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Abstract—The number of non-synchronous renewables and 

dynamic loads is rapidly increasing, which results in a variable 

system inertia. Thus, accurately quantifying the contribution of 

the demand side to the system inertia is becoming an important 

aspect and can help operators to maintain the system stability. 

This paper proposes an online estimation method to monitor the 

time-varying inertia of the loads under normal operating 

conditions. The widely used composite load model (CLM) of 

Western Electricity Coordinating Council (WECC) is 

employed, capable of representing diverse composition and 

dynamic characteristics of loads, in an aggregate manner. A 

measurement-oriented approach is proposed to estimate the 

load inertia considering only ambient measurements provided 

by Phasor Measurement Units (PMUs) during normal grid 

operation. The inertia estimation of load buses at the 

transmission level is performed using the Least Squares (LS) 

method. The proposed method is validated under various case 

studies using the 39-bus test system, where the CLM is 

integrated. The case studies consider scenarios with different 

load composition and time varying load inertia, demonstrating 

that the proposed method can accurately and dynamically 

estimate the load inertia by using only ambient PMU 

measurements.  

Keywords—Composite load model, Least Squares (LS), load 

inertia estimation, phasor measurement units (PMUs). 

I. INTRODUCTION 

The increasing penetration of Renewable Energy Sources 
(RESs) imposes various challenges to the secure and stable 
operation of power systems. A significant part of the system 
inertia relies on the physical inertia of the rotating mass of 
conventional synchronous generators. Therefore, when 
conventional generation plants are replaced by non-rotating 
RES (e.g., photovoltaics), the system inertia is reduced 
threatening the system stability. Even in case of rotating RES 
(e.g., wind power systems), the integration through power 
electronics converter decouples the physical inertia of wind 
turbines neglecting their contribution to system inertia. As a 
result, the green transition of power systems reduces the 
inertia introduced by the generation side, leading to low-
inertia grids. In such grids, system frequency becomes very 
sensitive to generation-load unbalances and maintaining the 
frequency stability is a crucial aspect for the system operators 
[1], [2].  

A considerable amount of inertia is available from the 
demand side with potentially important economic savings to 
the system [3]. The cost reduction can be achieved by 
optimizing the unit commitment problem that includes also 
ancillary services and demand inertia. In this case, the inertia 

requirements for frequency stability are partially satisfied by 
the demand inertia instead of committing conventional units. 
Thus, the system operational cost is reduced as less generators 
are needed online. Industry sector is also expressing interest 
in real-time estimation and forecasting of the effective 
(system) inertia [4], which is a combination of physical inertia 
from rotating synchronous generation, controlled responses of 
power electronic converters (virtual inertia by RES [2]), and 
passive responses from domestic and industrial demand.  

From a system operator perspective, an online awareness 
of the inertia provided by different contributors to an area or 
to the system inertia can be useful, especially in case of a 
contingency. However, the large number of diverse load 
components, the time-varying and weather-dependent 
compositions, and the lack of detailed load information and 
measurements, makes the estimation of the load inertia 
difficult. As the number of PMUs installed in power systems 
is constantly growing, monitoring of load inertia online and in 
real-time may become feasible. Consequently the situational 
awareness of the power system operators will be enhanced 
considerably. 

Most of the relevant research focuses on quantifying the 
available inertia provided by the generation side or estimating 
the effective system inertia, and limited work has been done 
to estimate the demand side inertia. In this context, early 
approaches [5], [6] use the swing equation to estimate the 
system inertia during large disturbance events, where the 
contribution of generation, demand and virtual inertia through 
RES is aggregated. A measurement-based approach has been 
recently proposed [7], [8] for estimating the effective inertia 
of different areas in multiarea interconnected power systems. 
In [7] a relationship between effective area inertia and area 
demand in MW is derived. However, the method is event-
based and can only estimate inertia after a severe disturbance. 
In [8], the application of the presented method to real 
measurement data, revealed that the estimated area inertia is 
larger than the expected theoretical value. One of the reasons 
was that the area under study contains large industrial load 
centers with motors that can contribute to the effective inertia. 

 In [9], [10] and [11] the effective inertia is estimated 
under normal operating conditions using ambient data in the 
estimation process. However, in these methods, the 
aggregation reflects the system inertia, without estimating the 
contribution of generation and demand side individually. 
Knowledge of the inertia at a certain load bus could benefit 
the system operators regarding the load shedding schemes that 
are applied. Prioritizing the load buses contributing to the 
effective inertia as higher priority loads and thus avoid 
rejecting those buses during a contingency could help in 
preventing total blackouts and cascading events.  

