity of CS-MB.

Table S1: Copper speciation in AcOH/NaOAC buffered system (pH =4.0, 0.1 M) simulated from Visual MINTEQ ver
3.1 (released 2014) J. P. Gustafsson.

Cu- species	Total Concentration (%)				
Cu ²⁺	99.30				
CuOH⁺	0.025				
CuCl⁺	0.487				
Cu-Acetate⁺	0.184				

Figure S11: FT-IR of spent CS-MB

Table S2: EDC elemental analysis	(Wt %) of fresh and spent CS-MB.

Samples	С	N	0	Cl	Cu	Total
CS-MB area #1	55.49	4.80	39.63	0.08	0.00	100.00
CS-MB area #2	53.24	5.86	40.88	0.02	0.00	100.00
CS-MB area #3	55.91	5.76	38.25	0.07	0.00	100.00
CS-MB-spent area #1	51.50	4.50	35.88	0.20	7.93	100.00
CS-MB- spent area #2	53.91	5.18	31.14	0.29	9.48	100.00
CS-MB- spent area #3	53.28	5.23	32.32	0.16	9.01	100.00