An early effort to distinguish the demand inertia 
contribution is reported in [12]. In the aforementioned 
approach, the load inertia of the Irish Power System is 
calculated using a white-box method, utilizing post event data. 
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The load inertia is extracted from the system overall inertia by 
subtracting the contribution from the synchronous generators 
and the embedded generation. Similarly, in [13], [14] the 
demand side inertia contribution of the Great Britain Power 
System was estimated from recorded grid frequency during an 
outage events. It was found that an average of 20% of the 
system inertia is provided from the demand side [14], 
highlighting that the amount of demand inertia available is 
significant. In [15], the load inertia provided by different 
power consumer groups is estimated, analyzing a permanent 
short circuit event. In [16], the inertia contribution from power 
station auxiliary loads is also taken into consideration in the 
overall system inertia using measurements taken during 
HVDC power perturbations. However, the disturbance-based 
estimation methods allow inertia estimation after severe 
events which do not occur very often in a power system and 
thus the real-time inertia estimation is not feasible.  
 The main contribution of this paper is the development of 
a novel methodology that can estimate and track the time-
varying load inertia of a bus using only ambient PMU 
measurements. The proposed method is applied to load buses 
with adequate load inertia that can contribute significantly to 
the system inertia. The aggregated load inertia is estimated 
online, under normal operation, without the necessity of a 
disturbance to occur, as opposed to the disturbance-based 
estimation methods proposed in literature. Furthermore, the 
reduced data length used for the estimation process allows a 
near real-time estimation. Lastly, the estimation scheme relies 
only on frequency and power measurements at the system bus 
while knowledge of any other data is not required (e.g. 
contribution from synchronous generator units to the system 
inertia, embedded generation). 

The remainder of the paper is organized as follows: The 
composite load model that is used in this study to represent the 
loads of a power system is described in Section II. Section III 
presents the proposed load inertia estimation scheme. The case 
studies and the results are presented and discussed in Section 
IV and the paper concludes in Section V. 

II. WECC COMPOSITE LOAD MODEL 

Load modelling is essential for power system stability 
analysis, planning and control. Due to the diversity of load 
types and the integration of distributed energy resources 
(DERs), WECC has developed a composite load model to 
accurately represent a variety of load compositions, as shown 
in Fig. 1. More specifically, the model includes a substation 
transformer, shunt capacitor, and a feeder equivalent. The load 
model, which is attached at low voltage side, consists of three 
induction three-phase motor models with different dynamic 
characteristics (Motors A-C), one single-phase motor model 
(Motor D), an electronic load, a static load and a distributed 
generator model (DER). 

The motor models represent the aggregation of many 
motors throughout the distribution system, with the same 
characteristics. Motor A represents the aggregation of three-
phase induction motors with relatively low inertia, driving 
constant torque loads, such as  commercial and industrial air-
conditioning compressors, positive displacement pumps, etc. 
Motor B represents the three-phase induction motors with 
high inertia, driving variable torque loads whose torque is 
proportional to the square of mechanical speed. Typical loads 
of this category are commercial ventilation fans and air 
handling systems. Motor C represents the three-phase 
induction motors with relatively low inertia, driving loads 
whose torque is proportional to the square of speed, e.g. 

centrifugal pumps. Motor D is a performance based model of 
single-phase residential heat ventilation and air-conditioning 
(HVAC) system. The model represents many individual 
single-phase A/C compressors and their protective devices. 
Motor A-C consider the equivalent circuit of a three-phase 
induction motor and Motor D follows the single-phase motor 
circuit. In motors A-C, the dynamic response relies on [17]: 

 
where 𝜔 is the rotor speed, 𝑇𝑒  is the electromagnetic torque, 
𝑇𝑚  is the mechanical input torque, and 𝐻  is the inertia 
constant (in sec). The torque characteristics of the mechanical 
input torque 𝑇𝑚 is calculated as follows: 

 
 In (2), 𝑇𝑚0  is the initial mechanical input torque and 𝛦𝑡𝑟𝑞 

is the speed exponent for mechanical torque. Hence, for 
constant torque loads that are not dependent on motor speed 
the parameter 𝛦𝑡𝑟𝑞  is 0, while for speed dependent loads 𝛦𝑡𝑟𝑞 

defines the type of dependency. The CLM also includes an 
electronic load and a static load model. The power electronic 
load component of the model represents the consumer loads 
that are connected to the system through an inverter-based 
interface, e.g. variable speed drive interfaced motor loads and 
consumer electronic devices. The active and reactive power 
output of the electronic model is given by a conditional linear 
function of the bus terminal voltage Vt [18]. In this way, the 
under-voltage operation of these devices is represented. 
 The static load represents all the loads that are not included 
by the previous models in the system, such as resistive heating 
loads and non-led based lighting loads. The model is 
represented by a polynomial representation that captures the 
active and reactive power sensitivity to voltage and frequency 
[17]. The share of each of the aforementioned components 
(motors, electronic and static loads) contributing to the total 
load can be specified by the user. Further information 
regarding the WECC CLM can be found in [17] and [18]. In 
[18] a detailed mathematical representation of the DER model 
which is not used in this study is also available.  

III. PROPOSED ESTIMATION FRAMEWORK 

In this section, the proposed estimation scheme for online 
monitoring of the load inertia at each bus is presented. The 
procedure consists of the following three steps, as depicted 
also in Fig. 2: 

1) Data acquisition and preprocessing of frequency and 
power measurements used for the inertia estimation. 

2) Load inertia estimation at a substation level using the 
LS method, considering an aggregated load 
representation. 

3) Application of a smoothing technique on the estimated 
values to reduce the impact of erroneous estimations 
(outliers).  

 𝑑𝜔

𝑑𝑡
=

𝑇𝑒 − 𝑇𝑚

2𝐻
 (1) 

 

 𝑇𝑚 = 𝑇𝑚0𝜔𝛦𝑡𝑟𝑞 (2) 

 

 

Fig. 1. Schematic diagram - WECC Composite Load Model 
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1) Data Preprocessing 

Data preprocessing is employed to remove the 
measurement noise and to ensure estimation accuracy. First, 
frequency and power ambient measurements (during normal 
operating conditions) are collected from the system bus and 
converted in p.u. values. Next, the linear trend is removed and 
the measurements are filtered through a non-casual low-pass 
Butterworth filter to attenuate the higher frequency 
components. Then, the vectors that contain the difference 
between two consecutive values are constructed and used at 
the estimation stage, instead of the measured values, which is 
a common preprocessing technique. In this way, the part of the 
signal that is the same between adjacent measurements is 
removed. 

2) Load Inertia Estimation using LS method 

The LS is a method used for estimating the parameters of 
a model by finding a solution that minimizes the sum of the 
squared errors between the observed data and their estimated 
values. The form of the model is given by, 

 𝐘 = 𝐗Τ𝛉 (3) 

where 𝐘 ∈ 𝑅𝑚×1  is the observation vector; 𝐗 ∈ 𝑅𝑚×𝑝  is the 
regressor matrix of m observations on p variables to be 
estimated; and 𝜽 ∈ 𝑅𝑝×1  is the vector of unknown 
parameters. The LS method aims to find the solution 𝛉̂𝑳𝑺 =

[𝜃̂1, 𝜃̂2, … , 𝜃̂𝑝]
T
 according to (4), 

 𝛉̂𝑳𝑺 = arg min
𝛉̂

‖𝐘 − 𝐗Τ𝛉̂‖
𝟐

= (𝐗Τ𝐗)−1𝐗Τ𝐘 (4) 

where ‖ . ‖2  denotes the Euclidian vector norm. In the 
proposed load inertia estimation scheme, a simplified model 
is considered, where all motors are lumped into one single 
fictitious motor. The dynamics of the aggregated motor model 
are given in p.u. by expressing (1) in steady state, using the 
torque-power relationship  (𝑃 = 𝑇𝜔)  and 𝜔 ≃ 1  p.u for 
steady state conditions. In the following linearized equation, 
the frequency (𝑓) is used to approximate the rotor angle (𝜔) 
and the torque is converted into power (P), 

 
𝛥𝑃 = 2𝐻𝐷 ∗

𝑑(𝛥𝑓)

𝑑𝑡
+ 𝐷 ∗ 𝛥𝑓 (5) 

where 𝐻𝐷 is the aggregated inertia provided by the demand 
side and 𝐷  represents the aggregated frequency-dependent 
term of (2). The simplified model is in the least squares 

format; the observation vector 𝐘 = [𝑃1 … 𝑃𝑚]𝑻  contains the 
power measurements P for m recorded samples; the vector 

𝛥𝐟 = [𝛥𝑓1 … 𝛥𝑓𝑚]𝑻 contains the frequency deviation Δf; the 
regressor matrix is  𝐗 = [𝑑(𝛥𝐟) 𝑑𝑡⁄  𝛥𝐟] ΤR2×𝑚 ,  where 
𝑑(𝛥𝐟) 𝑑𝑡⁄  is the one-dimensional numerical gradient of the 
vector Δf. The aggregated load inertia 𝐻𝐷  is estimated by 

solving the LS problem 𝛉̂𝐋𝐒 = [𝜃1 𝜃2]T and the load inertia 
can be extracted by the first element of the LS solution. Hence, 
the estimated load inertia value for estimation k is 𝐻est,k = 

𝜃1/2, using an estimation window of m measurements. 

3) Data Smoothing 

The discrete low-pass filter is applied on the estimation 
windows comprised of m measurements to smooth any 
erroneous estimations that can be considered as outliers, 
enhancing the estimation accuracy. The discrete low-pass 
filter used is in the following form, 

 𝐻LP,k = 𝛼𝐻est,k + (1 − 𝛼)𝐻LP,k−1 (6) 

where 𝐻LP,k  and 𝐻LP,𝑘−1 are the smoothing values of the 

discrete low-pass filter (filter output) at estimation k and k-1, 

respectively; 𝐻𝑒𝑠𝑡,𝑘  is the LS estimated load inertia of 

estimation k (filter input); and α is a smoothing constant with 
values ranging from 0 to 1. 

IV. CASE STUDIES 

The performance of the proposed method is tested using 
the IEEE 39-bus test system [19], modeled in DIgSILENT 
PowerFactory 2021 SP1. The IEEE 39-bus test system 
contains 10 generators (G1-G10) and 19 loads that change 
dynamically in time in order to mimic ambient load variations 
under normal operation. The load variations that are 
incorporated in the test system result in realistic ambient 
frequency variations within the range [49.9-50.1] Hz for 
system frequency 50 Hz. In the simulation, the droop 
constants of the generators are set to R2-8 = 0.035 p.u., R9 = 
0.0338 p.u. and R10 = 0.05 p.u.; and the base power of G1 is set 
to Sbase,1 = 1200 MVA. The IEEE 39-bus test system has also 
been modified to include 3 additional generators connected in 
parallel to the existing generators G5, G7 and G9 at the same 
bus. The rest of the system parameters are taken from [19]. 
The WECC Composite Load Model is incorporated at the 
IEEE 39-bus test system via a transformer at Bus 12, 
connecting a 20 MW load. The load connected at Bus 7 (Load 
7 of [19]) is reduced by 20 MW to compensate the additional 
load of the CLM.  The time domain simulation is performed 
with time step 0.001 sec, while frequency and power 
measurements at the system bus are recorded and sent to a 
Matlab script for the estimation stage every 0.2 sec. In Section 
IV.A the fraction of each CLM component varies and the load 
inertia is kept constant. In Section IV.B the estimation scheme 
is tested under time-varying load inertia, while the fraction of 
each component is kept constant. The rest of the CLM 
parameters are the default DigSilent values.  

A. Constant load inertia  

In this section, different compositions of load are used to 
evaluate the efficiency of the proposed estimation scheme. 
The load composition for each case study is presented in Table 
I for Motors A-C, the electronic load and the static load. The 
mean error (%) and maximum error (%) are selected as key 
performance indicators (KPIs). In this case, the percentage of 
the estimation error is calculated as follows: 

 
𝐸𝑟𝑟𝑜𝑟 (%) = (

𝐻LP,k − 𝐻D,true

𝐻D,true
) × 100% (7) 

where 𝐻𝐿𝑃,𝑘 denotes the smoothed estimation result obtained 

using (6) at time step k and 𝐻D,true is the true total load inertia, 

 
Fig. 2. Flowchart of load inertia estimation scheme 
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as set in the simulation stage. The total load inertia that is 
comprised of Motors A-D is calculated as: 

 
 In (8), 𝐻𝑖 is the inertia of motor i, SB,i is the rated power of 
motor i and n is the total number of motors connected at the 
particular bus that contribute to the system load. In this study, 
i represents Motors A-D. The value of 𝐻𝐷,𝑡𝑟𝑢𝑒 is used as an 

evaluation indicator for the accuracy of the proposed method 
after the estimation process. The results for 12 representative 
case studies are presented in Table I. The data window used 
for the estimation process is comprised of measurements that 
correspond to 15 sec with sampling time 0.2 sec. The total 
number of estimations performed for each case study 
corresponds to 30 min monitoring of frequency and power 
measurements at the system bus. For each estimation window, 
steps 1-3 are employed sequentially as described in Section 
III. In Step 1, the summation of the rated powers of the CLM 
components is used to convert in per unit. However, the 
system base value can be chosen arbitrarily. In this case, the 
true value of inertia 𝐻𝐷,𝑡𝑟𝑢𝑒  is converted in p.u. of the new 

system base to evaluate the estimation accuracy. Furthermore, 
in Step 1, a 10th-order non-casual Butterworth filter with cut-
off frequency fc = 1 Hz is used in this study. The LS parameter 
estimation is then employed as described in Step 2. Table I 
presents the mean and maximum error results for a smoothing 
value of 𝛼 = 0.05 using (6) as shown in Step 3, while the 
estimation errors are calculated using (7) and (8). In (8) the 
value of inertia for Motor D is zero, as there is no contribution. 
 During the simulations presented in this section, the inertia 
of motors A-C is constant and given the same value for all case 
studies. Specifically, for Motor A the inertia is set as 𝐻𝐴 = 0.3 
sec (low-inertia model); for Motor B as 𝐻𝐵 = 0.8 sec (high-
inertia model); and for Motor C as 𝐻𝐶 = 0.2 sec (low-inertia 
model). Then, simulations for various load compositions are 
performed. First, high fraction of one of the motors is 
considered (e.g. Cases 1-3) and then the fraction is decreased, 
while the fraction of the other motors increases accordingly 
(e.g. Cases 4-6). Electronic and static loads are also introduced 
as case studies. Starting with equal fraction of all 3 motors and 
non-existent electronic/static load (Case 7), the fraction of 
electronic and static loads is increased as presented in Table I 
(Cases 8-10). However, further increase in the percentage of 
loads with no inertia results in reducing the amount of load 

inertia that contribute to the system inertia. For instance, the 
amount of inertia provided by the generators is 29.201 GVA 
seconds for the 39-bus test system and in Case 7, where the 
load is comprised only from motors, the load inertia is 11.6 
MVA seconds of inertia (0.05% of inertia provided by 
generators). Considering 2% share of each motor A-C results 
in approximately 0.7 MVA seconds of inertia (0.002% of the 
inertia provided by the generators) and thus the amount of load 
inertia is reduced. Therefore, the methodology is applied to 
load buses that can contribute to the system inertia.  
 Case studies with various load compositions were 
simulated resulting in general to low mean estimation error 
and maximum estimation error below 10% (e.g. Cases 11-12).  
As it can be seen in Table I, the case with the maximum mean 
error is Case 9 with 6.09% mean error and maximum error 
9.48%. The performance of the estimation scheme to the rest 
of the case studies that are not shown is similar (low mean 
error and maximum error below 10%). Hence, it was verified 
that the algorithm is capable of estimating the load inertia for 
different load composition scenarios with accuracy. 
Moreover, as the computation time for each individual 
estimation is approximately 0.03 sec, the results are instantly 
available which is crucial for near real-time applications for 
load inertia estimation.  

B. Time-varying load inertia 

In this section a time-varying load inertia case is presented 
and the feasibility of the proposed estimation scheme to 

 
𝐻𝐷,𝑡𝑟𝑢𝑒 =

∑ 𝐻𝑖𝑆𝐵,𝑖
𝑛
𝑖=1

∑ 𝑆𝐵,𝑖
𝑛
𝑖=1

 (8) 

 

 

Fig. 4. Load inertia tracking 

 

Fig. 3. Case 12: Frequency deviation (Hz) and Power deviation (MW) 

TABLE I 

CASES OF WECC COMPOSITE LOAD MODEL CONFIGURATION 

Case 
Load composition (%) Mean 

Error (%) 

Max 

Error (%) A B C D Elec. Static 

1 97 1 1 1 0 0 1.29 3.79 

2 1 97 1 1 0 0 2.03 4.73 

3 1 1 97 1 0 0 1.69 4.72 

4 85 5 5 5 0 0 1.51 5.07 

5 10 70 10 10 0 0 1.81 4.34 

6 20 20 40 20 0 0 1.60 4.42 

7 33.3 33.3 33.3 0 0 0 2.28 5.08 

8 26.6 26.6 26.6 0 10 10 3.95 7.74 

9 20 20 20 0 20 20 6.09 9.48 

10 13.3 13.3 13.3 0 30 30 2.00 5.67 

11 15 25 30 10 15 5 2.91 5.91 

12 25 35 30 0 10 0 1.40 2.84 

 

TABLE II 

TIME-VARYING LOAD INERTIA SCENARIO 

 
Inertia of motors (sec) 

Total load 

inertia (sec) 

𝐻𝐴  𝐻𝐵 𝐻𝐶  𝐻𝐷,𝑡𝑟𝑢𝑒  

Stage 1 0.3 0.6 0.25 0.4 

Stage 2 0.5 1.1 0.4 0.7 

Stage 3 0.35 1 0.35 0.6 

 



monitor the load inertia is verified. Case study 12 of Table I is 
simulated with constant fractions of the CLM components, 
while the load inertia varies. Three stages of load inertia 
changes are presented, as shown in Table II. First, the 
transition from Stage 1 to Stage 2 consists of a large inertia 
increase for all loads (Motors A-C). The change in Motor B is 
chosen to be larger than the rest of the motors, as Motor B 
represents loads with large inertia value. Next, in Stage 3, 
there is a small decrease in inertia for all load components. 

The value of the total load inertia 𝐻𝐷,𝑡𝑟𝑢𝑒 given in Table II is 
calculated using (8). In Fig. 3, the frequency deviation (Hz) 
from the nominal frequency and the power deviation (MW) 
from the nominal load for the simulated case study are given 
for illustration purposes. Considering a data monitoring length 
of 150 min as illustrated in Fig. 4, the total load inertia remains 
at 0.4 sec during the first 25 min, then changes to 0.7 sec from 
25 to 92 min, while from 92 to 150 min the inertia changes to 
0.6 sec. As it can be observed in Fig. 3, the proposed method 
can properly capture the change of the inertia value 
considering only ambient measurements (normal operating 
conditions), while no disturbance occurs during this case 
study. The results of the load inertia estimation in case that the 
inertia of the load is changing are shown in Fig. 4.  

Different values of the smoothing constant α are also 
presented in Fig. 4. Specifically, the constant α of the discrete 
low-pass filter is given a small value (α = 0.02) and then 
increased (α = 0.05 and α = 0.1). As it can be seen in Fig. 4, 
choosing a small value of α may result in attenuating any 
possible outliers more efficiently, compromising the dynamic 
load inertia monitoring. On the other hand, a large value of α 
may result in faster convergence of the estimation algorithm 
to the new inertia value. However, in this case the accuracy 
may be compromised, as high fluctuations of the estimated 
parameter may result in an increase of the maximum 
estimation error. In other words, enhancing accuracy may 
deteriorate the tracking capability of the algorithm, while 
allowing a dynamic estimation may lead to overshoots of the 
estimation error. Hence, there is a trade-off between 
estimation accuracy and dynamic load inertia monitoring. 
Regardless of the smoothing method applied to remove any 
abnormal estimates that may occur during the estimation 
process, it is shown that the proposed method is able to 
accurately estimate and track the time-varying load inertia.   

V. CONCLUSIONS 

In this paper, a method to monitor the load inertia was 
presented. The estimation process was performed online under 
normal operation utilizing ambient frequency and power 
measurements obtained by PMUs. The load was 
approximated as an aggregated load model representation and 
the total load inertia was estimated. The LS parameter 
estimation method was employed to obtain the inertia value. 
In order to ensure estimation accuracy, the discrete low-pass 
filter was used for filtering the estimated values. The purpose 
of the smoothing process was to eliminate any possible 
outliers during the estimation stage, maintaining at the same 
time the dynamic inertia estimation capability of the 
algorithm. The effectiveness of the proposed estimation 
scheme was validated by incorporating the WECC CLM in the 
39-bus test system.  

A variety of load composition scenarios were tested, 
containing a combination of fractions of motors. In addition to 
the motor loads, static and electronic load fractions were also 
considered with adequate percentage of motors in order to 
contribute significantly to the system inertia. Virtual inertia 

from RES was not introduced in this study, but could be a 
possible direction for future work as a method for system 
operators to evaluate these ancillary services that are provided 
by the inverter based recourses. A time-varying load inertia 
scenario was presented, verifying the capability of the 
methodology to track both large and small load inertia 
fluctuations. The effect of the smoothing process was also 
demonstrated using different values of the smoothing 
constant. In this case, a trade-off between the estimation 
accuracy and the tracking capability of the algorithm exists. 
The reduced data length and the computational time that are 
required for the estimation process make the method suitable 
for near-real time applications.  
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